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tomated pattern detection approach based on our reclassification of the GoF patterns by

their pattern intent. We argue that the GoF pattern catalog classifies design patterns in

the forward-engineering sense; our reclassification is better suited for reverse engineering.

Our approach uses lightweight static program analysis techniques to capture program in-

tent. This dissertation also describes our tool, PINOT, that implements this new approach.

PINOT detects all the GoF patterns that have concrete definitions driven by code struc-

ture or system behavior. PINOT is faster, more accurate, and targets more patterns than

existing pattern detection tools. PINOT has been tested against several benchmark applica-

tions, including Apache Ant, Java AWT, JHotDraw, and Swing. Since PINOT has proven

successful, we extend PINOT to recognize a broader range of design patterns. This disser-

tation describes our pattern detection language, MUSCAT, that allows users to define and

analyze their own design patterns using the PINOT engine. MUSCAT is a visual language

that allows users to model program intent by specifying both the structural- and behavioral-

aspects of a design pattern. This dissertation evaluates MUSCAT and discusses the trade-

offs between effectiveness and flexibility.
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1

Chapter 1

Introduction

Program understanding tools today are able to extract various source information, such

as class structures, inter-class relationships, call graphs, etc. Some may even produce a

subset of UML diagrams. However, without proper documentation, it would still take a lot

of effort for a developer to become proficient with the source code. Therefore, a powerful

program understanding tool should be able to extract the intent and design of the source

code. To fulfill this goal, we need some kind of code pattern that bears intent and design as

source facts to analyze against. A design pattern abstracts a reusable object-oriented design

that solves a common recurring design problem in a particular context [38]. A design

pattern has its own unique intent and describes the roles, responsibilities, and collaboration

of participating classes and instances. Thus, by extracting design patterns from source

code, we are then able to reveal the intent and design of a software system. We believe by

tracing the common variations of a pattern implementation, the roles of the participating

classes can be identified and the intent of the corresponding source code is then revealed.

Every design pattern has its own unique intent. Since design patterns can make software

development more efficient and effective, they are widely used in practice. For example,

the Singleton pattern is used to implement java.awt.Toolkit in the Java AWT package (a

GUI toolkit), the Composite, Interpreter, and Visitor patterns form the basic architecture
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of Jikes (a Java compiler written in C++) [11], the Flyweight pattern is used in Apache

Ant (a Java build tool) to control the helper objects in a project, etc. During the design

phase, design patterns serve as a slang for communicating design issues. During the cod-

ing phase, design patterns provide clear guidelines on how to create a problem-specific

implementation. While design patterns are useful in the forward engineering1 process, they

are equally important in the reverse engineering process. Software projects are usually

documented as the software evolves. However, documentation gradually becomes obsolete

through time, due to employee turnover or inadequate project management. Further, as the

software project grows, legacy code emerges, making software maintenance more difficult

without proper understanding of the architectural design. As a result, software companies

often find themselves spending lots of time and money on training new developers to get up

to speed. Source code contains all the information needed for documentation, but it cannot

speak itself without a good reverse engineering tool.

A pattern detection tool can be characterized by its false positive and false negative

rates, defined as in Figure 1.1. The false positive rate reflects the degree of soundness,

while the false negative rate reflects the degree of completeness of a pattern detection tool.

Together the false positive and false negative rates determine the “accuracy” of a pattern

detection tool. A good pattern detection tool has low false positive and false negative rates.

However, the accuracy rates can vary on different patterns. In general, recognizing program

1Forward engineering is the process of moving from higher-level abstractions to the actual implementation
of a system. An example is code generation.

False Positive Rate =
Number of Incorrect Pattern Instances

Number of All Detected Pattern Instances
× 100%

False Negative Rate =
Number of Undetected Correct Pattern Instances

Number of Correct Pattern Instances
× 100%

Figure 1.1: Definitions of false positive rate and false negative rate
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behavior is known as an undecidable problem, hence a fully automated static analysis will

not be able to achieve 0% false positive and false negative rates.

Past efforts have used structural relationships (such as the generalization and asso-

ciation relationships) to find design patterns. However, pattern detection tools that use

structural-based analysis fail to distinguish between patterns that are structurally identical

but differ in behavior (e.g., the Strategy and the State patterns). Other approaches attempt

to verify pattern behavior using dynamic analysis to distinguish such patterns and to re-

duce the false positive rate. While these attempts are able to capture program behavior,

they fail to interpret and verify program intent that is unique for each design pattern. Fur-

thermore, dynamic analysis depends on the coverage of test data, which can increase the

false negative rate if the coverage is not complete.

Design patterns are typically used as guidelines during software development. Thus,

the GoF book [38] presents a pattern catalog for forward engineering, but the same clas-

sification can be misleading for reverse engineering. Current approaches lack a proper

pattern classification for reverse engineering. A pattern classification for reverse engineer-

ing should indicate whether or not each pattern is detectable and if there exist traceable

concrete pattern definitions to categorize detectable patterns. Thus, we reclassified the

GoF patterns into five categories in the reverse-engineering sense (see Chapter 3). Based

on this reclassification, we automated the entire pattern recognition process using only

static program analysis. This relatively simple approach has proven effective. We have

some promising results — both accuracy and speed — from our initial prototype, PINOT

(Pattern INference and recOvery Tool), in recovering design patterns from the Java AWT

package, JHotDraw (a GUI framework [10, 37]), Swing, and Apache Ant. In particular,

the Java AWT has been used as a benchmarking suite for pattern detection on Java source

code [56, 60]. Our results on speed and accuracy in analyzing the Java AWT are promising.

While PINOT serves its purpose in identifying detectable GoF patterns in Java source

code, it is limited by its hard-coded pattern recognition capability. Because a definition
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for a design pattern is presented as guidelines, it allows different implementation variant

depending on reader interpretation. For example, some studies [26, 27] believe that the

Flyweight pattern is a structure- instead of a behavior-oriented pattern. Further, since lan-

guages evolve through time, a common implementation for a specific design pattern evolves

as well. For example, Java programmers who are acquainted with different versions of the

JDK may implement the Iterator pattern2 differently. Or in many cases, programmers can

either choose to use existing implementations of a design pattern provided in a software

package or to implement their own. For example, since JDK 1.0, the JDK has provided the

implementation of the Observer pattern in java.util.Observable and java.util.Observer.

However, some [7] argue that this implementation is not flexible3 and prefer to implement

the pattern themselves. As a result, different interpretations of a pattern introduce different

implementation variants. It is not feasible to hard-code all possible pattern interpretations

into PINOT. Moreover, the GoF book only illustrates some of the commonly used de-

sign patterns. An active research area in software engineering aims on discovering design

patterns used in specific software domains, such as security [19], high-performance com-

puting [53, 16], etc. We want to extend PINOT’s pattern recognition capability by allowing

users to define and identify their own design patterns. To achieve this goal, we introduce

our pattern detection language MUSCAT (Minimal UML SpecifiCATion language). MUS-

CAT is a visual constraint language that allows users to define the structural and behavioral

aspects of a design pattern. Then we define a set of PINOT APIs to facilitate the execution

of of the user-defined MUSCAT specifications.

The rest of this dissertation is organized as follows. Chapter 2 critiques current pattern

detection tools, discusses pattern interpretation and implementation variants, and presents

examples that motivated our approach. Chapter 3 explains our reclassification of the GoF

patterns. Chapter 4 illustrates how we identify structure- and behavior-driven patterns.

2The implementation of the Iterator pattern is provided in java.util.Enumeration (since JDK 1.0),
java.util.Iterator (since JDK 1.2), and as the enhanced for-each loop (since Java 5).

3java.util.Observable is a class instead of an interface. Thus, Java programmers cannot take an existing
class that already extends some other to be an Observable, because Java does not allow multiple inheritance.
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Chapter 5 describes our initial prototype of PINOT. Chapter 6 discusses various studies

on formalizing design patterns. Chapter 7 compares representative languages designed

for pattern detection. Chapter 8 presents the design and implementation of the MUSCAT

language. Chapter 9 concludes the dissertation and covers our future work.

We reported our initial results on PINOT in Reference [61]. This dissertation contains

additional details about our overall approach, a more extensive review of background, more

examples, further information on the PINOT implementation, further experimental results,

and additional discussion. It also presents our work beyond PINOT, which defines our

pattern detection language MUSCAT.
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Chapter 2

Background

2.1 Critique of Current Approaches

Approaches to design pattern recognition fall into two main categories: those that iden-

tify the structural aspect of patterns and others that take a further step to distinguish the

behavioral aspect of patterns. Table 2.1 summarizes representative current approaches. For

each pattern detection tool, the target language, detection techniques, case studies (gen-

erally some well-known applications), and the patterns identified in the case studies are

shown.

2.1.1 Targeting Structural Aspects

These approaches analyze inter-class relationships to identify the structural aspect of

patterns, regardless of their behavioral aspect. The targeted inter-class relationships in-

clude: class inheritance; interface hierarchies; modifiers of classes and methods; types and

accessibility of attributes; method delegations, parameters and return types.

Previous work [26, 23, 48, 56, 25, 60, 40, 57, 65, 62, 59, 28] uses structural analysis to

find GoF design patterns [38] from source. Structural relationships of the code include class

inheritance, interface hierarchies, attributes, method invocations, parameters and return
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Tools Language Techniques Case Studies Patterns Identified
SPOOL [48] C++ Database

query
ET++, two
classified
systems from
Bell Canada

Template Method, Factory
Method, Bridge

DP++ [26] C++ Database
query

DTK Composite, Flyweight, Class
Adapter

Vokac et al.
[65]

C++ Database
query

SuperOffice
CRM

Singleton, Template Method,
Decorator, Observer

Antoniol et
al. [23]

C++ Software
metric

Leda, libg++,
socket, galib,
groff, mec

Bridge, Adapter

SPQR [62] C++ Formal
semantic

Some C++
test programs

Decorator

Balanyi et
al. [25]

C++ XML
matching

Jikes, Leda,
Star Office
Calc, Writer

Builder, Bridge, Prototype,
Proxy, Strategy, Template
Method, Factory Method

PTIDEJ [22,
40]

Java Constraint
solver

Java AWT,
java.net
package

Composite, Facade

FUJABA [56,
57, 67]

Java Fuzzy logic
and

Java AWT Bridge, Strategy, Composite

Dynamic
analysis

Heuzeroth et
al. [46]

Java Dynamic
analysis

Java Swing Observer, Mediator, CoR, Visi-
tor

HEDGEHOG
[28, 27]

Java Formal
semantic

AJP [63]
code sample,
PatternBox
[17], Java
Language 1.1
and 1.2

Abstract Factory, Factory
Method, Prototype, Singleton,
Adapter, Bridge, Composite,
Decorator, Flyweight, Proxy, It-
erator, Observer, State, Strategy,
Template Method, Visitor

KT [30] SmallTalk Dynamic
analysis

KT, three
SmallTalk
programs

Composite, Decorator, Tem-
plate Method

MAISA [58] UML UML
matching

Nokia DX200
Switching
System

Abstract Factory

Tsantalis et
al.[64]

Java Graph
matching w/
similarity
scoring

JHotDraw,
JRefactory,
JUnit

Adapter/Command, Composite,
Decorator, Factory Method,
Observer, Prototype, Single-
ton, Strategy/State, Template
Method, Visitor

Table 2.1: Representative Current Approaches
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types, object creations, and variable access within a method.

Some approaches first extract inter-class relationships from source code and then per-

form pattern recognition based on the extracted information. For example, DP++ [26],

SPOOL [48], Osprey [24], and Reference [65] extract inter-class relationships from C++

source to a database; patterns are then recovered through queries to the database. Ref-

erence [36] combines the Columbus reverse-engineering framework with the MAISA ar-

chitectural metrics analyzer (which analyzes software at the design level and had reported

limited results on recovering anti-patterns [58]) to build a pattern recognizer. However,

pattern recognition requires analyzing program behavior, which can be abstracted away at

the design level.

Reference [25] uses the Columbus schema for the extracted abstract semantics graphs1

(ASG) and recovers patterns based on graph comparison. Reference [23] extracts inter-

class relationships and then uses software metrics to reduce search space. Reference [64]

analyzes Java bytecode using graph matching based on similarity scoring. In contrast to an

exact graph matching, their approach uses inexact graph matching algorithms to facilitate

detection of implementation variants. However, their approach does not consider the be-

havioral aspect of patterns, thus it is limited to detecting patterns based on their inter-class

relationships. While Table 2.1 indicates that their approach detects what we later categorize

as behavior-driven patterns (in Section 3.3), their search criteria does not involve any se-

mantic constraints. Such discrepancies are quite common among pattern recognition tools.

Section 2.2 discusses pattern interpretation in more detail.

SOUL [34] is a logic inference system, which has been used to recognize patterns

(in Java and SmallTalk) based on inter-class-based code idioms and naming conventions.

SPQR [62] uses denotational semantics to find patterns on the ASG obtained by gcc. The

accuracy of these approaches depends in part on the capability of the program facts ex-

tractors they use. Although extracting inter-class relationships seems straightforward, it is

1The abstract semantic graph here is en enriched abstract syntax tree generated by Columbus and later
processed by MAISA.
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complicated by variations in the implementations of some relationships, such as aggrega-

tion [60, 56]. Thus, these approaches can result in higher false positive or false negatives

rates.

FUJABA [56] extends the work from [60] and uses a bottom-up-top-down approach to

speed up the search and to reduce the false positive rate (due to more complicated inter-class

relationship, such as aggregation [60, 56]). It uses a combination of inter-class relationships

to indicate a pattern. Thus, when such information is obtained from the bottom-up search,

even partially, FUJABA assumes the existence of a possible pattern and tries to complete

the rest of the search — i.e., the top-down search — to confirm that such a pattern actually

exists. This iterative approach allows going back to their annotated abstract syntax tree

(AST) for further analysis on demand.

From a system’s architectural description (which includes UML class, activity, compo-

nent, and sequence diagrams), MAISA is able to find design patterns and anti-patterns [31].

However, they targeted only the Abstract Factory pattern. Only the Abstract Factory pattern

(which represents a “good” pattern) and the Blob anti-pattern2 (which represents a “bad”

pattern) were found in their analyzed system.

Recovering design patterns from architectural descriptions is ineffective in practice for

two reasons. First, during software development, architectural requirements and descrip-

tions are usually laid out at the beginning of the development cycle, but are rarely reiterated

and detailed as the project evolves. Second, to use MAISA to find patterns, one needs to

first extract a set of UML diagrams (including both structural and behavioral diagrams)

from source; however, how to recover system behavior is still ongoing research in the

UML community.

2The Blob pattern describes the lack of OO design, which requires refactoring techniques to break the
blob into object components. However, this work identifies the “Blob” when unsynchronized shared memory
is found using the UML component and sequence diagrams.
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2.1.2 Targeting Behavioral Aspects

The approaches discussed in Section 2.1.1 are unable to identify patterns that are struc-

turally identical but differ in behavior, such as State vs. Strategy and Chain of Responsi-

bility (CoR) vs. Decorator. Approaches that target behavioral aspects seek to resolve this

problem using machine learning, dynamic analysis, and static program analysis.

Machine Learning

These approaches attempt to reduce false positives by training a pattern recognition

tool to identify the correct implementation variants of a pattern. Such approaches are semi-

automatic: user intervention guides pattern recognition.

Like Reference [48], FUJABA is a semi-automatic detection tool. They believe pat-

tern recognition is driven by a semi-automatic iterative process. Follow-on work of FU-

JABA [57] associates fuzzy values to pattern definitions. During the recognition process,

the fuzzy values may be updated at each iteration. The pattern detection engine is bundled

with the FUJABA Tool Suite RE (a software round-trip engineering tool for Java), which

is in parallel with the work in Reference [22]. The pattern recognition process in FU-

JABA’s more recent work [55] suggests a more user-driven approach. They believe pattern

detection requires human intervention to overcome scalability problems caused by imple-

mentation variations in different problem domains. Thus, this approach assumes users to

have a fair amount of knowledge of the analyzed code. However, reverse engineering tools

for design patterns are typically used in understanding legacy code, where users may not

be able to provide any feedback during the reverse engineering process.

PTIDEJ [22] recognizes distorted implementations of patterns, thus detected pattern in-

stances are associated with a similarity rate. A related work of PTIDEJ [41] uses program

metrics (such as size, cohesion, and coupling) and a machine learning algorithm to finger-

print roles of a pattern’s participating classes. These fingerprints are learnable facts for the

pattern constraint solver.
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Reference [35] (follow-on to [25, 36]) incorporates machine learning techniques to train

its pattern recognition tool. Each pattern is defined with a set of predictors, whose values

are used in the learning process. They tested their method on the Adapter and Strategy

patterns.

