
CONCURRENCY: PRACTICE AND EXPERIENCE
Concurrency: Pract. Exper.2000;12:1405–1430

Providing fine-grained access
control for Java programs via
binary editing

Raju Pandey∗,† and Brant Hashii

Parallel and Distributed Computing Laboratory, Computer Science
Department, University of California, Davis, CA 95616, U.S.A.

SUMMARY

There is considerable interest in programs that can migrate from one host to another and execute. Mobile
programs are appealing because they support efficient utilization of network resources and extensibility
of information servers. However, since they cross administrative domains, they have the ability to access
and possibly misuse a host’s protected resources. In this paper, we present a novel approach for controlling
and protecting a site’s resources. In this approach, a site uses a declarative policy language to specify a
set of constraints on accesses to resources. A set of code transformation tools enforces these constraints
on mobile programs by integrating the access constraint checking code directly into the mobile program
and resource definitions. Using this approach, a site does not need to explicitly include calls to reference
monitors in order to protect resources. The performance analysis show that the approach performs better
than reference monitor-based approaches in many cases. Copyright 2000 John Wiley & Sons, Ltd.

KEY WORDS: security; policy; mobile code; access control; Java; object orientation; binary editing

INTRODUCTION

There is increasing interest in computing models that support migration of programs. In these models,
a program migrates to a remote host, executes there, and accesses the site’s resources. For instance,
Java [1] programs are increasingly being used to add dynamic content to a Web page. When a user
accesses the Web page through a browser, the browser migrates Java programs associated with the page
and executes them at the user’s site. There are many other computing models that support mobility of
programs. For example, the remote evaluation [2] model supports program migration by allowing one
to upload a program to a remote site. The mobile programming model [3,4] supports general purpose
mobility that also allows programs to migrate to other sites during their executions. The common

∗Correspondence to: Raju Pandey, Parallel and Distributed Computing Laboratory, Computer Science Department, University
of California, Davis, CA 95616, U.S.A.
†E-mail: pandey@cs.ucdavis.edu

Copyright 2000 John Wiley & Sons, Ltd.

1406 R. PANDEY AND B. HASHII

element in all of these models is the ability of a runtime system to load externally defined user programs
and execute them within the local name space of the runtime system.

Although appealing [5] from both system design and extensibility points of view, mobile programs
have serious security implications. Mobile programs have the ability to maliciously disrupt the
execution of programs at a site by reading and writing into their name spaces, by using unauthorized
resources, by over-using resources, and by denying resources to other programs. For instance, the
‘Ghost of Zealand’ Java applet misuses the ability to write to the screen. It turns areas of the desktop
white, making the machine practically useless until it is rebooted [6]. Another example is Hamburg’s
Chaos Computer Club’s demonstration [7] of the dangers of using ActiveX [8]. ActiveX is Microsoft’s
mobile program technology which allows components to be dynamically installed on a user’s desktop.
The victim uses Internet Explorer to visit a Web page that downloads an ActiveX control. The ActiveX
control checks to see if Quicken, a financial management software, is installed. If it is, the control adds
a monetary transfer order to Quicken’s batch of transfer orders. When the victim next pays the bills,
the additional transfer order is performed. All of this goes unnoticed by the victim, until she receives
her statement.

In this paper, we focus primarily on a specific security problem associated with mobile programs,
namely the access control problem. The access control problem involves allowing a site to control a
mobile program’s ability to access local resources. Many operating systems [9] implement a notion
of access control by limiting accesses to specific resources that the operating systems administer. For
instance, in the UNIX operating system, the owners of files can control the accessibility of their files.

The access control problem in the mobile programming domain differs from the traditional access
control models in many ways. First, there is no fixed set of resources that a site can administer; different
sites may define different resources. An access control mechanism cannot be based on controlling
accesses to specific resources. The mechanism should be applicable to any resource that a host may
define. Second, the access control model should allow the customization of access control policies
from one site to another, one mobile program to another, and one resource to another. Third, the
access control model should support a fine-grained access control specification. In many access control
models, access control involves either allowing an access or completely denying it. In the mobile
programming domain, we argue for aconditional access controlmodel where accesses to resources
can be based on a boolean expression [10]. In other words, a site may allow a mobile program to access
resources if certain conditions are met. These conditions may depend on the state of mobile programs,
state of resources, runtime system state and/or additional security state. For instance, a database vendor
may specify that if there are more than 20 mobile programs in the system, each mobile program can
only access its database up to ten times. In this example, a mobile program’s ability to access the
database depends on a runtime system state, such as the number of mobile programs running, and a
security state, i.e. the number of times mobile programs access the database.

Access control specification and enforcement have been studied in great detail. The different
approaches can be broadly classified into three categories:operating system-based, runtime system-
based, and language-based. In the operating system-based approaches [9,11], an operating system
implements a specific access control model which specifies how system-wide resources such as the
network, files, and displays can be accessed. The operating system enforces the security policy by
checking whether the type of access is allowed. In runtime system-based approaches [12,13], a runtime
system enforces specific controls over accesses to various objects. Each method first calls a resource
monitor which checks to ensure that the method call is permitted. In language-based techniques [14–18]

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

FINE-GRAINED ACCESS CONTROL FOR JAVA PROGRAMS 1407

access control policies are specified along with a program specification. A compiler not only generates
code for the program but also code to enforce security policies.

In this paper, we present analternateapproach for specifying and enforcing access control over
mobile programs written in Java. Specifically, the paper describes the following.

• We present an access control model for specifying how accesses to resources can be controlled.
In this model, a site defines a set of access constraints, each specifying the condition under which
a specific resource can be accessed.

• We present a novel access constraint enforcement mechanism in which access constraints are
enforced by integrating access constraint checks directly into mobile program code and resource
code before they are loaded into the runtime system.

Separating the specification of access constraints from the specification of Java programs and resources
has the following implications.

• Resource developers do not need to manually insert calls to security checking code inside each
resource that a host may want to protect. Further, the access control mechanism can be used to
define and enforce access constraints to systems that were not designed with security in mind,
such as legacy systems.

• Both resource definitions and access constraints can be modified independently without affecting
each other’s implementation.

We have implemented a version of this mechanism for programs represented using Java bytecode [19].
The performance results show that the overhead of this approach is moderate. Further, the approach
performs better than the Java runtime system-based approach in many cases.

ACCESS CONTROL MODEL

The access control model contains two parts: a resource model for representing resources and an access
constraint specification language. We describe the two in detail below.

Resource model

A site provides many resources to a mobile program. These resources include classes for utility
libraries, accessing files, networks, and interfaces to other resources such as a proprietary database.
For instance, a site providing access to a weather database exports a set of interfaces that specify how
the database can be accessed. In our security model, each Java class or method represents a resource
and, thus, is a unit of protection. Our access control mechanism does not differentiate between system
classes and user-defined classes, or between locally defined classes and classes down-loaded from
remote hosts. The model also allows the definition of class-subclass relationships among resources
using Java’s inheritance model.

