
JR: Flexible Distributed Programming

in an Extended Java

AARON W. KEEN, TINGJIAN GE, JUSTIN T. MARIS, and RONALD A. OLSSON

University of California, Davis

Java provides a clean object-oriented programming model and allows for inherently system-

independent programs. Unfortunately, Java has a limited concurrency model, providing only

threads and remote method invocation (RMI).

The JR programming language extends Java to provide a rich concurrency model, based on

that of SR. JR provides dynamic remote virtual machine creation, dynamic remote object cre-

ation, remote method invocation, asynchronous communication, rendezvous, and dynamic process

creation. JR’s concurrency model stems from the addition of operations (a generalization of pro-
cedures) and JR supports the redefinition of operations through inheritance. JR programs are
written in an extended Java and then translated into standard Java programs. The JR run-time
support system is also written in standard Java.
This paper describes the JR programming language and its implementation. Some initial

measurements of the performance of the implementation are also included.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs
and Features—Concurrent programming structures

General Terms: Design, Languages

Additional Key Words and Phrases: Concurrency, concurrent object-oriented programming, Java,

SR

1. INTRODUCTION

Java [Gosling et al. 1996] has proven to be a clean and simple language for object-
oriented programming. Even so, the standard Java concurrency model is rather lim-
ited. It provides threads, a primitive monitor-like mechanism, and remote method
invocation (RMI). Though these features are useful, they offer little flexibility in
the design and implementation of concurrent programs.

Our work provides a richer and more flexible concurrent programming model for
Java. Our approach is to extend Java with the concurrency model provided by the
SR concurrent programming language [Andrews et al. 1988, Andrews and Olsson
1993]. The result is a new language, a superset of Java, which we call JR. JR
adapts the following features from SR: dynamic remote virtual machine creation,

Authors’ addresses: A. W. Keen, T. Ge, J. T. Maris, and R. A. Olsson, Dept. of Computer

Science, University of California, Davis, Davis, CA 95616.
This research was supported in part by the National Science Foundation grant CCR-9527295.

A preliminary version of this paper was presented at the 21st IEEE International Conference on

Distributed Computing Systems (ICDCS 2001), held in Phoenix, Arizona, in April 2001.

Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–30.

2 · A. Keen et al.

dynamic remote object creation, remote method invocation, dynamic process cre-
ation, support for rendezvous, and asynchronous message passing. JR takes a novel
object-oriented approach to synchronization.

The contributions of this work are the overall design and implementation of JR
and how JR resolves the tension between inheritance and concurrency. JR has
been designed to integrate the SR concurrency model with Java in a manner that
retains the “feel” of Java. We expect that JR will be useful as a research and
teaching tool. JR can certainly be used in development, but it has limited tool
support (e.g., IDE’s, profilers, etc.) because of its extended syntax. The results
of this research will also be beneficial to the future design and implementation
of other concurrent programming languages. In particular, we expect that JR’s
object-oriented approach to synchronization should be useful.

The rest of this paper is organized as follows. Section 2 provides motivation
and relevant background. Section 3 presents an overview of the JR programming
language∗. Section 4 discusses inheritance in JR. Section 5 discusses the imple-
mentation of our initial prototype of JR and Section 6 evaluates its performance.
Section 7 discusses related work. Finally, Section 8 covers future work on JR and
concludes this paper. Further discussion of JR can be found in [Keen 2002].

2. MOTIVATION AND BACKGROUND

Often described as simple and elegant, the Java programming language [Gosling et al.
1996] has quickly gained in popularity due, in part, to its object-oriented program-
ming model and system-independent nature. It is also a (fairly) secure language
with respect to its strong type checking and memory management. Unfortunately,
as noted above, Java’s concurrency model is not very flexible.

In this section, we describe in detail shortcomings in Java’s concurrency model.
We then present the SR programming language, which has a rich concurrency
model, but lacks many of the features that have made Java so popular. SR is not
object-oriented†, is not as secure, and is not as portable as Java. Our research
provides a richer and more flexible concurrent programming model for Java. Our
approach (Section 3) extends Java with the concurrency model provided by SR
using a novel object-oriented approach.

Our overall approach extends the Java language, rather than providing a pack-
age of classes for synchronization and communication (e.g., as RMI does). This
approach has potential advantages because synchronization is represented as ac-
tual language primitives [Black 1985; Scott 1991]. This higher-level approach can
reduce development time for applications, increase portability, lead to better opti-
mizations, and simplify reasoning about programs (verification).

2.1 Shortcomings in Java’s Concurrency Model

Standard Java/RMI’s concurrency model has two significant shortcomings:

— It provides remote objects with limited support for dynamic creation.

∗The JR implementation and a collection of example programs are available at

http://www.cs.ucdavis.edu/∼olsson/research/jr/.
† SR is object-based: it has dynamic modules (resources) accessed via pointers (capabilities), but

it lacks inheritance and virtual methods.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 3

— It provides only a single synchronization primitive — remote method invo-
cation — for distributed programming. (Java also has a socket package, but we
consider sockets to be too low-level.)

Standard Java/RMI’s static virtual machine (VM) model allows a program to
communicate with any number of remote objects. Each of these remote objects
must be initialized prior to communication. These objects are typically initialized
through some external means (e.g., manual execution of a server program) often
requiring a setup procedure before the program proper begins. This static model
means that programs cannot adapt themselves to their input. For example, one
might want to run a distributed Java RMI program for computing Fourier coeffi-
cients on a variable number of processors. Unfortunately, that cannot be specified
easily or automatically within a Java RMI program. (Although it is possible to
write such a program in Java RMI, it requires manual interaction.)

Standard Java/RMI’s only synchronization primitive for distributed program-
ming is the remote method invocation. The limitations of languages that provide
only one form of synchronization mechanism have been widely discussed in the liter-
ature [Scott 1983; Andrews and Olsson 1986; Liskov et al. 1986, Gehani and Roome
1988, Gehani and Roome 1990]. As one example, having both synchronous and
asynchronous message passing is desirable. Synchronous message passing (such as
RMI) is very useful, especially for programming client/server interactions in a fa-
miliar style (e.g., procedure call syntax and semantics). However, asynchronous
message passing is also useful. First, it can be used to avoid remote delay in which
a server, in processing a request, invokes an operation in another server that might
delay [Liskov et al. 1986]. Asynchronous message passing can be used to invoke the
remote operation whenever it is necessary to prevent the first server from delay-
ing. In a language that provides only synchronous message passing, extra processes
must be employed to avoid remote delay; this often complicates problem solutions.
Asynchronous message passing is also useful whenever it is not necessary to delay
the invoker of an operation. For example, it can be used to program pipelines of
filter processes, where it is most natural for the producer to continue after sending
a message to the consumer.

Several languages that incorporate multiple synchronization primitives have
been designed and implemented, e.g., Concurrent C [Gehani and Roome 1989],
Lynx [Scott 1987; Scott 1991], StarMod [Cook 1980], and SR [Andrews et al. 1988,
Andrews and Olsson 1993]. Some work [Atkins and Olsson 1988] has shown that
an implementation of such a language (in [Atkins and Olsson 1988], SR) can pro-
vide several synchronization mechanisms at a reasonable cost. Having multiple
synchronization primitives proved useful in programming different upcall program
structures [Atkins 1988]. Additional work [Olsson 1990] has shown that having
asynchronous message passing is desirable — for simpler and faster code — even if
a language provides a rendezvous mechanism.

Note that Java does provide a primitive monitor-like mechanism in addition
to RMI (although, some [Brinch Hansen 1999] contend that Java does not really
support monitors). Monitor methods can be invoked remotely via RMI. However,
this use of monitors would support (directly) only centralized servers not other
paradigms useful in distributed programming, such as replicated workers, bag of

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · A. Keen et al.

resource Main()
import Philosopher, Servant
var n, t: int
read(n); read(t)
create the Servant and Philosophers
var s: cap Servant
s := create Servant(n)
fa i := 1 to n ->

(returned resource cap not needed)
create Philosopher(s, i, t)

af
end

Fig. 1. Main resource in multiple-resource Dining Philosophers written in SR.

tasks, probe/echo, broadcast, etc.[Andrews 1991]

2.2 The SR Concurrent Programming Language and its Concurrency Model

The SR concurrent programming language [Andrews et al. 1988,
Andrews and Olsson 1993] provides a variety of mechanisms for writing par-
allel and distributed programs. The notions of virtual machines, resources, and
operations are central to SR’s concurrency model. The notion of a virtual machine
(VM) is used for distributing a program onto physical machines. Each VM resides
on one physical machine. VMs are created dynamically. SR’s primary modular
component is the resource. Instances of resources are dynamically created.
Processes execute within a particular resource instance and have (shared) access
to variables and operations within that instance. An operation can be considered
a generalization of a procedure and enable processes to interact. Given that VMs,
resources, and operations are created dynamically, SR uses capabilities for each.
A capability acts as a pointer and can be assigned to variables and passed as
parameters, thus permitting, for example, dynamic communication paths.

Resource instances are created via the create statement, which returns a resource
capability for the newly created resource instance. A resource capability contains
operation capabilities for all operations defined in the resource’s specification; their
values are assigned to those operations just created in the newly created resource
instance. As an example, Figures 1 and 2 present a version of Dining Philosophers.
It employs centralized control, but it places philosophers and servants in different
resource instances. The main resource consists entirely of “initial” (top-level) code.
This code is executed when an instance of the resource is created; in the case of Main,
its initial code is executed when the program begins execution. Main’s initial code
creates one instance of the Servant resource and n instances of the Philosopher

resource, passing to each philosopher its integer identity (i), the capability for the
servant (s), and the number of iterations it should execute (t). Each philosopher
requests forks from the servant, eats, and later releases forks. (The code inside the
Servant resource is discussed below.)