Most GoF patterns (including the Adapter and Strategy patterns) have concrete defini-

tions on their realization in code structure and system behavior. Such concrete definitions

are traceable (see Chapter 3). Thus this category does not seem to solve the fundamental

problem (see further Section 5.2).

Dynamic Analysis

Some design patterns include specification of program behavior, which cannot be deter-

mined analyzing only structural relationships. These approaches use runtime data to help

identify the behavioral aspects of patterns.

KT [30] hard-coded its detection algorithms to search for patterns in programs written

in SmallTalk. It avoids detecting patterns that are structurally identical, e.g., the Strategy,

State, and Command patterns. These patterns share a common idea — the reification of

responsibility. However, these patterns have very different intents and, therefore, very

different behaviors. KT uses only dynamic analysis to identify the CoR pattern, but the

result was unsuccessful, KT failed to find the Chain of Responsibility (CoR) pattern. KT’s

search algorithm for the pattern is based on only dynamic analysis. It analyzes an object-

message diagram interpreted from a call tree constructed during runtime. This process

removes unnecessary message calls unrelated to the search. Then the pattern should be

identified if the object-message diagram captures the right pattern behavior. However, this

approach failed to find the Chain of Responsibility pattern due to improper message logging

mechanism and insufficient test data.

Follow-on work to FUJABA [66] and Reference [46] suggest using dynamic analysis

to analyze behavior. First, they obtain inter-class information from source code. Next, for
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a particular pattern, they compute a list of candidate classes. Then, assuming how these

candidates should behave, they verify the behavior during runtime. In particular, Refer-

ence [66] uses dynamic analysis as part of pattern identification and incorporates UML

sequence diagrams to specify behavioral aspects. This approach complicates the search by

expanding the set of candidate classes and results in analyzing more unrelated execution

traces. We believe that structural analysis should be used to narrow down the search space.

Without any experimental results or proof, these approaches References [46] and [67] claim

that traditional data-flow and control flow analysis should not be feasible when polymor-

phism and dynamic method binding are involved. However, the critical behavior in a design

pattern is defined in the base class. Therefore, we rarely have to trace every possible path

happening in the subclasses(s) (see the Chain of Responsibility pattern and other behavioral

patterns in [38]).

Dynamic analysis relies on a good coverage of test data to exercise every possible exe-

cution path; such test data is not often available. Even if test data is available in a distribu-

tion, the runtime results may be misleading since the data was not originally designed for

recognizing the behavior of a particular pattern (e.g., a distribution might include a valida-

tion or benchmark suite). Moreover, dynamic analysis is not able to verify pattern intent

that is not observable, such as verifying lazy instantiation and single instance assurance

for the Singleton pattern,

Static Program Analysis

These approaches apply static program analysis techniques to the AST in method bod-

ies. FUJABA, in its current implementation, identifies path-insensitive object creation

statements for recognizing Abstract Factory and Factory Method patterns. Reference [28]

is a design pattern verification tool for Java. The tool consists of the HEDGEHOG proof

engine and the Prolog-like SPINE specification language. HEDGEHOG verifies whether

a Java class definition correctly implements a particular design pattern defined in SPINE.
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In particular, HEDGEHOG identifies inter-class relationships and then applies some inter-

procedural but path-insensitive analysis techniques to verify some weak semantics (e.g.,

whether a method modifies the value of a field) defined in method bodies. SPINE is not

able to capture program intent, thus patterns that are vaguely defined or lack clear realiza-

tion are not representable in SPINE. Design patterns shown in Table 2.1 for HEDGEHOG

are the representable ones that have been successfully verified. HEDGEHOG has an accu-

racy rate of 85.5% for all SPINE-representable patterns. Since the analysis for verifying

weak semantics are hard-coded in HEDGEHOG, the false negatives comes from HEDGE-

HOG’s limitation of recognizing implementation variants (see further Section 5.2).

2.2 Interpretation and Implementation Variants

During our research in reverse engineering design patterns from source code, we have

encountered various forms of reification of the same design pattern. Each design pattern

listed the GoF book [38] has an intent, a short description explaining the pattern’s purpose

and implementation. Based on the intent, the GoF book then describes the implementation

guidelines and possible implementation variants for programmers to adopt a particular de-

sign pattern. Programmers apply design patterns at various stages of software development.

And very often, design patterns come into play in the course of refactoring [49]. Because

the GoF book only offers guidelines, instead of a precise definition, it gives programmers

the confidence and flexibility to improve their code. However, as a vendor who builds pat-

tern recognition tools, we need a precise definition for each pattern specifying the exact

criteria that distinguishes its implementation from other code. Reference [42] (the author

of PTIDEJ) addresses the problem of interpretation of the UML specifications for the de-

sign patterns presented in the GoF book. They argue that there is a gap between modeling

and programming on the binary relationships (i.e., UML associations) in the UML class

diagrams. This gap introduces a wide range of implementation variants, thus the UML
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binary relationships need to be formalized.

However, the vagueness of the unformalized UML binary relationships is not the main

issue that opens the door to a variety of pattern implementations. It is mainly due to the in-

tentionally vague guidelines presented in the GoF book. As a result, various interpretations

of a design pattern emerge and each interpretation leads to an implementation variant. An

example of an implementation variant due to interpretation is the Flyweight pattern. The

GoF book describes its intent as “[to] use sharing to support large numbers of fine-grained

objects efficiently”. References [47, 27] consider immutable classes (e.g., java.lang.String)

as an implementation of the Flyweight pattern; Reference [26] believes the Flyweight pat-

tern shares the same structural implementation with the Composite pattern. The sample

code illustrated in the GoF book suggests an implementation that includes a flyweight fac-

tory that creates and manages a pool of flyweight objects. However, based on our findings

(see Section 5.2 for details), the GoF version of the implementation turns out to be hardly

used in practice.

Ideally, a design pattern should only have one interpretation and allow different imple-

mentation variants. Then, the effectiveness of a pattern recognition tool is determined by

how broad a tool is capable of recognizing possible implementation variants. For instance,

to implement the GoF version of the Flyweight pattern, it is the programmer’s choice to use

any data structure (e.g., a vector, hash table, etc.) to implement the one-to-many relation-

ship (such UML binary relationship is also discussed in Reference [42]) for the flyweight

object pool. Such implementation variants derive from the same interpretation and should

be recognized by a pattern recognition tool that defines search criteria based on this inter-

pretation.

Unfortunately, a design pattern is defined by an intent and different interpretations and

implementation variants are unavoidable. Chapter 6 discusses various studies on formaliz-

ing design patterns.
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2.3 Motivating Examples

Current pattern recognition approaches fail to properly verify pattern intent, which is

an important aspect of patterns.. For example, the Singleton and the Flyweight patterns

are both object-creational patterns, but each has a unique intent that can be implemented in

various ways.

Example: the Singleton Pattern

The Singleton pattern is probably the most commonly used pattern. Figure 2.1 (based

on [5]) shows a common implementation of the Singleton pattern. It is generally perceived

to be the simplest pattern to detect [65, 59], since it does not require analyzing its interaction

with other classes. The intent of the Singleton pattern is to ensure that a class has only one

instance [38]. However, to verify this intent is not an easy task and is typically omitted or

limited in current recognition tools.

public class SingleSpoon {
private SingleSpoon();
private static SingleSpoon theSpoon;
public static SingleSpoon getTheSpoon() {

if (theSpoon == null) theSpoon = new SingleSpoon();
return theSpoon;

} }

Code based on http://www.fluffycat.com/Java-Design-Patterns/Singleton

Figure 2.1: An Example of a Singleton Class

For example, FUJABA’s recognition is solely based on inter-class relationships, which

identifies a Singleton class with the following criteria: (1) has class constructors regardless

of accessibility, (2) has a static reference, regardless of accessibility, to the Singleton class,

and (3) has a public-static method that returns the Singleton class type. Thus, without fur-

ther static behavioral analysis in the method bodies, FUJABA identifies a Singleton class as

long as it matches these constraints. In fact, (1) and (2) are incorrect. The constructors have

to be declared private (unless the class is abstract) to control the number of objects created,

and the Singleton reference also has to be private to be prevent external modification. Even
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with these constraints modified, the Singleton class structure only prevents external instan-

tiation and modification. The real pattern intent is embedded in the public-static method’s

body.

As another example, HEDGEHOG uses limited static semantic analysis to verify im-

plementation of lazy instantiation (illustrated in getTheSpoon() of Figure 2.1). The lazy-

instantiation analysis is hard-wired in HEDGEHOG. Based on the other semantic analysis

techniques discussed in Reference [28], HEDGEHOG is not able to recognize other forms

of lazy instantiation, such as using boolean (or other data types) flags to guard the lazy

instantiation or using a different program structure (illustrated in Figure 2.2, based on [5]).

public static SingleSpoon getTheSpoon() {
if (theSpoon != null) return theSpoon;
theSpoon = new SingleSpoon();
return theSpoon;

}

Figure 2.2: Lazy Instantiation Variant

Example: the Flyweight Pattern

The Flyweight pattern has various interpretations. Because it is categorized as a struc-

tural pattern by GoF, many believe the pattern is based on inter-class relationships. How-

ever, the pattern consists of a flyweight factory (that manages a pool of sharable-unique

flyweight objects), which makes it more of a creational pattern and thus requires verifying

pattern intent. The GoF book specifies that a flyweight object is created upon request. Each

created flyweight object stored in a flyweight pool is associated with a unique key for later

retrieval. Figure 2.3 (based on [8]) shows an implementation of the GoF interpretation. The

real pattern intent resides in the method body of getFlyweight(...).

FUJABA interprets a flyweight class of having a container and a method that keeps and

creates flyweight objects, respectively. This strategy fails to capture the pattern intent and

significantly increases the false positive rate.
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public class FlyweightFactory {
Hashtable hash = new Hashtable();
public BallFlyweight getFlyweight(

int r, Color col, Container c, AStrategy a) {
BallFlyweight tempFlyweight =

new BallFlyweight(r,col,c,a),
hashFlyweight =

((BallFlyweight)hash.get(tempFlyweight));
if(hashFlyweight != null) return hashFlyweight;
else {

hash.put(tempFlyweight,tempFlyweight);
return tempFlyweight;

} } }

Code based on
http://www.exciton.cs.rice.edu/JavaResources/DesignPatterns/FlyweightPattern.htm

Figure 2.3: Implementation of getFlyweight()

HEDGEHOG, on the other hand, interprets an immutable class as a flyweight class and

any static-final variables as sharable flyweight objects. However, such interpretations tend

to be overly restrictive and fail to recognize the GoF interpretation of the Flyweight pattern.
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Chapter 3

GoF Patterns Reclassified

The GoF book [38] illustrates 23 common design patterns and categorizes them based

on their purposes and scopes. Purposes have three categories: creational, structural, and

behavioral. Creational patterns focus on how objects get created. Structural patterns focus

on class organization by roles using structural relationships, such as class inheritances, in-

terface hierarchies, and attribute associations. Behavioral patterns focus on separating ob-

ject responsibilities based on polymorphism and delegation. Patterns are grouped by their

scopes into either object or class patterns. Class patterns deal with relationships between

classes. This relationship is established statically during compile-time through inheritance.

Object patterns deal with dynamic relationship between objects during runtime. Most pat-

terns described in the GoF book are object patterns. Based on the GoF categorization, some

researchers [25, 66] believe structural patterns can be identified based on only inter-class

relationships and require the least effort to analyze. Creational patterns come next, since

statements of object creation can be easily detected. Behavioral patterns are considered

the most difficult to detect, since analysis on the behavior in the method body is required.

However, that view is not entirely accurate. As discussed in Section 2.3: the Singleton pat-

tern (a creational pattern) requires not only detecting the existence of object creation, but

it also requires verifying the behavior of the method body that creates and returns the Sin-
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gleton instance; the Flyweight pattern (a structural pattern) requires behavioral analysis to

verify whether all flyweight objects in the flyweight pool are singletons and are created on

demand. The Template Method and Visitor pattern (both behavioral patterns) define their

behavior in the class definitions, which can be identified based on static structural analysis

(see Sections 3.2). While this categorization is useful for programmers, it is not helpful for

pattern detection.

Instead of using purposes and scopes, patterns should be categorized, in the reverse-

engineering sense, by their definitions from the structural and behavioral aspects. Some

patterns are driven by code structure and are designed to structurally decouple classes and

objects; but, other patterns are driven by system behavior and require specific actions imple-

mented in the method bodies. As mentioned in Section 2.1, a reclassification of design pat-

terns in the reverse-engineering sense is needed. Thus, we divide the GoF patterns based on

their structural and behavioral resemblances into five categories: patterns that are already

provided in the language (Section 3.1); patterns that are driven by structural design and

can be detected using static structural analysis (Section 3.2); patterns that are driven by be-

havioral design and can be detected using static behavioral analysis (Section 3.3); patterns

that are domain-specific (Section 3.4); patterns that are only generic concepts (Section 3.5).

Figure 3.1 illustrates this reclassification and highlights our search strategies. The squares

are the design patterns, and ovals are structural sub-patterns (which are the building blocks

of the design patterns; some of the sub-patterns here are used in References [56, 62]). The

un-boxed texts indicate the searching criteria along the edge to another design pattern. A

standalone square indicates that the pattern is detectable either by its inter-class properties

or using additional domain-specific knowledge and heuristics.

The following sections are organized based on this categorization. Each section dis-

cusses the common characteristics and search strategies of the patterns in a category.
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Figure 3.1: A Reclassification for Reverse Engineering of the 23 GoF Patterns

3.1 Language-provided Patterns

Our idea of reverse engineering design patterns from source code is not limited to de-

tecting patterns written in a particular programming language (although so far we have fo-

cused on Java). Design patterns are so widely used today that many languages (e.g., Java,

Python) and packages (e.g, JDK, STL) implement some common design patterns to facili-

tate programming. Java provides the Iterator (as in java.util.Enumeration, java.util.Iterator,

and the for-each loop) and Prototype (as the clone() method in java.lang.Object) patterns.

In practice, developers tend to use such built-in facilities1 to efficiently and effectively

1java.util.Observable implements the Observer pattern; it implements a fixed subject-listeners communica-
tion mechanism, and the order in which notifications will be delivered is unspecified (see the Java2 API). In
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build software systems. Such pattern instances can be recognized by matching specific

names for methods or checking if a class implements a specific Java interface, which

is used in HEDGEHOG [27]. The latter is used in HEDGEHOG [28]. For example,

HEDGEHOG identifies an Iterator class by verifying whether it implements java.util.Iterator

or java.util.Enumeration and identifies a Prototype class by checking if it implements

java.util.Cloneable.

3.2 Structure-driven Patterns

Patterns in this category can be identified by inter-class relationships. Such relation-

ships establish the overall system architecture but do not specify the actual system behavior.

Inter-class relationships are used to separate class responsibilities that contain declarations,

generalization, association, and delegation relationships. Structure-driven patterns include

the Bridge, Composite, Adapter, Facade, Proxy, Template Method, and Visitor patterns.

The Bridge and Composite patterns separate class hierarchies based on generalization and

association relationships; the Adapter, Facade, and Proxy patterns separate class roles based

on class association and method delegation relationships; the Visitor and Template Method

patterns defer class responsibilities through method declarations and delegation.

3.3 Behavior-driven Patterns

Some patterns are designed to realize certain behavioral requirements. Such a design

pattern is embedded with a program intent that is carried in inter-class relationships and

method bodies. Behavior-driven patterns include the Singleton, Abstract Factory, Factory

Method, Flyweight, Chain of Responsibility (CoR), Decorator, Strategy, State, Observer,

and Mediator patterns.

practice, the Observer pattern is applied to various contexts with different internal data structures and com-
munication mechanisms. Thus, we include the Observer pattern in the Behavior-driven Patterns category
(Section 3.3).
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The GoF creational patterns are driven by some constraints on object creation, such as

the number and type of objects to be created. For example, the Singleton pattern ensures

that a class has at most one instance during the entire program execution. The Flyweight

pattern, although classified as a GoF structural pattern, is designed to effectively manage a

pool of sharable objects.

The CoR and Decorator patterns define different behavior based on how a request is

passed along a list of handlers. The Decorator pattern lets every handler process the same

request, while the CoR pattern passes a request along the list until the right handler pro-

cesses it.

The Strategy and State patterns share identical inter-class structures but differ in behav-

ior. Each pattern involves a context class that has an attribute that takes a role of either a

strategy or a state. The two patterns differ in how the attribute gets modified. In the State

pattern, the attribute is passively modified by other state objects. In the Strategy pattern,

the attribute is actively modified by other class entity through the context class.