Access constraint specification language

The access constraint specification language contains two parts: a notation for specifying constraints
over accesses to resources and an inheritance model for access constraints.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

1408 R. PANDEY AND B. HASHII

P

f

R

B

P

f

R

(a) Default method invocation semantic. (b) Security constraints on method invocations.

Figure 1. Method invocation semantics.

Access constraints

We first describe the motivation behind our access control language. A Java program uses a resource by
invoking its methods. In Figure1(a), we show that programP invokes a methodf to access resourceR.
During an execution ofP , the control jumps tof , executesf , and returns back toP upon termination.
The Java compiler implements a simple access semantics in which there are no constraints on accesses
to R throughf .

Our approach is to allow a host to make the access relationship betweenP andR conditional by
adding a constraint,B (see Figure1(b)). The access constraint is specifiedseparatelyfrom bothP and
R and has the effect of imposing the constraint thatP can invokef on R only if conditionB is true.
A site, thus, restricts accesses to specific resources by enumerating a set of access constraints, which
forms a site’s access control policy.

Below, we present the core aspects of the language. The following EBNF shows how a site can
specify access constraints:

Constraints ::= { AccessConstraint | EnableStatement | AddStatement
| GroupStatement }

AccessConstraint ::= deny ’(’ [Entity] Relationship Entity ’)’
[when Condition]

EnableStatement ::= enable ’(’ Entity [Relationship Entity] ’)’
AddStatement ::= add Type Name to ClassIdentifier
Relationship ::= 7→ | a
Entity ::= ClassIdentifier | MethodIdentifier | GroupName
Condition ::= BooleanExpression
GroupStatement ::= define group GroupName ’ {’ Entity ’;’ { Entity } ’ }’

A site controls accesses to different resources (Java objects) by defining a set ofAccessConstraints.
We describe the various terms in the grammar informally below.

• Entity: An entity denotes objects and method invocations of Java programs. AClassIdentifier,
thus, identifies the set of objects to which a given access relationship applies. Similarly, a
MethodIdentifier denotes a set of invocations of a method. In addition, an entity can be a group
of entities.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

FINE-GRAINED ACCESS CONTROL FOR JAVA PROGRAMS 1409

• Relationship: The composition mechanisms of a programming language allow one to define
various relationships (data composition through aggregation and inheritance, and program
composition through method invocations) among the entities of a program. We are primarily
interested in the following two access relationships here:

1. Instantiate (a): A relationE a R exists if an entityE creates an instance of classR.
2. Invoke (7→): A relationE 7→ R exists if an entityE invokes an entityR.

• Condition: The termCondition denotes a Boolean expression that can be defined in terms of
object states, program state (global state), runtime system state, security state, and parameters of
methods.

• Enable: In addition to access constraints, we support anenable statement that allows a host
certain accesses, overriding its constraints. This is needed in cases where a host wants to override
the default principles of least privileges. For example, assume that a security policy specifies that
an applet cannot access the file system. The security infrastructure implements a default policy of
least privilege, which ensures that the applet cannot access the file system directly or indirectly
by calling other methods that access the file system. However, in many cases, this may not be
desirable [20]. For instance, suppose the applet can write to the screen using the font files stored
on the disk. In such cases, we want to enable the display manager to be able to access these files,
regardless of the calling program. Theenable statement allows one to override the default policy.
This is similar to theenablePrivileged command of the JDK1.2 security model [13]. Note that
we must be careful about who can specifyenable statements. We will revisit constraints on
enable in a latter section.

• Add: In order to make the boolean condition more powerful, we allow additional runtime state to
be added to programs. Essential this command associates a new object of typeType with name
Name with the class identified byClassIdentifier.

• Group: The current implementation defines a group based on its name. However, this can be
extended to define an entity on the basis of its source, signature, or behavior pattern.

Semantics

An access constraint of the form

deny (E σ R) when Condition

specifies that entityE cannot accessR through relationshipσ if Condition is true.E is optional. Hence,
there are two kinds of access constraints:global constraintsandselective access constraints. Global
constraints denote those constraints that do not depend on the initiator of the access relationship. For
instance, as shown in Figure2(a), no program can accessR whenB is true. A host may specify the
constraint that no Java applet can access a set of proprietary files.

Selective access constraints denote those constraints that depend on the initiator of the access
relationship. For instance, as shown in Figure2(b), each entityEi ’s access toR is constrained by a
separate and possibly differentBi . A site can use selective access constraints to associate different
security policies with different Java programs that come from different sites.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

1410 R. PANDEY AND B. HASHII

(a) Global constraints. (b) Selective access constraints.

Figure 2. Category of access constraints.

Examples of global constraints are:

Constraint Semantics

deny (a C2) when B No instances ofC2 can be created ifB is true.

deny (7→ C2.M2) when B MethodM2 of classC2 cannot be invoked ifB is true.

Examples of selective access constraints are:

Constraint Semantics

deny (C1.M a C2) when B MethodM of classC1 cannot create
an object ofC2 if B is true.

deny (C1.M1 7→ C2.M2) when B MethodM1 of classC1 cannot
invokeM2 of C2 if B is true.

In our approach, the default is to allow all accesses unless a site specifically denies them. We call
this model theactive denial model. This is unlike most approaches in which the default is to deny all
requests unless a site specifically allows them. We call this model theactive permission model. The
active permission model provides better guarantees about system security in cases when a site makes
mistakes about specifying access control policy, the reasoning being that it is better to deny legitimate
accesses than allow illegitimate accesses. Also, its preferable to force users to reason that something
should be allowed, than to be lazy and allow everything [21].

We chose to use the active denial model because we want to construct a unified access control
framework for all method invocations. In other words, every action (every method call, object creation,
deletion, etc.) is conceivably a security relevant event which a site may want to control. For instance,
we want to be able to specify constraints such as users can invoke a function, saysqrt, only 10

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

FINE-GRAINED ACCESS CONTROL FOR JAVA PROGRAMS 1411

times. Implementation of the active permission model would require that a site define permissions
for every method call. Since the set of allowed methods is likely to be much greater than the set of
disallowed methods, this kind of policy specification can be quite cumbersome. Runtime system-based
approaches [19] deal with this problem by segregating the dangerous and safe calls. They then embed
calls to an access checker within all methods that the site might want to control. The checker enforces
an active permission model over just these calls. All resources that do not have embedded calls are not
checked and hence can be accessed by anyone. Such models differentiate between resources that are to
be protected, through embedded calls, and those that are not. Our approach uses a single mechanism
for handling both. The active denial model can be used to implement the active permission model by
representing the permission conditions through the negation of denial conditions. We are, therefore,
looking at how we can integrate the active permission model in our language. One possibility is to
provide default policies.

