
A Compositional Approach to Concurrent Object-Oriented Programming

Raju Pandey J. C. Browne
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
fraju, browneg@cs.utexas.edu

Abstract

This paper presents a model of concurrent object-
oriented programming in which specification of computa-
tional behavior is separated from specification of interac-
tion behavior of methods. It will be shown that this compo-
sitional approach to concurrent programming avoids some
of the conceptual difficulties that have plagued the inte-
gration of concurrency and object-oriented models of pro-
grams. The compositional approach to concurrent object-
oriented programming leads to declarative and incremen-
tal specification of interaction behavior and thus, to ob-
ject/method definitions that can be readily adapted to dif-
ferent parallel execution environments. The approach sup-
ports inheritance of both method and synchronization spec-
ifications. It will be shown that compositional program-
ming avoids the so-called “inheritance anomaly.”

1 Introduction

Object-orientation [25] and concurrency are perhaps the
two most significant current topics in programming lan-
guage research. Many programming languages that inte-
grate concurrency and object-orientation have been pro-
posed. Some of these are reviewed in section 4. It does
not appear, however, that there has been a fully consistent
and coherent integration of the two. An example of the dif-
ficulty is the problem arising out of the interplay between
inheritance and interaction among concurrent methods, the
so-called inheritance anomaly [16]. An opinion [29] has
been expressed that the inheritance anomaly is very dif-
ficult. Indeed, many concurrent object-oriented program-
ming languages either limit the support for inheritance or
do not support inheritance at all.

Also, many previous approaches integrating concur-
rency with object-orientation have been based on models
that extend sequential semantics by the addition of pro-
cedural constructs for concurrent thread creation and syn-
chronization. These models thus embed procedural rep-

resentation of interactions among method invocations in
specifications for computations. It appears to us that a suc-
cessful integration of object-orientation and concurrency
will have to be based on a model that separates specifica-
tion of computation from specification of interaction.

This paper presents a compositional approach to concur-
rent object-oriented programming. The model given here
is an extension and application of the C-YES model [20] to
object-oriented programming. The C-YES model provides
a general framework for defining the concurrent composi-
tion of programs. It has two major features: i) the computa-
tional and interaction behavior specifications of programs
are completely separated, and ii) interactions among pro-
grams are specified by algebraic expressions over events,
i.e., over specific occurrences of operations. An important
property of the interaction specification mechanism is com-
positionality in that it allows one to divide the task of defin-
ing global interaction among a set of programs into many
local interactions, develop specifications for the local inter-
actions separately, and combine them.

A concurrent object in our model is a composition of two
separate entities: methods, which contain specifications
of their computational behaviors, and event ordering con-
straint expressions, which define interactions among the
methods. The semantics of the composition associates a
concurrent program with the object. The concurrent pro-
gram determines the manner in which methods are accepted
and scheduled for execution. Also, inter-object concur-
rency and interaction are represented by a method invoca-
tion mechanism which subsumes traditional synchronous
and asynchronous method invocation mechanisms.

Interactions among methods add an extra dimension to
the specifications of classes. In this paper, we examine
the manner in which changes in the composition of objects
of a concurrent class (due to additions and changes in its
methods) affect the additional component. The focus here
is to support inheritance of interaction specifications, and
to minimize changes in interaction specifications if com-
plete reusability cannot be achieved. We show that event
ordering constraint expressions support inheritance of in-

In proceedings of the "International Conference on Computer Languages 1994"



teraction expressions by allowing one to i) incrementally
add interactions that arise due to the additions of new meth-
ods, and ii) extend interactions among existing methods in-
crementally. Also, changes in interactions are localized to
event ordering constraint expressions that involve changed
methods and other interacting methods. Since specifica-
tions of computational and interaction behaviors are com-
pletely separated, the inheritance anomaly ceases to be a
problem in our model. We analyze the problem in detail and
discuss how they are resolved in our model.

We also examine the nature of interaction behavior spec-
ifications in class definitions and method invocations. We
analyze the manner in which definitions of interaction spec-
ifications affect the reusability of class and interaction spec-
ifications. We observe that interaction behaviors of method
invocations can be decomposed into two kinds of behav-
iors: i) universal interaction behaviors which represent
those interaction behaviors that are common across all pos-
sible invocations of a method, and ii) specialized interac-
tion behaviors which are specific to method invocations.
We show that such a partitioning of interaction behaviors
supports the design of concurrent classes that can be shared
across many applications. We also show that event order-
ing constraint expressions can be used to specify such in-
cremental specifications of interactions.

The balance of the paper is organized as follows: In sec-
tion 2, we present a brief description of the composition
model that forms the basis of our approach to concurrent
object-oriented programming. Section 3 contains the de-
tails of our approach. It is divided into four parts: first, we
present a compositional model of concurrent objects and
define the semantics associated with the composition. We
also present a method invocation mechanism for specify-
ing interactions among independent objects. Next, we ex-
amine the manner in which changes in the composition of
objects affect the interaction specification component. We
then present the notion of universal and specialized interac-
tion behaviors. Finally, we analyze the inheritance anomaly
and discuss its resolution in our approach. In section 4, we
present a survey of related research. We make concluding
remarks in section 5.

2 The C-YES model

In most existing programming languages, a concurrent
program is defined by specifying a set of component pro-
grams. Specification of each component program contains
specification of operations that determine its computational
behavior, as well as synchronization operations that deter-
mine its interaction behavior. The concurrent programming
methodology is not modular since component programs
must be constructed with other components in view. Also,

it is difficult to modify and extend a concurrent program,
since changes in the composition may require changes in
its components.