An operation (like a procedure) has a name, can take parameters, and can return
a result. It can be invoked in two ways: synchronously by means of a call statement‡

or asynchronously by means of a send statement. An operation can be serviced in
two ways: by a procedure-like object called a proc or by in statements. (SR’s in
statement combines and generalizes aspects of Ada’s accept and select statements.)

‡An operation may also be synchronously invoked as an expression without the call keyword.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 5

resource Philosopher
import Servant

body Philosopher(s: cap Servant; id, t: int)
process phil

fa i := 1 to t ->
get forks from Servant instance s
s.getforks(id)
eat
write("Philosopher", id, "is eating")
release forks back to Servant s
s.relforks(id)
think
write("Philosopher", id, "is thinking")

af
end

end

resource Servant
op getforks(id: int) # these ops are invoked
op relforks(id: int) # by Philosophers

body Servant(n: int)
process server

var eating[1:n] := ([n] false)
do true ->

in getforks(id)
st not eating[(id mod n) + 1]
and not eating[((id-2) mod n) + 1] ->

eating[id] := true
[] relforks(id) ->

eating[id] := false
ni

od
end

end

Fig. 2. Philosopher and servant resources in multiple-resource Dining Philosophers written in SR.

op writeToFile(prio, data: int)
...
in writeToFile(prio, data) by prio ->

perform write operation
ni

Fig. 3. An SR scheduling expression to service invocations in order of priority.

This yields the following four combinations:

Invocation Service Effect

call proc procedure call
call in rendezvous
send proc dynamic process creation
send in message passing

A guard on an in statement can also contain a synchronization expression and
a scheduling expression. The former specifies which invocations are acceptable;
the latter specifies the order in which to service acceptable invocations. These
expressions can reference the invocation parameters. To illustrate, consider the
in statement in the Servant resource in Figure 2. The first arm of the server’s
in statement uses a synchronization expression, introduced by st (such-that), to
accept an invocation of getforks from philosopher id only when that philosopher’s
neighbors are not eating. Note how the synchronization expression references the
invocation’s parameter, id. Figure 3 gives an example of a scheduling expression
that services invocations in order of priority. When the input statement executes,
the pending invocations are examined and the longest pending invocation that
minimizes the scheduling expression (prio in this example) is selected for servicing.

As noted previously, SR defines the notion of a virtual machine (VM) as its lan-
guage mechanism for distributing a program onto physical machines. Like resource
instances, VMs are created dynamically via the create statement. The program
in Figures 1 and 2 executes on a single virtual machine and, therefore, on a single
physical machine. It can be easily modified, though, so that each philosopher ex-
ecutes on a different virtual machine, each on a different physical machine. Only
Main’s loop needs to be changed, for example, as shown in Figure 4. The on clause
in the first create specifies the physical machine on which the VM is to be created;

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · A. Keen et al.

fa i := 1 to n ->
var vmcap: cap vm

vmcap := create vm() on host[i]
create Philosopher(s, i, t) on vmcap

af

Fig. 4. Modified Main loop for multiple-VM Dining Philosophers written in SR.

the value returned by this create statement is a capability for the newly created
virtual machine. The on clause in the second create specifies the virtual machine
on which the resource instance is to be created. The array host contains physical
machine names (as strings; its initialization is not shown).

SR provides abbreviations for commonly occurring uses of operations. For exam-
ple, the process§ keyword (used in Figure 2) is defined as an abbreviation for an
operation declaration, a proc, and one or more sends to that proc by the resource’s
initial code. Other abbreviations include a receive statement, which is a simple
form of in, and semaphore declarations and P and V, which are simple forms of
operation declarations and send and receive statements.

SR also provides a few other statements that deal with invoking or servicing
operations. SR’s concurrent invocation statement provides a way to start several
invocations at the same time; it terminates when all its invocations have com-
pleted. SR’s reply statement allows a servicing process to send an “early reply”
to its invoker, after which the invoking and servicing processes both continue their
executions. SR’s forward statement defers replying to an invocation and instead
passes on this responsibility to another operation.

3. THE JR PROGRAMMING LANGUAGE

To remedy the shortcomings of Java’s concurrency model discussed in Section 2.1,
we have designed a new language, a superset of Java, which we call JR. JR adapts
the following features from SR (see Section 2.2): dynamic remote virtual machine
creation, dynamic remote object creation, remote method invocation, dynamic pro-
cess creation, support for rendezvous, and asynchronous message passing. In JR,
Java classes take the place of SR resources and Java methods take the place of SR
procs.

JR provides SR-like operations in a novel object-oriented fashion. Figure 5 de-
picts a conceptual inheritance hierarchy for operations. As indicated in the figure,
all operations are derived from a base class Op; this base class provides (abstract)
methods for invoking (call and send) and servicing (inni¶) operations. The two
possible ways to service invocations — via a method or via inni statements —
give rise to two subclasses of Op: ProcOp (borrowing SR terminology) and InOp.
The ProcOp and InOp classes define the actual methods to support invoking and
servicing an operation. For example, the InOp class defines these methods such
that their actions apply to a queue of invocations declared local to the class. The
actual implementation of operations is discussed in Section 5.

§SR’s processes do not correspond to OS processes, but rather to threads in SR’s run-time system.
¶The inni statement is JR’s version of SR’s input statement. inni is the concatenation of SR’s

in and ni (see Section 2.2) to prevent clashes with the commonly used name in.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 7

InOpProcOp

Op

Fig. 5. General JR Operation Inheritance Hierarchy.

public class Main {
public static void main(String [] args) {

int n, t;
// get n and t from args
...
// create the Servant and Philosophers
remote Servant s = new remote Servant(n);
for (int i = 0; i < n; i++)

new remote Philosopher(s, i, t)
}

}

Fig. 6. Main class for Dining Philosophers solution in JR.

public class Philosopher {
remote Servant s;
int id, t;
public Philosopher(remote Servant s,
int id, int t) {
this.s = s; this.id = id; this.t = t;

}
process phil() {

for (int i = 0; i < t; i++) {
// get forks from Servant instance s
s.getforks(id);
// eat
System.out.println("Philosopher " +

id + " is eating");
// release forks back to Servant s
s.relforks(id);
// think
System.out.println("Philosopher " +

id + " is thinking");
}

}
}

public class Servant {
public op void getforks(int);
public op void relforks(int);
int N;
boolean [] eating;
public Servant(int n) {

this.N = n;
eating = new boolean[N];
for (int i = 0; i < N; i++) {

eating[i] = false;
}

}
process server () {

while (true) {
inni void getforks(int id) st oktoeat(id) {

eating[id] = true
}
[] void relforks(int id) {

eating[id] = false
}

}
}
protected boolean oktoeat(int id) {

return !eating[((id+N)+1)%N] &&
!eating[((id+N)-1)%N];

}
}

Fig. 7. Philosopher and Servant classes in Dining Philosophers solution in JR.

Before discussing the individual features of JR, we provide a glimpse forward
through a simple JR solution to the Dining Philosophers problem discussed in
Section 2.2. The JR solution, presented in Figures 6 and 7, is very similar to the
SR solution, including the use of an input statement to synchronize access to the
forks.‖ As with the SR solution, the Philosophers and Servant can be created on
different virtual machines using “on” clauses.

‖Note that, in the interest of clarity, exception handling is not shown in the following solutions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · A. Keen et al.

public class Philosopher extends Thread {
Servant s;
int id, t;
public Philosopher(Servant s, int id, int t) {

this.s = s; this.id = id; this.t = t;
}
public void run() {

for (int i = 0; i < t; i++) {
// get forks from Servant instance s
s.getforks(id);
// eat
System.out.println("Philosopher " +

id + " is eating");
// release forks back to Servant s
s.relforks(id);
// think
System.out.println("Philosopher " +

id + " is thinking");
}

}
public static void main(String [] args) {

// get id and iterations from args
// get Servant from rmiregistry
Servant s = (Servant)Naming.lookup("naming string");
// create a philosopher thread
(new Philosopher(s, id, t)).start();

}
}

Fig. 8. Philosopher class for Dining Philosophers solution in Java/RMI.

Figures 8 and 9 present a Java/RMI solution to the Dining Philosophers prob-
lem. The presented solution is written such that the Philosophers and Servant may
reside on different machines. In such a situation, the Servant and each Philosopher
are separate programs that must be initiated separately. This example also demon-
strates a simple use of the naming service from which the philosophers acquire a
remote reference to the Servant object. Fork synchronization is split between the
methods getforks and relforks, which use Java’s synchronized support. Even
for such a relatively simple synchronization algorithm, the programmer must “man-
age” the wait queue (through the use of wait and notifyAll). Furthermore, more
complicated synchronization algorithms (e.g., waiting philosophers are granted the
right to eat in order of priority) may require additional queue management or the
implementation of additional synchronization objects.

Note that the given solution uses command-line arguments to determine the
number of philosophers to which the servant must attend. A safer, though more
complicated, solution might use a registration system to avoid a set limit.