Examples

We now present four examples. The first example implements a simple file access control mechanism.
The second example shows how we can use the state of the runtime system to control accesses
to resources. The third example shows how we can associate specific security states with program
components and use these states to specify access control. Finally, the last example illustrates the use
of theenable command.

Example 1: File access control.In this example, we specify access constraints for controlling the file
resources that mobile programs can access. Assume that the file resource is defined using the following
Java class:

class File {
public File(String Name);
public char Read();
public void Write(char data);
public final String GetFileName();

}
The following constraint specifies that no mobile program can read ‘/etc/passwd’ file:

deny (7→ File.Read) when
(#GetFileName() == "/etc/passwd")

Here we introduce a new notation within the Boolean expression. The symbol# indicates a method,
field, or parameter of the target. Thus, in the above expression the term#GetFileName() can be read
File.GetFileName(). Note that the evaluation of the boolean expression occurs within the context of
the protected resource.

The access constraint specifying that mobile programs can only read filesA andB can be specified
by expressions of the form:

deny (7→ File.Read) when
((#GetFileName() != "A")
&& (#GetFileName() != "B"))

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

1412 R. PANDEY AND B. HASHII

The constraint that mobile programs cannot write to the local disk is specified by the following
constraint:

deny (7→ File.Write)

As we can see from the above example, an access constraint can control executions of methods on the
basis of program states. In certain cases, a site may wish to impose constraints on the basis of the state
associated with the runtime system or the underlying operating system. The policy language allows
specification of such constraints. We show this through the following example:

Example 2: Network access control.Assume that the following defines the socket resource for making
network connections:

class Socket {
Socket();
void Open(Host hId, int sId);
void Write(Bytes data);
Bytes Read();

}
Also, assume that the runtime system keeps track of the number of network connections that have
already been opened. This forms the state associated with the runtime system. Let the method
System.Network.NumConnections() return the number of open connections. A constraint that limits
the number of network connections to a specific upper-bound can be specified in the following manner:

deny (a Socket) when
(System.Network.NumConnections()

== UPPERBOUND)

In addition to runtime system state, a site may wish to store additional information for implementing
access control. We call this kind of informationsecurity state. A site may associate a security state
with a method, object, or a group of objects, and may define constraints over accesses to methods on
the basis of the security state. We present an example below that illustrates this:

Example 3: Control over number of accesses.Assume that we want to implement the constraint that a
programp can invoke a method, sayf, on a resourceR at most ten times.

This can be implemented by associating an object, saySecurityState of typeSecState, with p. The
object keeps track of the number of timesp callsf. Let methodSecurityState.CheckCount(int x) be
defined in the following manner:

public boolean CheckCount(int x) {
if (count < x) {

// increment counter
UpdateCount();
return(false);

} else return(true);
}

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

FINE-GRAINED ACCESS CONTROL FOR JAVA PROGRAMS 1413

The policy statements

add SecState SecurityState to R
deny (p 7→ R.f) when

#SecurityState.CheckCount(10)

adds the new object toR and specifies thatp can invokef at most 10 times.

Example 4: Enable.We now illustrate usage of the enable statement. We want to preventApplets from
accessing the file system. However, since applets are allowed to create displays, they need to access
a Font class that reads font information from the file system. Since we would like this action to be
allowed, we create the following policy that overrides the default policy of denying any accesses to the
file system.

deny (Applet 7→ File)

enable (Font 7→ File)

Inheritance of access constraints

We now present an inheritance model for access constraints. The inheritance model describes how
access constraints are inherited in subclasses.

Assume that a site defines two resources,Rc andRs :

class Rc {
public void f();
public void g();
public void h();

}
class Rs extends Rc {

· · ·
}

Rs is a subclass ofRc and inherits methodsf, g, andh. Assume that the site defines the following
constraints on the resources as depicted in Figure3:

deny (E 7→ Rc.f) when Bcf

deny (E 7→ Rc.g) when Bcg

deny (E 7→ Rs.f) when Bsf

deny (E 7→ Rs.h) when Bsh

There are two components to the inheritance model:

• Inheritance of access constraints: A subclass inherits all access constraints from its
superclasses. Hence, the resulting access constraint on invocations ofg on an instance ofRs

is defined by the following expression.

deny (E 7→ Rs.g) when Bcg

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

1414 R. PANDEY AND B. HASHII

Bcf

Bcg

Bsf

Bch

Rs

Rc

h

h

f

g

f
E

Figure 3. Inheritance of access constraints.

Access constraints are not inherited from subclasses to superclasses. Hence, although the access
constraint onh in Rs is Bsh, there are no access constraints onh in Rc.

• Strengthening of access constraints: A subclass cannot override its inherited constraints.
Additional constraints in the subclass only strengthen the constraints defined in its superclasses.
Hence, the resulting access constraint on invocations off on an instance ofRs is:

deny (E 7→ Rs.f) when Bcf ∨ Bsf

In other words, methodRs.f cannot be invoked fromE if eitherBcf or Bsf is true.

This model of inheritance ensures that a mobile program cannot override access constraints on methods
by defining a subclass and weakening the access constraints. Also, the above inheritance model applies
for access constraints ona as well. That is, if a classRc cannot be instantiated, none of its subclasses
can be instantiated.

ACCESS CONSTRAINT ENFORCEMENT

An enforcement of access constraints on a resource involves placing interposition code between the
resource access code and resource definition code. The interposition code checks if a specific resource
access is allowed. It can be insertedmanuallyby site managers, generated by the compiler, or defined by
the runtime systems or operating systems through special system calls. For instance, in the Java runtime
system [13,22], resource developers manually insert calls to a reference monitor in the resources they
want to protect. The reference monitor consults access control policies to check if a specific resource
access is allowed.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

FINE-GRAINED ACCESS CONTROL FOR JAVA PROGRAMS 1415

ei

migrate
Ac

Bytecode Editor

P 0

Ac: Access constraint
R: Resources
l: library
s: Generated code
ei: Generated instruction

P

s

Compiler
Access Constraint

Rl

lP

SiteS

Class Loader

Runtime System

Figure 4. Security policy enforcement of mobile programs.

We use an alternate approach for generating interposition code. In this approach, a set of tools
generates the interposition code and integrates them within mobile programs and resources before they
are loaded in the JVM. In this approach, there are no reference monitors. In essence, the approach
generates reference monitors on the fly and integrates them within the relevant Java programs and
resources. The approach, thus, eliminates the need to manually include calls to reference monitors in
resource definitions.