The Observer (subject vs. observers) and Mediator (mediator vs. colleagues) patterns

share the same 1:N aggregation relationship but differ in communication styles. The subject

class of the Observer pattern broadcasts messages to its observers, while the mediator of

the Mediator pattern serves as a communication hub for its colleagues.

3.4 Domain-specific Patterns

The Interpreter and Command patterns combine other GoF patterns and are specialized

to suit a particular domain. The Interpreter pattern uses the structure of the Composite

pattern and the behavior of the Visitor pattern. Based on this formation and a grammar of

a language, the Interpreter pattern interprets the language. We consider this pattern as a

special case of realizing the Composite and the Visitor patterns. The Command pattern is

basically a realization of the Bridge pattern that separates the user interface from the actual
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implementation for command execution. The Command pattern also suggests incorporat-

ing the Composite pattern to support multi-commands and undoable operations and using

the Memento pattern to store the history of executed commands. Such patterns are possible

to detect, but their detection requires analysis that incorporates domain-specific knowledge.

Thus, no reverse-engineering work has targeted them.

3.5 Generic Concepts

While useful in practice, the Builder and Memento patterns are only generic concepts

lacking traceable implementation patterns. The Builder pattern is a creational pattern that

separates the building logic from the actual object creation, so that the building logic is

reusable [38]. In practice, this pattern is often used for system bootstrapping, of which

object creation may not be involved with initial configuration. The Builder pattern was

detected in Reference [25] (as shown in Table 2.1) with a 86% false positive rate. The

Memento pattern “captures and externalizes an object’s internal state so that the object can

be restored to this state later” [38]. However, the pattern neither defines the representation

for a state nor the requirement of a data structure for the memo pool. This pattern has

not been addressed in any pattern detection tools discussed in Section 2.1, because similar

to the Builder pattern, these patterns are generic concepts that lack definite structural and

behavioral aspects for pattern detection.
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Chapter 4

Approach to Pattern Detection

A design pattern is an abstraction of source code design and can be realized in many

ways, which makes it non-trivial to detect. However, a pattern can be effectively detected

using various program analysis techniques if it has a concrete definition of how it realizes

its structural and behavioral aspects. Thus in our current scope, we exclude detection for

domain-specific patterns (which requires the specific domain-specific knowledge to be fur-

ther defined) and generic concepts (which lack clear structural and behavioral definitions).

We also exclude language-provided patterns, since they are included in the language and re-

quire only trivial keyword analysis. In this dissertation, we focus on detecting the structure-

and behavior-driven patterns.

4.1 Detecting Structure-driven Patterns

Section 3.2 discussed how such patterns can be detected by their inter-class relation-

ships. Information on various inter-class relationships can be obtained through parsing.

Then, specific analysis is applied to different patterns.

The Bridge, Composite, and Template Method patterns have been successfully identi-

fied in previous work (that target structural aspects) based on inter-class relationships. We

use the same approach in this case.
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The Visitor pattern provides a way to define a new operation to be performed on an

already-built object structure without changing the classes of the elements on which it op-

erates [38]. The inter-class relationships involved are: a method declaration accept (e.g.,

void Accept(Visitor v)), defined in the element class to invite a visitor; and a method invo-

cation visit (e.g., v.visit(this)), where an element exposes itself to the visitor.

The Object Adapter (adapter vs. adaptee), Facade (facade vs. subparts), and Proxy

(proxy vs. real) patterns share a common goal: to define a new class to hide other class(es)

for system integration or simplification. We will refer to the Object Adapter pattern as the

Adapter pattern. The Adapter and Proxy patterns each hides one class, whereas the Facade

pattern hides multiple classes (to be distinguished from the Adapter pattern). By “hiding”,

we mean the hidden classes are not directly accessed (by reference or delegation) from

others except for the one that is hiding.

Some other basic inter-class structures also need to be identified for detecting behavior-

driven patterns (see further Section 4.2). The Singleton class structure is based on the

structural features described in Section 2.3. The sub-patterns (as the ovals in Figure 3.1)

are also identified for further behavioral analysis. These inter-class sub-patterns can be

identified by analyzing class inheritance, class and method declarations, and method dele-

gations. The next section further discusses these structures.

4.2 Detecting Behavior-driven Patterns

The inter-class analysis (defined in Section 4.1) identifies the structural aspect of a pat-

tern, and most importantly narrows down our search space to particular methods for further

static behavioral analysis. For example, identifying the Singleton class structure deter-

mines whether the singleton instance is created (1) once upon declaration or (2) by lazy

instantiation. Then, static behavioral analysis is applied to each candidate method’s body

to verify whether for (1) it simply returns the instance or for (2) it correctly implements
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lazy instantiation.

There are several ways to understand program behavior. A common technique is tem-

plate matching, which is often used in detecting malicious or buggy code (e.g., [44]). If

applied to pattern detection, we can perhaps characterize certain pattern behavior into a

sequence of states, then make it a template to match a target method. However, design

patterns are not defined for detection or verification. Instead, they serve as guidance for

various reification. Such sequence matching techniques can be limited in recognizing more

common implementation variants.

Traditional data-flow analysis analyzes the entire AST of the method body. However,

each behavior-driven pattern has a unique behavior that defines a target variable or state-

ment for detection. To determine if an implementation is a correct pattern instance, we only

need to verify whether the target does the right thing under the right condition. For example,

if the getInstance() method of the Singleton pattern implements lazy instantiation, then it

guarantees that the singleton instance gets created only once upon initialization. Here only

the sub-AST that covers the lazy-instantiation mechanism requires full data-flow analysis.

Therefore, our approach uses data-flow analysis on ASTs in terms of basic blocks.

As it processes each method body, it identifies the basic blocks, each of which contains

statements that are executed under the same condition(s). Our approach links together the

basic blocks based on execution flow to form a control-flow graph (CFG) for the method

body. To illustrate, we present two examples: the Singleton and Flyweight patterns.

Example: the Singleton Pattern

Consider our static behavioral analysis to determine lazy instantiation in a method body

of getTheSpoon() in Figure 2.1. First, we build the CFG shown in Figure 4.1. (Control

flow is indicated through directed edges.) Then, the CFG is scanned to determine which

basic block instantiates and which returns the singleton instance. The main actor here is

the singleton variable that has the roles of being instantiated and returned. Based on the
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Figure 4.1: CFG of getTheSpoon() from Figure 2.1

pre-determined actor and roles, our algorithm tells us BasicBlock0 creates the singleton

instance and BasicBlock1 returns the singleton variable.

Then, we examine the conditions guarding BasicBlock0. Since only the last program

state before return matters, here we use backward data-flow analysis on the flag variables

involved in the conditions to verify if the contained sequence of statements guarantee single

entrance to this basic block. Next, we check for the rest of the basic blocks if the flag vari-

ables can be modified, using backward data-flow analysis, elsewhere besides BasicBlock0.

Lazy instantiation can take many different forms. For example, one may use boolean

types as flags, or use a different program structure, such as reversing the create-and-then-

return order (shown in Figure 2.2). Such realistic variants of code map to (structurally)

the same CFG as that in Figure 4.1, so we can use the same algorithm to track variable

activities. Other behavior-driven patterns can also be detected using similar approaches.

Example: the Flyweight Pattern

Our approach to detecting the Flyweight pattern is based on a similar technique, which

analyzes the method that potentially returns a flyweight object. For example, consider the

code in Figure 2.3. Our inter-class analysis pinpoints that getFlyweight(...) is a candidate

method that returns a flyweight object; then our static behavioral analysis is applied to

this method. We build the CFG shown in Figure 4.2 (which shows roles, described later).

Similar to detecting the Singleton pattern, the actors, which are the flyweight instance and

flyweight pool, and their roles must then be determined. In this case, a flyweight instance
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Figure 4.2: CFG of getFlyweight() from Figure 2.3

is determined at a return statement. A flyweight pool is indicated by its data type, which

is often a container class (such as a hashtable in this case). Based on the actors and their

use and interaction in a statement, our algorithm assigns a role to each flyweight instance.

Using backward analysis on this CFG, we can easily verify that the implementation either

returns an existing or a new flyweight object.

Transforming to basic blocks not only flattens an AST of a method body, but also facil-

itates the detection of whether a target statement is executed in all paths. For example, the

similarity between the CoR (with chained handlers) and the Decorator (with linked dec-

orators) patterns is that each invokes the same polymorphic method of the adjacent node,

but the difference is that this call is conditional for CoR and mandatory for Decorator. The

same technique also applies to detection of loops to distinguish between the Observer and

Mediator patterns.

While this lightweight approach is simple and is able to detect most common pattern

implementations, it is limited in detecting more complicated implementations. The draw-

backs of this method include: limited aliasing, lack of path sensitive analysis, limited con-
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trol over variable types1, lack of a full-blown inter-procedural analysis, and limited loop

analysis.

1Currently, for detecting the control statement in the Singleton pattern, our method only targets booleans
and java.lang.Objects, but not integer values that can also serve as control values)
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Chapter 5

PINOT

Based on our methodology (Section 4), we implemented a fully automated pattern de-

tection tool, called PINOT (Pattern INference recOvery Tool). The current implementation

of PINOT recognizes all the GoF patterns in the structure- and behavior-driven categories.

5.1 Implementation

PINOT is built from Jikes (an open source Java compiler written in C++) with an em-

bedded pattern analysis engine. There are number of advantages of using a compiler as the

basis of a pattern detection tool. A compiler constructs symbol tables and AST that facil-

itate the inter-class and static behavioral analyses. Compilers also perform some semantic

checks that help pattern analysis. For example, Jikes prints out warnings when a local

variable shadows (has the same name as) a global variable, which helps disambiguate del-

egation relationships. Most importantly, compilation errors reflect the incompleteness of

symbol tables and AST, which result in incorrect pattern detection results. However, some

tools, such as FUJABA and PTIDEJ, are able to partially (with a fuzzy number) detect

patterns from incomplete source. Such tools can be desirable if pattern detection is used

as part of software forward-engineering, such as building and incorporating patterns on the

run. In our case, pattern detection is reserved for reverse-engineering, where accuracy is
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vital.

PINOT begins its detection process for a given pattern based on what is most likely

to be most effective in identifying that pattern (i.e., declarations, associations, or delega-

tions). This reduces the search space by pruning the least likely classes or methods. The

completeness of a pattern detection tool is determined by the ability of recognizing pat-

tern implementation variants. For practical reasons, PINOT focuses on detecting common

implementation variants used in practice. Thus, some behavioral analysis techniques are

not fully applied to each behavior-driven pattern. As an example, data-flow analysis is

applied to analyzing the activities of the flag variable that guards the lazy instantiation in

the Singleton pattern. The flag can have any data type, but java.lang.Object (when the

reference for the Singleton instance also acts as the flag) and boolean are more common.

Although a flag may be an integer, it is not as common in this case and would require much

more computation. Thus, PINOT only analyzes lazy instantiation that uses boolean or

java.lang.Object types. Inter-procedural data-flow and alias analyses are only used for de-

tecting patterns that often involve method delegations in practice, such as Abstract Factory,

Factory Method, Strategy and State patterns.

Some patterns, such as Decorator, CoR, Observer, and Mediator patterns, require only

identifying the condition of which the target method delegation statement takes place. In

particular, the Observer pattern involves a subject notifying a list of listeners. In Java, the

listeners are usually stored in an array or a java.util.Collection class. If the latter, the iteration

is often handled using java.util.Iterator. PINOT identifies arrays and array indexing, as well

as classes that implements java.util.Collection and their use of java.util.Iterator. PINOT does

not recognize any user-defined or user-extended data structures.
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5.2 Results

We compared PINOT with two other similar tools: HEDGEHOG [28] and FU-

JABA 4.3.1 (with Inference Engine version 2.1).

HEDGEHOG is a pattern verification tool for Java. It defines a Prolog-like pattern

specification language, called SPINE, for users to define their own pattern definitions.

HEDGEHOG (see Section 2.1.2) reads pattern specifications from SPINE, which allows

users to specify inter-class relationships and other path-insensitive semantic analysis (e.g.,

for Factory Method pattern, the predicate “instantiates(M, T)” checks whether a method M

creates and returns an instance of type T.), but other more complicated semantic analysis is

hard-wired to its built-in predicates (e.g., “lazyInstantiates(...)”). Thus, SPINE is bounded

by the capability of semantic analysis provided by HEDGEHOG. To use the tool, the user

specifies a target class and a target pattern to verify against (i.e., attempt to recognize).

FUJABA has a rich GUI for software re-engineering. Its pattern inference engine pro-

vides a UML-like visual language for user-defined patterns. The language allows specify-

ing inter-class relationships and a “creates” relationship (which is the same as the “instan-

tiates” predicate defined in SPINE). FUJABA is easy to use: the user simply specifies the

location of the source code and then runs the pattern inference engine. FUJABA displays

the results graphically. FUJABA can run entirely automatically or incorporate interactive

user guidance to reduce its search space.

PINOT is fully automated; it takes a source package and detects the pattern instances.

All detection algorithms are currently hard-coded to prove the correctness of our techniques

on the structure- and behavior-driven patterns.

Although these three tools were built for different uses, they all involve pattern recog-

nition. Thus, we compare these tools in terms of accuracy. Table 5.1 shows the results of

testing each tool against the demo source from “Applied Java Patterns”(AJP) [63]. Each

AJP pattern example is similar to the one illustrated in the GoF book [38], except for the

Flyweight pattern. The AJP Flyweight example does not define a flyweight pool; instead,
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Tools
PINOT HEDGEHOG FUJABA

Creational
Abstract Factory†

√ √
×

Builder – – –
Factory Method†

√ √
×

Prototype – × –
Singleton†

√ √ √

Structural
Adapter?

√ √
×

Bridge?
√ √ √

Composite?
√ √

×
Decorator†

√ √
×

Facade?
√

–
√

Flyweight†
√ √

×
Proxy?

√ √
–

Behavioral
CoR† √

– ×
Command – – –
Interpreter – – –
Iterator –

√
×

Mediator†
√

– ×
Memento – – ×
Observer†

√ √
×

State†
√

× –
Strategy†

√ √ √

TemplateMethod?
√ √ √

Visitor?
√ √

–
?: a Structure-driven Pattern; †: a Behavior-driven Pattern

√
the tool claims to recognize this pattern and is able to correctly identify it in the AJP example.

× tool claims to recognize this pattern but fails to identify it in AJP.
– the tool excludes recognition for this pattern.

Table 5.1: Pattern Recovery Results on AJP

the flyweight objects are statically instantiated and are static-final fields of the flyweight fac-

tory class. Table 5.1 shows that PINOT is able to recognize all the structure- and behavior-

driven patterns in AJP. Because PINOT is a pattern detection tool, it assumes a class can

participate in any pattern. Thus, PINOT tests a class against all pattern definitions. FU-

JABA was also tested in the same fashion. HEDGEHOG, however, is not an automated
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verification tool and users are responsible of picking the patterns to verify against the target

class. Thus, HEDGEHOG’s results shown in Table 5.1 were based on prior knowledge of

the source and only likely patterns were verified against a class [28].

Patterns can have various reification, and it is impossible for a pattern recognition tool

to be complete. Thus, a tool’s pattern-recognition ability depends on its interpretation of

pattern implementation. As an example, the Observer pattern defines how a Subject class

notifies its Listener classes. FUJABA recognizes a variant of this pattern and calls it the

“Broadcast Mediator” pattern. It specifies that Subject has a container class for the Lis-

teners, and there exists a method delegations from Subject to Listener. HEDGEHOG, on

the other hand, first checks for a container (as does FUJABA) and then checks if Subject de-

fines the following methods: a method that starts with prefix name “add”, another that starts

with “remove”, and finally one method delegation that invokes some method in Listener.

HEDGEHOG checks if the first two methods actually add and remove an object of Listener

type from the container [27]. However, FUJABA’s and HEDGEHOG’s approaches do not

capture the real intent of the pattern, which is the “broadcasting of notifications” as in a

push-model communication. PINOT recognizes this intent by first identifying a container

in a Subject class (based on inter-class relationships) and then using static behavioral anal-

ysis (using techniques similar to those illustrated in Section 4.2) to identify a loop control

(e.g, in a notify method) that iterates through the container and invokes the same method

(e.g., in an update method) of each contained Listener object.