The C-YES model [20] takes an alternate approach to
composing a concurrent program from component pro-
grams. It is based on the observation that interactions
among programs arise only when programs are composed
in parallel, and hence should be defined when such a com-
position is defined. A concurrent program is, thus, com-
posed from two separate entities: i) specifications of com-
ponents defining computational behaviors, and ii) specifi-
cations of interaction behaviors. Formally, the constrained
concurrent composition

C = (C1 k C2 k : : : k Cn) where �c (1)

specifies a programC such that during C’s execution, com-
ponentsC1; C2; : : : ; andCn execute in parallel. Programs
C1; C2; : : : ; and Cn contain only specifications of their
computational behaviors. Interactions among the programs
are defined separately by an expression �c.

2.1 Interaction behavior specification

Interaction among programs in the C-YES model is
specified by an algebraic expression, called event ordering
constraint expression. (We occasionally use the term in-
teraction expressions for event ordering constraint expres-
sions in this paper.) It is used to represent semantic depen-
dencies among events of programs by specifying execution
orderings — deterministic or nondeterministic — among
the events. An event is a specific occurrence of an operation
during a program execution. An event ordering constraint
expression is constructed from a set of primitive ordering
constraint expressions and a set of interaction composition
operators. A primitive ordering constraint expression rep-
resents interaction between two events, whereas the inter-
action composition operators are used to represent nonde-
terministic interactions as well as interactions among sets
of events.

The primitive event ordering constraint expression

p) (a
< b)

specifies a conditional ordering relationship between two
events a and b. The binary operator 
̂ is used to com-
bine relationships. For instance, expression ((a
< b) 
̂
(c
< d)) combines two ordering relationships, one be-
tween events a and b, and the other between events c and
d. The binary operator 
_ is used to model nondetermin-
istic relationships among events. For instance, expression
((a
< b) 
_ (b
< a)) specifies two ordering relationship,
one between a and b and the other between b and a. Either
of the two is a valid relationship between a and b. (Note



that this expression models mutual exclusion betweena and
b.) Operators forall and exists respectively are ex-
tensions of 
̂ and 
_ in that they allow one to define 
̂
and 
_ relationships among sets of events.

2.2 Program representation in C-YES model

In a concurrent environment where many programs are
executing in parallel, a program may perform certain op-
erations and, occasionally, interact with its environment at
certain points of executions, called interaction points. In
the C-YES model, such programs are represented using a
mechanism called interacting blocks. The notion of inter-
acting blocks extends the notion of blocks or functions of
sequential programming languages to admit the “interact-
ing” nature of concurrent programs. Interacting blocks are
used to represent both computational behavior as well as in-
teraction points of a program.

The interface of an interacting block m is
m(p1; : : : ; px; ip1; : : : ; ipy), where variables p1; p2; : : : ;
and px parameterize m’s computational behaviors, and
interaction parameters ip

1
; ip

2
; : : : ; and ip

y
capture those

execution points where m may interact with other pro-
grams. In addition to the specification of the computational
behavior, the implementation of m contains mappings
between the interaction parameters and interacting events
of m.

An interaction point is mapped to a unique event, since
events form the basis for specifying interactions in the
C-YES model. There are two ways in which the mapping
between interaction parameters and events can be specified.
In the first, the interaction points ofm are derived implicitly
from parameter variables p1; p2; : : : ; and px: all method
invocations on objects denoted by these variables are the
interaction points of m. Here, each parameter variable also
denotes a set of method invocations. We use this approach
for defining interaction points in this paper. In the other ap-
proach [20], the mappings between the interaction param-
eters and the events are specified by explicitly labeling in-
vocations of methods and/or compositions of methods.

3 A compositional approach

We now present a compositional approach to concur-
rent object-oriented programming. The approach here is to
model the behavior of an object as well as a collection of
objects as a composition of two separate entities, namely
specifications of computational and interaction behaviors.
This allows us to examine the manner in which components
of the composition are affected due to changes in the com-
position. We also analyze relationships among different
composition mechanisms in order to determine reusability

of both computational and interaction behavior specifica-
tions.

3.1 Concurrency and interaction among objects

Objects provide a natural basis for modeling entities of
applications. Such entities exist independently, and many
allow multiple activities to occur simultaneously. The no-
tion of concurrency, both within entities and among differ-
ent entities, exists naturally and can be modeled in object-
oriented programming languages through inter- and intra-
object concurrency. We use the concurrent composition
mechanism of the C-YES model to represent concurrency
and interaction both among and within objects.

3.1.1 Intra-object concurrency and interaction: In a
concurrent environment, many methods can be invoked on
an object in parallel. An object therefore must support an
execution environment where many invocations of meth-
ods execute in parallel and interact while accessing com-
mon data structures and resources. The execution environ-
ment determines the manner in which method invocations
are accepted and scheduled for execution. It can either be
defined explicitly as in Mediators [10], or be determined
implicitly from the nature of synchronization specification
mechanisms as well as the mechanisms used for the imple-
mentation of objects.

In our object model, the execution environment associ-
ated with an object is derived implicitly from the composi-
tion of the object. Objects of a class in our model are repre-
sented by the composition of two separate entities, namely
computation and interaction behavior specifications. The
semantics of the composition is specified in terms of a con-
current program. The concurrent program and the manner
in which interaction behavior specifications are evaluated
determine the behavior of the execution environment. For-
mally, let the tuple hM;�i define the composition of ob-
jects of a concurrent class C. Here, M is a set of meth-
ods m1; m2; : : : ; and mn, and � is a set of event ordering
constraint expressions �1; �2; : : : ; and �l. Methods in M
are based on interacting blocks (see section 2.2) and contain
specifications of only their computational behaviors and in-
teraction points. We use the term method event to denote a
specific invocation of a method.

Notation: Let the term (mi; j) denote the method event as-
sociated with the jth invocation of method mi.