The rest of this section describes the concurrent programming features provided
by the JR programming language. As a running example, we demonstrate a simple
solution to the readers/writers problem.

3.1 Dynamic Remote Virtual Machine Creation

JR eliminates Java/RMI’s requirement for external setup and interaction with the
program (see Section 2.1). Instead, a JR program can dynamically create remote
virtual machines upon which remote objects can be instantiated.

To support the creation of remote virtual machines, JR provides references to
virtual machines. Remote virtual machine creation has the form:

vm <vmName> = new vm() [on <hostName> | on <vmVar>];

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 9

public interface Servant
extends Remote {
public void getforks(int id)

throws RemoteException;
public void relforks(int id)

throws RemoteException;
}

public class Servant_impl
extends UnicastRemoteObject
implements Servant {
int N;
boolean [] eating;
public Servant_impl(int n)
throws RemoteException {
this.N = n;
eating = new boolean[N];
for (int i = 0; i < N; i++) {

eating[i] = false;
}

}
public synchronized void getforks(int id)
throws RemoteException {
while (!oktoeat(id)) {

this.wait();
}
eating[id] = true;

}
protected boolean oktoeat(int id) {

return !eating[((id+N)+1)%N] &&
!eating[((id+N)-1)%N];

}
public synchronized void relforks(int id)
throws RemoteException {
eating[id] = false;
this.notifyAll(); // allow others to try

}
public static void main(String [] args) {

// get number of philosophers from args
Servant s = new Servant_impl(n);
Naming.rebind("naming string", s);

}
}

Fig. 9. Servant class for Dining Philosophers solution in Java/RMI.

Its meaning is similar to VM creation in SR; e.g., as in Figure 4. The optional “on”
clause can be used to specify the host on which the new virtual machine is to be
created. This host can be specified as either a Java String, in which case the new
VM is created on the host specified by the string, or as another VM variable, in
which case the new VM is colocated on the host of the specified VM. The default
host is the physical machine of the instantiating process. Line 10 in Figure 10
demonstrates the creation of a virtual machine to house the server object in our
readers/writers solution.

A JR virtual machine is a thin layer of services provided in addition to those of the
underlying Java virtual machine. Specifically, JR provides, at the language-level,
references to virtual machines and support for their dynamic creation. Furthermore,
JR’s virtual machines service remote requests to create objects, thus providing
support for dynamically created remote objects.

3.2 Dynamic Remote Object Creation

JR provides the ability to populate remote virtual machines with new objects
through dynamic remote object creation. Remote objects are created using the
familiar “new” expression provided by Java. However, a reference to a remote ob-
ject in JR is stored in a remote reference rather than a standard Java reference.
The instantiation of a remote object has the general form:

remote <class name> <var name> = new remote <class name> (<actuals>) [on vmRef];

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · A. Keen et al.

1 public class rwMain {
2 public static void main(String [] args) {
3 op void done(); // create a local op
4
5 // parse command line arguments to determine
6 // #readers, #writers and Server destination host
7 ...
8
9 // create on specified host

10 vm servVM = new vm() on args[0];
11 remote Server serv =
12 new remote ServerImpl() on servVM;
13
14 for (int i = 0; i < readers; i++)
15 new Reader(r_iters, serv, done);
16 for (int i = 0; i < writers; i++)
17 new Writer(w_iters, serv, done);
18
19 int waitfor = readers + writers;
20
21 // wait for each R and W to signal completion
22 while (waitfor > 0) {
23 receive done(); // abbreviated "in" statement
24 waitfor--;
25 }
26 JR.exit(0);
27 }
28 }

Fig. 10. Readers/Writers main class in JR.

1 public class Reader {
2 int iters;
3 remote Server serv;
4 cap void () done;
5
6 public Reader(int iters,
7 remote Server serv,
8 cap void () done) {
9 this.iters = iters;

10 this.serv = serv; this.done = done;
11 }
12
13 protected process start() { // start the client thread
14 while (iters > 0) {
15 iters--;
16 call serv.readRequest();
17 ... // read
18 call serv.readRelease();
19 }
20 // tell main this thread has finished
21 send done();
22 }
23 }

Fig. 11. Reader class (Writer is similar).

An example of the creation of our remote readers/writers server can be seen on
lines 11 and 12 in Figure 10.

A remote object reference provides the interface through which a remote object
may be manipulated. This interface is the set of operations declared by the ob-
ject’s class or interface, e.g., lines 2 – 5 in Figure 12. Operations are discussed in
Section 3.3.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 11

1 public interface Server {
2 public op void readRequest();
3 public op void readRelease();
4 public op void writeRequest();
5 public op void writeRelease();
6 }

7 public class ServerImpl implements Server {
8 public op void readRequest();
9 public op void readRelease();

10 public op void writeRequest();
11 public op void writeRelease();
12
13 public ServerImpl() {
14 }
15
16 // create the servicing thread
17 protected process start() {
18 int nw = 0, nr = 0;
19
20 // on each iteration, service
21 // a R or W request or release
22 while (true) {
23 inni void readRequest() st nw==0 { nr++; }
24 [] void writeRequest() st nw==0 && nr==0 { nw++; }
25 [] void readRelease() { nr--; }
26 [] void writeRelease() { nw--; }
27 }
28 }
29 }

Fig. 12. Readers/Writers server interface and implementation in JR.

3.3 Operations and Operation Capabilities

In a standard RMI program, remote objects “export” a communication interface
that defines the methods that may be invoked remotely. In JR, a remote object’s
communication interface is defined by the set of operations declared in the object’s
class. An operation declaration has the general form:

<modifiers> op <return type> <opname> (<formals>) [exceptions];

In JR, an operation definition consists of a declaration and an implementation.
An operation declaration defines the signature (i.e., formal parameter types, return
type, and exception types) of the operation and adds the operation to the specifi-
cation of the class. Unlike SR, JR allows overloaded operations in much the same
way that Java allows overloaded methods. An operation’s implementation is de-
fined by either a method with a matching signature or a set of inni statements that
service the operation. An operation implemented by a method is called a ProcOp.
Each invocation of a ProcOp is “serviced” by executing the body of the method
associated with the ProcOp.

An operation implemented by a set of inni statements is called an InOp. By
default, an operation that is declared without a corresponding method is considered
to be an InOp. The declaration of an InOp implicitly defines an implementation
that consists of an invocation queue. When an InOp is invoked, an invocation is
placed in the operation’s invocation queue until an inni statement services the
invocation. Each invocation is only serviced by a single inni statement, which
executes the body of code that corresponds to the arm servicing the operation. As
such, the actual implementation of an InOp is provided by a set of inni statements
that service the operation. In Figure 12, for instance, the inni statement on lines
23 – 26 services invocations of the operations defined in lines 8 – 11.

As in SR, operations in JR can be passed as arguments to methods, returned
as results from methods, and assigned to variables through the use of operation
capabilities. In JR, an operation capability is a reference to an operation; the “cap”

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · A. Keen et al.

1 abstract class A
2 {
3 public abstract op void foo();
4 public abstract op void bar();
5 }

1 class B extends A
2 {
3 public op void foo();
4
5 public op void bar();
6 public void bar()
7 { inni void foo() { ... } }
8 }

(a) Abstract class. (b) Concrete subclass.

Fig. 13. Concrete redefinition of abstract operations.

keyword is required to simplify parsing. A JR operation capability is declared as
follows:

cap <return type> (<formal types>) [<exception types>] <variables>;

An operation capability can only refer to an operation with a matching signature.
Recall that lines 2 – 5 (8 – 11 in the implementation) in Figure 12 demonstrate

the declarations of the set of operations supported by the server object in our
example. An explicit, although simple, use of an operation capability can be seen
on line 21 in Figure 11. This capability stores a reference to the done operation
defined on line 3 of the main class in Figure 10. The done operation is used by each
of the reader threads and writer threads to notify the main class that the thread
has completed. The done operation and explicit “JR.exit(0)” are not required in
this example because of JR’s support for termination detection (see Section 5.7),
but are included to demonstrate the use of operations, capabilities, the receive

statement, and explicit termination.
JR also allows operations to be declared abstract with the restriction that the

defining class be declared abstract. An abstract operation is neither an InOp nor a
ProcOp since, by definition, it has no implementation. The implementation of an
abstract operation in JR is defined in a subclass (making the operation concrete)
just as the implementation of an abstract method in Java is defined in a subclass.
Figure 13 demonstrates the definition of two abstract operations, in Figure 13 (a),
that are made concrete in the extending class, in Figure 13 (b). Operation foo is
implemented as an InOp by the subclass whereas operation bar is implemented as
a ProcOp.

Unlike SR, JR allows overloaded operations in much the same way that Java
allows overloaded methods. In Java, when an overloaded operation is invoked, the
number of actual arguments and the types of these arguments (more precisely, the
type of the reference in the case of object arguments) are used to determine which
instance of the overloaded operation is invoked. However, in JR, this resolution
mechanism is complicated by the fact that operations and methods can accept
operations, which themselves may be overloaded, as arguments. JR extends the
resolution mechanism to handle such a situation.