In Figure4, we describe our implementation for enforcing access control policies on Java programs.
We show a Java programP that migrates to a siteS. R denotes resources that the site makes available
to mobile programs; andl denotes local libraries linked intoP .

During class name resolution and dynamic linking, the Java class loader [23] retrievesR and l

and passes them to a tool, called theaccess constraint compiler. The access constraint compiler
examinesP , R, andl to determine the resource access relationships that must be constrained in order to
implement the access constraintAc. It then generates interposition codes that implement the specific
access constraints. It also generates a set of editing instructionsei for the bytecode editor. The bytecode
editor usesei to integrates within P , R andl. The transformed programs and resources are then loaded
into the JVM and executed.

We now describe in detail how we determine access relationships in Java programs, generate code,
and edit Java class files.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

1416 R. PANDEY AND B. HASHII

Type extraction

Type extraction involves examining Java class files to determine type definitions declared in the class
files. Type definitions are used for automatically constructing a resource model from class files as well
as for determining how Java classes should be modified. Type extraction can be done easily since Java
class files maintain complete symbolic information about a class. Our type extraction technique makes
use of two entities within the Java class file: theconstant pooland themethod definitionsections.
The constant pool is similar to a symbol table in that it contains all of the information needed to
dynamically link classes. It is an index to the symbolic references of fields, classes, interfaces and
methods, as well as their names. It also contains all literals, both string and numeric, used throughout
a class. For example, amethodref entry in the constant pool includes all the symbolic information
associated with a method. It contains two constant pool indexes: one for the class name and one for the
name and type of the method. The method definitions section defines each method and identifies them
by name and signature.

Code generation and binary editing

We now describe the nature of the code that is generated and its integration within mobile programs.
Our code generation and editing involves modifying class definitions in order to add runtime state to
classes and to insert runtime checks into methods.

An access constraint of the form

deny (E σ R) when B

is implemented by generating the following code:

if (B)
then error(); // raise exception

else
access R

and patching it into classes and methods. The nature of the editing depends on the nature of the access
constraints. Global constraints of the form

deny (σ R) when B

specify constraints on accesses toR without any regard to objects or methods that may accessR.
The generated code is simply integrated into the methods ofR. On the other hand, selective access
constraints of the form

deny (E σ R) when B

imposes conditions on accesses toR from E. In this case,R must determine if it had been called byE.
We implement this using stack inspection [20,24], which we will discuss in the following sections.

We also support the addition of security states to specific Java classes in order to monitor site-
specific behavior. This mechanism allows a site to customize its security policies, especially if the

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

FINE-GRAINED ACCESS CONTROL FOR JAVA PROGRAMS 1417

policies cannot be represented directly by the policy language. Security state objects are added to a
class definition by using the statement:

add SecurityStateType SecurityStateObject
to R

The constraint compiler generates code for initializing these objects. Example 3 shows how such
objects can be used to specify access control policies.

Implementation details

In this section we describe the code generation and code editing process for different instances of access
constraints. For the purposes of explanation we restrict access toR when the first parameter is 5. Note
that the Boolean condition only affects the nature of code that is generated forB; it does not affect
the general pattern of the access check code or the method of editing. Also, the following technique is
independent of the action that should be taken in the event that an access is denied. Our implementation
throws a security exception. Alternatively, one could take any conceivable programmable action, such
as writing to an audit log, ending the mobile program, or even moving the mobile program to another
site.

Implementation of global constraints

We first consider a constraint of the form

deny (7→ R.f(I)V) when (#(1) == 5)

The term#(1) refers to the first parameter of the method. Also note that(I)V following R.f is the Java
bytecode representation of the signature of that method. The above access constraint is enforced by
generating code of the form shown in Figure5 and patching the code into the body off.

In Figure5, the number to the left of an instruction indicates the byte offset for the instruction from
the beginning of the method body. Further, a term#i in Figure5 indicates theith entry in the constant
pool. In code segmentA of Figure5, #67 indexes the integer constant 5, whereas#65 in code segment
B indexes the entry for a security exception class and#66 indexes the entry for its constructor.

Code segmentA (Figure5) contains the code for checking the conditional, whereas code segment
B contains code for throwing an exception if the boolean condition is true. This code is inserted into
the beginning of the method. Care must be taken to ensure that the security exception object and its
constructors are defined in the constant pool. If they are not, then these entries are added.

Constraints of the form

deny (a R) when B

specify that an instance ofR cannot be created ifB is true. They are implemented by putting constraints
on invocations of all constructors ofR, which, in the JVM, are given a special name<init>. This case
is, thus, implemented by adding code similar to that shown in Figure5 to all methods ofR with the
name<init>.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

1418 R. PANDEY AND B. HASHII

7 goto 21

0 iload 1

2 ldc #67

4 if icmpeq 10

13 dup

17 athrow

10 new #65

14 invokespecial #66

original code for

method R.f(I)V

A

B

Figure 5. The modified method R.f(I)V.

Implementation of selective access constraints

We now consider the cases that require stack inspection. The most specific case involves denying access
to a method from another method:

deny (E.g()V 7→ R.f(I)V) when
(#(1) == 5)

This constraint implies thatE.g cannot accessR.f including cases whereE.g accesses some entity
C which then accessesR.f . Thus, it is necessary to know the call stack. We have implemented two
different stack inspection mechanisms. We will discuss the advantages and limitations of each.

The first approach is to use anexternal call stack. Since we don’t normally have access to stack
information from within a Java program, we created a global, external stack data structure.

We then modify every class that is the subject of a policy constraint. At the beginning of every
method we add code that adds itself onto the external call stack, and at the end of every method we
add code that removes it from the external call stack. Note that a class must also add its superclasses
to the stack as well, in order to implement the inheritance model. Then, in the code for the protected
resource we call thesearchStack method to determine if the restricted target is on the external stack
(see Figure6).

The advantage of using an external call stack is its independence from the runtime system. This
approach can be executed on any JVM. The problem, however, is that any piece of code could push or
pop anything on or off that stack, destroying the stack’s integrity. It is unclear how to efficiently prevent
external code from accessing this global data structure.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

FINE-GRAINED ACCESS CONTROL FOR JAVA PROGRAMS 1419

...

...

throw new SecurityException;

R’s method body

Policy: deny (E 7! R) when B

E’s method body

Globals.pop();

...

Stack.push("E");

if (Stack.searchStack("E") || B)

Figure 6. Modification of classes to use the external stack.

An alternate method is to use the JVM’s internal call stack. Maintaining the stack is handled
automatically by the runtime system. We have created a native method that performs the same function
as thesearchStack routine above. Although this mechanism is runtime system dependent, it is much
more efficient in that it does not require additional commands for maintaining the stack. In addition,
stack integrity is no longer a problem.