We also tested PINOT on several real Java applications. Figure 5.1 shows only the re-

sults for Java AWT 1.3, JHotDraw 6.0 [10], Java Swing 1.4, and Apache Ant 1.6; see [20]

for results on other applications, such as javac, java.io, and java.net packages. PINOT ana-

lyzes all classes, including anonymous and inner classes. A pattern instance is a collection

of participating classes, and a class may participate in several other patterns. For example,

in AWT, java.awt.Component and java.awt.ComponentPeer form one Bridge pattern in-

stance; java.awt.Component and java.awt.Container together form one Composite and one
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Figure 5.1: Pattern Instances Recovered

CoR pattern instances.

We ran PINOT on each of these packages on a Linux machine running on a 3GHz

Intel processor with 1G of RAM. The timing results were promising. Compared to times

for PINOT (Figure 5.1), PINOT took less than two minutes to analyze the entire Swing

package, (with over a thousand classes) while FUJABA took 22 minutes to analyze the

AWT and PTIDEJ took 2-3 hours to analyze JHotDraw. FUJABA was tested on a Pentium

III 933MHz processor with 1G of memory. The reported time excludes parsing [56], but

we are not certain if this time includes displaying the results graphically. PTIDEJ was

tested on an AMD Athlon 2GHz 64b processor. PINOT is faster because the recognition

algorithms are hard-coded and optimized to avoid redundant computation.

The PINOT website [20] comprehensively discusses the recovered pattern instances.

Our test results were verified against an authoritative discussion pattern discussion board [18],

documentation written by original developers [37], and manual verification. We found
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some false positives in PINOT’s results: 23.75% of Factory Method instances are consid-

ered Prototype instances, of which the classes implement java.util.Cloneable and override

the clone method. Such Prototype instances are trivial to identify using keyword matching.

However, user-defined variants that do not implement the Java built-in types may require

heuristics to verify the “cloning” intent within method bodies.

Due to the impreciseness of some GoF definitions (as discussed in Section 2.2), PINOT

recognizes other common implementation variants of the Flyweight and Mediator patterns.

In particular, PINOT recognizes immutable classes as a common implementation variant of

the Flyweight pattern [27]. We found 13.69% of Flyweight instances as immutable classes.

Moreover, PINOT detects a Mediator variant (in AJP and GoF sample code) that allows

colleagues to be individual instances in a Mediator class (i.e., a variant 1:N relation). In

this case, the Mediator class serves as a facade that shields direct communication from one

colleague to another. We found 24.93% of the Mediator classes as Facade classes.

Unfortunately, we are not able to compare our results with other pattern recognition

tools. HEDGEHOG verified 5 correct pattern instances [27] (that have also been identi-

fied by PINOT, see [20]) within the AWT, but the tool is not publicly available (unlike

PTIDEJ and FUJABA). PTIDEJ [40] analyzes patterns at the bytecode-level and was tested

on AWT and JHotDraw, but the results were not comprehensive and only presented recall

results for the Composite pattern. FUJABA [56, 57, 60] was tested on the entire AWT

1.3, but only 3 pattern instances were reported (also identified by PINOT) and it is not

clear whether the published results of pattern instances were comprehensive. Our exper-

imentation with PTIDEJ and FUJABA indicates that PTIDEJ is not stable and lacks user

documentation, while FUJABA works on small programs but has limited pattern recogni-

tion capability on larger programs. Reference [64] takes approximately 2.64 seconds (CPU

time) on an Athlon XP 1400 MHz CPU with 1 GB RAM to analyze JHotDraw. The tim-

ing results include preprocessing and the actual pattern detection, while PINOT’s timing

results also include I/O reporting times. Direct comparisons with Reference [64] cannot be
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easily made, because of the differences in search criteria and the lack of detailed reporting.

Reference [64] analyzes patterns based on only the structural constraints; no semantic anal-

yses are involved. Further, Reference [64] reports the number of patterns instances found

in JHotDraw, but the paper does not discuss how each pattern instance is formed (i.e.,

illustrating the class participants and their inter-class relationships) in the source code.

5.3 Discussion

So far, we have discussed the state-of-the-art pattern detection tools. Our contributions

include: reclassifying the GoF patterns to facilitate pattern recognition; claiming that pat-

tern definitions are either driven by code structure or system behavior; using our lightweight

static program analysis techniques to efficiently recognize complicated program behavior;

and implementing PINOT, a fully automated pattern detection tool that is faster, more accu-

rate, and more comprehensive than existing tools. Our future work with PINOT includes:

upgrading PINOT to recognize the latest version of the Java language, extending PINOT’s

recognition capability, and providing PINOT as a plugin to IDEs.

Currently, PINOT only analyzes source code written in Java 1.4. It is vital for PINOT

to catch up with the new language constructs provided in Java (e.g., generics), as well as

the latest JDK. Since PINOT was built by directly modifying the Jikes compiler, it further

complicates the task of upgrading PINOT1. There have been discussions [12] on exposing

the AST of the source code through the Java API. Once this API becomes available, the up-

grading task will be much more feasible. Another option while this API is not yet available

is to transform PINOT into an IDE plugin. Every IDE exposes its internal code structure to

allow developers to write plugins. This way, as a plugin, PINOT is instantly upgraded as

the IDE evolves.

PINOT’s recognition capability is limited to the detectable GoF patterns (as discussed

1Our research group has initiated project JPINOT [20] that replicates PINOT on top of javac. This project
serves as a foundation to facilitate future ungrading of PINOT.
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in Section 5). We want to extend PINOT to recognize more complicated user-defined data

structures and explore its use to detect design patterns in specific application domains,

such as concurrent and real-time patterns. We also want to experiment with PINOT’s use

in tracking software evolution by design (as a comparison to References [39, 50]). That is,

we would like to include some interesting and useful Java micro-patterns in PINOT.

Finally, we want to provide PINOT plugins to Java IDEs, such as Eclipse [4], JDevel-

oper [15], etc. Currently, PINOT is able to generate pattern reports in the XMI format.

This standard format allows users to view PINOT results in a UML editor2 Our plugin will

include the current viewing capability and provide a better user interface that allows users

to navigate through the pattern results and to go back to the code segment in the code editor

where the pattern is implemented. Our plugin will also provide more flexibility in terms

of executing the pattern recognition process. We want to investigate how users would be

likely to use PINOT within an IDE. For example, PINOT can report pattern instances given

a list of Java files. However, within an IDE, it may be more desirable if PINOT can report

whether a class participates in some design pattern whenever the user places the cursor at a

class declaration. Another related future work is to investigate whether users may want to

use PINOT in combination with other source code related tools (e.g., source code version

control tools, profilers, refactoring tools, and other static analysis tools) to facilitate their

programming tasks. By exploring these possibilities, we can make PINOT more useful in

facilitating the software re-engineering process.

2Currently, we have only tested this on ArgoUML [1].
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Chapter 6

Formalizing Design Patterns

PINOT itself is a useful tool that detects concrete GoF patterns (as discussed in Chap-

ter 5) from Java source code and then generates reports for each detected pattern instance.

However, the algorithms for pattern detection and report generation are hard-wired, which

limits the scope of detectable pattern definitions and the versatility of manipulating search

results. From a usability standpoint, users may be interested in finding one particular imple-

mentation of a GoF pattern, whereas PINOT reports all common implementation variants.

Moreover, users may want to see usages of a combination of patterns, whereas PINOT

reports individual pattern instances. Finally, users may simply want to define their own

patterns. This triggers the need to formalize design patterns, that is to identify the funda-

mental elements constituting a design pattern and to design a language for users to define

one.

Researchers formalize design patterns for various purposes, mainly for software mod-

eling, code generation, and pattern detection. The language style varies from different

purposes. Design patterns are more effectively illustrated in terms of a visual language

for software modeling, which requires more communication on software design. Code

generation requires more detailed specification on the actual runtime behavior, thus design

patterns are then expressed in terms of a programming language for precise code gener-



CHAPTER 6. FORMALIZING DESIGN PATTERNS 40

ation. Pattern detection, however, requires clear definitions of the constraints and search

criteria for a design pattern. Thus, design patterns for recognition are often described using

constraint-based languages, such as prolog-like or query-based languages. In the following

sections, we discuss the various formalisms classified in terms of application purpose.

6.1 Software Modeling

Design patterns are often used at the coding level of software development. However,

since each design pattern in the GoF book is presented with loosely defined UML diagrams,

many researchers consider design patterns as part of the design level and propose methods

and techniques to model design patterns. In this section, we present several studies in this

area: LePUS [13], DPML [52], and Reference [51].

LePUS is a formal visual modeling language for object-oriented design. LePUS is

used to specify generic design motifs, such as design patterns and object-oriented frame-

works, as well as for modeling specific programs in object-oriented languages (such as

Java, Smalltalk, and C++). However, this approach is found to be deficient and highly com-

plex for specifying compound patterns and higher order participants [51]. Reference [43]

applies the LePUS concept into UML using collaboration diagrams to specify the relation

among pattern participants However, inheriting the drawbacks from LePUS, this approach

falls short in defining certain pattern intent. Section 7.1 discusses the drawbacks of using

the LePUS concept to build a language for pattern detection.

DPML [52] (Design Pattern Modeling Language) is a visual language for modeling

design patterns and their instantiation into UML design models. DPML models design

patterns as a collection of participants. In particular, it models dimensions and constraints

that associate with the participants.

Reference [51] extends UML 1.5 to specify the structural properties of design patterns.

Reference [51] claims that since other pattern formalism work targets a particular type
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of automation for future CASE tools (e.g., pattern verification), these studies tend overly

formalize design patterns making the pattern specification ambiguous and inextensible to

specify compound patterns. Reference [51] defines the structural properties of pattern leit-

motifs and models the leitmotif structure using meta-level collaborations and stereotypes.

6.2 Code Refactoring and Generation

Design patterns are served as implementation guidelines to design a more extensible

and maintainable software architecture. The GoF book [38] illustrates sample code for

each design pattern. Each sample code shows a template implementation for building the

foundational elements for that specific pattern. Thus, some researchers [32, 45] propose

techniques to generate such pattern templates and leave the application implementations

to the software developers. Reference [32] implemented a GUI for users to select proper

pattern implementation (with certain parameters for users to select the desired data struc-

tures, e.g., lists vs. hashtables); reference [45] uses AspectJ to refactor and weave existing

Java source code to generate the solution. Another work [29] takes a step further and view

design patterns as a starting point for software development.

LayOM [29] provides design patterns with a first-class implementation construct cor-

responding to the conceptual design entity a pattern represents. However, first-class design

pattern implementations require a more advanced language model than the conventional

object-oriented model. Thus, LayOM extends object-oriented languages by providing lan-

guage support for representing design patterns. A LayOM class is similar to any object-

oriented class. Besides fields and methods that can be declared in a class, a LayOM class

contains layers, states, and categories to facilitate pattern implementation. A layer inter-

cepts incoming messages to the class where it is defined. The interception logic is based on

the state of the class/object and the category (i.e., type) of the sender. A layer can encapsu-

late another layer to form a composition of patterns. A LayOM program can be translated
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class adapter
layers
adapt : Adapter(accept mess1 as newMessA,

accept mess2, mess3 as newMessB);
inh : Inherit(Adaptee);
end; // class adapter

Figure 6.1: The Adapter Layer in LayOM [29] Representing the Adapter Pattern

to C++ code. Layers are used to generate boilerplate pattern implementation, while the real

behavior exists in the fields and methods defined by the programmer.

Figure 6.1 shows the Adapter class as a layer that represents class adaptation. The

Adapter layer translates a mess1 into a newMessA message and a mess2 or mess3

message into a newMessB message. The methods newMessA and newMessB are pre-

sumably implemented by a class Adaptee and the Inherit layer will redirect these and other

messages to the instance of class Adaptee that is contained within the layer. The layers of

abstraction preserves the traceability problem that occurs when applying design patterns

into source code. However, LayOM is limited to express complex pattern behavior that is

neither stateful or exclusive but is embedded in a method body. For example, the Flyweight

pattern defines a getFlyweight(key) method that creates and returns shared flyweight ob-

jects on the fly. layOM is not able to express the logic of getFlyweight(key), because it

functions regardless of the flyweight factory’s current state and the types of callers. How-

ever, reference [45] is able to use AspectJ to define an abstract flyweight factory aspect that

manages creation of shared objects.

The concept of layers in LayOM is similar to AspectJ [2] that provides language con-

structs to crosscut existing source code for flexible software refactoring. However, the com-

plexity of refactoring increases as the software evolves, because the software architecture

becomes more complex and more complex to apply generic design patterns. Another issue

with LayOM is that design patterns are design guidelines instead of basic building blocks

for software architecture. That is, we can easily break a piece of software by functionality
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into software component but not by design patterns. This is because a participating element

(e.g., a class) in a design pattern may also participate in another design pattern with another

set of elements. Further, it hasn’t been proven if there exists a finite set of fundamental

design patterns for any software architecture. Thus, a software architecture can be built

without applying any known design patterns. In parallel with the work on code generation

from design patterns is Model Driven Architecture (MDA) [14] that generates executable

code from model designs. MDA focuses on code generation from UML diagrams, which

cover many aspects of software architecture (e.g., static class/component structure and dy-

namic runtime behavior). Several MDA tools adopt the concept of Executable UML [54]:

UNIMOD [21].

Reference [33] argues that previous pattern realization techniques lack the ability to

generate adaptable code. They adopt the idea of metaprogramming and designed an infor-

mal pattern specification language (PSL) for programmers to define more precise pattern

realization. built a prototype tool Pattern Wizard that uses meta-programming Pattern Wiz-

ard provides micro-patterns and tricks to facilitate code generation. Furthermore, PSL’s

level of preciseness is rather detailed to the programming level.

Languages in this category focus on the ability to morph and weave class definitions and

their underlying object-oriented design. This is because software designs are not pattern-

oriented.

6.3 Pattern Detection

Design patterns increase software extensibility and maintainability if developers know

exact location to extend. As the software evolves, it becomes less obvious to spot and trace

uses of design patterns. This triggers some researchers to look into the extraction of design

patterns from existing software.

Some pattern detection tools provide language support for users to domain-specific
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Figure 6.2: FUJABA’s Specification for the Abstract Factory Pattern.

patterns [19]. The usefulness of a pattern language for reverse engineering depends on

whether the language is able to (1) identify the basic building blocks (e.g., covering both the

static and dynamic aspects of a pattern), and (2) provide the right set of language constructs.

Over the past, researchers have proposed both graphical and textual notations for pattern

specification. Graphical notations are generally based on UML, while textual notations

vary from logic- and script-based languages.

FUJABA’s pattern detection engine allows users to extend its pattern specification repos-

itory by providing a UML-like graphical language. FUJABA annotates UML entities (e.g.,

classes and methods) with additional pattern notations that represent inter-class constraints

and association roles [6].

Figure 6.2 gives an example of specifying the Abstract Factory Pattern using FUJABA’s

annotated-UML. The squares represent UML entities each specified with a name with its

entity type (a UML class or method) and a list of associated attributes. In this case, only the

modifier “abstract” is used. The edges are directed and indicate ownership. Here it shows

that each UML class owns a UML method. The ovals represent patterns, and each oval

connects to its participants with specific participating roles. In this case, the specification

illustrates that the Abstract Factory pattern is basically the Factory Method pattern but

requires the parent factory class to be declared abstract. If the pattern is associated with
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Figure 6.3: FUJABA’s Specification for the Singleton Pattern.

Figure 6.4: SPINE’s Specification for the Abstract Factory Pattern.

the text <<create>>, then it indicates that the pattern is detected if the participants are

identified. The fuzzy numbers represent confidence and threshold to facilitate their pattern

inference algorithm. FUJABA provides notations for specifying the structural requirements

for class declarations and behavioral constraints for inter-class relationships. However,

FUJABA lacks notations for specifying internal behavior within a method. For example,

the Singleton pattern specification (shown in Figure 6.3) shows only the structural aspect

of the pattern but lacks notations to specify how getInstance() controls object creation.
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Chapter 7

A Comparison of

Languages for Pattern Detection

In this chapter, we analyze three languages: the FUJABA pattern specification, SPINE,

and LePUS used as pattern detection languages. We select these languages for compar-

ison because each is complete enough to cover a fair amount of GoF pattern definitions.

In Section 7.1, we compare the languages by their specification on the same patterns; in

Section 7.2, we discuss the effectiveness of these languages.

7.1 Side-by-side Comparisons

These languages differ in purpose (software modeling vs. pattern detection) and style

(visual vs. textual), and each language has its strength, as well as limitations. In this

section, we compare pattern specifications that are available in all these languages and

share identical pattern interpretations. For our comparisons, we selected two patterns that

are commonly used and require precise specifications on both structural and behavioral

aspects: the Abstract Factory pattern and the Observer pattern.
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Figure 7.1: The OMT Specification for the Abstract Factory Pattern Specification [38]

7.1.1 The Abstract Factory Pattern

The Abstract Factory pattern involves two types of participants: the factories and the

products, where each concrete factory creates its own concrete products. Figure 7.1 shows

the UML class diagram for the pattern. Each participant is a separate class hierarchy and

has an abstract class that defines a common interface for reification. To correctly define this

pattern, a specification must illustrate separation of class hierarchies (for the the structural

aspect of the pattern) and object creation (for the behavioral aspect).