The semantics associated with the program composition
is specified by defining a concurrent program which is de-
rived from the specification of the composition. Let sym-
bol P(O) denote the concurrent program associated with
an object O of C. The program structure of P(O) is spec-



ified by the following expression:

P(O) =

� 


k2f1:::1g
m
j
2M

(mj ; k)

�
where

�

̂
�k2�

�k

�
(2)

The above expression specifies that all invocations of dif-
ferent methods of O execute in parallel, except for those
whose execution orderings must satisfy all ordering con-
straints imposed by the expressions in �. Unlike most ap-
proaches, where concurrency is added to a sequential ob-
ject, our approach is to start with a model where concur-
rency is a fundamental aspect of the model. The reason is
that the composition of an object can be viewed in terms of
defining concurrency and interaction relationships among
invocations of methods of the object. In the absence of any
knowledge about the application domain, concurrency is
the fundamental relationship among method events since it
captures semantic independence among them. Interactions,
on the other hand, represent semantic dependencies (such
as data dependency, data consistency, and priority) among
method events, and hence are specified explicitly.

In addition to the implementation mechanisms that are
used to create and schedule different execution threads for
method events, the behavior of the execution environment
of an object is also driven by the manner in which event
ordering constraint expressions are evaluated. We evalu-
ate different event ordering constraint expressions by con-
structing boolean interaction constraints, and by ensuring
that the interaction constraints remain true during the life
time of an object. Let B(�) denote the interaction con-
straint associated with event ordering constraint expression
�. The event ordering constraint expressions are trans-
formed into corresponding interaction constraints in the
following manner:

For a primitive event ordering constraint expression, the
boolean constraint expression is:

B(p) (a
< b)) = p) (a 7! b) (3)

In the above, (a 7! b) is true if event a is executed before
event b. This specifies that if boolean condition p is true,
there is an execution ordering relationship between method
events a and b. However, if p is false, there are no order-
ing relationships between a and b. Operationally, the exe-
cution environment keeps the interaction constraint invari-
ant by ensuring that if p is true, event b is delayed until a
has terminated.

For interaction expressions that include the interaction
composition operators, the corresponding interaction con-
straints are:

B(�1 
̂ �2) = (B(�1) ^ B(�2)) (4)

B(�1 
_ �2) = (B(�1) _ B(�2)) (5)

B(forall a in A:�) = h8a : a 2 A : B(�)i(6)

B(exists a in A:�) = h9a : a 2 A : B(�)i(7)

The interpretation of expressions that define relationships
among infinite sets is done incrementally by evaluating the
boolean interaction constraint incrementally, and by ensur-
ing that the interaction constraint remains true over the life-
time of an object.

Our approach to defining interaction behavior of meth-
ods is also compositional in that the representation of inter-
action behaviors is composed from a set of event ordering
constraint expressions, each representing certain semantic
dependencies. The power of event ordering constraint ex-
pressions stems from the ability to decompose interaction
behaviors of methods into a set of local interaction behav-
iors. The local interaction behaviors can each be repre-
sented by event ordering constraint expressions, and then
combined with suitable interaction composition operators
to represent the global interaction behavior. One of the
implications of the modularity property of event ordering
constraint expressions is that it allows one to change inter-
action behavior of methods by changing only the relevant
and local interaction expression. Also, event ordering con-
straint expressions support reusability of interaction behav-
ior specifications since interaction expressions can be de-
rived from expressions that are predefined, or are defined in
superclasses and are inherited (see section 3.2). Below we
present a number of examples that underline our composi-
tion mechanism and the properties of the interaction speci-
fication mechanism:

Example 3.1 (Mutual exclusion) Assume that m1 and
m2 are methods. The following interaction expression rep-
resents the synchronization constraint that invocations of
m1 and m2 be mutually exclusive:

MutualExclusion(m1;m2) =
forall e1 in m1:

forall e2 in m2:
(e1 
< e2)
_ (e2 
< e1)

Here, terms m1 and m2 denote sets of events, each con-
taining all possible invocations of the method. Variables e1
and e2 iterate over the two sets in order to specify interac-
tion relationships among the events of the sets.

Example 3.2 (Concurrent object composition) Let the
tuple hM;�i define a class queue. Here, M = fput,
get g. The interaction behaviors of the methods are spec-
ified by the following constraints: i) put and get invoca-
tions are sequential, ii) put events are delayed if the queue
is full, iii) get is delayed if the queue is empty.
a) The computational behaviors of put and get, and the
associated data structures are shown below:



char buffer[SIZE];
int first, last;
put(char data)
f

buffer[last] = data;
last = (last + 1) mod SIZE;

g
char get()
f

char val;
val = buffer[first];
first = (first + 1) mod SIZE;
return(val);

g

b) � = fSerialize(put), Serialize(get),
SyncPut(put), SyncGet(get) g. Let met.next
define a set of events such that met.next contains all in-
vocations of method met that i) are currently (at the time
met.next is evaluated) executing or waiting, and ii) will
be invoked in future. Note that met.next is time depen-
dent, and may change over time. We define two generic
interaction expressionsWaitUntil andSerialize be-
low:

WaitUntil(m1, m2, cond) =
forall e1 in m1:

forall e2 in m2:next:
cond) (e2 
< e1)

Serialize(met) =
forall i in met:

forall j in met:
(i < j)) ((met; i)
< (met; j))

The interaction expression WaitUntil defines inter-
action between events of m1 and m2 such that an invoca-
tion of method m1 is delayed with respect to events of m2

until the boolean condition cond becomes false. Expres-
sion Serialize serializes the events of met in the order
they arrive. Expressions SyncPut and SyncPut are de-
fined in terms of WaitUntil:

SyncPut(put) = WaitUntil(put, get, Full)
SyncGet(put) = WaitUntil(get, put, Empty)

In the above,Full andEmpty are boolean conditions that
respectively determine if the buffer is full or empty. The
interaction behavior of get and put events is specified by
the following interaction expression:

Serialize(put) 
̂ Serialize(get) 
̂
SyncPut(put) 
̂ SyncGet(get)

Note that there are no serialization assumptions regarding
the invocations of a method. All behaviors of programs that

may affect behaviors of other programs are represented by
a single mechanism, namely event ordering constraint ex-
pressions.

