
Generic Operations and Capabilities

in the JR Concurrent Programming Language

Hiu Ning (Angela) Chan†, Andrew J. Gallagher†,
Appu S. Goundan†, Yi Lin William Au Yeung†,

Aaron W. Keen‡, and Ronald A. Olsson†§

†Department of Computer Science
University of California, Davis, CA 95616 USA

‡Computer Science Department
California Polytechnic State University

San Luis Obispo, CA 93407 USA

§Olsson is the corresponding author:
olsson@cs.ucdavis.edu

+1 530-752-7004 (office)
+1 530-752-4767 (fax)

May 20, 2008

1

Abstract

The JR concurrent programming language extends Java with addi-
tional concurrency mechanisms, which are built upon JR’s operations
and capabilities. JR operations generalize methods in how they can be
invoked and serviced. JR capabilities act as reference to operations.
Recent changes to the Java language and implementation, especially
generics, necessitated corresponding changes to the JR language and
implementation. This paper describes the new JR language features
(known as JR2) of generic operations and generic capabilities. These
new features posed some interesting implementation challenges. The
paper describes our initial implementation (JR21) of generic opera-
tions and capabilities, which works in many, but not all, cases. It then
describes the approach our improved implementation (JR24) uses to
fully implement generic operations and capabilities. The paper also
describes the benchmarks used to assess the compilation and execu-
tion time performances of JR21 and JR24. The JR24 implementation
reduces compilation times, mainly due to reducing the number of files
generated during JR program translation, without noticeably impact-
ing execution times.

Keywords: concurrency, JR operations, Java, generics, language design, lan-
guage implementation

2

1 Introduction

The JR concurrent programming language [1, 2] extends Java to provide
a rich concurrency model, based on that of the SR concurrent program-
ming language [3]. JR performs synchronization using an object-oriented
approach, and provides dynamic remote virtual machine creation, dynamic
remote object creation, remote method invocation, asynchronous communi-
cation, rendezvous, and dynamic process creation.

JR provides much of this added functionality via its operation abstraction,
which can be considered a generalization of a method and which can be
invoked and serviced in different ways. Along with operations, JR provides
capabilities, which act as (first-class) references or pointers to operations and
which are useful in concurrent programs to connect together the different
participants in the computation.

During program compilation, JR source programs are translated into
standard Java programs, which are then compiled using the standard Java
compiler. During program execution, JR programs use the JR runtime sup-
port system, which helps provide JR’s extended functionality. Both the JR
language translator and the JR runtime support system are written in stan-
dard Java.

The original JR language, which we call JR1, was an extension of Java
1.x. Its implementation originated from the implementation of Java 1.2.

Java 5.0 (or 1.5)1 [4] made significant additions to Java 1.x. Java 5.0 con-
tains several new language features including generics, enhanced for-loop,
autoboxing/unboxing, typesafe enums, varargs, static import, and annota-
tions [5]. Generics allows a type or method to operate on objects of various
types while providing compile-time safety. It adds compile-time safety to
Java’s Collections Framework and eliminates the drudgery of casting [5].
The implementation of Java also changed for Java 5.0, including a redesign
and restructuring of the translator and in how it handles RMI. (The latest
version of Java is 6.0 (or 1.6). The differences between Java 5.0 and Java 6.0
are not significant for the focus of this paper.)

To accommodate these changes in Java, we made corresponding changes
to the JR language and implementation [6]. We use JR2 to refer to this new
version of JR. The most interesting and challenging of the changes is generics,

1Both version numbers “1.5.0” and “5.0” can be used to identify this release. Version
“5.0” is the product version, while “1.5.0” is the developer version.

3

specifically how we added generic operations and generic capabilities. The
design aspects were straightforward, but the implementation aspects were
not. The implementation of JR2 is based on the implementation of Java 5.0.
That is, we re-implemented JR, merging our changes for JR1 (and adapting
those changes to fit within the framework of the Java 5.0 implementation)
and adding new code for the new JR2 features.

This paper describes our experience with adding generic operations and
generic capabilities to JR. Our initial approach extended our implementa-
tion of JR1, the most recent version being JR 1.00061. This initial imple-
mentation of JR2 was designated JR 2.00001 [6]; we refer to it as JR21.
Although this approach works in most cases, it does not work in some im-
portant cases involving capabilities for generic operations. We devised an
alternate implementation, which works in all cases. This implementation of
JR2 is designated JR 2.00004.2

This new approach involves a fundamental change in the code that the JR
translator generates. In JR21, each operation is represented as its own class
with the operation’s arguments represented exactly as declared. In JR24,
all operations are represented as one predefined class with the operations’
arguments represented as a single array of Java Objects. This new approach
has the benefit of significantly reducing the amount of code produced for
each JR program; specifically, it reduces the number of files produced for JR
operations and capabilities. Thus, it reduces compilation times yet produces
execution times that are nearly the same.

