
The JR Programming Language:
Concurrent Programming
in an Extended Java

this addendumc©2008 Olsson and Keen

THE JR PROGRAMMING LANGUAGE:
CONCURRENT PROGRAMMING
IN AN EXTENDED JAVA

RONALD A. OLSSON
Department of Computer Science
University of California, Davis

AARON W. KEEN
Department of Computer Science
California Polytechnic State University

Kluwer Academic Publishers
Boston/Dordrecht/London

Contents

1. CONCURRENT EXECUTION 1

1.1 Concurrent Invocation Statement 1

Exercises 5

References 9

Index 10

Chapter 1

CONCURRENT EXECUTION

This document describes JR’s concurrent invocation statement, whose design
and implementation were finished just after the JR book was published. Note
that this presentation is preliminary (and contains some notes to ourselves for
later work); comments are welcome! At some point, this document will be
merged into the JR book (most likely as a new section right after Section 4.3
“Static and Non-Static Processes”).

The concurrent invocation statement also introduces an “additional source of
asynchrony” that needs to be considered when dealing with exception handling.
So, further changes will be made to Chapter 12 “Exceptions”, especially Section
12.4. (See Reference [1], available on the JR webpage, for details.)

1.1 Concurrent Invocation Statement
The concurrent invocation statement provides another mechanism for creat-

ing processes dynamically. It consists of one or more concurrent commands
separated by[] delimiters:

co concurrent command [] concurrent command [] ...

Each concurrent command consists of an invocation and optionally a block of
postprocessing code. It thus has two forms:

invocation; or invocation { block }

The invocation part of a concurrent command is a call invocation, send invo-
cation, or a simple assignment that calls a user-defined function. (JR doesnot
provide a general cobegin statement, often described in operating systemstext-
books and courses, in which concurrent commands can be arbitrary statement
lists. Such a statement is difficult to implement because each statement list
would need to be able to access the stack of the enclosing process.)

2 Concurrent Execution

A concurrent command can be preceded by an optional quantifier to specify
a collection of invocations, one for each combination of values of the bound
variables. The scope of such a bound variable extends to the end of the concur-
rent command. The quantifiers have the same form as those seen earlier in this
chapter.

The next subsection describes the meaning and gives examples of concurrent
invocation statements without postprocessing code. The subsection following
that describes and illustrates postprocessing code.

Concurrent Invocation Without Postprocessing Code
As a simple example, consider the following concurrent invocation statement:

co p(3); [] q(); [] a = r(x,y);

It consists of three invocations: one each ofp, q, andr. The final invocation
assigns the value thatr returns toa.

Execution of a concurrent invocation statement first starts all invocations
in parallel. A concurrent invocation statement with no postprocessing code
terminates when all its invocations have completed. The aboveco therefore
terminates when all three of its invocations have terminated.

As a more complete example, the following class uses processes to compute
the partial sums of integers from 0 up to one less than the value of command-line
argumentN. The program initializessum so thatsum[i] is equal toi. When
the for loop terminates, eachsum[i] is the sum of the integers from 0 toi.
The program uses what is called a parallel prefix algorithm: Start with distance
d equal to 1. Then addsum[i-d] to sum[i] in parallel (for alli greater than
d), doubled, and repeat untild is at leastn. To avoid interference between the
processes, an extra array,old, is used for temporary storage of a copy ofsum.

public class PartialSums{

private static int N;

private static int d; // distance

private static int [] sum;

private static int [] old; // copy of sum

// for all i, set sum[i] to 0 + ... + i

public static void main(String[] args) {

N = Integer.parseInt(args[0]);

// initialize sum

sum = new int [N];

for (int i = 0; i < N; i++) {

sum[i] = i;

}

old = new int [N];

// compute; double the distance each time

for (d = 1; d < N; d = d+d) {

co ((int i = 0; i < N; i++)) save(i);

1.1 Concurrent Invocation Statement 3

co ((int i = 0; i < N; i++)) update(i);