Example 3.3 (Simple priority) Let read and write be
two methods. The interaction behavior of the methods is
specified by the following constraints: i)read and write
events are mutually exclusive, ii) only one write event
can execute at a time, and iii) if read and write events
are waiting, the read events have higher priority over the
write events. The three synchronization constraints are
represented by three separate interaction expressions:

1. MutualExclusion(read, write)
2. MutualExclusion(write, write)
3. Priority(read.wait, write.wait)

Expression MutualExclusion is defined in exam-
ple 3.1. Expression Priority is defined below:

Priority(m1;m2) =
forall a in m1:

forall b in m2:
(a
< b)

The event ordering constraint expression specifying the in-
teraction behavior of the two methods is:

MutualExclusion(read, write) 
̂
MutualExclusion(write, write) 
̂
Priority(read.wait, write.wait)

In the above, read.wait and write.wait denote sets
of events, containing waiting read and write events re-
spectively. If the interaction behavior of read and write
is changed such that the waiting write events have higher
priority than the waiting read events, only the interaction
expressions associated with the priority constraint must be
changed in the following way:

Priority(write.wait, read.wait)

Example 3.4 (Enable command representation) Many
programming languages use an enable command to spec-
ify interaction behaviors of methods. They associate a
guard, called the activation condition, with every method
of a class. Guards determine the interaction behavior of a
method in the following way: an invocation of a method a
can execute if its activation condition, say p, is true. How-
ever, if p is not true, the invocation is delayed until p be-
comes true.

The representation of the enable command in terms of an
event ordering constraint expression is specified by exam-
ining the interaction relationship between an occurrence,
e1, of method a and an occurrence, say e2, of set �(a; e1).
Set �(a; e1) contains all events that i) are currently (at the



time of occurrence of e1) executing or waiting, and ii) will
be invoked in future on methods of set M � a. Note that
set �(a; e1) depends on both a and e1. If p is false, e1 is
delayed with respect to e2. However, if p is true, there are
no relationships among the two events; they can execute in
parallel. The following event ordering constraint expres-
sion represent an enable command:

enable(p, a) =
forall e1 in a:

forall e2 in �(a; e1):
(:p)) (e2 
< e1)

As is evident from the above examples, interaction ex-
pressions are derived over sets of events such as m1,
read.waiting, and �(a; e1). An object-oriented pro-
gramming language may define these sets as a part of the
language in order to allow a programmer to specify interac-
tion expressions that include these sets. In addition, it may
allow one to construct sets of events from existing sets. We
are currently looking at the nature of these sets and mech-
anisms for extending them. Note that certain sets of events
may possibly contain infinite events. An example is the set
associated with a method name. It contains all possible in-
vocations of the method. Evaluation of interaction expres-
sions that involve such sets can be done incrementally by
ensuring that the interaction constraint associated with the
interaction expression remains true during the occurrence
of the events of the sets.

3.1.2 Inter-Object concurrency and interaction: The
notion of independence among objects captures concur-
rency among the program structures associated with ob-
jects. Interactions among these programs occur through
method invocations. We define a method invocation mech-
anism for representing interactions among concurrent ob-
jects. The method invocation expression

k (O2:m2(p1; p2; : : : pn)) where � (8)

specifies the mechanism for invoking methodm2 on an ob-
ject O2 in parallel. The event ordering constraint expres-
sion � is used to represent interaction between calling and
called methods. Expression 8 derives its form and seman-
tics from the constrainted concurrent composition operator.
Assume that method m1 includes expression 8 in its spec-
ification. An execution of the invocation expression dur-
ing an occurrence of m1, say (m1; j), maps m2 to an oc-
currence, say (m2; k), in object O2. Events of (m1; j) and
(m2; k) execute in parallel, except for those whose execu-
tions must satisfy the ordering constraints in �. An exten-
sion of the above method invocation mechanism is speci-
fied by the following expression

k O1:m1 k O2:m2 k : : : k On:mn where � (9)

Here, O1:m1; O2:m2 � � � and On:mn are invoked in par-
allel. Interaction among the calling and called methods is
specified by �.

The above invocation mechanism is general in that it
subsumes traditional synchronous and future-based asyn-
chronous method invocation mechanisms. For instance, in
synchronous method invocation, the interaction between a
calling method and a called method can be defined by speci-
fying an interaction expression that orders the executions of
the two methods. Similarly, in future-based method invo-
cation, the interaction occurs between a read (in the calling
method) event and a write (in the called method) event on
a future variable. It is represented by the following event
ordering constraint expression:

� = (m2.var.write 
< m1.var.read)

Here, var is a future variable, and var.write and
var.read respectively denote write and read events over
var.

Interaction expression � in method invocation expres-
sions 8 and 9 can be used to specify interactions among any
kinds of operations on objects that methods share through
the parameters. Such expressions may specify complex
protocols among calling and called methods. Certain prop-
erties of the protocols can be verified by examining the na-
ture of the interaction expressions.

3.2 Inheritance of interaction expressions

In sequential object-oriented programming languages,
inheritance [26] provides a powerful mechanism for orga-
nizing classes in a generalization-specialization relation-
ship. In this hierarchy, classes near the top of the hier-
archy capture more general information than the ones be-
low. Such an organization of classes in a hierarchy provides
the ability to incrementally extend the behavior of super-
classes by inheriting information such as conceptual behav-
iors, data structures, and/or implementation mechanisms,
and by modifying or adding to the inherited behavior. In-
teraction behaviors of methods add an extra dimension to
class specifications. In this section, we examine the manner
in which this additional component can be inherited, mod-
ified, and extended.