There are cases when a class should be allowed to access a resource regardless of the entity that
originated the request [20]. An applet, for example, should be denied file system access. However,
it may be allowed to use the Window manager which requires access to font files. Thus, theenable
statement guarantees that a class can use a resource—as long it does not use it through an unauthorized
class. All enabled classes are kept in a separate list. Whenever the stack inspection mechanism
encounters one of these classes before a restricted class, access is granted.

Implementation of inheritance model

An implementation of the inheritance model requires care because of the possible conflicts between
the Java language mechanism for controlling extensibility and our inheritance model. We illustrate the
problem with a simple example.

Assume that classRs is a subclass ofRc. ClassRc defines a methodf :

public void f();

Assume thatRs inheritsf . Also, assume that the site specifies the following access constraint:

deny (7→ Rs.f) when B

SinceRs inheritsf , f needs to be modified in order to impose the above access constraint. However,
since policies are inherited down and not up, the method body off in Rc cannot be modified. A
possible solution is, then, to redefinef in Rs :

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

1420 R. PANDEY AND B. HASHII

public void f() {
<interposition code for

checking access>
super.f();

}
The above solution works iff is not declaredfinal in Rc. However, iff is declared to be final,

we cannot redefinef in Rs as the Java bytecode verifier will reject the redefinition of afinal method.
Although we can edit the class file forRc to remove the ‘final’ constraint, such a change may lead to
security holes.

Our solution, therefore, relies on modifying classRc as follows:

class Rc {
final public void f() {

F CheckMethod();
<code for f>

}
private void F CheckMethod() {; }

}
We now redefineF CheckMethod() in Rs in order to implement access constraint checks that are
specific toRs :

class Rs extends Rc {
...

private void F CheckMethod() {
<interposition code for
checking F>

}
}

DISCUSSION

In this section, we analyze the proposed technique for its suitability as an access constraint enforcement
mechanism and discuss its performance behavior.

Characteristics of the approach

In our approach, a site specifies access constraints separately from mobile programs, resources, and
other class definitions. Further, the access constraint enforcement mechanism is not part of either the
Java runtime system or the compiler. This impacts how access control code is managed and enforced
at a site.

• Both access constraints and resource definitions can be modified independently. This makes it
easy for a site to specify different access constraints for different mobile programs for the same

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

FINE-GRAINED ACCESS CONTROL FOR JAVA PROGRAMS 1421

resource. For instance, a site may specify that mobile programP can accessR under condition
Bp whereas mobile programQ can accessR under conditionBq .

• The same set of access constraints can be applied to different resources without requiring one
to copy it from one resource to another. For example, if a single access constraintB applies to
multiple resources, it can be defined once and used for all resources.

• An important advantage of the separation is that our approach can be used for enforcing security
on resources that were not designed with security in the first place. In other words, the security
component can be added to a resource after it has been designed and implemented. Thus, it
frees a library or resource designer from worrying about security concerns when designing and
implementing the library.

Despite these advantages, there are several limitations of our approach.

Static

This approach is static. In order to dynamically change policies, one must have the ability to modify
class definitions while they are running. We are currently working on an approach using dynamic
classes [25]. Dynamic classes allows one to redefine a Java class at runtime. Using this infrastructure
we have begun building a dynamic version of this system.

Load time editing

Another limitation is that the approach may repeatedly edit local resource files, thereby incurring
unnecessary cost. The cost of editing can be eliminated by caching the edited classes. These edited
classes are then subsequently loaded, eliminating the cost of additional binary editing.

History based access control

We provide a limited mechanism for doing history based access control [26]. Implementing such
policies requires low level code manipulation by the policy writer. For example, in order to write a
policy that states that a program can access either the file system or the network, the user must create
a security state object which can then be used to create constraints for both resources. One solution
might be to create common security state objects that can be plugged into a security policy.

Resolving policy conflicts

Previously, we described theenable policy statement. A policy such asenable Fonts 7→ File
allows theFonts class to access theFile class regardless of what other methods are on the stack.
This option introduces the possibility of policy conflicts.

A policy conflict would occur if the following two policies were encountered:

(1) deny 7→ File
(2) enable R1 7→ File

We resolve such conflicts by enforcing that allenable statements take precedence. Thus, in the above
scenarioR1 would always be able to accessFile.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

1422 R. PANDEY AND B. HASHII

In addition, the inheritance model forenable reflects the inheritance model fordeny. Enabling a
class also enables all of its subclasses.

Reflection attacks

Reflection can be used to defeat some security mechanisms that rely on namespace partitioning [20].
This type of attack assumes that interposition code takes the form of proxy or wrapper classes that hide
the protected class. A malicious applet can use reflection to discover the actual name of the protected
class and invoke its methods manually, thus bypassing the proxy. Our system is immune to this sort of
attack, since there are no proxy classes. Interposition code is placed directly in the protected method,
and cannot be circumvented.

Performance analysis

In this section, we describe the performance behavior of the access constraint enforcement mechanism.
Specifically, we analyze the following:

• what are the time and space overheads associated with our approach?
• how does our approach perform with respect to the Java runtime system’s approach for enforcing

access control?

We performed our experiments on a 266 MHz Pentium II running Red Hat Linux 5.0. The results show
that both the time and space overheads of the approach are moderate. Further, the approach performs
better than the Java runtime system in certain cases.

Overhead measurements

We measured both the time and space costs of modifying resources.
There are four factors that affect the execution time associated with access constraint check code

generation and editing:

• the cost associated with reading a method;
• the number of access constraints;
• the types of constraints; and
• the number of occurrences of restricted methods in a program.

Our measurements do not consider the cost of reading class files from the disk since the runtime system
must perform this operation anyway.

In the first experiment, we looked at how the size of the method being modified affects the cost of
editing. In this experiment, only a single method invocation must be wrapped. The cost of editing here
is minimally affected by the size of the method. The cost varied between 0.08 and 0.16 seconds for
methods ranging from zero to 3200 instructions. In the second experiment, we looked at how the cost
of editing changes when the number of method calls that needs to be wrapped changes. We found the
cost to be proportional to the number of methods that are wrapped.

We have also calculated the increase in size caused by adding code to class definitions. While the
amount of code that is added to a class is independent of the size of the class, it depends on the

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

FINE-GRAINED ACCESS CONTROL FOR JAVA PROGRAMS 1423

class SecState {
public SecState() {count = 0; }
public static int check()

{ count++; return count; }
private int count;

}
add SecState SecurityState to R
deny 7→ R.f()V when

SecState.check() > 1000000

(a) Security object. (b) Control access constraints.