Figure 7.2 illustrates SPINE’s definition for the Abstract Factory pattern. Lines 2–5

define the separation of the factory and product class hierarchies. Lines 13–21 verify the

object creation behavior by identifying the abstract and concrete factory methods. The

instantiates(M,C) function verifies if method M creates and returns objects of type CP.

Figure 7.3 illustrates the pattern specified in LePUS, and Figure 7.4 shows the LePUS

notations key. LePUS uses a triangle notation to express class hierarchies. The definition

specifies two separate class hierarchies for factories and products, respectively. Object

creation is defined using the produce association that connects the set of factory methods

to the set of Products. The notations collectively specify that each factory method in a

concrete factory class creates and returns some concrete product. LePUS has a notation
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01 realises(’AbstractFactory’,[AF,AP]) :-
02 forAll(subclassesOf(AF),
03 CF.exists(subclassesOf(AP),
04 CP.realises(’AbstractFactory’,[AF,CF,AP,CP])
05 )
06 )
07 (* CF is a sub-type of AF and CP is a sub-type of AP,
08 such that CF generates CP *)
09 realises(’AbstractFactory’,[AF,CF,AP,CP]) :-
10 subtypeOf(CF,AF),
11 subtypeOf(CP,AP),
12 exists(methodsOf(AF),
13 M1.and([
14 typeOf(M1,AP),
15 isAbstract(M1)
16 exists(methodsOf(CF),
17 M2.and([
18 sameSignature(M1,M2),
19 typeOf(M2,AP),
20 instantiates(M2,CP),
21 ]))
22 ])),

Figure 7.2: The Abstract Factory pattern in the SPINE Specification [27]

Figure 7.3: The Abstract Factory pattern in the LePUS Specification [13]

for create, which is similar to produce but without the line arrow on one side. Both

produce and create indicate object creation, the difference is that produce further returns

the created object.

Figure 7.5 illustrates FUJABA’s specification. The specification shows only one class

hierarchy for the factories. Object creation is defined in the subpattern “Factory Method”,

illustrated in Figure 7.6. The “Factory Method” subpattern specifies that an overriding

method creates objects of type productClass. With Figures 7.5 and 7.6 combined, the

factories and products are illustrated as different class hierarchies.
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Figure 7.4: Partial LePUS Notation Keys [13]

Figure 7.5: The Abstract Factory pattern in the FUJABA Specification [6]
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Figure 7.6: The Factory Method pattern in the FUJABA Specification [6]

These languages are able to clearly express both the structural and behavioral aspects

of the pattern. LePUS takes a step further to distinguish produce and create emphasizing

the duty of the factory methods. FUJABA, on the other hand, adopts a notation very similar

to the OMT specification (shown in 7.1). Both the FUJABA and OMT specifications show

reification of the concrete objects. FUJABA shows one for each participating class, while

OMT shows two for each. Such specification somewhat indicates object quantity, which

can be misleading and ambiguous for pattern detection.

7.1.2 The Observer Pattern

The Observer pattern involves two types of participants: the subject and the observers.

Figure 7.7 shows the UML class diagram for the pattern. To correctly identify this pat-

tern, a tool needs to detect the one-to-many structural and the notify-and-update behavioral

relationships between the subject and observers.

Figure 7.1.2 shows SPINE’s definition for the Observer pattern. The structural rela-

tionship is established when the subject (which is the Observerable in this definition)
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Figure 7.7: The OMT Specification for the Abstract Factory pattern specification [38]

01 realises(Observer,[Observable,Listener]) :-
02 navigable(Observable,Listener),
03 exists(methodsOf(Observable),M.and([
04 prefix(M,’’add’’),
05 argsOf[M] = [A],
06 adds(M,A,Observable),
07 typeOf(A,Listener)]),
08 exists(methodsOf(Observable),M.and([
09 prefix(M,’’remove’’),
10 argsOf[M] = [A],
11 removes(M,A,Observable),
12 typeOf(A,Listener)]),
13 exists(methodsOf(Observable),
14 M.exists(methodsOf(Listener),
15 D.invokes(M,D))).

Figure 7.8: The Observer pattern in the SPINE Specification [27]
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Figure 7.9: The Observer pattern in the LePUS Specification [13]

contains two methods each containing keywords add and remove, respectively. Since

SPINE lacks predicates and functions that search for a one-to-many relationship [27], the

definition suggests using keyword matching. The behavioral relationship is identified when

there is a method in the subject class that invokes a method in the observer.

Figure 7.9 shows the Observer pattern specified using LePUS (refer to Figure 7.4 for

the notations used in the specification). LePUS is able to effectively express the structural

one-to-many association. Figure 7.9 further shows that this association is established by

the method attach, and that the type of observers is not restricted to be homogeneous. The

behavioral relationship is specified by the invocation from notify to Update(subject). In ad-

dition to the notify-and-update relationship, the pattern specification (shown in Figure 7.9)

requires that the observer retrieves the state of the concrete subject being passed in and

then performs the update. The definition suggests that each observer can listen to multiple

subjects. Further, it specifies that the set of Set-State methods (depicted in a shaded oval)

trigger a notify event.

Figure 7.10 illustrates FUJABA’s definition for the Broadcast Mediator pattern [6]).
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Figure 7.10: FUJABA’s specification for the Observer Pattern [6]
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The catalog of searchable GoF patterns of FUJABA Tool Suite 4.3.2 does not contain a

pattern specification called the Observer pattern. However, the specification for the Broad-

cast Mediator pattern illustrates search criteria that are roughly equivalent to those for the

Observer pattern. The structural relationship is specified through :OneToManyAssocia-

tion, which analyzes field references. The behavioral relationship is specified through two

:NeighborCall notations from the subject (i.e., the mediator) and to the observer (i.e., the

colleague), and vice versa.

For the structural one-to-many relationship, LePUS and FUJABA are more explicit

requiring the association to be established through field references; SPINE is more im-

plicit requiring certain collection operation methods to be available. As for the behavioral

notify-and-update relationship, none of the specifications are able to express the iteration

of notification to the observers.

7.2 Discussion

Each language is different in its purpose and style. These differences result in different

specifications for the same design pattern. FUJABA and SPINE are used to detect patterns

in Java source, thus their languages allow users to specify more detailed code properties,

such as modifiers, visibilities, ownerships for classes, methods, and fields. LePUS, on

the other hand, is designed for software modeling, and its language constructs focus on

higher-level inter-class relationships.

As it turns out, none of these languages are able to specify all 23 GoF patterns. SPINE’s

builtin predicate set only works at a weak semantic level, and it cannot express specific be-

havior that is dependent on how (and where) it is used, or has dependencies on the semantic

interpretation of methods. Such patterns include: the Facade, Builder, Command, CoR, In-

terpreter, Mediator, Memento patterns [27]. LePUS, on the other hand, is not bound by

program semantics, it is able to express a broader scope of patterns. LePUS focuses on
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inter-class relationships, but lack notations for specifying intra-class behavior (e.g., the

Singleton pattern). Further, LePUS also lacks notations for expressing patterns that can

only be defined with specific inter-class behavior( i.e., domain-specific), such as the Proto-

type, Mediator, Interpreter, Memento patterns. FUJABA tries to express patterns based on

the UML class diagram with several basic behavioral relationships, such as create and del-

egate. Without incorporating other behavioral UML diagrams (such as statecharts, activity,

and communication diagrams), FUJABA cannot express patterns that involve other more

specific behavioral relationships such as the assignment association defined in LePUS (see

Figure 7.4) that can conveniently distinguish the State and Strategy patterns.

In terms of expressiveness, LePUS has the richest syntax to express complex inter-class

relationships (such as class hierarchy, one-to-many aggregation, assignment association,

etc.). LePUS also allows specification on method signatures. (Such a specification can be

placed within the oval that LEPUS uses to denote a method.)

In terms of preciseness, SPINE is the most suitable language for pattern detection,

because it facilitates specification on pattern criteria and even search steps. SPINE allows

users to specify the declarations of fields, methods, and classes. The drawback of the

language is the lack of built-in functions and predicates for pattern behavior, which limits

language extensibility.

In terms of practicality, FUJABA adopts a UML-based notation and defines entities for

classes, methods, and fields. These entities are connected through links combined with text

to convey pattern behavior and participant roles. However, the language lacks notations to

specify pattern behavior, which results in overly complex definition (e.g., using :Neighbor-

Call and other entities combined to express a simple method invocation). Further, FUJABA

specifies patterns at the class definition level, which can be misleading. For example, Fig-

ure 7.11 shows FUJABA’s Normal Mediator pattern (which specifies the Mediator pattern

in GoF). The specification is very similar to the OMT specification (shown in Figure 7.12).

Both specifications illustrate two concrete colleagues. The pattern is defined as [38]:
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Figure 7.11: The Normal Mediator Pattern in FUJABA [6]

Figure 7.12: The OMT Specification of the Mediator Pattern [38]
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Define an object that encapsulates how a set of objects interact. Mediator pro-
motes loose coupling by keeping objects from referring to each other explicitly,
and it lets you vary their interaction independently.

We know that the two concrete colleagues only serve as an illustration instead of a criterion

for detection. For pattern detection, we need a specification that is precise enough to avoid

ambiguity, yet abstract enough to capture program intent.

We want to come up with a language for PINOT that is expressive enough to describe

both the structural and behavioral aspects of a detectable pattern (described in Chapter 3);

precise enough to distinguish between similar patterns (such as the State and Strategy pat-

terns); and practical enough to use and to integrate with PINOT. The next chapter discusses

our pattern detection language as well as its evaluation and performance results.
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Chapter 8

MUSCAT

This chapter discusses the design and implementation of our pattern detection language,

MUSCAT (Minimal UML SpecifiCATion). MUSCAT is designed to make pattern design

more effective, because the language itself is simpler and its implementation enhances us-

ability. As part of the implementation of MUSCAT, we extend PINOT by providing a pat-

tern detection API, which we will refer to as the PINOT API. Pattern specifications defined

in MUSCAT are translated to C++ source code that uses the PINOT API. The user then

compiles and executes the the C++ code (which is linked with the PINOT API) to detect

the patterns they defined. Section 8.1 discusses the guidelines we adopt to design MUS-

CAT. Section 8.2 illustrates MUSCAT’s language constructs. Section 8.3 shows PINOT’s

pattern detection API. Section 8.4 describes the MUSCAT implementation. Finally, Sec-

tion 8.5 evaluates MUSCAT based on performance, accuracy, and completeness.

8.1 Design Guidelines

Based on the comparison analysis in Chapter 7, we feel that it is vital for a pattern

detection language to be both simple and usable. Thus, we use language simplicity and

usability as the two principal guidelines to design MUSCAT.

Architectural designs (usually defined in some modeling language or other forms of
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documentation) are usually passed among developers as a communication method to con-

vey their ideas. We want each user-defined pattern specification alone to be clear and easy

enough to convey the details of an architectural design. Thus, we define language simplic-

ity as the ability for users to quickly grasp the design concepts from a pattern specification.

Visual languages use a combination of shapes, lines, and text to guide readers through the

idea of the participating entities and their relationships in an architectural design. As illus-

trated in Chapter 7, both LePUS and FUJABA are visual languages and have the advantage

of facilitating readers’ understanding more effectively than the text-based language SPINE.

Another aspect of language simplicity is related to its syntax and semantics. As a software

system evolves, its internal design becomes more complicated to describe. We need a bal-

ance between having a variety of language constructs and the level of detail of which the

language can describe. As an example, LePUS and SPINE are syntactically richer than

FUJABA, since LePUS and SPINE each uses more visual constructs and predefined pred-

icates and functions, respectively. However, the amount of the language constructs may

introduce ambiguity (if lacking) or complexity (if overwhelming) in terms of understand-

ing and specifying pattern definitions.

Then, we define usability as the overall user experience of the tool support from editing

to pattern detection. SPINE is a Prolog-based language. Because it is text-based, users

can use any text editor to define their specification. The source code is then processed

by HEDGEHOG [27]. FUJABA is a UML-based language. The FUJABA Tool Suite

RE is an IDE for Java, the IDE supports various re-engineering tools (such as the pattern

inference engine). Users can edit and run pattern rules within the IDE. LePUS is a visual

language. As illustrated in Reference [13], users can use Microsoft Visio to create a LePUS

specification. However, there are no known pattern detection tools that support pattern

specifications defined using LePUS.

Based on these guidelines, we decide to use the syntax from UML, a commonly used

modeling language, but to simplify it specifically for defining design patterns. UML is
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Figure 8.1: The UML Class Diagram for the Singleton Class [3]

widely used in software engineering. Its popularity motivated various tools support (such

as editing, code generation, etc.) and format standardization (such as XMI, which is a

commonly used as an interchange format for UML models). Thus, using UML, as opposed

of other proprietary languages, greatly enhances usability. However, UML contains 13

types of diagrams (as in UML2.0) to describe various levels of system design. Using UML

entirely for defining design patterns is overkill. A pattern definition contains definitions

for its structural and behavioral aspects of the pattern. Then, strictly speaking, we need

only a class diagram that defines the structural aspect and a statechart/activity diagram

that defines the behavioral aspect. However, each diagram type is self-contained and lacks

continuity between a higher-level diagram to a lower-level diagram. For example, a class

diagram allows detail definitions for a field declaration and a method signature. To define

the method body using a statechart that corresponds to a method declaration specified from

a class diagram is not straightforward, because a statechart diagram is composed of states,

transitions, and triggering events. Additional annotation will be required to bridge the two

diagrams.

To simplify UML, we can use only the class diagram, that is to view a design pat-

tern at the class level. Yet, using the class notation entirely introduces ambiguity, since

it lacks notations to specify certain declaration constraints. For example, a method signa-

ture is defined with a proper type name and the exact parameter list. Its preciseness leaves

no flexibility for defining generic declarations or specifying multiplicity of declarations.

Figure 8.1 shows a UML class diagram for the Singleton pattern. However this definition
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is ambiguous as follows: the public (denoted by +) method Instance():Singleton does not

specify whether the constructor may have parameters or must not have parameters (as re-

quired); the only private (denoted by –) field instance:Singleton is significant and does not

allow or prevent (as required) any more fields with the same declaration; the specification

of the private constructor implies that all constructors in this Singleton class also be pri-

vate. Therefore the class notation must be further simplified by removing field and method

declarations within a class notation. In the next section, we illustrate how MUSCAT allows

users to define a design pattern at the class level without losing specific implementation

details.

8.2 MUSCAT Language Constructs

To view a design pattern at the class level, there are only three elements: the partici-

pating classes, inter-class associations, and pattern rules. Figure 8.2 illustrates the UML

notations that MUSCAT uses for these language constructs. The class and inter-class as-

sociation describes the structural aspect of a pattern. A pattern rule defines the behavioral

constraints over the structural settings formed by the classes and inter-class associations.

MUSCAT defines 13 pattern rules for both classes and inter-class associations. Each pat-

tern rule describes a fundamental pattern constraint at the class level. Table 8.1 illustrates

each pattern rule with its notation and usage.

8.3 PINOT API

As part of implementing MUSCAT, we extend PINOT by providing a set of pattern

detection API. Table 8.2 illustrates the PINOT API. The API is designed to match MUS-

CAT’s language constructs (discussed in Section 8.2). Thus, the API offers a higher-level

(i.e., the class-level) accessibility to the internal structures of the AST and symbol tables
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Pattern Rule Description GoF Example(s)
<<singleton>> This rule applies to classes and specifies Singleton

that a class behaves as a singleton class
defined in the Singleton pattern.

<<facade>> This rule applies to classes and specifies Facade
that a class behaves as a facade class
defined in the Facade pattern.

<<creates:type>> This rule applies to directed associations Abstract Factory
and specifies that the left-hand-side class
creates objects of type type, which
is also the right-hand-side class.

<<!creates:type>> This rule applies to aggregation Flyweight
associations and specifies that the
left-hand-side class creates objects of
type type, which is also the
right-hand-side class. The difference from
the previous creates pattern rule is that
each object is created once and stored in
the aggregation.

<<accepts(type)>> This rule applies to directed associations Visitor
and specifies that the left-hand-side class
allows access from type type, which
is also the right-hand-side class.

<<delegates>> This rule applies to aggregation Strategy
associations and specifies a method
delegation.