Interactions among methods of a concurrent class rep-
resent semantic dependencies among them. As the concur-
rent class is extended in a subclass by defining more meth-
ods and/or by modifying existing methods, additional se-
mantic dependencies among the methods develop. Also
many semantic dependencies may need to be redefined.
The focus here is to support inheritance of interaction spec-
ifications, and to minimize changes in interaction specifi-
cations if complete reusability cannot be achieved. It can



be achieved if i) additional semantic dependencies due to
new methods can be incrementally added, ii) modifications
in the semantic dependencies due to the changes in meth-
ods can be localized, and iii) interaction behaviors of meth-
ods can be extended incrementally. We show that event or-
dering constraint expressions allow representations of in-
cremental extensions and localized changes in interaction
behaviors.

In a class C = hM;�i, each event ordering constraint
expression in � characterizes interaction among a set of
methods. The methods of the class can therefore be parti-
tioned into interaction groups, each characterized by an in-
teraction expression. Changes in interaction behavior due
to the changes in the composition of a class can therefore be
limited to changes and/or additions that are localized to the
interaction groups. We analyze these changes below for-
mally by examining possible interaction behavior changes
that can occur. We also examine their representation in our
model.

Let the tuple h�Mc;��ci extend class C = hMc;�ci
in order to define a subclass S. Here, �Mc and ��c re-
spectively denote sets of methods and interaction expres-
sions. Let �Mn and �Mm be two components of �M .
Set �Mn is a set of methods that are unique to S, and are
not defined in C. Methods in �Mm are defined in C, but
are modified in S. Set Mc � �Mm, therefore, contains
methods that are defined in C and are inherited in S with-
out any changes. We now examine the components, ��n

and ��m, of ��c, and the manner in which they arise.
Set ��n contains interaction expressions that repre-

sent new semantic dependencies among the methods of S.
These expressions represent the following interactions:

1. Interactions among the methods of Mc � �Mm:
These interactions specify additional relationships among
the methods of C that are inherited in S. They are rep-
resented by interaction expressions that impose additional
ordering constraints on the methods of Mc � �Mm. In-
teraction behaviors of methods can also be organized in a
hierarchy, where interaction behaviors can be made more
specific by defining additional ordering relationships. This
leads to the organization of class hierarchies where com-
mon and more general interaction expressions are captured
in more general classes. These interaction expressions can
then be inherited and extended in subclasses. This gives
rise to a class hierarchy where highly concurrent and non-
deterministic classes occur at the top of the hierarchy, while
serialized and deterministic classes occur at the bottom.

Consider the example of a class which defines two op-
erations put and get. A general class may specify that
put and get events are mutually exclusive (see exam-
ple 3.1). Different subclasses can be defined that extend
the highly nondeterministic interaction constraint to spec-

ify additional interaction constraints (such as priority and
single buffer access constraints). The mutual exclusion
constraint among the events of get and put is inherited
in the subclasses.

2. Interaction among the methods of �Mn: These de-
fine interactions among the newly added methods of S. In-
teraction expressions here characterize interaction groups
containing methods of set �Mn.

3. Interactions among the methods of�Mn and Mc�
�Mm: These arise among the newly added methods and
inherited methods of S. We present an example that shows
how such interactions arise:

Example 3.5 (Inheritance of interaction expressions)
Let ReadFirstQueue be a subclass of class queue (see
example 3.2). The subclass adds a methodgetlast to ac-
cess the last element of the queue. This method interacts
with method put, as it must wait for a put event to oc-
cur if the queue is empty. The interaction behavior of the
methods of the subclass is extended by defining an inter-
action expression that defines ordering relationship among
getlast and put events:

SyncGetLast(getlast) =
WaitUntil(getlast, put, Empty)

Note that events of put also interact with those of
getlast. Hence, the interaction behavior of put is also
extended by the following interaction expression:

SyncPutEx(put) =
WaitUntil(put, getlast, Full)

Other interaction expressions in ReadFirstQueue
are inherited from the queue superclass.

4. Interactions among the methods of�Mn and�Mc:
These represent interactions among the newly added meth-
ods and methods that exist in C but are modified in S.

Interaction expressions in ��m are defined in C but are
modified in S in order to incorporate changes in the meth-
ods of C. They capture interactions among the methods
of i) �Mc, representing modified interactions among the
modified methods, and ii)�Mc andMc��Mc, represent-
ing additional semantic dependencies among the modified
and inherited methods of S.

The interactions expressions, I(S), of S therefore are:

I(S) = f �i j (�i 2 ��c) _
((�i 62 ��c) ^ (�i 2 I(Superclass(S))))g

The interaction expressions for an object are not only de-
fined in its class but are also inherited from the superclasses.
In class S, the interaction expressions in set �c���m are



inherited from the superclass C. The following event or-
dering constraint expression represents the interaction be-
havior of the methods of class S:

�s =

�

̂

�i2��n
�i

�

̂

�

̂

�i2��m
�i

�

̂

�

̂

�i2(�c���m)
�i

�

(10)

3.3 Decomposition of interaction behavior

In a concurrent object-oriented programming language,
interactions among concurrent methods can be specified ei-
ther during class definitions or during method invocations
(through expressions 8 and 9). Our goal in this section is to
examine the nature of interaction specifications during the
two definitions, and relationships between them. We dis-
cuss the implications of these specifications on the reusabil-
ity of concurrent classes and interaction expressions, and
examine their representations in our model.

We motivate our discussion through an example. Con-
sider two concurrent programs that interact by sending and
receiving messages over a message channel. There are
two interaction constraints: i) every receive event must
wait for the corresponding send event, and ii) there are
no more than N messages that have not been received.
There are three ways in which the constraints can be spec-
ified. The first approach is to define a concurrent class
AppChannel that defines both constraints along with
send and receive methods. In the second approach,
one defines a concurrent class ConcChannel that does
not specify any interaction constraints. The constraints are
specified where the send and receive methods are in-
voked. In the third approach, the first interaction constraint
is defined in a concurrent class channel, whereas the sec-
ond constraint is specified during the invocations of the two
methods.