Consider the invocation of the overloaded method foo with the overloaded op-
eration f as its argument on line 12 of Figure 14. The resolution mechanism first
determines the most specific∗∗ definition of foo for which any definition of f is a

∗∗Type β is more specific than type α if type β can be implicitly cast to type α. For capability

types, β is more specific than α if α’s argument types are more specific and its return type

is less specific (i.e., contravariant in the argument types and covariant in the return types, see

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 13

1 static void foo(cap void(int) c)
2 { System.out.println("foo int"); }
3
4 static void foo(cap void(long) c)
5 { System.out.println("foo long"); }
6
7 static op void f(int);
8 static op void f(long);
9

10 public static void main(String [] args)
11 {
12 foo(f); // prints foo long
13 foo((cap void(int)) f); // prints foo int
14 }

Fig. 14. Invocation of an overloaded method with an overloaded operation as an argument.

valid argument (i.e., type compatible). For the invocation on line 12, the selected
definition of foo is that starting on line 4 because cap void (long) is more specific
than cap void (int). Next, the most specific definition of f that can be passed
as an argument to the resolved foo is selected. In the invocation on line 12, the f

operation defined on line 8 is passed as the argument to foo. The selection strategy
can be modified through the use of explicit casts and, of course, the use of operation
capabilities (which are uniquely named). Line 13 in Figure 14 demonstrates the use
of an explicit cast to invoke the foo method defined on line 1 with the f operation
defined on line 7 as its argument. The explicit cast is used to “select” the desired
f operation and to restrict the potential matches for foo.

3.4 Asynchronous Message Passing

JR supports asynchronous communication via a send statement. If an operation
invoked by send is serviced by a method (i.e., the operation is implemented by a
method), then a new thread is created to execute the method. If the operation is
serviced by an inni statement, then a message is created to store the arguments
of the invocation. This message is then added to the invocation queue for the
corresponding inni operation.

4. OPERATIONS AND INHERITANCE

4.1 Java Inheritance Background

A Java class definition can be viewed as consisting of a specification and an im-
plementation (a Java interface consists of only a specification). The specification
of a class defines the external interface “exported” by instances of that class. An
instance of a class is used by invoking instance methods defined in the specification
of the class. The implementation of a class defines the actions taken when a method
in the specification is invoked (i.e., the implementation defines the statements that
are executed upon invocation).

The actual syntactic definition of a class in Java does not differentiate between
the specification and the implementation of the class. Each declaration of a non-
abstract method adds the method to the specification of the class and defines the
implementation of that method. Abstract methods (as well as interfaces) can be
used to declare a specification apart from the implementation, but this requires that

[Pierce 2002] for additional discussion).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · A. Keen et al.

the defining class be declared abstract as well. Ultimately, the implementation of
the method is defined in conjunction with the specification of some class.

In Java, a new class may be derived from an existing class to create a subclass.
Through this derivation, the subclass inherits the specification of its parent class.
By default, a subclass also inherits its parent’s implementation of the specification.
A subclass can extend the inherited specification through the addition of methods.
Similarly, a subclass can modify the implementation of its inherited specification
by redefining the inherited methods.

4.2 Operation Inheritance

In JR, a derived class may modify the implementation of its inherited specifica-
tion by redefining the implementation of its inherited methods and operations. An
inherited method’s implementation is modified, as in standard Java, by redefining
the method. In general, JR allows a subclass to redefine the implementation of an
inherited operation as either a ProcOp or an InOp, regardless of the operation’s
implementation in the superclass. Redefinition of an operation’s implementation
requires an explicit redeclaration of the operation in the subclass only if the redef-
inition changes the operation from an InOp to a ProcOp or vice-versa. Otherwise,
an explicit redeclaration of the operation is not required.

The notation Op1 → Op2 means that the superclass defines the operation as an
Op1 and the subclass is redefining the operation to be an Op2.

(1) ProcOp → ProcOp
A redefinition from a ProcOp to a ProcOp corresponds directly to a method redef-
inition in standard Java. The subclass can simply redefine the method associated
with the operation. Such a redefinition allows a subclass to specialize the operation
implementation.

(2) InOp → InOp
The implementation of an InOp is not actually redefined but rather extended. Any
inni statements attempting to service (or receive from) an operation define its
“implementation”, though only a single inni statement will service a given invoca-
tion. As such, any additional inni statements “servicing” an inherited operation
are added to the set of inni statements defining its implementation. A subclass
may explicitly redeclare an InOp as an InOp by explicitly redeclaring the operation.
This redeclaration allows a subclass to relax access restrictions but does not create
a separate invocation queue.

(3) ProcOp → InOp
A ProcOp may be redefined as an InOp in a subclass by explicitly redeclaring
the operation and not defining a signature-compatible method. The signature-
compatible method that would have been inherited from the superclass is ignored.

(4) InOp → ProcOp
An InOp may be redefined as a ProcOp in a subclass by both redeclaring the
operation and defining a signature-compatible method.

Redefinition of a ProcOp to be an InOp can be used to distribute the servicing
of the operation’s invocations without changing the client. Figure 15 graphically
depicts both the original client-server structure, which uses a ProcOp, and the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 15

Requests
Server

serv

serv

BagServer
Requests Worker Objects

(a) Centralized server. (b) Distributed server.

Fig. 15. Distribution of servicing through redefinition of operation in subclass BagServer.

1 public class Server {
2 // operation declaration
3 public op int serv(int i);
4
5 // signature-compatible method
6 public int serv(int i) {
7 // compute and return value
8 }
9 }

10
11 public class Worker {
12 // operation declaration
13 public op void init(cap int (int) srvr);
14 public void init(cap int (int) srvr) {
15 while (true) {
16 inni int srvr(int i) {
17 ... /* compute and return value */ }
18 }
19 }
20 }

21 public class BagServer extends Server {
22 // redeclaration of operation
23 public op int serv(int i);
24
25 public BagServer(vm [] remHosts) {
26 int i; // initialize Worker objects
27 for (i = 0; i < remHosts.length; i++) {
28 remote Worker w =
29 new remote Worker() on remHosts[i];
30 send w.init(serv);
31 }
32 }
33 }

Fig. 16. Redefining an operation to distribute its implementation.

serv

BagServer
Requests Worker Objects

super.serv
serv

Worker ObjectsRequests FilterServer

filtered out

(a) Distributed server. (b) Filtered distributed server.

Fig. 17. Filtering of invocations through redefinition of operation in subclass FilterServer.

new bag of tasks structure that results from redefining the inherited operation
to be an InOp. With the original operation, each invocation results in a new
thread being created (at the server) to service the invocation. With the redefined
operation, each invocation is handled by an extant Worker object, which was created
at program startup and which may be located on a separate host. Figure 16 shows
the definition of the subclass BagServer and the redefinition of the operation.
BagServer redefines the operation serv to be an InOp, creates Worker objects,
and passes a capability for serv to the init method of each Worker object. Each
Worker object repeatedly executes an inni statement to service invocations on
serv’s queue. These Worker objects can be located on an arbitrary set of physical
machines as specified by the remHosts array.

It is possible to filter the invocations of an operation by redefining an InOp to
be a ProcOp. Figure 17 graphically depicts each server configuration. In the first

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · A. Keen et al.

1 public class FilterServer extends BagServer {
2 // redeclaration of operation
3 public op long serv(int i);
4 public long serv(int i) {
5 if (filter(i))
6 return DEFAULT; // or exception
7 else // forward to Worker objects
8 forward super.serv(i);
9 }

10
11 boolean filter(int i) { // simple filter
12 return (i < 0);
13 }
14
15 public FilterServer(vm [] remHosts) {
16 super();
17 int i; // initialize Worker objects
18 for (i = 0; i < remHosts.length; i++) {
19 remote Worker w =
20 new remote Worker() on remHosts[i];
21 // reuse super operation
22 send w.init(super.serv);
23 }
24 }
25 }

Fig. 18. Redefining an operation to serialize invocations through a filter.

server configuration, a BagServer as shown in Figure 17 (a), each invocation is
serviced by an extant Worker object. Redefinition of the operation, as shown in
Figure 17 (b), allows for the filtering of invocations in order to reduce the amount
of work done by the Worker objects. Figure 18 shows the definition of the subclass
FilterServer that redefines an InOp to be a ProcOp. BagServer defines the serv
operation as an InOp on line 23 of Figure 16. FilterServer redefines the serv

operation to be a ProcOp on lines 3 – 9.
Each invocation of serv defined in the subclass is routed through the method

associated with the ProcOp to determine whether or not the invocation will be
passed on to a Worker object. If the invocation is not rejected by the filter, then the
subclass uses a forward statement to pass responsibility for servicing the invocation
to the InOp serv defined in the parent class (BagServer). Each Worker object
repeatedly executes an inni statement to service the InOp serv defined in the
BagServer class; this is the operation capability that is passed to the init method
of the Worker objects on line 22 in Figure 18.

4.3 Redefinition Considerations

JR requires that a subclass explicitly redeclare an operation if the subclass redefines
an inherited InOp as a ProcOp or an inherited ProcOp as an InOp. Such a redec-
laration is required to statically determine that the operation has been redefined
and to reduce the potential for erroneous code. Such a redeclaration is required as
a statement of intent and an aid to the compiler for static analysis.

Imagine that an explicit redeclaration were not required to redefine a ProcOp as
an InOp. Instead, assume that an operation is implicitly redefined as an InOp if
the operation is serviced by an inni statement. Full program analysis would be
required to statically determine that the operation has been redefined. However,
such an analysis is not sufficient when capabilities are used within inni statements.
This “redefinition” approach is unsatisfactory because all such redefinitions cannot

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 17

1 class A
2 {
3 public op void foo();
4 }
5
6 class B extends A
7 {
8 public op void foo();
9 public void foo()
10 { ... }
11 }

1 {
2 ... // use of operations
3 A a = new B();
4 B b = new B();
5
6 inni void b.foo() // compile-time error,
7 // b.foo is a ProcOp
8 { ... }
9 [] void a.foo() // run-time error,

10 // a refers to a B object
11 { ... }
12 }

(a) Redefinition of InOp as ProcOp. (b) Erroneous uses.