The rest of this paper is organized as follows. Section 2 presents a brief
overview of the JR language. Section 3 describes the new JR2 language fea-
tures of generic operations and generic capabilities. Section 4 discusses the
JR2 implementation in general; how JR21 implements generic operations and
capabilities, which works in many, but not all, cases; and the approach the
JR24 implementation uses to fully implement generic operations and capabil-
ities. Section 5 compares the compilation and execution time performances
of JR21 and JR24; as noted earlier, JR24 reduces compilation times with-
out impacting execution times. Section 6 explores some related issues and

2Version 2.00002 was the first version using this new approach. Versions 2.00003 and
2.00004 contain several bug fixes and other enhancements. Version 2.00006 is the latest
release (January 2008); it corrects several bugs in JR24. None of the bug fixes has a
significant effect on the performance results described in this paper. Version 2.00005 was
an experimental version described in [6]. It was based on JR21 and predates 2.00003 and
2.00004; it was a first step toward JR24, but it was not a released version of JR.

4

presents some related work. Finally, Section 7 concludes.

2 Overview of the JR Concurrent Program-

ming Language

JR extends Java with a richer concurrency model [2, 7], based on that of
SR [8, 3]. JR provides dynamic remote virtual machine creation, dynamic
remote object creation, remote method invocation, dynamic process cre-
ation, rendezvous, asynchronous message passing, semaphores, and shared
variables.

Of specific interest in this paper are JR’s operations and capabilities,
which are used to effect some of the above features.

An operation can be considered a generalization of a method. Like a
method, it has a name and can take parameters and return a result. Like
a method declaration, an operation declaration specifies the signature of the
operation, i.e., the return type and the types of parameters. Unlike a method,
an operation can be invoked and serviced in different ways, which yields
flexibility in solving concurrent programming problems.

More specifically, an operation can be invoked in two ways: synchronously
by means of a call statement(call) or asynchronously by means of a send
statement (send). An operation can also be serviced in two ways: by a
method or by input statements (inni). This yields the following four com-
binations (from [2]):

Invocation Service Effect
call method procedure (method) call (possibly remote)
call inni rendezvous
send method dynamic process creation
send inni asynchronous message passing

JR allows several abbreviations for common uses of operations: process
declarations, op-method declarations, receive statements, and semaphores.
JR also provides a few additional statements that involve operations and that
are useful for concurrent programming: the reply, forward, and concurrent
invocation statements.

As an example, the program in Figure 1 (from [2]) illustrates a simple
client-server model. The program uses the process abbreviation to spec-
ify that N client processes and one server process are to be created when

5

public class Model {

private static final int N = 20; // number of client processes

private static op double request(int, char);

private static process client((int i = 0; i < N; i++)) {

...

double d;

d = request(i, ’w’);

...

}

private static process server {

while (true) {

inni double request(int id, char data) {

// handle request; put answer in ans

double ans;

...

return ans;

}

}

}

public static void main(String [] args) {

}

}

Figure 1: Simple client-server JR program.

the program begins execution. Specifically, the process declaration for the
clients uses a quantifier, which is similar to the control expressions in a for

statement, to specify N client processes, each with its own value of i. Each
client invokes the server via the request operation. This invocation, because
it appears within an expression, is a call invocation; i.e., the client waits for
the server to return a value. The server handles one invocation of request
on each iteration of its loop; it does so using an inni statement.

JR provides capabilities, which act as (first-class) references or pointers to
operations and which are useful in concurrent programs, to connect together
the different participants in the computation. The declaration of a capability
specifies the signature of the operations to which it can refer.

To illustrate capabilities, Figure 2 (from [2]) shows how Figure 1 can be
rewritten. The request operation no longer returns a value. Instead, it
now takes an additional parameter: a capability for an operation to which
it should send the result it computes. The server receives that capability

6

public class Model3 {

private static final int N = 20; // number of client processes

private static op void request(cap void (double), char);

private static process client((int i = 0; i < N; i++)) {

op void results(double);

...

send request(results, ’w’);

// possibly perform some other work

double d;

receive results(d);

...

}

private static process server {

while (true) {

cap void (double) results_cap; char data; double ans;

receive request(results_cap, data);

// handle request; put answer in ans

...

send results_cap(ans);

}

}

public static void main(String [] args) {

}

}

Figure 2: Simple client-server JR program (Figure 1) rewritten using capa-
bilities and send/receive.

in local variable results_cap and uses it to send back results to the oper-
ation to which the capability points. The inni statement in the server has
been replaced by a receive/send pair. Each client declares a local operation,
results, whose parameterization is that of the result messages. It passes
a capability for that operation as the first parameter to request. The call
invocation of request in the client has been replaced by a send/receive pair.
The new program is equivalent to the old one, except a client can perform
other work between when it sends its invocation of request and when it
receives its result.

As another example, the code in Figures 3 and 4 (from [2]) represents a
server, in which each request is handled by a separate process, and clients.
The server passes back a capability to the client that allows the client to

7

public class Server {

public op cap void (String) startup(int n) {

op void line (String);

reply line;

for (int k = 0; k < n; k++) {

String s;

receive line(s);

System.out.println(s);

}

}

}

Figure 3: Server class for conversation continuity example.

interact with its server process via a private conversation, i.e., conversational
continuity [9]. This interaction is accomplished by having the server process
execute reply, passing back a capability for its local operation. (Like a return
statement, a reply statement returns a value; unlike a return statement, a
reply statement causes the executing process to continue execution after the
reply statement.) Specifically, each invocation of startup creates a new
process to handle the request; that process passes back a capability for its
local operation line. The operation line takes a String as its parameter;
accordingly, the signature of the capability that operation startup returns
specifies a String parameter. The client sends the server n messages as the
conversation.