We now examine the three approaches with respect to
the reusability of concurrent class and interaction behavior
specifications. The first approach advocates constructing
concurrent classes that precisely implement requirements
of applications. The problem with this approach is that the
specifications of the classes are too specialized. They may
not be reused in applications that do not impose similar in-
teraction constraints. The applications must re-implement
these classes in order to specify diverse interaction con-
straints. The second approach advocates defining classes
that do not specify any interaction constraints. All inter-
action constraints are specified in applications that invoke
the methods. Class ConcChannel is too general since
applications that require asynchronous communication will
specify the first constraint repeatedly. The third approach
is based on the incremental specification of interaction be-
havior. Here, the definition of the channel class captures

only those interaction constraints that are common across
many applications. Additional constraints are specified in-
crementally in individual applications, thereby facilitating
the reusability of both class and interaction behavior spec-
ifications.

The above analysis suggests that interaction behaviors
of invocations of a method can be decomposed into two
kinds of interaction behavior: the first, which we call uni-
versal interaction behavior, represents interaction behav-
iors that are common across all possible invocations of the
method. All occurrences of the method inherit universal
interaction behavior. The second, which we call special-
ized interaction behavior, is specific to a method invoca-
tion. For instance, in the above example, the universal in-
teraction behavior (everyreceive event must wait for the
corresponding send event) is valid for all invocations of
send andreceive. The interaction behavior that certain
send events must be delayed if specific receive events
have not occurred is valid for specific invocations of send
and receive in the application. Different applications
may specify diverse specialized interaction behaviors of in-
vocations of send and receive.

Universal interaction behavior defines a single set of in-
teraction constraints that guide execution behaviors of all
occurrences of method. The appropriate place for defin-
ing universal interaction behaviors of methods is the class
the methods are defined in, since the class captures gen-
eral interaction constraints that govern access to objects of
the class. Examples of such interaction constraints are data
consistency, fairness, mutual exclusion, and priority. Note
that universal interaction behavior of methods should only
depend on the intrinsic properties of the objects and the
methods, since it will allows one to maintain the notion of
independence and encapsulation that classes exhibit — that
is, the ability to define classes in isolation from other as-
pects of applications. Specialized interaction behavior of
method events, on the other hand, depends on the environ-
ment in which the events occur. It is, therefore, possible
that different occurrences of a method exhibit diverse spe-
cialized interaction behaviors, each extending the universal
interaction behavior of the method.

Our programming model supports the above incremen-
tal approach to interaction specification by allowing one to
define universal and specialized interaction specifications
separately. The ability to separate the two is supported by
the modularity property of event ordering constraint ex-
pressions. The interaction behavior of a method invoca-
tion is a composition of the two — universal and special-
ized — interaction behaviors. Hence, if event ordering con-
straint expression �u represents the universal interaction
behavior of methods M1 and M2, and if interaction ex-
pression �s represents the specialized interaction behavior



of events (M1; p) and (M2; q), the interaction behavior of
(M1; p) and (M2; q) is represented by expression �u 
̂
�s. Intuitively, we can think of universal interaction be-
havior as defining a set of possible ordering relationships
among method activations, some of which must hold true.
Specialized interaction behaviors of method activations im-
pose additional constraints on the possible orderings among
the events.

An example of a class that defines universal interac-
tion behavior is SafeBuf, whose methods, put and
get, are mutually exclusive. The interaction expression
MutualExclusion(put, get) (see example 3.1)
represents their interaction behavior. The specialized inter-
action behavior of method events of interacting programs
is specified by identifying the method events of the pro-
grams, and by defining event ordering constraint expres-
sions that include the method events. Interaction points of
methods allow one to capture such invocations. Special-
ized interaction behaviors, therefore, are specified by defin-
ing event ordering constraint expressions that establish or-
derings among the interaction points of programs. We il-
lustrate this by the following example:

Example 3.6 (Specialized Interaction Behavior) Let
m1(SafeBuf X) and m2(SafeBuf X) be two meth-
ods that interact. Methodsm1 and m2 invoke methods put
and get over a shared buffer X. Assume that the applica-
tion imposes a constraint onput andget events of the two
methods. The constraint represents specialized interaction
behaviors of these events. It states that every put event in
m1 occurs before the corresponding get event in m2 (es-
tablishing some kind of data dependency among the put
and get events).

Terms m1.X.put and m2.X.get denote sets of all
put and get events invoked in m1 and m2 respectively.
The expression

�1 = forall k in m1.X.put:
(m1.X.put, k) 
< (m2.X.get, k)

specifies that all put events in set m1.X.put occur be-
fore the corresponding get events in set m2.X.get (the
correspondence is made through the occurrence numbers of
method events). Executions of put and get events in m1
and m2 must satisfy both i) the mutual exclusion constraint
(universal interaction behavior), and ii) the above data de-
pendency constraint (specialized interaction behavior). In
the absence of any specialized interaction behavior specifi-
cations, the put and get events of m1 and m2 inherit the
universal interaction behavior from class SafeBuf.

The interaction behavior of a method invocation is there-
fore a composition of its universal and specialized interac-
tion behaviors. Such a separation of the interaction behav-
iors has implications on the design of concurrent classes

with respect to the reusability of both concurrent class and
interaction behavior specifications.

3.4 Inheritance of method implementation

In sequential object-oriented programming languages,
inheritance [26] provides a basis for reusing method im-
plementations. In concurrent object-oriented program-
ming languages, there is a problem with the inheritance of
method implementations. This problem, termed the inher-
itance anomaly [16], arises due to the diverse synchroniza-
tion requirements of a class and its subclasses. We clarify
the problem through the following example:

Assume that methods mj and mk are defined in a class
Cm. Implementations of mj and mk may contain, in ad-
dition to specifications of computations, operations used to
define interaction behaviors of mj and mk. Let Sm be a
subclass of Cm. It inherits definitions of mj and mk. Due
to the addition and/or modification of computational and in-
teraction behaviors in subclass Sm, the interaction behav-
iors ofmj andmk that are defined inCm may not represent
their interaction behaviors for objects of classSm. Methods
mj and mk must be re-implemented in Sm in order to rep-
resent the modified interaction behaviors. The implemen-
tations of mj and mk, thus, cannot be inherited.