Fig. 19. Erroneous uses of ProcOps in an inni statement.

be discovered at run-time. Furthermore, allowing such a “redefinition” could lead
to hard-to-find errors if a programmer accidentally “redefines” the wrong operation
in an inni statement.

An InOp may be redefined to be a ProcOp if the subclass explicitly redeclares
the operation and defines a signature-compatible method. If an inni statement at-
tempts to service the operation through a reference to the subclass, then a compile-
time error will be raised (see Figure 19 (b), line 6). If an inni statement attempts
to service the operation through a reference to the superclass, then a run-time
error will be generated (see Figure 19 (b), line 9). This explicit redeclaration is
required to reduce the potential for accidental redefinitions and to make the change
in invocation servicing semantics explicit.

JR currently makes a strict distinction between operations and methods . An
inherited operation may not be redefined as a method and an inherited method
may not be redefined as an operation. This distinction is required because the
concurrency constructs introduced in JR (e.g., the send statement) apply only to
operations and capabilities and it is desirable to statically check improper use.
If a subclass is allowed to redefine an inherited operation as a method, then a
send to that method will fail at run-time because the method will not have been
properly translated to support asynchronous invocation. Moreover, since the set of
operations defined in a class directly translates to the interface exported by remote
instances of that class (see Section 3.2), allowing a standard method to redefine an
operation is equivalent to removing the operation from the remote specification. As
such, this restriction is consistent with the behavior of Java because a subclass is
not permitted to remove declarations from its inherited specification.

Redefining an inherited method to be an operation is not supported for implemen-
tation reasons. An operation is implicitly defined to include the RemoteException
exception in its throws clause. This inclusion is to support the use of operations
as interfaces to remote objects. As such, redefining the method to be an operation
would add an exception to the throws clause of the subclass’s “method”. Java does
not permit the addition of exceptions to the throws clause of redefined methods.
Support for such a redefinition would require either modifying the language and
library such that all methods throw the RemoteException exception or creating a
proxy to handle the RemoteException exceptions thrown by operations. We con-
sider modifying the Java library for this purpose unacceptable. Creating a proxy
for each operation reduces the performance of operation invocations and requires

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · A. Keen et al.

that the proxy code handle the communication exceptions in a general manner.
Communication exceptions are currently thrown to the user code (through the Re-
moteException) so that the programmer may handle them appropriately.

4.4 Inheritance Anomaly

In concurrent object-oriented languages, there exists a conflict between inheritance
and synchronization constraints that often requires redefinition of inherited meth-
ods in order to maintain the integrity of concurrent objects. This conflict has been
deemed the inheritance anomaly [Matsuoka and Yonezawa 1993]. The complaints
regarding the inheritance anomaly are focused on functionally unnecessary redef-
inition of methods and a violation of encapsulation. The proposals, discussed in
[Matsuoka and Yonezawa 1993], that seek to resolve the inheritance anomaly at-
tempt to reduce the amount of redefinition required. Rather than requiring the
redefinition of the implementation of a method, many of the proposals allow the
redefinition, in some form, of the synchronization constraint. However, the encap-
sulation argument does not seem to be resolved since the synchronization code in
the subclass often takes advantage of knowledge of the synchronization code used
in the parent class.

JR inherently suffers from the inheritance anomaly because it allows for the
reception of messages within the body of a method, i.e., JR’s inni statement appears
within executable code. If the synchronization strategy is redefined in a subclass,
then some methods may require redefinition in order to change the operations
from which they receive. This redefinition is required even if the functionality of
the method is to remain the same. The same is true of Java programs that use
synchronized blocks (as opposed to synchronizing the entire method) within the
bodies of methods (e.g., to emulate semaphores).

We view synchronization, though a cross-cutting concern, as an integral part of
the implementation of certain methods; without proper synchronization the “imple-
mentation” of a method may be simply incorrect. Consider, as a simple example,
the implementation of a hashtable versus that of a thread-safe hashtable (i.e., one
that uses synchronization to support simultaneous access by multiple threads).
Though the inherent functionality of each is essentially the same, the implementa-
tion of the thread-safe hashtable necessarily requires proper synchronization. The
implementation of the thread-safe hashtable could certainly be simplified through
the reuse of the basic hashtable, but such reuse by means of implementation inher-
itance would require method redefinition to support synchronization. We feel that
the drawbacks of the inheritance anomaly are more than compensated for by the
flexibility provided by servicing operations within method bodies and is needed to
provide the support argued for in Section 2.1.

JR does, however, introduce difficulties relating to the inheritance anomaly be-
yond those discussed above. An input statement can service (i.e., receive from)
both operations and capabilities. Since these capabilities may refer to operations
from different objects, different classes, and even different machines, the task of
determining the code affected by a change in synchronization policy requires that
the programmer follow the dynamic call graph. This problem can be eliminated by
restricting input statements such that only the operations defined in the object (or
class) in which (the method containing) the input statement is executing can be

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 19

serviced. Such a restriction would not prevent the invocation of operations through
operation capabilities. This alternative will be explored as the language gains use
and matures.

5. IMPLEMENTATION

The current JR implementation extends the Java compiler available in SUN’s JDK,
Version 1.2.1. The JR translator converts JR programs into standard Java programs
that are supported by the JR run-time system. The JR run-time system is also
implemented in standard Java. This section discusses the interesting parts of the
implementation of each of the features provided by JR.

5.1 JR Virtual Machines

In the current implementation of JR, remote virtual machines are created by con-
tacting a centralized virtual machine manager called JRX which plays a role similar
to that of SR’s SRX [Andrews and Olsson 1993]. JRX uses rsh to contact the re-
mote host and execute the JR virtual machine (jrvm) program. The JR virtual
machine is a small Java program that implements an interface with which other
jrvm’s communicate to create objects on the physical machine. The JR virtual ma-
chine then uses RMI to contact JRX and register itself as ready to receive requests.
Remote objects are subsequently created by contacting the JR virtual machine
directly through RMI.

5.1.1 Security Implications. The use of rsh for virtual machine creation requires
that systems allow remote execution of programs through a relatively insecure pro-
tocol. As such, we are exploring alternatives to allow virtual machine creation
without sacrificing machine security. Execution of each virtual machine is still,
however, subject to the security policy files for the user at the remote site. Com-
munication between virtual machines is currently implemented using RMI and is
not encrypted.

5.2 Remote Objects

Remote objects are implemented as Serializable objects that contain references to
operations. These references are operation capabilities that also implement the
Serializable interface. A remote object contains an operation capability for each
operation in the class’ interface. Remote objects mimic the inheritance hierarchy
of the classes with which they are associated.

5.3 Operations and Operation Capabilities

Figure 20 shows the actual inheritance hierarchy of operation classes in JR. This
hierarchy is a specialization of the inheritance hierarchy in Figure 5. Each proc
operation is implemented as a separate instance of a ProcOp class nested within
the class that defined the operation. Thus, a ProcOp object may be associated
with a private method within the class definition. Invocations of the operation
are translated into invocations of the appropriate method (i.e., call, send, etc.) in
the ProcOp object. This translation is very similar to the common technique of
simulating a method reference (not directly representable in Java without using

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · A. Keen et al.

InOpProcOp
Signature - Specific Signature - Specific

Specific
Op

Signature-

Op

Fig. 20. Actual JR Operation Inheritance Hierarchy.

1 class A
2 {
3 public op void foo(int);
4 public void foo(int i)
5 { ... }
6
7 public void bar()
8 throws java.rmi.RemoteException
9 {
10 foo(3);
11 }
12 }

1 class A
2 {
3 ... // implementation of ProcOp foo
4
5 public void bar()
6 throws java.rmi.RemoteException
7 {
8 JRget_op_foo_intTovoid().call(3);
9 }

10 }

(a) JR code. (b) Generated Java code.

Fig. 21. Translation of the invocation of a ProcOp.

reflection) as an object with a well-defined interface. Figure 21 shows an example
of this translation.

An inni operation is implemented as an InOp object that contains a message
queue to store the arguments for each invocation. An invocation of an InOp is
translated into an appropriate method invocation on the corresponding object. All
operations implement the RMI Remote interface so that the methods can be invoked
from remote hosts.

5.4 Asynchronous Message Passing

The current implementation of the JR run-time system is built using RMI. As such,
the send statement is not truly asynchronous in the traditional sense. A send is
implemented as an RMI invocation of the send method in the object that corre-
sponds to the operation being invoked. An InOp’s send method places a message
containing the actual arguments into the invocation queue and then returns. A
ProcOp’s send method spawns a new thread to execute the method associated with
the ProcOp and then returns, releasing the invoking process.

5.5 Inheritance

In Java, a method invocation causes a dynamic lookup to determine the actual
method to invoke. However, this lookup is not done when accessing a data field.
Each operation in JR is implemented by a signature-specific Op object, so the
generated Java code must provide support for dynamic lookup of operations. This

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 21

support is provided via access methods used to retrieve the appropriate operation
object an example of which can be seen on line 8 of Figure 21 (b).