Figure 7. The binary editing approach.

class newSecMan
extends SecurityManager {
public newSecMan() {count = 0; }
public void checkf()

throws SecurityException {
count++;
if (count > 1000000)

throw new SecurityException();
}
int count;

}

class R {
public void f() {

newSecMan security;
security =

System.getSecurityManager();
if (security != null)

security.checkf();
}

}

(a) Security Manager. (b) Resource definition.

Figure 8. The Java Runtime System-based approach.

number of method invocations that need to be wrapped and the complexity of the boolean portion
of the constraint. For one wrapper, the minimum additional size (for atrue boolean constraint), is
56 bytes. For two simple boolean expressions, it is about 206 bytes.

Performance comparison

We now compare the performance behavior of our approach with the runtime system approach, as
implemented in the JDK 1.1.3.

For this experiment we created a small program to test the performance of implementing security
checks around one method invocation. Since the actual amount of work a particular site must perform
depends on both the complexity of the access control policy and the number of restricted method
invocations in a program, implementing a single policy statement once forms a good basis for
comparison. We based our comparisons on the access control policy and classes from Example 3.
The complete code for our approach is shown in Figure7. We implemented the same policy using
Java’s security manager as shown in Figure8. The test program calls the constrained method between

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

1424 R. PANDEY AND B. HASHII

0

0.5

1

1.5

2

2.5

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

tim
e

in
 s

ec

number of function calls

binary editing
security manager

Figure 9. Comparison of execution times with a policy.

0

0.5

1

1.5

2

2.5

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

tim
e

in
 s

ec

number of function calls

binary editing
security manager

Figure 10. Comparison of execution times without a policy.

zero and 1 000 000 times. The access policy is that the method cannot be called more than 1 000 000
times.

Figure9 shows the execution times of our approach and Java’s runtime system approach. In our
approach, there is an initial overhead of about 0.08 seconds for code editing, which does not occur in
the Java runtime system. However, after about 100 000 method calls, our approach performs better than
the Java runtime system. This is because our approach inlines the access control check code, whereas
in case of the Java runtime system approach, each access constraint check involves making two method

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

FINE-GRAINED ACCESS CONTROL FOR JAVA PROGRAMS 1425

calls: one to the system, to get the security manager, and another to the security manager itself. We can
reduce our cost even further by pre-editing the methods if we know that only a single access constraint
will be applied to the method, as is the case in the Java runtime system approach. Our approach, in this
case, will then always outperform the Java runtime system approach.

In the second experiment, we ran the same program with no policy implemented. As shown in
Figure10, the Java runtime system is always less efficient that our approach. This is because in the Java
runtime system approach, a method must always call the runtime system to check if there is a security
manager installed, incurring the overhead of this call. Our approach does not incur any overhead since
it does not add any code to methods that do not need to be constrained.

RELATED WORK

In this section, we look at techniques that provide resource level access control. Much of the work
on mobile program security has dealt with supporting different levels of security for Java programs.
Therefore, we first consider Java’s security model and various extensions to the model. We then turn to
Safe-Tcl, an interpreter based security model, and Proof Carrying Code, a language based approach.
Finally, we discuss other policy languages.

Java

Sun’s initial security model [12,22,27] for Java implements access control policies using a security
manager. An access control policy is created by subclassing theSecurityManager class and setting
this as the system’s security manager. A site then ensures that all protectable resources make an
explicit call to the security manager to check if access is allowed. If the check is not allowed, the
security manager throws a security exception. Otherwise, the control returns to the calling method.
This decision is based on whether the code is trusted, i.e. from the local file system, or untrusted, i.e.
an applet downloaded from the net.

The primary difference between our approach and this approach is that the JVM specifies policies
in a procedural form. This allows the use of the full range of Java’s language to specify any type of
policy. In our approach policies are specified in a declarative form. This allows for easier expression and
analysis of policies. We also allow policies to include procedural aspects with the security state object.

However, the extensibility of the security manager is limited. Suppose there are other services that
the system is providing which needs to be restricted. While it is possible to add methods to a subclass
of theSecurityManager class that will do the necessary checks, adding the code to call these checks
might not be easy, especially if the programmer did not design these services to do so. This problem
is further exacerbated if the software is proprietary code provided by a third party. In contrast, our
approach allows us to add security information to mobile programs that might not have been designed
with security in mind. Further, the security models can be customized on the basis of program, security
and runtime states, and method parameters.

The approach taken by Islamet al. [28] extends the Java security model to implement a domain-
based access model. In this model, Java programs are given an unforgeableSecurityToken used to
identify their domain. AnAppletSecurity object plays the role of the Security Manager. It uses the
SecurityToken of the applet to determine the capabilities of that applet, throwing a security exception

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

1426 R. PANDEY AND B. HASHII

if the needed capability is not there. Other capability systems have been proposed by JavaSoft, Electric
Communities, and Hagimont and Ismail [29]. Similarly, Nagaratnam and Byrne [30] provide a more
flexible mechanism for controlling accesses to resources. Our approach differs from these works in
that we propose a framework for implementing various security models and policies, including the
ones implemented in [28] and [30].

Sun redesigned their security model [13] in order to provide the security infrastructure for
supporting fine-grained access control and configurable security policies. The new model augments
the SecurityManager with an AccessController that checks if mobile programs have permission
to access specific resources. Permissions are stated in a policy language that allows users to define
protection domains based on what URL the mobile programs came from and on who has signed them.
Each protection domain is associated with a set of actions that they are allowed to do. Unfortunately,
for old resources to take advantage of the new model, these resources must be re-implemented.

The J-Kernel project [31] extends the JVM security model by implementing multiple protection
domains within a single Java virtual machine. It provides access to resources by passing capabilities
for them to a system-wide repository. Domains can then look up capabilities from this repository.
Capabilities are implemented as wrappers which provide the bookkeeping associated with changing
protection domains.

Type hiding [32] modifies the dynamic linking process in Java to hide or replace classes seen by
an applet. It allows a class to be replaced by a proxy class that checks the arguments of the invoked
method and conditionally throws an exception or call their original methods.

Naccio [33] provides a framework for specifying resource hooks, state maintenance code, and
safety policies. State maintenance and access checks are performed by adding wrappers. Programs
are transformed to use these wrappers instead of the original library code.

Grimm and Bershad [34] describe another access control mechanism consisting of an enforcement
manager and a security policy manager. The system is divided into protection domains. The mechanism
examines the system and redirects invocations to access control checks. The security model is based
on DTE.

Interpreter-based approaches

Safe-Tcl [35–37] requires at least two interpreters: a regular (or master) for trusted code and a limited
(or safe) one for untrusted code. The designers of Safe-Tcl classified a set of instructions as being
unsafe and then disabled those instructions in the safe interpreter. When untrusted code needs to
access a system resource, the safe interpreter traps into the master one. The regular interpreter then
decides whether or not to allow the access. A security policy is specified by aliasing the disabled
instructions in the safe interpreter to procedures in the master interpreter. These procedures can then
check arguments and, if the security policy allows, call the masked instruction in the master interpreter.
Furthermore, Safe-Tcl allows a program to request a policy which the interpreter can grant to the
program as appropriate.