3 Generics: A New JR2 feature

The main new language feature for JR2 is generics. In addition to sup-
porting generics wherever Java supports generics (e.g., generic classes), JR2
also supports, as new JR language features, generic operations and generic
capabilities.

3.1 Generic Operations

Generic operations in JR are similar to generic methods in Java. Figures 5
and 6 show a simple JR program with a generic operation get(). Class
MyShape contains a single member variable id of type E, where E is a pa-

8

public class Client {

private static Server server = new Server();

private static process client((int i = 1; i <= 10; i++)) {

final int N = 5;

String t[] = new String [N];

for (int x = 0; x < N; x++) {

t[x] = i + "hi";

}

cap void (String) c = server.startup(N);

for (int k = 0; k < N; k++) {

send c(t[k]);

}

}

public static void main(String [] args) {

}

}

Figure 4: Client class for conversation continuity example.

rameterized type provided to the class MyShape. Operation get() returns a
value whose type is E. For the program in Figure 6, that type is String, and
the program outputs "square", "triangle", and "rectangle".

3.2 Generic Capabilities

Capabilities in JR can now be generic. As a simple example, the code in
Figures 5 and 6 can be rewritten to use a generic capability. The revised
class MyShape, shown in Figure 7, now declares gcap, which is parameterized

public class MyShape <E> {

protected E id;

public MyShape (E id) {

this.id = id;

}

public op E get() {

return id;

}

}

Figure 5: Example of a JR class with a generic operation, get.

9

import java.util.ArrayList;

public class GenericsOpMain {

public static void main(String [] args) {

ArrayList<MyShape> shapes = new ArrayList<MyShape>();

shapes.add(new MyShape<String>("square"));

shapes.add(new MyShape<String>("triangle"));

shapes.add(new MyShape<String>("rectangle"));

for (MyShape<String> item: shapes) {

System.out.println(item.get());

}

}

}

Figure 6: Example JR code using a generic operation.

by E, the class’s parameterized type. The using program now invokes get()
indirectly via gcap; Figure 8 shows the changed invocation.

As another example, consider generalizing the code in Figures 3 and 4 by
making it generic. This new server code appears in Figure 9. Note how the
capability returned by startup and the operation line are parameterized
by the server class’s type parameter E. The only change to the client code is
in how it declares and creates the server, as seen in Figure 10.

As a more complicated example using generic capabilities, Figure 11
shows a class with a capability, mycap. mycap’s return type and single pa-
rameter are each a generic capability for an operation with signature E(E),
i.e., for an operation that returns E and takes a single parameter E, where
E is the class’s parameterized type. This kind of operation parameterization
occurs in practice, for example, when N processes attempt to “pair up” with
each other. Each process has a generic operation, say D, that is to be made
known to exactly one other of the N processes. Each such process sends a
(generic) capability for its D to an operation, exchange, serviced by a coor-
dinator process, and receives back a (generic) capability for its partner’s D.
The signature of the exchange operation is similar to the signature of the
operation in Figure 11.

10

public class MyShape <E> {

protected E id;

public cap E () gcap;

public MyShape (E id) {

this.id = id;

this.gcap = get;

}

public op E get() {

return id;

}

}

Figure 7: Example of a JR class with a generic capability, gcap.

System.out.println(item.gcap());

Figure 8: Example JR code using a generic capability. (The rest of Figure 6
remains the same.)

public class Server<E> {

public op cap void (E) startup(int n) {

op void line (E);

reply line;

for (int k = 0; k < n; k++) {

E s;

receive line(s);

System.out.println(s);

}

}

}

Figure 9: Server class for generic conversation continuity example.

private static Server<String> server = new Server<String>();

Figure 10: Client class creation of generic Server. (The rest of Figure 4
remains the same.)

11

public class GenericCap<E> {

public cap cap E(E) (cap E(E)) mycap =

new op cap E(E) (cap E(E));

process p {

while (true) {

inni cap E(E) mycap (cap E(E) x) {

System.out.println("in mycap");

return noop;

}

}

}

public static void main (String [] args) {

GenericCap<String> gc = new GenericCap<String>();

cap String(String) test = null;

test = gc.mycap(test);

}

}

Figure 11: Example of a capability with generics.

4 Implementation

This section first gives an overview of the implementations of JR, focusing
especially on operations and capabilities. It then describes the JR21 and
JR24 implementations of generic operations and capabilities.

4.1 Overview

4.1.1 General Approach

During program compilation, JR source programs are translated into stan-
dard Java programs, which are then compiled using the standard Java com-
piler. During program execution, JR programs use the JR runtime support
system, which helps provide JR’s extended functionality. Both the JR lan-
guage translator and the JR runtime support system are written in standard
Java. The JR runtime environment also includes instances of the JR virtual
machine (JRVM), one instance for each extant VM in the execution of the JR
program. The JRVM provides services in addition to those of the underlying
Java virtual machine. (Thus, JR programs ultimately run on standard Java

12

InOpProcOp
Signature - Specific Signature - Specific

Specific
Op

Signature-

Op

Figure 12: JR operation inheritance hierarchy (from [1]).