<<!delegates>> This rule applies to aggregation Adapter
associations and specifies an exclusive Proxy
method delegation. Mediator

<<*delegates>> This rule applies to aggregation Observer
associations and specifies a one-to-many
method delegation (i.e., broadcasting).

<<delegates(decorates)>> This rule applies to aggregation Decorator
associations and specifies that the method
delegation continues invoking the same
method in its super class.

<<delegates(condition)>> This rule applies to aggregation CoR
associations and specifies that the method
delegation occurs only conditionally.

<<!sets(var)>> This rule applies to dependencies and State
specifies that the aggregation specified by
var can be modified by the
dependency’s left-hand-side class.

<<independent>> This rule applies to a bidirectional Bridge
association and specifies that two class
hierarchies are mutually independent.

Table 8.1: Pattern Rules in MUSCAT
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Figure 8.2: Language Constructs for MUSCAT

constructed by PINOT. There are tradeoffs between offering a low-level API or a high-

level API. A lower-level API may allow users to access the details of each symbol and may

include a subset of the API specifically for flow analysis. While a low-level API offers ver-

satility, it complicates the task for code generation, as we find necessary for implementing

MUSCAT. Although a high-level API may be less flexible depending on how much details

a pattern specification requires, it is still important that the API is coherent (i.e., captures

the fundamental conceptual elements at that level) and is powerful (i.e., recognizes most

implementation variants). The next section explains how we generate the pattern detection

code that uses the PINOT API from a MUSCAT specification.
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bool isAbstract(TypeSymbol *type)
Returns true if type is an abstract class; otherwise false.
bool isFacadeClass(TypeSymbol *type)
Returns true if type is a facade class, based on the Facade pattern; otherwise false.
bool isSingletonClass(SymbolTables *sym tables,
TypeSymbol *type)
Returns true if type is a singleton class, based on the Singleton pattern;
otherwise false.
bool isFactoryMethod (SymbolTables *sym tables,
MethodSymbol *method)
Returns true if method is a factory method, based on the Factory Method pattern;
otherwise false.
bool createsFlyweights(VariableSymbol *var,
TypeSymbol *component type)
Based on the Flyweight pattern. A flyweight factory creates and returns a flyweight
object of type component type. These flyweight objects are stored in a flyweight
pool, referenced by var. This method returns true if var and component type
participate in a Flyweight pattern.
bool areIndependentHierarchies(SymbolTables *sym tables,
TypeSymbol *type1, TypeSymbol *type2)
Returns true if type1 and type2 do not derive from the same
root class (besides java.lang.Object); otherwise false.
VariableSymbol *isVisitorMethod(MethodSymbol *method)
Based on the Visitor pattern. Returns true if method accepts a visitor class and
invokes the corresponding visit method; otherwise false.
bool star delegates(SymbolTables *sym tables,
AstVariableDeclarator* var, TypeSymbol *type,
TypeSymbol *component type)
Returns true if type and component type form a one-to-many relation through var
and there exists broadcasting delegations to each component type object;
otherwise false.
bool bang delegates(SymbolTables *sym tables,
TypeSymbol *left, TypeSymbol *right)
Returns true if left has exclusive access to right; otherwise false.
bool cond delegates(SymbolTables *sym tables,
VariableSymbol *var)
Based on the CoR pattern. Returns true if var refers to the next handler in the chain
and passes a request to this next handler if the current handler cannot handle it;
otherwise false.
bool decor delegates(SymbolTables *sym tables,
VariableSymbol *var)
Based on the Decorator pattern. Returns true if var refers to the successor object
and invokes the same method defined in the successor.
bool *bang sets(SymbolTables *sym tables,
TypeSymbol *setter, VariableSymbol *var)
Returns true if setter sets the value of var; otherwise false.

Table 8.2: PINOT API
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Figure 8.3: The Implementation of MUSCAT

8.4 Implementation

Figure 8.3 illustrates the implementation of MUSCAT. Since MUSCAT uses part of the

UML language constructs, users can use any UML editors to edit their MUSCAT pattern

specification. The only requirement is that the UML editor must be able to export diagrams

to XMI format. In our experiment, we use ArgoUML [1] because it is open source and

exports diagrams to a standard XMI format. Once an XMI file is available, we then gen-

erate C++ code that uses the PINOT API based on the information provided in the XMI.

The translation and code generation is done by our Python script viognier (which we will

discuss later). The user then compiles and executes the C++ code (which is linked with the

PINOT API) to detect the patterns they define.

Viognier generates a complete C++ program by first generating the #include statements



CHAPTER 8. MUSCAT 66

and external function declarations that define the PINOT API. Then, viognier exposes

two types of functions. The first is a single int getCount() function, which returns

the total number of generated pattern detection functions. The second are multiple void

FindPatterni(SymbolTables*) functions, each of which defines an individual pattern

detection function. Each pattern detection function corresponds to one XMI specification.

The integer i is determined by the order in which an XMI file appears in the command line.

Viognier generates C++ code for each pattern detection function by first parsing its

corresponding XMI file using an XML DOM parser, then collects the language elements,

and finally generates its definitions. The language elements collected from the XMI file

include: stereotypes, classes, associations, and dependencies. Each pattern detection func-

tion must have a starting point that drives the pattern detection logic. Pattern detection

can start by traversing either the list of classes, fields, or methods. These symbols are

available through the PINOT API, which exposes the internal class, field, and method

symbols created by PINOT. Thus, a MUSCAT specification must have at least one class

(which drives the search by traversing all classes), association (which drives the search by

traversing all fields), and aggregation (which drives the search by traversing all methods)

element. We call these elements the driving elements. The simplest diagram is a single

class definition, such as a class defined with the <<singleton>> stereotype. In this case,

viognier simply generates a function that traverses the list of available class symbols and

passes each class symbol into the corresponding class constraint method, such as bool

isSingletonClass(...). As for a more common diagram, where inter-class associ-

ations are defined, viognier starts generating code from a directional association. If the

directional association is an aggregation, then viognier generates code for identifying an

aggregation between two classes. Then, based on these two classes, viognier generates

constraints for each stereotype defined for the classes. Otherwise, if the directional as-

sociation is an association, then viognier generates code for identifying the method that

associates these two classes together and, similarly, generates constraints for each stereo-
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type defined for the classes. The MUSCAT dependency, inheritance, and bidirectional

association relations are constraint specifications that modify driving elements.

8.5 Evaluation

This section discusses how we evaluate the effectiveness of MUSCAT. We conduct two

experiments. In the first experiment, we focus on evaluating correctness and speed. In this

experiment, we try to define detectable GoF patterns (that are available in PINOT) using

MUSCAT. Then, we use these specifications to construct a customized PINOT (as explained

in Section 8.4 and illustrated in Figure 8.3) and compare correctness and speed between the

customized PINOT (which we will refer to as cPINOT) versus the regular PINOT (which

we will refer to as PINOT). In the second experiment, we evaluate usability. In this ex-

periment, we try to define some commonly used design patterns that are not defined in the

GoF book. Using these specifications, we also construct a customized pattern detection

engine and run it again on the same benchmark applications used in our first experiment.

Sections 8.5.1 and 8.5.2 illustrate our first and second experiments, respectively. The C++

code translated from the MUSCAT specifications illustrated in Sections 8.5.1 and 8.5.2 can

be found in Appendices A and B, respectively.

8.5.1 Defining the GoF Patterns

In this experiment, we define most of the PINOT-detectable patterns except for the Fac-

tory Method and Template Method patterns. The Factory Method pattern can be described

using the association notation. ArgoUML does not allow specifying only an association

without specifying the associated classes. The Factory Method pattern specification is used

in combination with other patterns, such as the Abstract Factory pattern. The Template

Method pattern describes a design property that stresses how a method is declared and im-

plemented. A template method is declared final, and it only calls the non-final methods
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(which are the hook methods) within the owning class. ArgoUML allows specifying an

operation (i.e., a method) with its signatures and choices of visibility, modifiers, and con-

currency properties. Specifying modifiers is possible, but ArgoUML does not allow users to

specify method behavior, e.g., implementation in the method body. While adding a stereo-

type for such method is feasible in ArgoUML, MUSCAT only supports stereotypes for

classes and associations. However, in the future we may consider including such language

construct in MUSCAT. In our customized PINOT, we include 15 MUSCAT specifications;

each defines a detectable GoF pattern (except for the Factory Method and Template Method

patterns).

Specifications and Correctness

Both cPINOT and PINOT start their analyses by first building the AST and symbol

tables and then run the pattern search routines1. The difference is that cPINOT runs each

input pattern specification independently, while PINOT, for optimization purposes, may

analyze similar patterns together (e.g., the State and Strategy patterns). This affects both

results and timing (which will be discussed in Section 8.5.1). We can categorize, as shown

in Figure 8.4, the causes of differing results from cPINOT and PINOT into: pattern inter-

pretation, language deficiency, and pattern reporting.

Singleton and Facade

The MUSCAT specifications used in cPINOT are illustrated in Figures 8.5 and 8.6.

Both the customized and the regular PINOTs agree on each instance of these patterns. This

is because the PINOT API exposes the exact same criteria for analyzing these two patterns.

Figures A.13 and A.8 show the C++ code translated from the MUSCAT specifications for

the Singleton and Facade patterns, respectively.

1For cPINOT, these search routines are translated from the MUSCAT specifications.
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Figure 8.4: Categorization of the Differing Results

Figure 8.5: The MUSCAT Specification on the Singleton Pattern

Figure 8.6: The MUSCAT Specification on the Facade Pattern

Abstract Factory

Table 8.3 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.7 (where its translated C++ code

is illustrated in Figure A.2). Different from PINOT’s search criteria is that the MUSCAT

specification requires both the factory and product classes to be declared abstract. This

constraint can be specified in MUSCAT.
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Ant AWT JHotDraw Swing
PINOT 6 28 30 41
cPINOT 0 0 0 0

Table 8.3: Comparisons on the Abstract Factory Pattern

Figure 8.7: The MUSCAT Specification on the Abstract Factory Pattern

Visitor

Table 8.4 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.8 (where its translated C++ code

Ant AWT JHotDraw Swing
PINOT 1 1 1 3
cPINOT 1 0 0 0

Table 8.4: Comparisons on the Visitor Pattern

is illustrated in Figure A.16). Different from PINOT’s search criteria is that the MUSCAT

Figure 8.8: The MUSCAT Specification on the Visitor Pattern

specification requires both the element and visitor classes to be declared abstract. MUSCAT

allows users to mark or unmark a class to be abstract. Both cPINOT and PINOT recognize

the same Visitor pattern instance implemented in Ant.
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Composite

Table 8.5 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.9 (where its translated C++

Ant AWT JHotDraw Swing
PINOT 44 3 4 20
cPINOT 33 33 49 118

Table 8.5: Comparisons on the Composite Pattern

code is illustrated in Figure A.5). The specification defines the inheritance and aggre-

Figure 8.9: The MUSCAT Specification on the Composite Pattern

gation relations between two classes. However, the definition differs from PINOT’s search

criteria. First, the class definition does not exclude Component classes that are of type

java.lang.Object. Further, the inheritance definition is based on the fact that Composite is a

sub-type of Component, but it does not reject the case where these two classes are identical.

PINOT implements these criteria to prune out such cases. Unfortunately, MUSCAT lacks

the notation to specify these criteria. A difference in interpretation is that PINOT accepts

an instance of the Composite pattern as long as the Composite and Component derive from

a common super type. This explains why cPINOT reports lower number of instances on

Ant.



CHAPTER 8. MUSCAT 72

Chain of Responsibility

Table 8.6 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.10 (where its translated C++

Ant AWT JHotDraw Swing
PINOT 3 4 5 15
cPINOT 2 3 9 13

Table 8.6: Comparisons on the CoR Pattern

code is illustrated in Figure A.6). The discrepancies in Table 8.6 are due to the differ-

Figure 8.10: The MUSCAT Specification on the CoR Pattern

ence in search criteria: PINOT allows the aggregation relation to be one-to-many. While

the MUSCAT specification defines a one-to-one aggregation, it does not specifically reject

variable declarations that are arrays (which represent a one-to-many aggregation relation).

The reason why cPINOT rejects one-to-many aggregation is only accidental. The MUS-

CAT specification requires the handler variable (i.e., aggregation relation) to be declared as

a field in Concrete Handler and be the only delegating point. If the handler is an array, then

the delegating point is usually a local variable and is not captured for the later behavioral

analysis.
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Decorator

Table 8.7 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.11 (where its translated C++ code

Ant AWT JHotDraw Swing
PINOT 4 3 5 15
cPINOT 6 3 7 24

Table 8.7: Comparisons on the Decorator Pattern

is illustrated in Figure A.7). The discrepancies shown in Table 8.7 are due to the reporting

Figure 8.11: The MUSCAT Specification on the CoR Pattern

of pattern instances used by PINOT and cPINOT. PINOT reports per Decorator class, while

cPINOT reports per aggregation that satisfies the delegation constraint.

Flyweight

Table 8.8 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.12 (where its translated C++ code

Ant AWT JHotDraw Swing
PINOT 35 13 10 54
cPINOT 0 0 0 0

Table 8.8: Comparisons on the Flyweight Pattern
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Figure 8.12: The MUSCAT Specification on the Flyweight Pattern

is illustrated in Figure A.9). The specification targets the implementation variant discussed

in the GoF book, where a flyweight factory class produces flyweight objects on demand.

However, PINOT recognizes other implementation variants, such as including immutable

classes and classes that contain static final fields.

Observer

Table 8.9 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.13 (where its translated C++ code

Ant AWT JHotDraw Swing
PINOT 5 9 9 68
cPINOT 4 5 2 15

Table 8.9: Comparisons on the Observer Pattern

is illustrated in Figure A.11). PINOT uses the same search criteria as defined in the MUS-

Figure 8.13: The MUSCAT Specification on the Observer Pattern

CAT definition. However, for this particular pattern, PINOT reports the number of methods

that implement *delegates (explained in Table 8.1), while the MUSCAT specification re-

ports a pattern instance whenever one method satisfies the constraint.
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Mediator

Table 8.10 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.14 (where its translated C++ code

Ant AWT JHotDraw Swing
PINOT 246 170 306 556
cPINOT 107 75 64 192

Table 8.10: Comparisons on the Mediator Pattern

is illustrated in Figure A.10). The MUSCAT specification targets one implementation vari-

Figure 8.14: The MUSCAT Specification on the Mediator Pattern

ant, where the mediator class serves as a communication relay point among a set colleague

objects of the same type. In addition to the the MUSCAT specification, PINOT recognizes

pull-model communication and also allows the colleague objects to be different types. Ta-

ble 8.10 shows that cPINOT recognizes a subset of pattern instances detected by PINOT.

State

Table 8.11 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.15 (where its translated C++ code

Ant AWT JHotDraw Swing
PINOT 5 5 3 37
cPINOT 42 33 29 172

Table 8.11: Comparisons on the State Pattern

is illustrated in Figure A.14). PINOT enforces several constraints in additional to the MUS-

CAT specification: the context class is not declared abstract, anonymous, or have derived
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Figure 8.15: The MUSCAT Specification on the State Pattern

classes; the state class must be a source class (which is defined in a .java file), declared

abstract, not an array, and not derived from the same root class as context). cPINOT is

able to detect the pattern instances (as explained in Table 8.11) identified by PINOT. The

remaining instances are caused by the looser criteria on both the context and state classes.

MUSCAT can define most of these extra constraints, but not all. For class constraints, users

can specify a class to be abstract by checking the abstract modifier checkbox or specify that

a class has no derived classes by checking the leaf modifier. However, MUSCAT does not

allow specifying if a class is anonymous or is a source class. Such constraints can be easily

introduced to the MUSCAT language as stereotypes for classes. For inter-class relations,

MUSCAT users can use <<independent>> (explained in Table 8.1) to specify that two

classes do not derive from the same root class. However, MUSCAT lacks the notation to

define non-existence of certain relations, which is useful in this case to specify that there is

no one-to-many relation between context and state.

Strategy

Table 8.12 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.16 (where its translated C++ code

Ant AWT JHotDraw Swing
PINOT 19 54 51 96
cPINOT 105 154 199 393

Table 8.12: Comparisons on the Strategy Pattern

is illustrated in Figure A.15). PINOT enforces the following constraints in additional to the
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Figure 8.16: The MUSCAT Specification on the Strategy Pattern

MUSCAT specification: the context class is not declared abstract, anonymous, or have

derived classes; the strategy class must be a source class and is not derived from the same

root class as context). cPINOT detects the pattern instances (as illustrated in Table 8.12)

identified by PINOT. The remaining instances are caused by the looser criteria defined in

the MUSCAT specification.