Language-based approach

The approach taken in Proof-Carrying Code (PCC) [14,38] is to associate a site specific security policy
with a program by constructing a compiler that takes user programs and site specific policies and

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

FINE-GRAINED ACCESS CONTROL FOR JAVA PROGRAMS 1427

generates both the binary code and proof of the program’s safety with respect to the specified policies.
After an external program is migrated for execution at a remote site, the receiving site validates the
proof within the context of the site specific safety policy. One advantage of this approach is that it is
tamper proof. If either the program or the proof has been modified in transit, then there will either be
a validation error, or the resulting PCC binary will still validate the policy. Also, since PCC makes the
decision on whether a program is secure on properties of the code rather than properties of the code’s
origin, cryptography is not needed. Further, PCC proof checks are similar to type checkers. They are
simple to implement, easy to trust, and very efficient. Unfortunately, this approach is not practical
for enforcing host dependent policies. In this case, the host must communicate its policy to the site
manufacturing the program and the manufacturing site must create separate proofs for each host. This
is especially severe for mobile programs which may visit many different sites each with a different
security policy.

Security policy languages

The area of security policy languages has also focused on mechanisms for specifying and enforcing
security. Security policy languages have been considered as the basis for verifying designs of secure
systems. Various considerations have been given to policy languages for doing general enforcement.

Access control matrices (ACMs) [11] are a traditional means for specifying what is and is not
allowed on a system. With ACMs, a two-dimensional matrix is given with the active entities, called
subjects, in the rows and all the entities, or objects, in the columns. A list of access rights that a subject
has over an object is given in the corresponding matrix cell. The language described in this paper can
be used to describe an access control matrix, as well as the conditional state transitions described by
Harrisonet al. [9].

Miller and Baldwin [10] describe a method of access control based on boolean expression evaluation.
The idea is that each subject and object is given a set of attributes. In addition, there is also a set of rules
which link a subject, an object, and an action. These rules can be based on any number of attributes.
Since these attributes can be anything, including security level, group membership or time of day, it
can be used to implement most security policies. Our approach is similar in that we capture the various
attributes in terms of Boolean expressions.

Goguen and Meseguer [39] use an algebraic specification approach to specify security policies. Their
particular approach expresses security policies as a set of non-interference assertions about a system.
Cuppens, Saurel, and Cholvy [40,41] use a form of deontic logic to express policies. In addition to
specifying what actions a subject is permitted or forbidden to perform, it also allows statements that
say what actions a subject is obliged to perform. They use deontic logic to find consistency problems
between several policies. These policy languages are much more expressive than the one proposed
in this paper. We plan to close this gap in the future. Our initial focus has been to develop a simple
language for access control which can be implemented easily and efficiently.

The DIAMOND [17] security model provides an alternative model for inheriting security policies
in object-oriented systems. This extends the MLS security model described by Denning [42] to object-
oriented databases. The innovation is that security levels, and hence policies, are not inherited from a
class’s superclass. Instead, they are derived from its instances. This allows a particular instance of a
subclass to have a higher security level than its superclass.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

1428 R. PANDEY AND B. HASHII

CONCLUSIONS

We have described a mechanism for implementing general security policies on mobile programs. There
are two components of our approach. The first is a simple declarative access constraint language that
allows a site to restrict accesses to the objects and methods of the system. The declarative nature
of the language makes it easy to specify policies while still allowing a hook to express procedural
policies if necessary. The second is a set of tools that enforce the specified constraints by editing mobile
programs and resources. Our approach’s appeal is that a site can specify access constraints separately
from both mobile program definitions and resource definitions. This separation of concerns has a
number of benefits. Both access constraints and resource definitions can be modified independently.
Sites can easily specify different access constraints for different mobile programs for the same resource.
Finally, our approach can enforce security on systems that were not originally designed with security
in mind.

Our future work first involves generalizing our access control model to implement well-known
security policies and constraints. We are developing mechanisms for facilitating the process of building
security models using our approach. As part of our research in system software extensibility, we are
considering various approaches for integrating our technique within the existing operating system and
runtime system framework. Integration within the Java class loader is currently underway.

ACKNOWLEDGEMENTS

We thank Jeff Gragg and Raja Mukhopadhyay for help and support in implementing the system. We also thank
Fritz Barnes, Earl Barr, Matt Bishop, Prem Devanbu, David Evans, Karl Levitt, Scott Malabarba, Ron Olsson, and
the anonymous reviewers for their excellent comments and help in writing this paper.

This work is supported by the Defense Advanced Research Project Agency (DARPA) and Rome Laboratory,
Air Force Materiel Command, USAF, under agreement number F30602-97-1-0221. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the
Defense Advanced Research Project Agency (DARPA), Rome Laboratory, or the US Government.

REFERENCES

1. Arnold K, Gosling J.The Java Programming Language. Addison Wesley, 1996.
2. Stamos JW, Gifford DK. Remote evaluation.ACM Transactions on Programming Languages and Systems1990;

12(4):537–565.
3. Chess D, Grosof B, Harrison C, Levine D, Parris C, Tsudik G. Itinerant agents for mobile computing.IEEE Personal

Communications1995; 34–49.
4. Thorn T. Programming languages for mobile code.ACM Computing Surveys1997;29(3):213–239.
5. Chess D, Harrison C, Kershenbaum A. Mobile agents: Are they a good idea?Mobile Object Systems. Towards the

Programmable Internet. Second International Workshop, MOS ’96, Linz, Austria, (Lecture Notes in Computer Science,
no. 1222) Vitek J, Tschudin C (eds.). Springer-Verlag, 1997; 25–47. http://www.research.ibm.com/massdist/mobag.ps.

6. Carr DF. Hostile applet sparks debate about java security issues.
http://www.internetworld.com/print/1998/05/11/webdev/19980511-hostile.html [May 1998].

7. Williams N. Hostile applet sparks debate about Java security issues.
http://www.iks-jena.de/mitarb/lutz/security/activex.hip97.html [1997].