5.6 Remote Class Loading

Dynamic class loading, as described in the Java RMI specification [Sun Microsystems
1997], allows for class files to be loaded from either the local CLASSPATH or from a
predefined URL. The JR run-time system requires only that necessary class files for
the program be accessible through the CLASSPATH at the originating host (where
the program is initially executed). When a remote object is created, the neces-
sary class files are retrieved from the JRX object on the originating host through
a custom class loader. This reduces the amount of setup required by the user and
eliminates the need for a separate server to provide file access.

5.7 Termination Detection

The JR run-time system provides support for termination detection in programs
that use only JR concurrency constructs. Specifically, the termination detection is
not guaranteed for programs that directly use Java’s threads, synchronized state-
ment (or method attribute), or RMI. This restriction is due to the implementation
of the termination detection at the user level in JR’s run-time system.

The implementation relies upon instrumenting the generated Java code to track
the creation and completion of threads, and the sending and receiving of messages.
Java’s concurrency constructs are not similarly instrumented as doing so would
require modification of the class library or Java’s virtual machine (which we are
reluctant to do). Automatic termination detection is, however, optional and may
be disabled for those programs in which Java’s concurrency constructs are to be
used.

With termination detection, use of the done operation (and explicity “JR.exit(0)”)
can be removed from Figures 10 and 11. The program would terminate once all
of the readers and writers have completed their iterations (and the server blocks
waiting for a request).

5.8 JR versus SR

In addition to the object-oriented features discussed in previous sections (which
SR does not provide), JR supports all of the concurrent programming features of
SR with the exception of the concurrent invocation statement and quantifiers in in

statements (typically used to specify indices of operation arrays). These remaining
features could, with reasonable effort, be added to JR but we have opted not to do
so at this point.

6. PERFORMANCE RESULTS

A number of microbenchmarks have been used to study the performance of JR
programs against equivalent RMI programs. The performance results demonstrate
that remote method invocations in JR incur little overhead compared with equiv-
alent invocations in standard RMI (upon which JR is built). Each of the following
experiments was conducted on a cluster of 350 MHz Intel Pentium II workstations
connected via a 10 Mbps Ethernet network. All experiments were conducted using

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · A. Keen et al.

SUN’s JDK Version 1.3.1 on Linux 2.4.2-2. For each of the experiments, the pre-
sented results are averages over multiple executions of the respective benchmarks.

The first experiment demonstrates the time needed to invoke an empty method.
Table I shows the results of repeatedly invoking an empty ProcOp in JR and an
empty method in Java. The method takes as an argument a single object that
contains an array of a specified number of integers.

Object Size (ints) 1 1k 10k 100k

JR (µs) 0.3682 0.3685 0.3686 0.3694

Java (µs) 0.0741 0.0746 0.0746 0.0758

JR time / Java time (ratio) 4.97 4.90 4.94 4.87

Table I. Time to invoke an empty JR ProcOp and an empty Java method in a local object.

As evidenced by this experiment, a JR method invocation takes about five times
longer than a standard method invocation. The current implementation of JR
requires four additional method invocations to support dynamic dispatch on oper-
ations and causal ordering of messages. The overhead to support dynamic dispatch
on operations could be reduced through implementation techniques similar to those
used for methods (i.e., a virtual method table). Further optimization at the com-
piler level may reduce the overhead of local operation invocations by eliminating
the invocations for causal ordering.

The next experiment, taken from [Izatt et al. 1999], extends the previous exper-
iment to measure invocations of an empty method in a remote object. Table II
shows the results of repeatedly invoking an empty ProcOp in JR and an empty
method using standard RMI. The remote method takes as an argument a single
object that contains an array of a specified number of integers.

Object Size (ints) 1 1k 10k 100k

JR (ms) 1.73 2.28 6.64 48.43

JDK RMI (ms) 1.60 2.19 6.21 47.63

JR time / RMI time (ratio) 1.08 1.04 1.07 1.02

Table II. Time to invoke an empty JR ProcOp and an empty RMI method in a remote object.

The performance differences demonstrated in Table II are attributable to method
invocation overhead inherent in the current implementation of JR††. A remote
method invocation begins by invoking the call method of the operation capabil-
ity. The operation capability call method invokes the call method of the ProcOp.
This invocation transmits the parameters to the remote host using RMI. At the
remote host, the ProcOp call method invokes the actual user-defined method.

Table III shows the results of multiple executions of the Readers/Writers pro-
gram from Section 3 using both JR and RMI. In this experiment, all readers and

††The differences are so minor, however, that instances of JR outperforming RMI, due to extra-

neous network traffic, have been observed.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 23

writers are colocated on the same machine; the server that manages their synchro-
nization resides on a separate machine. As Figure 12 shows, in the JR solution
the Readers/Writers server uses inni statements to service invocations of the dif-
ferent InOps associated with requesting and releasing read/write access. The RMI
solution in this experiment, however, uses a semaphore-like approach in solving the
Readers/Writers problem. Therefore, Table III also includes performance results
for a roughly equivalent JR semaphore-like solution.

R/W/RI/WI 20/10/3/3 50/15/3/3 100/30/3/5

JR (inni) (ms) 3555.0 5544.6 14428.0

JR (semaphore) (ms) 2765.0 4291.6 11692.2

JDK RMI (ms) 2723.4 3971.6 10686.0

JR (inni) / RMI (ratio) 1.31 1.40 1.35

JR (semaphore) / RMI (ratio) 1.01 1.08 1.09

Table III. Time to complete execution of all iterations (RI and WI) for all readers (R) and writers

(W).

The JR semaphore-like solution uses JR’s semaphore abbreviations. These ab-
breviations translate into sends and receives on an InOp. As such, this semaphore
solution does not perform as well as the RMI solution because of the overhead asso-
ciated with supporting general message passing. Further optimization of the InOp
process fairness code should improve the performance of this solution. It should
be noted, however, that the JR semaphore solution did outperform the RMI solu-
tion when the RMI server was restarted between each test. Restarting the server
between tests reduced the effectiveness of Java’s Just-In-Time (JIT) compiler for
the RMI solution. The results shown in Table III for the RMI solution are for a
persistent server.

The JR solution that uses an inni statement did not perform as well as the other
two solutions. The performance difference is attributable to the current implemen-
tation of the inni statement’s fairness preserving semantics. Table IV shows the
percentage of time spent executing code that pertains to the fairness semantics for
the Reader/Writer experiment. As shown in the table, a large percentage of time
is spent selecting the invocation to service from the currently pending invocations
(e.g., readRequest).

Functionality 20/10/3/3 50/15/3/3 100/30/3/5

Invocation Sort (%) 0.3 0.7 0.7

Select Invocation (%) 22.2 23.9 25.5

Remove Invocation (%) 0.5 1.5 1.3

Lock Acquire (Wait) (%) 60.9 61.2 62.2

Table IV. JR (inni) Solution: Percentage of total execution time spent executing synchronization

code for the Readers/Writers experiment.

Invocation selection takes a large percentage of the total execution time, in this
program, because all invocations in an operation are examined until one is found

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · A. Keen et al.

that satisfies the arm’s st clause. In this program, however, the st clause does not
reference invocation arguments. Therefore, if the st clause is false, all invocations
in the operation are examined needlessly. As an optimization for such cases, the st
clause can be lifted out of the selection loop in the generated code.

Table V compares the performance results of the standard sequential version of
the Java Grande Forum Fourier Benchmark [Edinburgh Parallel Computing Centre]
against distributed versions written in JR and RMI.

Number of coefficients 10000 100000

Sequential Java (s) 75.17 760.42

JR (1 Server) (s) 68.01 768.37

JR (2 Servers) (s) 32.29 379.85

JDK RMI (1 Server) (s) 68.63 760.00

JDK RMI (2 Servers) (s) 37.87 379.63

JR / RMI (1 Server) (ratio) 0.99 1.01

JR / RMI (2 Servers) (ratio) 0.85 1.00

Table V. Time to calculate the first n coefficients of the function (x+ 1)x defined on the interval
[0,2].

The distributed versions of the program divide the computation equally among
the available servers. The JR program uses asynchronous message-passing to initi-
ate each computation and then collects the results using an inni statement. The
RMI version uses threads to concurrently initiate invocations of the remote method
and to collect the results.

7. RELATED WORK

7.1 Java Message Service

Java 2 Enterprise Edition provides a message service API, Java Message Service
(JMS) [Sun Microsystems 2001], that allows point-to-point and publish/subscribe
messaging. This support, however, is directed at enterprise solutions. As such, the
message “destinations” exist outside of specific programs and are accessed through
the JMS provided classes. Programs are provided, via some means, with the names
of message destinations (in the point-to-point case, the name of a message queue).
To use the message service, a program must create a connection to a specific des-
tination before it can send or receive messages.

This message service is intended for loosely-coupled, enterprise-level solutions and
is quite unwieldy for tightly-coupled concurrent programs. Message destinations are
created and maintained using administrative tools and, as such, cannot truly be
considered a language-level mechanism for distributed programming.

7.2 CORBA

CORBA’s [The Object Management Group] Notification Service (an extension of
its Event Service) provides push/pull messaging through event channels. In this
general framework, a Supplier may push events to the event channel or wait until
the event channel pulls events from the Supplier. Similarly, a Consumer may pull
events from the event channel or allow the channel to push events to the Consumer.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 25

CORBA’s greatest strengths stem from its language and architecture indepen-
dence. As such, CORBA is often used for loosely-coupled distributed programs.
Unlike the Java Message Service discussed above, CORBA’s Notification Service
event channels need not be stand-alone programs. As such, the Notification Service
can be used in writing tightly-coupled concurrent programs such as those targeted
by JR. Even so, the support for asynchronous communication differs greatly in
these two solutions.