VMs.) In particular, the JRVM handles references to virtual machines and
support for their dynamic creation, and similar services for remote objects.

4.1.2 Operations and Capabilities

JR provides operations in an object-oriented fashion [1], in which all opera-
tions are derived from a base class Op. This base class provides (abstract)
methods for invoking and servicing operations. The Op class is specialized
according to the signatures of specific operations in a given program. For
example, an operation that returns an int and takes a single, String param-
eter would be represented in Figure 12 as a subclass of Op, whose name
would encode the “String to int” signature. Each signature-specific Op class
is further specialized into a signature-specific ProcOp class and a signature-
specific InOp class. These two classes correspond to the two ways to service
operation invocations (Section 2): via a method (an “op-method”; “proc” in
SR terminology) or via inni statements. These classes provide the concrete
methods to support invoking and servicing an operation. For example, the
InOp class defines these methods to apply to a queue of invocations declared
local to the class. Capabilities for operations also form a hierarchy, with a
base class for all capabilities and a subclass for each specific signature used
in a given program.

13

public class SimpleOp {

public static op int myOp1(char);

public static op int myOp2(char, double);

public static op int myOp3(double, char);

public static void main(String [] args) {}

}

Figure 13: JR program used to illustrate the classes the translator generates.

4.2 The JR21 Implementation Approach

4.2.1 Generation of signature-specific operation classes

JR21 follows the hierarchy presented in Figure 12 in generating classes for the
operations present in a given JR program. For example, consider the simple
program in Figure 13. It just declares several operations. (These operations
are not serviced anywhere in the given program.) For this simple program,
JR21 generates the files listed in Figure 14. Most of these files are: the
signature-specific classes, as per Figure 12, for Op (Op_*), InOp (InOp_*),
and ProcOp (ProcOp_*); and the corresponding signature-specific classes,
mentioned earlier, for capabilities (Cap_*). The other files in Figure 14 are
for the invocations (Recv_*) of these operations. The JR translator gener-
ates classes that the program might need rather than actually needs; e.g.,
it generates both the ProcOp and InOp classes for each operation rather
than just one or the other. Also, the JR translator generates classes for
some operations it adds to each JR program; e.g., the *_voidTovoid classes.
The other classes are for the translated version of the actual JR program
(SimpleOp.java) and for supporting remote objects (JR*).

4.2.2 Generic Capabilities

The JR21 scheme for generating signature-specific classes works for generic
operations and for most, but not all, generic capabilities. For example, it
works for the programs in Figures 5–10, but not for the program in Figure 11.

For the program in Figure 11, the JR21 translator proceeds as follows. It
translates the type of mycap to a capability that takes a single argument of
type Cap ObjectToObject and returns Cap ObjectToObject, i.e., the trans-
lator erases the generic type parameter. In the main function, gc is an in-
stance of type GenericCap<String>. In that instance, the member capabil-

14

Cap_charToint.java ProcOp_charToint.java

Cap_charXdoubleToint.java ProcOp_charToint_impl.java

Cap_doubleXcharToint.java ProcOp_charXdoubleToint.java

Cap_intTovoid.java ProcOp_charXdoubleToint_impl.java

Cap_voidTovoid.java ProcOp_doubleXcharToint.java

InOp_charToint.java ProcOp_doubleXcharToint_impl.java

InOp_charToint_impl.java ProcOp_intTovoid.java

InOp_charXdoubleToint.java ProcOp_intTovoid_impl.java

InOp_charXdoubleToint_impl.java ProcOp_voidTovoid.java

InOp_doubleXcharToint.java ProcOp_voidTovoid_impl.java

InOp_doubleXcharToint_impl.java Recv_char.java

InOp_intTovoid.java Recv_charToint.java

InOp_intTovoid_impl.java Recv_charXdouble.java

InOp_voidTovoid.java Recv_charXdoubleToint.java

InOp_voidTovoid_impl.java Recv_double.java

JRSimpleOp.java Recv_doubleXchar.java

JRjavadotlangdotObject.java Recv_doubleXcharToint.java

Op_charToint.java Recv_int.java

Op_charXdoubleToint.java Recv_intTovoid.java

Op_doubleXcharToint.java Recv_void.java

Op_intTovoid.java Recv_voidTovoid.java

Op_voidTovoid.java SimpleOp.java

Figure 14: Files generated by JR21 for the program in Figure 13.

15

Cap_

Cap_ObjectToObject Cap_StringToString

Figure 15: JR 21 capability inheritance hierarchy for the program in Fig-
ure 11.