8. Coombs T, Coombs J, Brewer D.ActiveX Sourcebook: Build an ActiveX-Based Web Site. John Wiley & Sons, Inc., 1996.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

FINE-GRAINED ACCESS CONTROL FOR JAVA PROGRAMS 1429

9. Harrison MA, Ullman JD. Protection in operating systems.Communications of the ACM1976;19(8):461–471.
10. Miller DV, Baldwin RW. Access control by boolean expression evaluation.Fifth Annual Computer Security Applications

Conference, Tucson, AZ. IEEE Computer Society Press, 1990; 131–139.
11. Amoroso E.Fundamentals of Computer Security Technology. Prentice-Hall, 1994.
12. Fritzinger JS, Mueller M. Java Security. JavaSoft White Paper. http://www.javasoft.com/security/whitepaper.ps [1996].
13. Gong L, Mueller M, Prafullchandra H, Schemers R. Going beyond the sandbox: An overview of the new security

architecture in the Java Development Kit 1.2.Proceedings of the USENIX Symposium on Internet Technologies and
Systems, Monterey, CA, December 1997; 103–112.

14. Necula GC. Proof-carrying code.Proceedings of the 24th Annual Symposium on Principles of Programming Languages.
ACM SIGPLAN-SIGACT, January 1997; 106–119.

15. Morrisett G, Walker D, Crary K, Glew N. From System F to typed assembly language.25th ACM Symposium on Principles
of Programming Languages, San Diego, CA, January 1998; 85–97.

16. Woo TYC, Lam SS. Authorization in distributed systems: A formal approach.Proceedings of the 1992 IEEE Computer
Society Symposium on Research in Security and Privacy, 1992; 33–50.

17. Null LM, Wong J. The DIAMOND security policy for object-oriented databases.1992 ACM Computer Science Conference.
Communications Proceedings, Kansas City, MO, 1992; 49–56.

18. Jajodia S, Pierangela S, Subrahmanian VS. A logical language for expressing authorizations.Proceedings of the 1997
Symposium on Security and Privacy, 1997; 31–42.

19. Meyer J, Downing T.Java Virtual Machine. O’Reilly, 1997.
20. Wallach DS, Balfanz D, Dean D, Felten EW. Extensible security architectures for Java.Proceedings of the 16th ACM

Symposium on Operating Systems Principles, 31(5) Operating System Review, Saint Malo, France, October 1997; 116–
128.

21. Saltzer JH, Schroeder MD. The protection of information in computer systems.Proceedings of the IEEE1975;63(9):1278–
1308.

22. Gong L. Java security: Present and near future.IEEE Micro 1997; 14–19.
23. Liang S, Brach G. Dynamic class loading in the Java Virtual Machine.Object-Oriented Programming Systems, Languages

and Applications Conference, Vancouver (Special Issue of SIGPLAN Notices, no. 10), Chambers C (ed.). ACM, 1998;
36–44.

24. Wallach DS, Felton EW. Understanding Java stack inspection.1998 IEEE Symposium on Security and Privacy, Oakland,
CA, USA. IEEE Computer Society, 1998; 52–63.

25. Malabarba S, Pandey R, Gragg J, Barr E, Barnes F. Runtime support for type-safe dynamic Java classes.Proceedings of
the European Conference on Object-Oriented Programming, Sophia Antipolis and Cannes, France. Springer-Verlag, 2000.
To appear. http://pdclab.cs.ucdavis.edu.

26. Edjlali G, Acharya A, Chaudhary V. History-based access control for mobile code.Proceedings of the 5th ACM Conference
on Computer and Communications Security, San Francisco, CA, November 1998; 38–48.

27. JavaSoft.JDK 1.1.1 Documentation.
28. Islam N, Anand R, Jaeger T, Rao JR. A flexible security model for using internet content.IEEE Software1997;14(5):52–

59.
29. Hagimont D, Ismail L. A protection scheme for mobile agents on Java.Mobicom ’97, Budapest, Hungary. ACM, 1997;

215–222.
30. Nagaratnam N, Byrne SB. Resource access control for an internet user agent.Third USENIX Conference on Object-

Oriented Technologies and Systems. USENIX, June 1997.
31. Hawblitzel C, Chang C, Czajkowski G, Hu D, von Eicken T. Implementing multiple protection domains in Java.Technical

Report 97-1160, Cornell University, 1997.
32. Wallach DS, Balfanz D, Dean D, Felten EW. Extensible security architecture for Java.Technical Report, Department of

Computer Science, Princeton University, 1997.
33. Evans D, Twyman A. Flexible policy-directed code safety.Proceedings of the 1999 IEEE Symposium on Security and

Privacy, Oakland, CA, USA, May 1999; 32–45.
34. Grimm R, Bershad BN. Providing policy-neutral and transparent access control in extensible systems.Technical Report

UW-CSE-98-02-02, Department of Computer Science and Engineering, University of Washington, 1998.
35. Kotz D, Gray R, Nog S, Rus D, Chawla S, Cybenko G. Agent TCL: Targeting the needs of mobile computers.IEEE Internet

Computing1997;1(4):58–67.
36. Ousterhout JK, Levy JY, Welch BB. The Safe-Tcl security model.Technical Report TR-97-60, Sun Microsystem

Laboratories, 1997. http://research.sun.com/technical-reports/1997/abstract-60.html.
37. Gritzalis S, Aggelis G. Security issues surrounding programming languages for mobile code: Java vs. Safe-Tcl.Operating

Systems Review1998;32(2):16–32.
38. Necula GC, Lee P. Safe kernel extensions without run-time checking.Second Symposium on Operating System Design and

Implementations. Usenix, October 1996; 229–243.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

1430 R. PANDEY AND B. HASHII

39. Goguen JA, Meseguer J. Security policies and security models.Proceedings of the 1982 Symposium on Security and
Privacy, Oakland, CA, USA, April 1982; 11–20.

40. Cuppens F, Saurel C. Specifying a security policy: A case study.9th IEEE Computer Security Foundations Workshop,
Kenmare, Ireland. IEEE Computer Society Press, 1996; 123–134.

41. Cholvy L, Cuppens F. Analyzing consistency of security policies.1997 IEEE Symposium on Security and Privacy, Oakland,
CA, 1997; 103–112.

42. Denning D, Denning PJ. Certification of programs for secure information flow.Communcations of the ACM1977;
20(7):504–513.

Copyright 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Exper.2000;12:1405–1430

	INTRODUCTION
	ACCESS CONTROL MODEL
	Resource model
	Access constraint specification language

	Access constraints
	Semantics
	Examples
	Inheritance of access constraints
	ACCESS CONSTRAINT ENFORCEMENT
	Type extraction
	Code generation and binary editing
	Implementation details
	Implementation of global constraints

	Implementation of selective access constraints
	Implementation of inheritance model
	DISCUSSION
	Characteristics of the approach
	Static
	Load time editing
	History based access control
	Resolving policy conflicts
	Reflection attacks

	Performance analysis
	Overhead measurements
	Performance comparison

	RELATED WORK
	Java
	Interpreter-based approaches
	Language-based approach
	Security policy languages

	CONCLUSIONS