}

// print results

for (int i = 0; i < N; i++) {

System.out.println(i + " " + sum[i]);

}

}

private static op void save(int i) {

old[i] = sum[i];

}

private static op void update(int i) {

if (i > d) sum[i] += old[i-d];

}

}

Each iteration of the main compute loop uses two concurrent invocation state-
ments. Each of these uses a quantifier to createN processes. The first group of
processes executessave to copy old values ofsum intoold. The second group
executesupdate to calculate new values forsum. Each of the concurrent invo-
cation statements uses the bound variablei as an argument in its invocations.
This is permitted since the scope of the quantifier variable extends through the
concurrent command.

As another example, the following program implements a parallel version of
the familiar quicksort algorithm:

public class Quicksort{

public static void main(String[] args) {

// read N and array a from command line

int N = Integer.parseInt(args[0]);

int [] a = new int [N];

for (int i = 0; i < N; i++) {

a[i] = Integer.parseInt(args[i+1]);

}

System.out.println("input:");

writeArray(a);

sort(a, 0, a.length-1);

System.out.println("sorted:");

writeArray(a);

}

private static void writeArray(int [] a) {

for (int i = 0; i < a.length; i++) {

System.out.println(a[i]);

}

}

// sort a[lb:rb]

// i.e., part of a between positions lb and rb (left and right bounds)

private static op void sort(int [] a, int lb, int rb) {

if (rb <= lb) return; // empty or 1-element array needs no sorting

int pivot = a[lb];

4 Concurrent Execution

int lx = lb+1, rx = rb; // left and right indexes

while (lx <= rx) {

if (a[lx] <= pivot) {

lx++;

}

else /* a[lx] > pivot */ {

int temp = a[lx]; a[lx] = a[rx]; a[rx] = temp; // swap

rx--;

}

}

int temp = a[lb]; a[lb] = a[rx]; a[rx] = temp; // swap

co sort(a, lb, rx-1);

[] sort(a, lx, rb);

}

}

Thesort op-method first partitions argument arraya into two parts based on
the value of pivot elementa[lb]. It then swaps the pivot with the rightmost
value in the left partition. Finally,sort uses a concurrent invocation statement
to recursively sort each of the partitions in parallel.

Concurrent Invocation With Postprocessing Code
Execution of a concurrent invocation statement that has postprocessingcode is
slightly more complicated than one that does not have such code. Again, all
invocations are first started in parallel. Then, as each invocation terminates, the
corresponding postprocessing block is executed, if there is one. Postprocessing
blocks are executed one at a time, by the same process that initiated executionof
theco; they arenot executed concurrently and thus can change variables without
requiring mutual exclusion. Execution ofco terminates when all postprocessing
blocks have terminated or when some postprocessing block executes a break
statement.

As an example, consider the following program fragment:

int cnt = 0;

co ((int i = 0; i < a.length; i++; a[i] != 0)) p(i) {

cnt++;

System.out.println(cnt + " " + i);

}

It uses a quantifier to invokep once for each value ofi such thata[i] is
non-zero. The postprocessing block counts the number of such invocations
as they complete and outputs their indices. The use of the bound variablei

in the postprocessing block is legal since the scope of the quantifier variables
extends to the end of postprocessing block. Since the postprocessing blocks
are executed one at a time, the update ofcnt need not be protected by a critical
section and the output will not be interleaved.

Exercises 5

As another example, consider the following:

// read one copy of a replicated file,

// recording which response was received first

int whichOne;

co ((int i = 0; i < 4; i++)) fd[i].read(arguments) {

whichOne = i;

break;

}

It uses a quantifier to initiate four invocations. When any of the invocations
terminates, the postprocessing code records, inwhichOne, the index of that
invocation and then executes a break statement. The effect of thebreak is to
exit the entireco without waiting for the other invocations to complete.