JRSimpleOp.java

JRjavadotlangdotObject.java

SimpleOp.java

Figure 16: Files generated by JR24 for the program in Figure 13.

ity mycap is supposed to take a single argument of type Cap StringToString

and to return Cap StringToString. However, Cap StringToString is not
a subtype of Cap ObjectToObject. Each of these types is a direct subclass
of the base capability class (as described in Section 4.1.2) as illustrated in
Figure 15. Therefore, when the Java compiler analyzes this generated code,
it complains that the invocation of gc.mycap has a type mismatch in both
its actual argument and its return value.

4.3 The JR24 Implementation Approach

4.3.1 Generation of signature-specific operation classes

Unlike JR21, JR24 does not generate signature-specific operation classes.
Instead, it uses one predefined class for all operations; this class represents the
arguments to the operations as a single array of Java Objects. The translator
then boxes or unboxes values of primitive types so they can be inserted into
or extracted from this array. Similarly, JR24 also uses just one predefined
class for capabilities and another for invocations. Since these classes are now
unchanged from program to program, they are no longer generated by the
translator; instead, they are included in JR’s run-time system package.

Thus, for the program in Figure 13, JR24 generates only the files shown
in Figure 16. These files have roles similar to the roles of their namesakes in
Figure 14 and described in Section 4.2.1

16

4.3.2 Generic Capabilities

The JR24 scheme solves the problem that JR21 has with some generic ca-
pabilities (Section 4.2.2). Because there is just one operation class used to
represent operations of all signatures, there is no problem with having sub-
type classes match as in the JR21 scheme.

5 Performance

We evaluated the performances of JR21 and JR24 with respect to compilation
times and execution times on a variety of programs. The overall results
show that JR24 is considerably faster for compilation, but there is little
difference in the execution times of the code generated by the two versions.
The reduction in compilation time is due to JR24 reducing the number of
files that the JR translator generates (Section 4): time is saved not only for
the time spent actually generating the files (and outputting them), but also
in compiling those files. The small differences in execution time are explored
later in this section.

Section 5.1 gives a representative collection of benchmarks that demon-
strate the overall performance trends. Section 5.2 gives additional bench-
marks that reinforce the results given in Section 5.1.

The data presented in this paper were obtained on a 2.8GHz dual-
processor system with 1 gigabyte of RAM running Fedora Core 5 Linux
(2.6.20-1.2316.fc5smp kernel). The entire set of tests was run multiple times,
with insignificant differences between results. Within the set, each individ-
ual test was run multiple times. The results reported are the averages of
one group of these runs; variances were small. We report elapsed real time,
which includes user and system CPU and I/O times; the test system was
lightly loaded during the tests, so there was little interference from other
tasks running on the system. We also ran these tests on other Linux plat-
forms including a 1.4GHz single-processor system, 2.4GHz single-processor
system, and 2.4GHz dual-processor system and on a 2.8GHz dual-processor
Windows system. The data obtained on these platforms exhibited trends
similar to those we report for our one selected platform, although specific
data values, of course, varied. The code generated by JR21 and JR24 was
translated and executed using Java 1.5.0 07. That is, the performance differ-
ences are due to difference in JR21 and JR24, not because the versions are

17

executed using different JVMs. We ran these tests with “adaptive optimiza-
tions” in the Java Hotspot byte compiler [10] enabled (the default).

5.1 Representative Benchmarks

We chose a variety of test programs: most we and others had written previ-
ously and a few we wrote or adapted specifically for these tests. Some of the
programs were from the JR test suite (described later in Section 5.2); some of
these are specially designed for assessing execution time performance. Some
of the other programs were larger applications (two visualization programs
and a program from Reference [2]). Some of these programs are microbench-
marks, while others are macrobenchmarks. Appendix A briefly describes
each of these JR benchmarks and gives details on how we ran them.

5.1.1 Compilation Time

Table 1 presents the average compilation times on the representative bench-
marks. As the data show, JR24 compilation always requires less time than
JR21 compilation: between 67-90%. JR24 outperforms JR21 even on MM-
seq, which is sequential JR code involving no user-defined operations or ca-
pabilities, because, as noted in Section 4, JR21 produces additional files for
all JR programs. JR24 outperforms JR21 by the widest margin on rwVis be-
cause that program uses many operations, which requires JR21 to generate
and translate considerably more files than JR24 does.

5.1.2 Execution Time

Table 2 presents the average execution times on the representative bench-
marks. The data show at most a ±3% difference between the executions
of programs run under JR21 and JR24. Although these differences are not
significant, we did investigate further a possible cause (parameter passing),
as described at the end of this section.

The three programs with execution times marked “n/a” include two vi-
sualization programs and a simulation of a distributed file system. Each of
these programs requires immediate user interaction, so their execution times
are not meaningful.