The Notification Service can support asynchronous method invocation through
events pushed to the clients. A client provides support for pushes by implementing
the PushConsumer interface. As such, the single well-known push method defined in
PushConsumer is the only method that can be invoked asynchronously, whereas JR
allows any operation to be invoked asynchronously. Additionally, a PullConsumer

can only attempt to pull from a single channel at a time, whereas in JR a client
can attempt to receive from multiple (in) operations with a single input statement
and, thereby, prioritize messages.

The events in CORBA’s Notification Service are generic, meaning that any type of
data (that satisfy the constraints placed on general remote invocations in CORBA)
can be sent as events. Such flexibility requires that the consuming object essen-
tially unmarshall the data sent as events. To address this problem, CORBA also
provides typed events, which require agreed upon interfaces, and structured events,
which map the event data to a well-known structure. Moreover, event types can be
mixed such that a Supplier can push a generic event while a Consumer attempts
to pull a structured event. JR supports messaging through operations that have
signatures similar to those of methods. An event type is implicitly agreed upon
as the signature of an operation and the run-time system manages the marshalling
and unmarshalling of sent data.

CORBA’s Notification Service also provides event filtering through filter objects
that are registered with either an Admin object associated with the event channel or
a Proxy object that sits between the Admin and the Consumer. Filters at a Proxy
can filter events for a specific Consumer, whereas filters at an Admin can filter events
for a group of Consumers. Filters are specified using a Filter Constraint Language
and stored as strings in the running program. These filters provide functionality
similar to that provided by synchronization expressions on input statements in JR.
However, the filters cannot access variables local to a pulling consumer and they
cannot change the order in which events are delivered. Moreover, JR includes
support for comparing and selecting from pending messages in multiple operations.

7.3 Java Extensions

Other extensions to Java have modified its concurrency model to include, for exam-
ple, asynchronous communication, distributed shared memory, and active agents.
None of these extensions provide the flexibility of operations, capabilities, and inni

statements. Moreover, many of the previous extensions still require the user to
manually start remote programs.

Ajents [Izatt et al. 1999] provides remote object creation, asynchronous RMI,
and object migration through a collection of Java classes. The Ajents project
makes no modifications to the Java programming language or the run-time system.
Creation of remote objects and invocation of methods within remote objects (both

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · A. Keen et al.

synchronous and asynchronous) is done through the Ajents class. The arguments
to Ajents.new(), Ajents.rmi(), and Ajents.armi() include a String specifying
the type of the object to create or the method to invoke. Without a preprocessor,
it is not possible to statically determine if an object can be created or if the method
being invoked actually exists. (That is another drawback of the “package” approach
described near the beginning of Section 2.)

JavaParty [Philippsen and Zenger 1997] extends Java through the addition of
the remote keyword to provide transparent remote objects. JavaParty includes a
translator that converts JavaParty programs into standard Java programs. This
translation includes converting the remote classes into the corresponding RMI
support classes simplifying the work of the programmer.

In [Nagaratnam et al. 1996], Java is extended to include a remotenew expres-
sion that allows for the instantiation of remote objects on specified hosts. The
remotenew keyword is mapped to a new opcode which requires an extended vir-
tual machine. The implementation restricts remote method arguments to primitive
types whereas JR allows any Serializable or Remote object as an argument.

Asynchronous remote method invocations are provided by [Raje et al. 1997] by
using the armic stub/skeleton generator instead of the standard rmic. Unfor-
tunately, all remote method invocations are asynchronous. The programmer is
provided access to return values through a mailbox.

A socket implementation of asynchronous message passing is discussed in [Hartley
1998]. This implementation allows a single object to be passed as a message be-
tween two threads and provides support for a conditional receive (a very limited
inni statement). Support for rendezvous is provided via a blocking request at the
“client” and a request/reply pair at the “server”.

Both Java/DSM [Yu and Cox 1997] and Charlotte [Baratloo et al. 1996] extend
Java to include mechanisms for distributed shared memory. ParaWeb [Brecht et al.
1996], SuperWeb [Alexandrov et al. 1997], and Javelin [Christiansen et al. 1997]
seek to exploit the potential for parallel computation using the World Wide Web.
Communicating Java Threads [Hilderink et al. 1997] extends the concurrency model
of Java by providing communication between threads based on the CSP [Hoare 1978]
paradigm. Support for data-driven objects in Java is discussed in [Kalé et al. 1997].

The current JR implementation uses but does not rely upon RMI. As such, future
JR implementations can take advantage of improved or optimized communication
frameworks. For example, [Maassen et al. 1999] and [Nester et al. 1999] discuss
more efficient versions of Java’s RMI.

Java-SR [Mendis 1997] adds SR operations, asynchronous message passing, and
dynamic resource creation to Java. Though a good initial effort, Java-SR has sev-
eral shortcomings. Java-SR uses a preprocessor to translate programs into standard
Java but adds little to the Java syntax. The result is a mix of syntactic extensions
to define operations and exposed implementation details for interacting with oper-
ations. Java-SR does not truly integrate the SR concurrency model (e.g., no VMs)
and Java. Java-SR does not address the extension of the SR constructs in terms of
the Java programming language.

In a similar vein, though not related to Java, Wellings et al. [2000] discuss ex-
tending Ada 95 to more fully integrate object-oriented programming and Ada’s
protected objects. This discussion highlights the syntactic and semantic issues in-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 27

volved in making Ada’s protected types extensible.

7.4 Concurrent Object-Oriented Languages

Numerous concurrent object-oriented languages have been proposed, e.g., as dis-
cussed in a recent survey [Briot et al. 1998]. These languages have various concur-
rency models, ways of expressing synchronization, etc. Some concurrent object-
oriented languages take an object-oriented approach to synchronization (as does
JR), including Actalk [Briot 1989], BAST [Garbinato et al. 1996; Garbinato and Guerraoui 1997],
GARF [Guerraoui et al. 1997, Garbinato and Guerraoui 1998], and Simtalk [Bezivin 1987].
SimTalk, for example, derives different kinds of monitor classes from a common base
class. Although JR shares some features with some concurrent object-oriented lan-
guages, JR differs in its overall approach of building synchronization via the oper-
ation abstraction, its overall concurrency model, and its definition as an extension
of Java.

Furthermore, the survey classifies the different approaches in object-oriented con-
current programming into three coarse categories [Briot et al. 1998]. The three
categories are: the library approach, the integrative approach, and the reflective

approach. The library approach provides class libraries that encapsulate concur-
rency components (e.g., Java threads are represented as objects). The integrative
approach unifies concurrency concepts with object-oriented concepts (e.g., merging
the notion of object and process to create the notion of an active object). The
reflective approach uses reflection mechanisms to provide concurrency components
at the meta-level.

JR takes an integrative approach in defining its concurrency model. JR pro-
vides operations as a general communication abstraction. Operations are defined
as part of an object and each operation is associated with a specific object. Using
operations, a JR programmer can create active objects, synchronized objects, and
distributed objects. An object can be made active by using the process keyword to
create a thread within the object. A JR programmer can use Java’s synchronized
keyword or InOps to synchronize invocations. As discussed in Section 3.2, JR
provides dynamic remote object creation and remote references to facilitate the
distribution of objects.

8. CONCLUSION

The JR programming language integrates the SR concurrency model and the Java
programming language. It does so via a novel approach that resolves the tension
between inheritance and concurrency. JR provides a more flexible way to program
distributed applications without great performance costs.

The JR programming language provides a generalization of the input (inni)
statement that provides greater control over the selection of invocations to service.
Specifically, the extended input statement allows selection based on comparisons
among the entire set of pending invocations (see [Keen 2002]). JR also extends
Java’s exception model to handle exceptions that occur during asynchronous com-
munication (see [Keen and Olsson 2002]). This includes exceptions that are thrown
by a method or inni statement invoked via send, as well as exceptions thrown after
a reply or forward statement (Section 2.2) has been executed.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · A. Keen et al.

Our goal for the initial implementation of the JR system has been to improve
the concurrency model provided in an extended Java. Performance has not been
a primary concern. Even so, our experiments demonstrate that, for the appli-
cation benchmarks, JR incurs little penalty over equivalent RMI programs. We
believe that the ease of programming concurrent applications in JR, over using
RMI, outweighs the incurred performance penalty. Performance can be improved
by further tuning the JR run-time system, but greater performance gains will come
from optimizations done through static code analysis and specialized translations.
Additional work will study the use of communication frameworks other than RMI
to improve performance.

The JR programming language has been successfully used in courses on concur-
rent programming and for small to moderate-sized projects. Such projects range
from games to a distributed file system simulation. Future work will explore the
implementation of larger concurrent systems.

REFERENCES

Alexandrov, A., Ibel, M., Schauser, K., and Scheiman, C. 1997. Superweb: Towards a global
web-based parallel computing infrastructure. In 11th International Parallel Processing Sympo-
sium. 100–106.

Andrews, G. 1991. Concurrent Programming: Principles and Practice. Benjamin/Cummings
Publishing Company, Inc., Redwood City, CA.