Bridge

Table 8.13 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.17 (where its translated C++

Ant AWT JHotDraw Swing
PINOT 5 15 107 142
cPINOT 1 14 4 13

Table 8.13: Comparisons on the Bridge Pattern

code is illustrated in Figure A.4). The MUSCAT specification requires both interface and

Figure 8.17: The MUSCAT Specification on the Bridge Pattern

implementor to be declared abstract, while PINOT only requires interface to be declared

abstract. The difference in search criteria is reflected in terms of the number of pattern

instances shown in Table 8.13.
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Proxy

Table 8.14 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.18 (where its translated C++ code

Ant AWT JHotDraw Swing
PINOT 27 13 107 142
cPINOT 55 50 63 175

Table 8.14: Comparisons on the Proxy Pattern

is illustrated in Figure A.12). The MUSCAT specification defines inheritance constraints

Figure 8.18: The MUSCAT Specification on the Proxy Pattern

over the Proxy and Real classes and the exclusive one-way communication. In addition

to the specification, PINOT rejects anonymous classes and restricts Proxy and Real to

be different classes. These search criteria are essential based on the GoF definition of

the pattern, however MUSCAT lacks language constructs to specify these constraints. In

Table 8.14, PINOT reports per identified Proxy class, while cPINOT reports per identified

aggregation relation (i.e., for each variable in Proxy that satisfies the pattern constraint).

Adapter

Table 8.15 compares the number of pattern instances reported by cPINOT and PINOT.

cPINOT used the MUSCAT definition shown in Figure 8.19 (where its translated C++ code
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Ant AWT JHotDraw Swing
PINOT 13 15 107 142
cPINOT 496 14 180 381

Table 8.15: Comparisons on the Adapter Pattern

Figure 8.19: The MUSCAT Specification on the Adapter Pattern

is illustrated in Figure A.3). The MUSCAT specification only targets the exclusive one-way

communication between the two classes Adapter and Adaptee. The Proxy and Adapter

patterns are very similar, where both require the same communication style, except for the

inheritance and other class property constraints. In addition to the MUSCAT specification,

PINOT requires both Adapter and Adaptee (1) to be concrete classes (i.e., not declared

abstract or as interfaces) that (2) are not derived from the same root class. Further, PINOT

ensures that there (3) exists actual object creation for the adaptee. That is, the Adaptee class

is instantiated by Adapter. MUSCAT does provide language constructs to describe these

constraints. The first two constraints involve property negation. MUSCAT can specify

the existence of a constraint, but not the absence. The third constraint can be added to

MUSCAT as a stereotype over an aggregation relation.

Timing Results

Figure 8.20 shows the timing results running PINOT and cPINOT on the same set of

applications: Ant, AWT, JHotDraw, and Swing. Note that the timing results for PINOT are

based on Figure 5.1, reported previously in Section 5.2, and both timing results for PINOT

and cPINOT shown in the Figure 8.20 include the entire analysis and I/O times. The timing

differences are caused by their differences in the internal search and reporting mechanisms.

PINOT internally adopts several speed optimization techniques, thus it is generally faster



CHAPTER 8. MUSCAT 80

Figure 8.20: Timing Results for PINOT vs. cPINOT

than cPINOT. The optimizations include the way how each pattern is analyzed and how

they are run together. Depending on the property (i.e., class, method, or field property ) of

a pattern, the starting point (i.e., class, method, or field declaration) of the search can affect

speed. For example, searching from each method/field declaration is more expensive than

searching from each class, since in an application there are generally more methods/fields

than classes. cPINOT simply analyzes an application based on the input specifications.

Users do not have control to the internal search mechanism. Another optimization is that

PINOT analyzes similar patterns together, whereas cPINOT treats each input specification

independently and processes them one at time in a sequential order. An issue that may cause

different timing results is that PINOT can filter irrelevant types (such as java.lang.Object,

or other primitive types) during the search, while cPINOT has no such control. Finally,

in terms of reporting, cPINOT is more verbose than PINOT. PINOT only reports when a

pattern instance is found, while cPINOT reports whenever a MUSCAT notation is found

(e.g., a one-to-many association). Therefore, cPINOT spends more I/O processing time.

To further investigate the bottleneck in the search mechanism of cPINOT, we measure

the time cPINOT takes to run each specification. Figures 8.21, 8.22, and 8.23 show the

timing results for each specification. Here, we measure only the analysis times for each
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Figure 8.21: Timing Results for cPINOT per Pattern (Part I)

Figure 8.22: Timing Results for cPINOT per Pattern (Part II)
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Figure 8.23: Timing Results for cPINOT per Pattern (Part III)

pattern. The patterns that take relatively longer than rest are the ones require analyzing

delegation. A delegation is based on some field or variable declaration. This requires

cPINOT to iterate over each field declaration in a class and then verify specific delegation

behavior. The State pattern is relatively more complicated than other patterns, since its

delegation requires additional checking for the setting of attributes.

Among the four applications, Ant, AWT, and JHotDraw, are similar in size (in terms of

the number of classes, as shown in Figure 5.1). Yet, Ant seems to take much longer time for

cPINOT to analyze than for the other two applications. While Ant is not significantly larger

in size, the application itself is relatively more complex. That is, the source code declares

more methods and fields than the other applications. The fact that cPINOT tends to spend

more time for such applications is a drawback in MUSCAT. MUSCAT lacks language con-

structs for users to specify whether to halt or continue a search analysis process whenever a

pattern instance is identified with a class. In many cases, we are only interested in knowing
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whether a class participates in a certain pattern without the need to identify all kinds of par-

ticipating combinations with other participants (which can be classes or methods). PINOT

optimizes this process by caching searched results, so it can later skip searched participants

for certain patterns and reporting preferences.

In general, cPINOT takes longer time than PINOT to analyze patterns. There is a trade-

off between flexibility versus speed. PINOT is faster, but it is not customizable. However,

we consider the extra time to be reasonable in practice. The Swing application is relatively

more time-consuming than the rest, but it is still able to finish processing 15 specifications

in less than 3 minutes. We expect that users will not detect patterns in their source code as

frequently as they perform other activities, such as compiling their code.

8.5.2 Beyond GoF

To explore MUSCAT’s language capability, we try to define three commonly be used

patterns that are beyond the GoF book. Figure 8.24 shows an example of a Factory pat-

tern, that is similar to the Abstract Factory pattern except both the Factory and Product

classes can be declared non-abstract. Figure B.1 illustrates C++ code translated from this

MUSCAT specification. This design pattern is recognized as the Factory Method pattern

by PINOT [20], FUJABA [6], and HEDGEHOG [27]. Table 8.16 shows the results in terms

of the number of factory methods found.

Figure 8.24: Variant of Abstract Factory Pattern

Figure 8.25 shows a variant of the previous example that requires Product class to be a

singleton (Reference [9] describes the implementation and design of such design pattern).

Figure B.2 illustrates C++ code translated from this MUSCAT specifications. Table 8.17
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Ant AWT JHotDraw Swing
cPINOT 36 207 198 244

Table 8.16: Results for the Variant of Abstract Factory Pattern

shows the results in terms of pattern instances found. Although this pattern appears to

Figure 8.25: Variant of Abstract Factory Pattern with Singleton Factory

Ant AWT JHotDraw Swing
cPINOT 0 0 0 0

Table 8.17: Results for the Variant of Abstract Factory Pattern with Singleton Factory

be absent in our benchmark applications, we have tested its correctness in a smaller test

application.

Figure 8.26 shows a variant of CoR that requires the aggregation relation to be one-

to-many. Figure B.3 illustrates the C++ code translated from this MUSCAT specification.

The GoF book [38] describes such implement variant as a combination of the Composite

and the CoR patterns. Table 8.18 shows the results in terms of pattern instances found.

Figure 8.26: One-to-many CoR
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Ant AWT JHotDraw Swing
cPINOT 1 3 9 12

Table 8.18: Results for the One-to-many CoR Pattern

8.6 Discussion

The examples listed in Section 8.5.2 are only slight variations of the GoF patterns.

MUSCAT is still limited for describing more complicated patterns. For example, viognier

cannot translate a specification that contains more than one aggregation association. The

reasons why this is not yet allowed in viognier are due to usability and performance. For

any given MUSCAT specification, viognier determines the starting point (whether to iterate

through the classes, methods, or fields) for pattern detection. Certain MUSCAT notation

maps to certain starting point (for more details, see Section 8.4). Let us refer to such

notations as starter notations. If one or more starter notations are present in a specification,

then viognier cannot determine the right pattern detection starting point. However, such

specifications are not necessarily valid. For example, a specification with only two class

notations is an invalid specification. In the future, viognier will need to be able to report

invalid specifications. For valid specifications, viognier can, perhaps, apply multiple nested

iterations. However, this requires sophisticated design to avoid O(nn) time complexity. In

the future, we want to allow users to specify search priority for each starter notation. That

is, users might be allowed to annotate their specifications with integers that designate the

order in which such notations will be analyzed.

MUSCAT can be implemented with pattern detection APIs other than the PINOT API,

but such an implementation will require the API to have the ability to perform various

behavioral analyses. As an example, one can use the SPINE language to implement the

structural-driven patterns specified in MUSCAT, but not all of the behavior-driven patterns.

This is because MUSCAT expresses patterns at the design level, while SPINE expresses

patterns at the code level. That is, MUSCAT is more expressive in terms of inter-class rela-
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tionships, while SPINE is more expressive in terms of class, method, and field declarations.

For example, MUSCAT can express the flyweight pattern (defined in Figure 8.12) based on

the GoF definition, but this particular behavioral constraint cannot be expressed in SPINE.
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Chapter 9

Conclusion and Future Work

In the process of software development, developers make use of various tools and tech-

niques to help them understand and eventually fine tune their software projects. Program

understanding tools today fall short in extracting the architectural design of a piece of soft-

ware. Since the mid 90s, when the GoF book [38] was published, design patterns have

shaped the way programmers program in object-oriented languages. The idea of design

patterns is to ensure extensibility and maintainability in object-oriented design. Today, de-

sign patterns have become widely used in practice. Each design pattern is associated with

an architectural design intent and a few coding guidelines. We believe by extracting design

patterns from source code, we can bring program understanding to the design level.

We began our research by studying existing pattern recognition tools. In Section 2.1,

we compared these tools and analyzed their approaches. We discovered that the accuracy of

a pattern recognition tool is relative to its interpretation of a design pattern. In Section 2.2,

we discussed the relationship between pattern interpretation and implementation variants

and their effect on pattern recognition. We found that most of these tools are able to extract

the structural aspect of a design pattern, but they cannot effectively capture the behavioral

aspect, that is the program intent. We illustrated some of these examples in Section 2.3.

We built our own pattern recognition tool, PINOT, based on solely static analysis tech-
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niques. Our goal was to recognize all design patterns illustrated in the GoF book. However,

not all of the patterns are detectable. Chapter 3 illustrated our reclassification of the GoF

patterns, and Chapter 4 explained how we built PINOT based on our theory. Chapter 5 pre-

sented the implementation of PINOT, as well as the timing and accuracy results tested on

several benchmark applications. Our results proved PINOT to be faster and more accurate

than existing pattern recognition tools.

While the GoF patterns are widely used in practice, there are many other useful design

patterns that are beyond the GoF book. Some of these design patterns are variations of the

GoF patterns and some are targeted to specific software domains. We felt a need to further

extend the recognition capability of PINOT by allowing users to specify and analyze their

own design patterns. We began this part of the research by studying why and how design

patterns are formalized. Chapter 6 discussed various purposes (including software mod-

eling, code refactoring and generation, and pattern detection) and techniques to formalize

design patterns. Chapter 7 compared languages defined for pattern detection. We presented

the design and implementation of our pattern detection language, MUSCAT, in Chapter 8.

In addition, we defined a set of PINOT API to facilitate the implementation of MUSCAT.

Finally, we constructed a pattern recognition tool using MUSCAT to define the detectable

GoF patterns and compared it against PINOT. Our results, while promising, showed PINOT

to be faster. We then discussed the tradeoff between effectiveness versus flexibility.

In the future, we want to continue this research in two directions: enhancing PINOT and

refining MUSCAT. Section 5.3 discussed the future work for PINOT: upgrading PINOT to

recognize the latest version of Java extending PINOT’s recognition capability; and integrat-

ing PINOT with other software development tools. Section 8.6 discussed the future work

for MUSCAT: fine-tuning the performance aspects of the implementation; providing a bet-

ter error reporting mechanism when interpreting a MUSCAT specification; and introducing

new language constructs to increase usability.
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Appendix A

Viognier Code Generation

– the GoF Patterns

Viognier is a Python script that translates a MUSCAT specification (in XMI format)

into C++ code that uses the PINOT API. This appendix illustrates the C++ code generated

from each MUSCAT specification shown in Section 8.5.1. Every complete C++ code starts

with a common header code. Due to length, we present the header code once in Figure A.1.

Figures A.2 to A.16 each shows the detection function translated from the corresponding

MUSCAT specification.
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#include "ast.h"
#include "control.h"
#include "symbol.h"
#include <vector>
#include <iostream>

using namespace std;

#define cout cout
#define Coutput cout

extern "C"
{

int getCount();
void FindPattern0(SymbolTables*);

}

extern bool isAbstract
(TypeSymbol*);

extern bool isSingletonClass
(SymbolTables*, TypeSymbol*);

extern bool isFacadeClass
(TypeSymbol*);

extern bool isFactoryMethod
(SymbolTables*, MethodSymbol*);

extern bool createsFlyweights
(VariableSymbol*, TypeSymbol*);

extern VariableSymbol *isVisitorMethod
(MethodSymbol*);

extern bool *bang_sets
(SymbolTables*, TypeSymbol *setter, VariableSymbol *vsym);

extern bool star_delegates
(SymbolTables*, AstVariableDeclarator*, TypeSymbol*,
TypeSymbol*);

extern bool bang_delegates
(SymbolTables *, TypeSymbol*, TypeSymbol*);

extern bool cond_delegates
(SymbolTables*, VariableSymbol*);

extern bool decor_delegates
(SymbolTables *, VariableSymbol*);

extern bool areIndependentHierarchies
(SymbolTables*, TypeSymbol*, TypeSymbol*);

int getCount() { return 1; }

Figure A.1: The Generated C++ Code that Precedes Every Detection Code
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table = sym_tables->getDelegationTable();

for (unsigned m = 0; m < ms_table -> size(); m++)
{

MethodSymbol *method = (*ms_table)[m];
if ( isFactoryMethod(sym_tables, method) )
{

Coutput << "abstractfactory|<<creates:AbstractProduct>>|"
<< method->Utf8Name()
<< "|"
<< method->containing_type->file_symbol->FileName()
<< endl;

TypeSymbol *leftEndType = method -> containing_type;
if ( isAbstract( leftEndType ) )
{

Coutput << "abstractfactory|AbstractFactory|"
<< leftEndType->Utf8Name()
<< leftEndType->file_symbol->FileName()
<< endl;

}
TypeSymbol *rightEndType = method -> Type();
if ( isAbstract( rightEndType ) )
{

Coutput << "abstractfactory|AbstractProduct|"
<< rightEndType->Utf8Name()
<< leftEndType->file_symbol->FileName()
<< endl;

}
}

}
}

Figure A.2: The Generated C++ Code that Detects the Abstract Factory Pattern (as defined
in Figure 8.7)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table = sym_tables->getDelegationTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
for (unsigned i = 0;

i < type -> declaration-> NumInstanceVariables();
i++)

{
AstFieldDeclaration* field_decl =

type -> declaration-> InstanceVariable(i);
for (unsigned vi = 0;

vi < field_decl -> NumVariableDeclarators();
vi++)

{
AstVariableDeclarator* vd =
field_decl -> VariableDeclarator(vi);

TypeSymbol *containing_type = vd -> symbol -> Type();
if (containing_type && containing_type -> file_symbol)
{

Coutput << "adapter|one-to-one|"
<< vd->symbol->Utf8Name()
<< "|"
<< vd->symbol->ContainingType()

->file_symbol->FileName()
<< endl;

if (bang_delegates(sym_tables, type, containing_type))
{

Coutput << "adapter|Adapter|"
<< type->Utf8Name()
<< "|"
<< type->file_symbol->FileName()
<< endl;

Coutput << "adapter|Adaptee|"
<< containing_type->Utf8Name()
<< "|"
<< containing_type->file_symbol->FileName()
<< endl;

}}}}}}

Figure A.3: The Generated C++ Code that Detects the Adapter Pattern (as defined in Fig-
ure 8.19)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table = sym_tables->getDelegationTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
for (unsigned i = 0;

i < type -> declaration-> NumInstanceVariables();
i++)