The differences in the execution times are zero or nearly so for the pro-
grams that use virtual machines (vm/basic and vm/many). The execution

18

Compilation Time Ratio
Benchmark JR21 JR24 JR24/JR21

MMseq 2.16 1.85 .856
dfsall 4.36 2.93 .672
dpVis 2.57 2.32 .903
rwVis 9.00 6.34 .704
op charXintXbooleanTodouble 2.49 1.83 .735
op intXintToint 2.44 1.83 .750
simulationAllPPC 2.52 1.98 .780
simulationAllPPC2 2.51 1.99 .793
timings/asynch 2.24 1.98 .884
timings/ircall 2.30 2.03 .883
timings/irnew 2.31 2.04 .883
timings/locall 2.26 2.00 .885
timings/loop 2.21 1.95 .882
timings/msgcsw 2.28 2.03 .890
timings/pcreate 2.27 2.00 .881
timings/rend 2.28 2.04 .895
timings/semP 2.23 1.95 .874
timings/semV 2.22 1.95 .878
timings/semcsw 2.26 2.04 .903
timings/sems 2.21 1.94 .878
vm/basic 2.57 2.00 .778
vm/many 2.17 1.85 .853

Table 1: Average compilation times (in seconds) and their ratios on repre-
sentative benchmarks.

19

Execution Time Ratio
Benchmark JR21 JR24 JR24/JR21

MMseq 16.91 17.12 1.012
dfsall n/a n/a n/a
dpVis n/a n/a n/a
rwVis n/a n/a n/a
op charXintXbooleanTodouble 9.91 9.86 .995
op intXintToint 9.86 9.55 .974
simulationAllPPC 19.92 20.66 1.037
simulationAllPPC2 51.98 51.81 .997
timings/asynch 2.94 2.98 1.014
timings/ircall 2.06 2.08 1.010
timings/irnew 2.81 2.89 1.028
timings/locall 2.04 2.08 1.020
timings/loop 1.76 1.82 1.034
timings/msgcsw 2.74 2.80 1.022
timings/pcreate 2.41 2.45 1.017
timings/rend 3.49 3.53 1.011
timings/semP 2.88 2.92 1.014
timings/semV 1.87 1.92 1.027
timings/semcsw 2.67 2.61 .978
timings/sems 2.89 2.88 .997
vm/basic 2.66 2.66 1.000
vm/many 13.69 13.70 1.001

Table 2: Average execution times (in seconds) and their ratios on represen-
tative benchmarks.

20

number of Execution Time Ratio
parameters JR21 JR24 JR24/JR21

0 40.47 41.59 1.028
2 40.36 41.56 1.030
3 41.58 41.39 .995
9 41.21 40.35 .979

15 41.77 41.73 .999

Table 3: Parameter test average execution times (in seconds, for 40,000 iter-
ations with Hotspot optimizations enabled) and their ratios.

times are dominated by the relatively expensive activities of creating virtual
machines and of communicating between them, which are the same in JR21
and JR24.

Parameter Passing: A natural concern is that JR24 will take extra execu-
tion time due to how it must auto-box (e.g., int to Integer) and auto-unbox
parameters (Section 4.3.1). We ran additional benchmarks to investigate this
hypothesis. However, our benchmarks showed little differences in the execu-
tion times.

Each of these benchmark programs consisted of a single operation with
several integer parameters. The body of the operation just returned the
sum of the parameters. The main program invoked the operation many
times.3 We varied the number of parameters and the number of invocations,
but execution times using the JR21 and JR24 implementations differed only
slightly and in no apparent systematic way. Table 3 shows several typical
results we saw. We also ran these tests with “adaptive optimizations” in the
Java Hotspot byte compiler [10] disabled (Table 4) with similar outcomes.

We also ran additional benchmarks to investigate the costs of autobox-
ing/unboxing in Java. While that cost is high relative to the overall cost of
a plain Java method invocation, it is not high relative to to the overall cost
of a JR invocation. The latter is dominated by the costs of, e.g., object cre-
ation for the invocation itself and execution of the code within JR’s runtime
system for handling an invocation.

3These programs are therefore similar to the op charXintXbooleanTodouble and
op intXintToint programs seen earlier.

21

number of Execution Time Ratio
parameters JR21 JR24 JR24/JR21

0 66.94 66.85 .999
2 66.29 67.06 1.012
3 66.60 66.85 1.004
9 67.08 67.41 1.005

15 66.74 67.97 1.018

Table 4: Parameter test average execution times (in seconds, for 40,000 iter-
ations with Hotspot optimizations disabled) and their ratios.

5.2 Additional Benchmarks

To gain more data on the relative performances of the JR21 and JR24 imple-
mentations, we also ran additional benchmarks. These benchmarks consisted
of two JR “vsuites”. The first was the main JR implementation vsuite, a suite
of roughly 850 test cases for validating (regression testing) the JR implemen-
tation [7].4 The second was the vsuite (“code extract”) that accompanies
the JR book [2], which is used to ensure that the code fragments in the book
actually work; it consists of roughly 250 test cases (available at [7]). Each
test case consists of JR source, a test script, and a file with the correct pro-
gram output for normal programs or a file with correct error messages for
erroneous programs. The JR distribution contains a jrv tool that launches
each test case in the test suite according to the commands in the script file,
compares the output against the expected output, and reports the result.

Most of these vsuite tests have short compilation and execution times.
Some of these tests consist of a single compilation, but a few executions on
different data sets. Table 5 shows the data for running the entire vsuite
tests. As shown, JR24 outperforms JR21 overall, with JR24 requiring about
91% of the time that JR21 requires. This number is consistent with the
characteristics of the vsuite tests, and the relative compilation and execution
performances seen earlier.