We first explore the reason for the above anomaly.
There are two distinct behaviors of a method: i) compu-
tational behavior, and ii) interaction behavior. Computa-
tional behavior of an inherited method remains unchanged
in the subclass; only its interaction behavior changes due to
changes in the composition of the superclass. For instance,
computational behaviors of mj and mk do not change in
Sm; only their interaction behaviors changes. The inheri-
tance anomaly arises because implementations of methods
in most concurrent programming languages combine the
two — computational and interaction — behaviors. Any
changes in interaction behavior, therefore, requires changes
in the implementation as well.

There are two components in any solution to the inheri-
tance anomaly. The first is the separation of computational
and interaction behaviors of methods. The separation of the
two behaviors makes it possible to inherit them separately
and modify either to reflect changes in the composition of a
class. The second is the ability to make changes in interac-
tion behaviors of methods. Our programming model sup-
ports inheritance of method implementations by i) separat-
ing specifications of computational and interaction behav-
iors, and ii) providing the ability to change specifications
of interaction behaviors of methods. The basis for the sep-
aration of the two is derived from the C-YES model (see
section 2). We analyze the nature of changes in interaction
behaviors in detail below.



Interaction expressions in a class represent universal in-
teraction behaviors of methods of the class. These expres-
sions may also include specifications of specialized inter-
action behavior of methods that are invoked inside these
methods. Changes in interaction behavior of a method,
therefore, may involve changing specialized interaction be-
haviors of methods (interaction points) it invokes. These
changes imply that the events associated with the interac-
tion points are used (with respect to their interaction char-
acteristics) in a manner different from the way they are used
in the superclass. Universal interaction behaviors of the
interaction points remain unchanged, since they are deter-
mined in classes of methods associated with the interaction
points. Our programming model supports changes in both
universal and specialized interaction behaviors. Changes in
universal behavior that do not involve any changes in the
specialized interaction behavior of interaction points can be
made by constructing suitable event ordering constraint ex-
pressions that do not involve any interaction points. Sim-
ilarly, specialized interaction behavior of an interaction
point is changed by specifying an event ordering constraint
expression that includes the interaction point and represents
the modified interaction behavior.

The methods, M(S), of S of section 3.2 are, therefore,
defined by:

M(S) = f m j(m 2 �Mc) _
((m 62 �Mc) ^ (m 2M(Superclass(S))))g

The program P(Os) associated with an object Os of S
is:

P(Os) =

� 


k2f1:::1g
mj2M(S)

(mj ; k)

�
where �s

In the above, �s is defined by expression 10.

The ability to resolve inheritance anomaly in our model
depends on i) the ability to capture method invocations
inside methods through interaction points; ii) the abil-
ity to decompose interaction behaviors of methods in
a generalization-specialization relationship (both between
classes and subclass definitions, and class and method in-
vocations), define and modify each separately, and combine
them; and iii) the ability to represent interaction behaviors,
both universal and specialized, separately from computa-
tional behavior specifications. This suggests that a neces-
sary condition for the resolution of the inheritance anomaly
is that programming languages must provide the ability to
change both universal and specialized interaction behav-
iors of methods, and enforce this change separately from
method implementations.

4 Related work

Several concurrent programming languages have used
the concept of encapsulated “object” as a common basis
for introducing concurrency. It is evident in i) server-based
approaches such as Rendezvous-based languages ADA [9]
and RPC-based languages; ii) approaches based on mes-
sage passing such as CSP [13]; iii) approaches based on
abstract data types (ADT) such as Monitors [12], ADT
with path expressions [5], and SR [3]; iv) approaches based
on sequential objects such as POOL-T [2], ABCL/1 [28],
Concurrent SmallTalk [27], CC++ [6], Mentat [11], and
Charm++ [15]; and v) actor-based approaches [1]. The lan-
guages differ in their support for internal and external con-
currency and interaction, and inheritance.

We first look at languages for their support of concur-
rency within objects. Languages such as Monitor [12],
POOL-T [2], ABCL/1 [28], and Concurrent Smalltalk [27]
support only a single thread of execution within an object;
concurrent invocations of methods are always serialized
and scheduled for execution according to the policies of
the implementation. Such language-imposed serializations
define semantic dependencies among method invocations
where there should be none. One must specify concurrent
programs with these dependencies in mind; one may oth-
erwise end up defining incorrect programs. For instance,
deadlock occurs when nested calls are made in monitors
or when a method invokes another method through “self”
in serialized concurrent object-oriented programming lan-
guages.

Our approach is to focus on aspects that are fundamental
to representation of application entities. The implementa-
tion concerns are handled within this framework by defin-
ing a separate execution model that determines the man-
ner (through fixed or variable number of threads) in which
method invocations are scheduled for execution. The map-
ping between the programming model and the execution
model is carried out by specifying additional constraints
that serialize different method invocations. In this frame-
work, certain method invocations may be concurrent at the
program model level, while their executions may be serial-
ized at the execution model level. Languages such as Path
Expression [5], CC++ [6], PO [7], and Mediator [10] also
support concurrent method invocations within objects.

Two kinds of synchronization mechanisms are used for
specifying interaction behavior of methods. The first,
called interface control mechanism, is used to select a set
of method requests from among concurrent requests for ex-
ecution. It can be done either explicitly by executing a “se-
lect” statement, as in languages such as ADA [9], Mediator
[10], and POOL-T [2], or implicitly through interface con-
trol conditions [19, 17] which must be true (or false [8]) be-
fore a method can be executed. The second set of synchro-



nization mechanisms is used to specify interactions among
method invocations that satisfy their respective interface
control conditions and are executing concurrently. Exam-
ples of synchronization mechanisms are semaphores and
locks, write-once-read-manyshared variables [6], data flow
based data dependencies [11], and signal variables [12]. We
use event ordering constraint expressions to specify both
interface control and interactions during executions.