{
AstFieldDeclaration* field_decl =
type -> declaration -> InstanceVariable(i);
for (unsigned vi = 0;

vi < field_decl -> NumVariableDeclarators();
vi++)

{
AstVariableDeclarator* vd =

field_decl -> VariableDeclarator(vi);
TypeSymbol *containing_type = vd -> symbol -> Type();
if (containing_type && containing_type -> file_symbol)
{

Coutput << "bridge|one-to-one|"
<< vd->symbol->Utf8Name() << "|"
<< vd->symbol->ContainingType()

->file_symbol->FileName()
<< endl;

if (bang_delegates(sym_tables,
type, containing_type) &&

isAbstract(type) &&
isAbstract(containing_type) &&
areIndependentHierarchies(sym_tables, type,

containing_type))
{

Coutput << "bridge|Interface|"
<< type->Utf8Name() << "|"
<< type->file_symbol->FileName()
<< endl;

Coutput << "bridge|Implementor|"
<< containing_type->Utf8Name() << "|"
<< containing_type->file_symbol->FileName()
<< endl;

}}}}}}

Figure A.4: The Generated C++ Code that Detects the Bridge Pattern (as defined in Fig-
ure 8.17)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
for (unsigned i = 0;

i < type -> declaration-> NumInstanceVariables(); i++)
{

AstFieldDeclaration* field_decl =
type -> declaration -> InstanceVariable(i);
for (unsigned vi = 0;

vi < field_decl -> NumVariableDeclarators(); vi++)
{

AstVariableDeclarator* vd =
field_decl -> VariableDeclarator(vi);

TypeSymbol *containing_type =
type -> IsOnetoMany(vd->symbol, d_table);

if (containing_type && containing_type -> file_symbol)
{

Coutput << "composite|one-to-many|"
<< vd->symbol->Utf8Name() << "|"
<< vd->symbol->ContainingType()

->file_symbol->FileName()
<< endl;

if ((type -> IsSubtype(containing_type)))
{

Coutput << "composite|Composite|"
<< type->Utf8Name() << "|"
<< type->file_symbol->FileName() << endl;

Coutput << "composite|Component|"
<< containing_type->Utf8Name() << "|"
<< containing_type->file_symbol->FileName()
<< endl;

}
}

}
}

}
}

Figure A.5: The Generated C++ Code that Detects the Composite Pattern (as defined in
Figure 8.9)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
for (unsigned i = 0;

i < type -> declaration-> NumInstanceVariables(); i++)
{

AstFieldDeclaration* field_decl =
type -> declaration -> InstanceVariable(i);
for (unsigned vi = 0;

vi < field_decl -> NumVariableDeclarators(); vi++)
{

AstVariableDeclarator* vd =
field_decl -> VariableDeclarator(vi);

TypeSymbol *containing_type = vd -> symbol -> Type();
if (containing_type && containing_type -> file_symbol)
{

Coutput << "cor|one-to-one|"
<< vd->symbol->Utf8Name() << "|"
<< vd->symbol->ContainingType()

->file_symbol->FileName()
<< endl;

if ((type -> IsSubtype(containing_type)) &&
(cond_delegates(sym_tables, vd->symbol)))

{
Coutput << "cor|Concrete Handler|"

<< type->Utf8Name() << "|"
<< type->file_symbol->FileName()
<< endl;

Coutput << "cor|Handler|"
<< containing_type->Utf8Name() << "|"
<< containing_type->file_symbol->FileName()
<< endl;

}
}

}
}

}
}

Figure A.6: The Generated C++ Code that Detects the CoR Pattern (as defined in Fig-
ure 8.10)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
for (unsigned i = 0;

i < type -> declaration-> NumInstanceVariables(); i++)
{

AstFieldDeclaration* field_decl =
type -> declaration -> InstanceVariable(i);
for (unsigned vi = 0;

vi < field_decl -> NumVariableDeclarators(); vi++)
{

AstVariableDeclarator* vd =
field_decl -> VariableDeclarator(vi);

TypeSymbol *containing_type = vd -> symbol -> Type();
if (containing_type && containing_type -> file_symbol)
{

Coutput << "decorator|one-to-one|"
<< vd->symbol->Utf8Name() << "|"
<< vd->symbol->ContainingType()

->file_symbol->FileName()
<< endl;

if ((type -> IsSubtype(containing_type)) &&
(decor_delegates(sym_tables, vd->symbol)))

{
Coutput << "decorator|Decorator|"

<< type->Utf8Name() << "|"
<< type->file_symbol->FileName()
<< endl;

Coutput << "decorator|Base|"
<< containing_type->Utf8Name() << "|"
<< containing_type->file_symbol->FileName()
<< endl;

}
}

}
}

}
}

Figure A.7: The Generated C++ Code that Detects the Decorator Pattern (as defined in
Figure 8.11)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
if (isFacadeClass(type))
{

Coutput << "facade|<<facade>>|"
<< type->Utf8Name()
<< "|"
<< type->file_symbol->FileName()
<< endl;

}
}

}

Figure A.8: The Generated C++ Code that Detects the Facade Pattern (as defined in Fig-
ure 8.6)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
for (unsigned i = 0;

i < type -> declaration-> NumInstanceVariables(); i++)
{

AstFieldDeclaration* field_decl =
type -> declaration -> InstanceVariable(i);
for (unsigned vi = 0;

vi < field_decl -> NumVariableDeclarators(); vi++)
{

AstVariableDeclarator* vd =
field_decl -> VariableDeclarator(vi);

TypeSymbol *containing_type =
type -> IsOnetoMany(vd->symbol, d_table);

if (containing_type && containing_type -> file_symbol)
{

Coutput << "flyweight|one-to-many|"
<< vd->symbol->Utf8Name() << "|"
<< vd->symbol->ContainingType()

->file_symbol->FileName()
<< endl;

if (createsFlyweights(vd->symbol, containing_type))
{

Coutput << "flyweight|Factory|"
<< type->Utf8Name() << "|"
<< type->file_symbol->FileName()
<< endl;

Coutput << "flyweight|Flyweight|"
<< containing_type->Utf8Name() << "|"
<< containing_type->file_symbol->FileName()
<< endl;

}
}

}
}

}
}

Figure A.9: The Generated C++ Code that Detects the Flyweight Pattern (as defined in
Figure 8.12)



APPENDIX A. VIOGNIER CODE GENERATION – THE GOF PATTERNS 99

void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
for (unsigned i = 0;

i < type -> declaration-> NumInstanceVariables(); i++)
{

AstFieldDeclaration* field_decl =
type -> declaration -> InstanceVariable(i);
for (unsigned vi = 0;

vi < field_decl -> NumVariableDeclarators(); vi++)
{

AstVariableDeclarator* vd =
field_decl -> VariableDeclarator(vi);

TypeSymbol *containing_type =
type -> IsOnetoMany(vd->symbol, d_table);

if (containing_type && containing_type -> file_symbol)
{

Coutput << "mediator|one-to-many|"
<< vd->symbol->Utf8Name() << "|"
<< vd->symbol->ContainingType()

->file_symbol->FileName()
<< endl;

if (bang_delegates(sym_tables, type, containing_type))
{

Coutput << "mediator|Mediator|"
<< type->Utf8Name() << "|"
<< type->file_symbol->FileName() << endl;

Coutput << "mediator|Colleague|"
<< containing_type->Utf8Name() << "|"
<< containing_type->file_symbol->FileName()
<< endl;

}
}

}
}

}
}

Figure A.10: The Generated C++ Code that Detects the Mediator Pattern (as defined in
Figure 8.14)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
for (unsigned i = 0;

i < type -> declaration-> NumInstanceVariables(); i++)
{

AstFieldDeclaration* field_decl =
type -> declaration -> InstanceVariable(i);
for (unsigned vi = 0;

vi < field_decl -> NumVariableDeclarators(); vi++)
{

AstVariableDeclarator* vd =
field_decl -> VariableDeclarator(vi);

TypeSymbol *containing_type =
type -> IsOnetoMany(vd->symbol, d_table);

if (containing_type && containing_type -> file_symbol)
{

Coutput << "observer|one-to-many|"
<< vd->symbol->Utf8Name() << "|"
<< vd->symbol->ContainingType()

->file_symbol->FileName() << endl;
if ((star_delegates(sym_tables,

vd, type, containing_type)))
{

Coutput << "observer|Subject|"
<< type->Utf8Name() << "|"
<< type->file_symbol->FileName() << endl;

Coutput << "observer|Observer|"
<< containing_type->Utf8Name() << "|"
<< containing_type->file_symbol->FileName()
<< endl;

}
}

}
}

}
}

Figure A.11: The Generated C++ Code that Detects the Observer Pattern (as defined in
Figure 8.13)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
for (unsigned i = 0;

i < type -> declaration-> NumInstanceVariables(); i++)
{

AstFieldDeclaration* field_decl =
type -> declaration -> InstanceVariable(i);
for (unsigned vi = 0;

vi < field_decl -> NumVariableDeclarators(); vi++)
{

AstVariableDeclarator* vd =
field_decl -> VariableDeclarator(vi);

TypeSymbol *containing_type = vd -> symbol -> Type();
if (containing_type && containing_type -> file_symbol)
{

Coutput << "proxy|one-to-one|"
<< vd->symbol->Utf8Name() << "|"
<< vd->symbol->ContainingType()

->file_symbol->FileName() << endl;
if (bang_delegates(sym_tables,

type, containing_type) &&
(type -> IsFamily(containing_type)))

{
Coutput << "proxy|Proxy|"

<< type->Utf8Name() << "|"
<< type->file_symbol->FileName() << endl;

Coutput << "proxy|Real|"
<< containing_type->Utf8Name() << "|"
<< containing_type->file_symbol->FileName()
<< endl;

}
}

}
}

}
}

Figure A.12: The Generated C++ Code that Detects the Proxy Pattern (as defined in Fig-
ure 8.18)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
if (isSingletonClass(sym_tables, type))
{

Coutput << "singleton|<<singleton>>|"
<< type->Utf8Name()
<< "|"
<< type->file_symbol->FileName()
<< endl;

}
}

}

Figure A.13: The Generated C++ Code that Detects the Singleton Pattern (as defined in
Figure 8.5)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
for (unsigned i = 0;

i < type -> declaration-> NumInstanceVariables(); i++)
{

AstFieldDeclaration* field_decl =
type -> declaration -> InstanceVariable(i);
for (unsigned vi = 0;

vi < field_decl -> NumVariableDeclarators(); vi++)
{

AstVariableDeclarator* vd =
field_decl -> VariableDeclarator(vi);

TypeSymbol *containing_type = vd -> symbol -> Type();
if (containing_type && containing_type -> file_symbol)
{

Coutput << "state|one-to-one|"
<< vd->symbol->Utf8Name() << "|"
<< vd->symbol->ContainingType()

->file_symbol->FileName()
<< endl;

if ((bang_sets(sym_tables,
containing_type, vd->symbol)))

{
Coutput << "state|Context|"

<< type->Utf8Name() << "|"
<< type->file_symbol->FileName()
<< endl;

Coutput << "state|State|"
<< containing_type->Utf8Name() << "|"
<< containing_type->file_symbol->FileName()
<< endl;

}
}

}
}

}
}

Figure A.14: The Generated C++ Code that Detects the State Pattern (as defined in Fig-
ure 8.15)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
for (unsigned i = 0;

i < type -> declaration-> NumInstanceVariables(); i++)
{

AstFieldDeclaration* field_decl =
type -> declaration -> InstanceVariable(i);
for (unsigned vi = 0;

vi < field_decl -> NumVariableDeclarators(); vi++)
{

AstVariableDeclarator* vd =
field_decl -> VariableDeclarator(vi);

TypeSymbol *containing_type = vd -> symbol -> Type();
if (containing_type && containing_type -> file_symbol)
{

Coutput << "strategy|one-to-one|"
<< vd->symbol->Utf8Name() << "|"
<< vd->symbol->ContainingType()

->file_symbol->FileName()
<< endl;

if (isAbstract(containing_type))
{

Coutput << "strategy|Context|"
<< type->Utf8Name() << "|"
<< type->file_symbol->FileName()
<< endl;

Coutput << "strategy|Strategy|"
<< containing_type->Utf8Name() << "|"
<< containing_type->file_symbol->FileName()
<< endl;

}
}

}
}

}
}

Figure A.15: The Generated C++ Code that Detects the Strategy Pattern (as defined in
Figure 8.16)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned m = 0; m < ms_table -> size(); m++)
{

MethodSymbol *method = (*ms_table)[m];
if ( VariableSymbol *param = isVisitorMethod(method) )
{

Coutput << "visitor|<<accepts(Visitor)>>|"
<< method->Utf8Name() << "|"
<< method->containing_type->file_symbol->FileName()
<< endl;

TypeSymbol *leftEndType = method -> containing_type;
if ( isAbstract( leftEndType ) )
{

Coutput << "visitor|Element|"
<< leftEndType->Utf8Name()
<< leftEndType->file_symbol->FileName()
<< endl;

}
TypeSymbol *rightEndType = param -> Type();
if ( isAbstract( rightEndType ) )
{

Coutput << "visitor|Visitor|"
<< rightEndType->Utf8Name()
<< leftEndType->file_symbol->FileName()
<< endl;

}
}

}
}

Figure A.16: The Generated C++ Code that Detects the Visitor Pattern (as defined in Fig-
ure 8.8)
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Appendix B

Viognier Code Generation

– Patterns Beyond GoF

This appendix lists the C++ code translated from the MUSCAT specifications discussed

in Section 8.5.2. Figures B.1 to B.3 each shows the detection function translated from

the corresponding MUSCAT specification, while using the same header code shown in

Figure A.1.
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned m = 0; m < ms_table -> size(); m++)
{

MethodSymbol *method = (*ms_table)[m];
if ( isFactoryMethod(sym_tables, method) )
{

Coutput << "example0|
<< creates:Product>>|"
<< method->Utf8Name()
<< "|"
<< method->containing_type

->file_symbol->FileName()
<< endl;

}
}

}

Figure B.1: The Generated C++ Code that Detects a Variant of the Abstract Factory Pattern
Pattern (as defined in Figure 8.24)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned m = 0; m < ms_table -> size(); m++)
{

MethodSymbol *method = (*ms_table)[m];
if ( isFactoryMethod(sym_tables, method) )
{

Coutput << "example1|
<< creates:Product>>|"
<< method->Utf8Name() << "|"
<< method->containing_type

->file_symbol->FileName()
<< endl;

TypeSymbol *leftEndType =
method -> containing_type;

if ( isSingletonClass(sym_tables, leftEndType ) )
{

Coutput << "example1|SingletonFactory|"
<< leftEndType->Utf8Name()
<< leftEndType->file_symbol->FileName()
<< endl;

}
}

}
}

Figure B.2: The Generated C++ Code that Detects a Variant of the Abstract Factory Pattern
with Singleton Factory (as defined in Figure 8.25)
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void FindPattern0(SymbolTables *sym_tables)
{

ClassSymbolTable *cs_table =
sym_tables->getClassSymbolTable();

MethodSymbolTable *ms_table =
sym_tables->getMethodSymbolTable();

DelegationTable *d_table =
sym_tables->getDelegationTable();

for (unsigned c = 0; c < cs_table -> size(); c++)
{

TypeSymbol *type = (*cs_table)[c];
for (unsigned i = 0;

i < type -> declaration-> NumInstanceVariables(); i++)
{

AstFieldDeclaration* field_decl =
type -> declaration -> InstanceVariable(i);

for (unsigned vi = 0;
vi < field_decl -> NumVariableDeclarators(); vi++)

{
AstVariableDeclarator* vd =

field_decl -> VariableDeclarator(vi);
TypeSymbol *containing_type =

type -> IsOnetoMany(vd->symbol, d_table);
if (containing_type &&

containing_type -> file_symbol)
{

Coutput << "example2|one-to-many|"
<< vd->symbol->Utf8Name() << "|"
<< vd->symbol->ContainingType()

->file_symbol->FileName()
<< endl;

if ((type -> IsSubtype(containing_type)) &&
(cond_delegates(sym_tables, vd->symbol)))

{
Coutput << "example2|Concrete Handler|"

<< type->Utf8Name() << "|"
<< type->file_symbol->FileName() << endl;

Coutput << "example2|Handler|"
<< containing_type->Utf8Name() << "|"
<< containing_type->file_symbol->FileName()
<< endl;

}}}}}}

Figure B.3: The Generated C++ Code that Detects a One-to-many CoR (as defined in
Figure 8.26)
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