4The vsuites for the JR21 and JR24 releases differ slightly. The JR24 contains a few
additional tests, e.g., for new features in JR24 and for bugs that were formerly present
in JR21. A few other tests differ too, for example, due to the wording of error messages.
The vsuite actually used for this paper is, therefore, a subset of the JR21 vsuite.

22

Total Time (mm:ss) Ratio
Benchmark JR21 JR24 JR24/JR21
codeextract2.0 20:36 18:52 .916
vsuite 57:10 52:00 .910

Table 5: Total compilation and execution times and their ratios.

Cap_

Cap_ObjectToObject

Cap_StringToString

Figure 17: Proper capability inheritance hierarchy for the program in Fig-
ure 11.

6 Discussion

Interestingly, we had considered the approach used by JR24 (Section 4.3) for
operations and capabilities for our initial implementation of JR1 [1]. How-
ever, our experimentation then indicated that, while the approach would
reduce compilation times, it would noticeably increase execution times. (We
used tests similar to those we used for testing parameter passing reported in
Tables 3 and 4 in Section 5.1.2.) Since then, processor characteristics and
compiler technology have changed so that this approach no longer has that
drawback.

Section 4.2.1 described the JR21 scheme for the generation of signature-
specific operation and capability classes. As seen there, JR21 generates sev-
eral files for each operation. This approach does not work entirely for generic
capabilities, as described in Section 4.2.2. A variant of this approach is to
generate the same signature-specific operation and capability classes, but to
arrange the generated capability classes to form a hierarchy. For example, for
the program in Figure 11, the capability classes would be generated to form
the hierarchy shown in Figure 17. Doing so would solve the type mismatch

23

Cap_

Cap_ObjectToObject

Cap_ObjectToString Cap_StringToObject

Cap_StringToString

Figure 18: Capability inheritance hierarchy for a variant of the program in
Figure 11.

problem described in Section 4.2.2. Note that generating the hierarchy would
be feasible within the JR implementation because the JR translator compiles
all source files at once. It could thus defer generating the capability hierarchy
until it has analyzed the entire program. Although such analysis is possi-
ble, it would add some complexity to the implementation and the generated
code. For example, a variant of the program in Figure 11 might require other
capability classes to be generated and the hierarchy would become more com-
plicated, e.g., as shown in Figure 18. To implement this hierarchy in Java
would require the use of interfaces to effect multiple inheritance. Although
we did not implement this variant of JR21, we believe its performance would
be roughly the same as JR21’s performance. Its performance would likely
be just slightly slower during translation time, for the reasons mentioned
previously, and would be about the same during execution time.

In a more general context, numerous other languages have extended Java.
Many of these extensions have been for concurrency. Some earlier efforts
include JCilk [11], Ajents [12], JavaParty [13], ARMI [14], Java/DSM [15],
Charlotte [16], and Communicating Java Threads [17]. More recent efforts
include JAC [18], simpA [19], and Coqa [20]. The earlier efforts predate
generics in Java and the reports on the more recent efforts do not address
whether or how they deal with generics.

24

7 Conclusion

This paper described the new JR2 language features of generic operations
and generic capabilities, motivated by the changes in the underlying Java
language. It then described our initial (JR21) implementation of generic op-
erations and capabilities, and the problem with that approach. The paper
then described the approach the JR24 implementation uses to fully imple-
ment generic operations and capabilities. It described the benchmark com-
parisons we used to assess the compilation and execution time performances
of JR21 and JR24. The JR24 implementation reduces compilation times,
mainly due to reducing the number of files generated during JR program
translation, without noticeably impacting execution times.

Acknowledgements

Others in the JR group — Billy Yan-Kit Man, Erik Staab, and Ingwar Wir-
jawan — assisted with this work. The anonymous reviewers gave constructive
comments that led to improvements in this paper.

25

A Description of JR Benchmarks

Tables 6 and 7 present brief descriptions of the JR benchmarks that we used
in Section 5.1. As noted in that section, most of these benchmarks come
from the JR main vsuite or the JR book vsuite (both available at [7]).

Some of the benchmarks require command-line or hard-coded parameters.
We used the following in running the benchmarks:

• MMseq: 1,000,000 multiplications of 2 10×10 matrices.

• op charXintXbooleanTodouble and op intXintToint: 2,000 sends and
receives.

• all timings tests: “10 10 1”, each trial consists of 10×10 iterations, run
as 1 trial.

• simulationPPC and simulationPPC2: 1,000 voters.

• vm/many: 20 total virtual machines, maximum of 3 at a time.

26

Approx.
Benchmarks # of lines Description Language features used

MMseq 64 Matrix multiplication sequential code
dfsall 644 Distributed file system vm, remote object, inni, send,

receive, reply, forward, capability
dpVis 2178 Visualization of the process, send, receive, sem,

dining philosophers problem P, V, operations, capability,
vm, remote object

rwVis 2678 Visualization of the vm, remote object, inni, send,
readers/writers problem receive, reply, forward, capability

op charXintXboolean- 17 sends and receives on an send, receive
Todouble operation that takes a char, an int, and a

boolean and returns double
op intXintToint 17 sends and receives on an operation send, receive

that takes two int and returns int
simulationAllPPC 41 Election simulation process, inni, send, receive,

operation
simulationAllPPC2 45 Election simulation using an process, inni, send, receive,

array of operations array of operation

Table 6: Brief descriptions of JR benchmarks (part 1 of 2).