Andrews, G. R. and Olsson, R. A. 1986. The evolution of the SR language. Distributed
Computing 1, 3, 133–149.

Andrews, G. R. and Olsson, R. A. 1993. The SR Programming Language: Concurrency in

Practice. The Benjamin/Cummings Publishing Co., Redwood City, California.

Andrews, G. R., Olsson, R. A., Coffin, M., Elshoff, I., Nilsen, K., Purdin, T., and

Townsend, G. 1988. An overview of the SR language and implementation. ACM Transactions
on Programming Languages and Systems 10, 1 (Jan.), 51–86.

Atkins, M. S. 1988. Experiments in SR with different upcall program structures. ACM Trans-

actions on Computer Systems 6, 9 (November), 365–392.

Atkins, M. S. and Olsson, R. A. 1988. Performance of multi-tasking and synchronization mecha-
nisms in the programming language SR. Software – Practice and Experience 18, 9 (September),

879–895.

Baratloo, A., Karaul, M., Kedem, Z., and Wyckoff, P. 1996. Charlotte: Metacomputing on

the web. In Proceedings of the 9th Conference on Parallel and Distributed Computing Systems.

Bezivin, J. 1987. Some experiments in object-oriented simulation. In Proceedings of the Confer-

ence on Object-Oriented Programming Systems, Languages, and Applications. 394–405.

Black, A. P. 1985. Supporting distributed applications: Experience with Eden. In Proceedings
of the Tenth ACM Symposium on Operating Systems Principles. 181–193. In ACM Operating
Systems Review 19(5).

Brecht, T., Sandhu, H., Talbot, J., and Shan, M. 1996. Paraweb: Towards world-wide super-

computing. In European Symposium on Operating System Principles.

Brinch Hansen, P. 1999. Java’s insecure parallelism. ACM SIGPLAN Notices 34, 4 (April),

38–45.

Briot, J.-P. 1989. Actalk: A testbed for classifying and designing actor languages in the Smalltalk-

80 environment. In Proceedings ECOOP’89, S. Cook, Ed. Cambridge University Press, Not-
tingham, 109–129.

Briot, J.-P., Guerraoui, R., and Lohr, K.-P. 1998. Concurrency and distribution in object-

oriented programming. ACM Computing Surveys 30, 3 (September), 291–329.

Christiansen, B. O., Cappello, P., Ionescu, M. F., Neary, M. O., Schauser, K. E., and Wu,

D. 1997. Javelin: Internet-based parallel computing using Java. Concurrency: Practice and

Experience 9, 11 (Nov.), 1139–1160.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

JR: Flexible Distributed Programming in an Extended Java · 29

Cook, P. R. 1980. *mod–a language for distributed programming. IEEE Transactions on Software

Engineering 6, 6 (November), 563–571.

Edinburgh Parallel Computing Centre. Java Grande Forum Benchmark Suite.

http://www.epcc.ed.ac.uk/research/javagrande/benchmarking.html.

Garbinato, B., Felber, P., and Guerraoui, R. 1996. Protocol classes for designing reliable dis-

tributed environments. In ECOOP ’96—Object-Oriented Programming, P. Cointe, Ed. Lecture

Notes in Computer Science, vol. 1098. Springer, 316–343.

Garbinato, B. and Guerraoui, R. 1997. Using the strategy design pattern to compose reliable

distributed protocols. In The Third USENIX Conference on Object-Oriented Technologies

and Systems (COOTS), June 16–19, 1997. Portland, Oregon. USENIX, Berkeley, CA, USA,

221–232.

Garbinato, B. and Guerraoui, R. 1998. Flexible protocol composition in Bast. In Proceedings

of the 18th International Conference on Distributed Computing Systems (ICDCS-18). IEEE

Computer Society Press, Amsterdam, The Netherlands, 22–29.

Gehani, N. and Roome, W. 1988. Rendezvous facilities: Concurrent C and the Ada language.
IEEE Transactions on Software Engineering 14, 11 (November), 1546–1553.

Gehani, N. and Roome, W. 1989. The Concurrent C Programming Language. Silicon Press,
Summit, NJ.

Gehani, N. and Roome, W. 1990. Message passing in Concurrent C: Synchronous versus asyn-

chronous. Software – Practice and Experience 20, 6 (June), 571–592.

Gosling, J., Joy, B., and Steele, G. 1996. The Java Language Specification. Java Series. Sun
Microsystems. ISBN 0-201-63451-1.

Guerraoui, R., Garbinato, B., and Mazouni, K. R. 1997. Garf: A tool for programming reliable
distributed applications. IEEE Concurrency 5, 4 (Oct./Dec.), 32–39.

Hartley, S. J. 1998. Concurrent Programming: The Java Programming Language. Oxford

University Press.

Hilderink, G., Broenink, J., Vervoort, W., and Bakkers, A. 1997. Communicating Java
Threads. In WoTUG 20. 48–76.

Hoare, C. A. R. 1978. Communicating sequential processes. Communications of the ACM 21, 8,

666–677.

Izatt, M., Chan, P., and Brecht, T. 1999. Ajents: Towards an environment for parallel, dis-
tributed and mobile Java applications. In ACM 1999 Java Grande Conference. 15–24.

Kalé, L. V., Bhandarkar, M., and Wilmarth, T. 1997. Design and implementation of parallel

Java with global object space. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications. 235–244.

Keen, A. W. 2002. Integrating concurrency constructs with object-oriented programming lan-

guages: A case study. Ph.D. thesis, Department of Computer Science.

Keen, A. W. and Olsson, R. A. 2002. Exception handling during asynchronous method invoca-
tion. In Euro-Par 2002 Parallel Processing, B. Monien and R. Feldmann, Eds. Number 2400

in Lecture Notes in Computer Science. Springer-Verlag, 656–660.

Liskov, B., Herlihy, M., and Gilbert, L. 1986. Limitations of remote procedure call and

static process structure for distributed computing. In Proceedings of 13th ACM Symposium on
Principles of Programming Languages. St. Petersburg, FL.

Maassen, J., van Nieuwpoort, R., Veldema, R., Bal, H. E., and Plaat, A. 1999. An effi-

cient implementation of Java’s remote method invocation. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 173–182.

Matsuoka, S. and Yonezawa, A. 1993. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. In Research Directions in Concurrent Object-Oriented

Programming. 107–150.

Mendis, C. N. 1997. Java-synchronising resources for concurrent and distributed programming.
M.S. thesis, University of Warwick.

Nagaratnam, N., Srinivasan, A., and Lea, D. 1996. Remote objects in Java. In IASTED

International Conference on Networks.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · A. Keen et al.

Nester, C., Philippsen, M., and Haumacher, B. 1999. A more efficient RMI for Java. In ACM

1999 Java Grande Conference. 152–159.

Olsson, R. A. 1990. Using SR for discrete event simulation: A study in concurrent programming.

SOFTWARE — Practice and Experience 20, 12 (December), 1187–1208.

Philippsen, M. and Zenger, M. 1997. JavaParty — transparent remote objects in Java. Con-

currency: Practice and Experience 9, 11 (Nov.), 1225–1242.

Pierce, B. C. 2002. Types and Programming Languages. The MIT Press, Cambridge, Mas-

sachusetts.

Raje, R., Williams, J., and Boyles, M. 1997. An asynchronous Remote Method Invocation

(ARMI) mechanism for Java. Concurrency: Practice and Experience 9, 11 (Nov.), 1207–1211.

Scott, M. L. 1983. Messages vs. remote procedures is a false dichotomy. ACM SIGPLAN
Notices 18, 5 (May), 57–62.

Scott, M. L. 1987. Language support for loosely coupled distributed programs. IEEE Transac-

tions on Software Engineering 13, 1 (January), 88–103.

Scott, M. L. 1991. The Lynx distributed programming language: Motivation, design and expe-
rience. Computer Languages 16, 3/4, 209–233.

Sun Microsystems. 1997. Java Remote Method Invocation Specification. Sun Microsystems, Palo
Alto, CA.

Sun Microsystems. 2001. Java Message Service Specification. Sun Microsystems, Palo Alto, CA.

The Object Management Group. The Common Object Request Broker. The Object Management
Group. http://www.omg.org/.

Wellings, A. J., Johnson, B., Sanden, B., Kienzle, J., Wolf, T., and Michell, S. 2000.
Integrating object-oriented programming and protected objects in Ada 95. ACM Transactions
on Programming Languages and Systems 22, 3, 506–539.

Yu, W. and Cox, A. 1997. Java/DSM: A platform for heterogeneous computing. Concurrency:

Practice and Experience 9, 11 (Nov.), 1213–1224.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

	Introduction
	Motivation and Background
	Shortcomings in Java's Concurrency Model
	The SR Concurrent Programming Language and its Concurrency Model

	The JR Programming Language
	Dynamic Remote Virtual Machine Creation
	Dynamic Remote Object Creation
	Operations and Operation Capabilities
	Asynchronous Message Passing

	Operations and Inheritance
	Java Inheritance Background
	Operation Inheritance
	Redefinition Considerations
	Inheritance Anomaly

	Implementation
	JR Virtual Machines
	Security Implications

	Remote Objects
	Operations and Operation Capabilities
	Asynchronous Message Passing
	Inheritance
	Remote Class Loading
	Termination Detection
	JR versus SR

	Performance Results
	Related Work
	Java Message Service
	CORBA
	Java Extensions
	Concurrent Object-Oriented Languages

	Conclusion
	References