If a postprocessing block exits before all invocations have terminated, the
outstanding invocations are not canceled; they will still be serviced, but the
invoker will not wait for them to complete nor get back results. Thus theco

in the above example waits for just one of the four invocations it initiates to
complete. The other three will presumably complete sometime, but the invoker
is in no way affected by their completion; indeed, the invoker may no longer
exist.

A postprocessing block in a concurrent invocation statement can also contain
a continue statement. As in a for statement, execution ofcontinue within a
postprocessing block causes execution of that postprocessing block toterminate;
the enclosingco then delays until another invocation terminates, or theco

terminates if all invocations have terminated. ****

Examples: Voting Using The Concurrent Invocation Statement
**** either add as new subsection, using examples from Reference [1], or leave
as exercises (first three below).

(if add, then add appropriate index entries and update roadmap at start of this
section.)

Exercises
1.1 Write a concurrent invocation statement that pollsN voters for yes or no

votes and terminates when all responses have been received.

1.2 Write a concurrent invocation statement that pollsN voters for yes or no
votes and terminates when at leastN/2 responses have been received.
AssumeN is even.

1.3 Repeat the previous exercise, but terminate the concurrent invocation
statement when a majority of identical responses have been received.
Again assumeN is even.

6 Concurrent Execution

1.4 Recall thePartialSums class in Section 1.1. Consider replacing its
two concurrent invocation statements by the single statement:

co ((int i = 0; i < N; i++)) save(i) { update(i); }

Would the program still be correct? Explain. Conjecture as to whether
it would run faster or slower than before.

1.5 Recall thePartialSums class in Section 1.1. Consider replacing its
two concurrent invocation statements by the single statement:

co ((int i = 0; i < N; i++)) saveAndUpdate(i);

The saveAndUpdate op-method combines the actions of the two op-
methodssaveandupdate. Would the program still be correct? Explain.
Conjecture as to whether it would run faster or slower than before.

1.6 Trace the execution of the quicksort program in theQuicksort class
(see Section 1.1) on input "6 3 4 2 5 0 1". How many processes are
created? What are the actual values of the indexes are passed to each
instance ofsort?

1.7 Consider rewriting the concurrent invocation statement that usescnt

(see Section 1.1) with the for statement:

for (int i = 0; i < a.length; i++) {

if (a[i] != 0) {

p(i);

cnt++;

System.out.println(cnt + " " + i);

}

}

What differences, if any, are there between the executions of these two
statements? Explain.

1.8 Assumeq is serviced by an op-method. For each part below, what dif-
ferences, if any, are there between the executions of the two statements?

(a) co ((int i = 1; i <= 4; i++)) q(i);

for (int i = 1; i <= 4; i++) { q(i); }

(b) co ((int i = 1; i <= 4; i++)) q(i);

for (int i = 1; i <= 4; i++) { send q(i); }

(c) co ((int i = 1; i <= 4; i++)) send q(i);

for (int i = 1; i <= 4; i++) { send q(i); }

Exercises 7

(d) co ((int i = 1; i <= 4; i++))

send q(i) { System.out.println(i); }

for (int i = 1; i <= 4; i++) {

send q(i); System.out.println(i);

}

References

[1] H. N (Angela) Chan, E. Pauli, B. Y. Man, A. W. Keen, and R. A. Olsson. An exception
handling mechanism for the concurrent invocation statement. In Jose C.Cunha and Pedro D.
Medeiros, editors,Euro-Par 2005 Parallel Processing, number 3648 in Lecture Notes in
Computer Science, pages 699–709, Monte de Caparica, Portugal, August 2005. Springer–
Verlag.

Index

co, see concurrent invocation statement
concurrent invocation statement, 1

break within, 4–5
continue within, 5
form of, 1–2
postprocessing, 4–5

quantifier, 1–2

parallel prefix algorithm, 2–3
partial sums of an array, 2–3

quicksort, 3–4, 6

**** **** also need update other index entries:

list co under invocation statement

add entry for co under quantifier entry