27

Approx.
Benchmarks # of lines Description Language features used

timings/asynch 60 Asynchronous send/receive call, operation, inni, send,
receive

timings/ircall 68 Interclass call, no new process call, operation, remote
timings/irnew 75 Interclass call with new process creation call, operation, remote
timings/locall 59 Local call call
timings/loop 57 Overhead of an empty loop
timings/msgcsw 81 Message passing requiring context switch send, receive, P, V, sem
timings/pcreate 64 Process create P, V, sem, send
timings/rend 68 Rendezvous send, call, inni, operation
timings/semP 60 Semaphore P operation P, V, sem
timings/semV 57 Semaphore V operation P, V, sem
timings/semcsw 79 Semaphore requiring context switch send, P, V, sem
timings/sems 57 Semaphore operations P and V P, V, sem
vm/basic 38 Remote objects on a JR virtual machine remote object, vm, quiescence

operation
vm/many 70 many virtual machines remote object, vm array

Table 7: Brief descriptions of JR benchmarks (part 2 of 2).

28

References

[1] A. W. Keen, T. Ge, J. T. Maris, and R. A. Olsson. JR: Flexible dis-
tributed programming in an extended Java. ACM Transactions on Pro-
gramming Languages and Systems, pages 578–608, May 2004.

[2] Ronald A. Olsson and Aaron W. Keen. The JR Programming Language:
Concurrent Programming in an Extended Java. Kluwer International
Series in Engineering and Computer Science; SECS 774. Boston : Kluwer
Academic, 2004.

[3] Gregory R. Andrews and Ronald A. Olsson. The SR Programming Lan-
guage : Concurrency in Practice. Benjamin/Cummings Pub. Co., 1993.
http://www.cs.arizona.edu/sr/.

[4] Sun Developer Network, 1994-2005. http://java.sun.com/.

[5] JDK 5.0 Documentation, 2004. http://java.sun.com/j2se/1.5.0/

docs/index.html.

[6] Hiu Ning (Angela) Chan. Enhancing the JR concurrent programming
language with new Java 5.0 features. Master’s thesis, University of
California, Davis, Department of Computer Science, December 2005.
http://www.cs.ucdavis.edu/~olsson/students/.

[7] JR distribution. http://www.cs.ucdavis.edu/~olsson/research/

jr/.

[8] G. R. Andrews, R. A. Olsson, M. Coffin, I. Elshoff, K. Nilsen, T. Purdin,
and G. Townsend. An overview of the SR language and implementation.
ACM Transactions on Programming Languages and Systems, 10(1):51–
86, January 1988.

[9] G.R. Andrews. Concurrent Programming: Principles and Practice. Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, CA, 1991.

[10] Advanced Programming for the Java 2 Platform, 2007. http:

//java.sun.com/developer/onlineTraining/Programming/

JDCBook/perf2.html.

29

[11] JCilk — A Java-Based Multithreaded Programming Language.
http://publications.csail.mit.edu/abstracts/abstracts05/

jsd_angelee_cel/jsd_angelee_cel.html.

[12] M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an environment for
parallel, distributed and mobile Java applications. In ACM 1999 Java
Grande Conference, pages 15–24, 1999.

[13] M. Philippsen and M. Zenger. JavaParty — transparent remote ob-
jects in Java. Concurrency: Practice and Experience, 9(11):1225–1242,
November 1997.

[14] R. Raje, J. Williams, and M. Boyles. An asynchronous Remote Method
Invocation (ARMI) mechanism for Java. Concurrency: Practice and
Experience, 9(11):1207–1211, November 1997.

[15] W. Yu and A. Cox. Java/DSM: A platform for heterogeneous comput-
ing. Concurrency: Practice and Experience, 9(11):1213–1224, November
1997.

[16] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Charlotte: Meta-
computing on the web. In Proceedings of the 9th Conference on Parallel
and Distributed Computing Systems, 1996.

[17] G. Hilderink, J. Broenink, W. Vervoort, and A. Bakkers. Communicat-
ing Java Threads. In WoTUG 20, pages 48–76, 1997.

[18] Max Haustein and Klaus-Peter Löhr. JAC: declarative Java concurrency.
Concurrency and Computation: Practice and Experience, 18(5):519–
546, 2006.

[19] Alessandro Ricci and Mirko Viroli. simpA: A simple agent-oriented Java
extension for developing concurrent applications. In Proceedings of Lan-
guages, Methodologies and Development Tools for Multi-agent Systems
(LADS’007), 2007. http://lia.deis.unibo.it/confs/lads/papers/
4.3%20paper_37%20(ricci).pdf.

[20] Yu David Liu, Xiaoqi Lu, and Scott Smith. Coqa: Concurrent objects
with quantized atomicity. In Proceedings of the 18th International Con-
ference on Compiler Construction, 2008. to appear.

30