The problem of inheritance anomaly has been studied
in great detail and many solutions [14, 24, 4, 22, 21, 19,
23, 18] have been proposed. Most of these solutions sup-
port inheritance of method implementations by separating
the interface control conditions from method implemen-
tations, and by excluding any synchronization operations
from the method implementations. Changes in the inter-
action behavior of a method is achieved by changing the
relevant interface control conditions. However, modifica-
tions in the interface control conditions of a method are not
sufficient to change the interaction behavior of the method,
since it cannot change the specialized interaction behavior
of methods that the method invokes. These can be only be
changed by embedding synchronization operations such as
semaphores, locks, and other primitives. However, their in-
clusion violates the basis of resolution of the inheritance
anomaly, namely, the separation of computational and in-
teraction behaviors.

In addition to the inheritance of method implemen-
tations, inheritance of interaction behavior specifications
have also been explored in many languages. PCM [4] iden-
tifies two kinds of synchronization expressions of an ob-
ject: the first, called concurrency constraints, do not de-
pend on the state of the object, whereas the second, called
state constraints, do. Concurrency constraints are defined
separately in abstract classes, whereas state constraints are
defined in classes. The language provides mechanisms for
inheriting and combining the two constraints. In DRA-
GOON [21], interaction expressions are defined separately
in classes called behavior classes. The computational be-
havior of objects are defined in classes, called free classes
(methods here are concurrent by default, as they are in our
model). A concurrent class is constructed by composing a
set of behavior classes and free classes. Synchronizing Ac-
tion [19] and PLOOC [23] also define and inherit interac-
tion and computational behaviors separately.

In [8], interface control conditions are represented in a
manner such that subclasses extend the interface control
conditions of their methods by imposing additional inter-
face control conditions. This is similar to our approach in
that classes contain more general interaction constraints.
Subclasses impose additional interaction constraints, while
inheriting general constraints from superclasses.

The support for method invocation in most concur-

rent programming languages is based either on the call-
return based synchronous invocation or future-based asyn-
chronous invocation. The synchronous invocation mech-
anism does not exploit concurrency between calling and
called methods. The asynchronous approach, on the other
hand, supports concurrency among the calling and called
methods; however, the support for interaction between the
two methods is limited in terms of both the number of inter-
actions (fixed) and kinds of interactions (only among reads
and writes over shared variables).

5 Conclusion

In this paper, we present a compositional approach for
concurrent object-oriented programming. A concurrent ob-
ject is represented as a composition of two separate enti-
ties, namely computational and interaction behavior spec-
ifications. The separation of the two behaviors makes it
possible to inherit them separately in a subclass and mod-
ify either to reflect any changes in the composition of the
superclass. Our interaction specification mechanism mini-
mizes changes in interaction behavior specifications in the
subclass in order to support reusability by allowing one to
i) incrementally add interactions that arise due to the ad-
dition of new methods, and ii) extend interactions among
existing methods incrementally. Also, changes in interac-
tions are localized to event ordering constraint expressions
that involve changed methods and other interacting meth-
ods. We also identify the cause for the inheritance anomaly.
We show that the inheritance anomaly can be resolved if
programming languages provide the ability to change both
universal and specialized interaction behaviors of methods,
and enforce this change separately from method implemen-
tations.

Our future work involves the design and implemen-
tation of a concurrent object-oriented programming lan-
guage, and a general analysis of the inheritance anomaly
and the manner in which it can be resolved in concurrent
object-oriented programming languages.

Acknowledgement

This work was supported by Texas Advanced Research
Program under grant 003658-445 and by DARPA under
grant number DABT 63-92-C-0042.

References

[1] Gul A Agha. ACTORS: A Model of Concurrent Computation
in Distributed Systems. The MIT Press, Cambridge, Mas-
sachusetts, 1986.



[2] Pierre America. POOL-T: A Parallel Object–Oriented Lan-
guage. In A. Yonezawa and M. Tokoro, editors, Object-
Oriented Concurrent Programming, pages 199–220. The
MIT Press, 1987.

[3] G. R. Andrews. Synchronizing Resources. ACM Trans-
action on Programming Languages and Systems, 3(4):405–
430, 1981.

[4] J. P. Bahsoun and L. Feraud. A Model for Design Reusable
Parallel Software Components. In Parallel Architecture and
Languages Europe, LNCS 605, pages 245–260. Springer
Verlag, 1992.

[5] R. H. Campbell and A. N. Habermann. The Specification
of Process Synchronization by Path Expressions. In Lec-
ture Notes on Computer Sciences, volume 16, pages 89–102.
Springer Verlag, 1974.

[6] K. Mani Chandy and Carl Kesselman. Compositional C++:
Compositional Parallel Programming. Technical Report
Caltech-CS-TR-92-13, Cal Tech, 1992.

[7] Antonio Corradi and Letizia Leonardi. An Object Model
to Express Parallelism. In Workshop on Object-based Con-
current Programming, ACM SIGPLAN Notices V. 24, No. 4,
pages 152–155. ACM Press, 1989.

[8] Svend Frolund. Inheritance of Synchronization Constraints
in Concurrent Object–Oriented Programming Languages. In
ECOOP ’92, LNCS 615, pages 185–196. Springer Verlag,
1992.

[9] Narain H Gehani. Ada: Concurrent Programming. Prentice
Hall, Englewood Cliffs, N.J., 1984.

[10] J. E. Grass and R. H. Campbell. Mediators: A Synchroniza-
tion Mechanism. In Sixth International Conference on Dis-
tributed Computing Systems, pages 468–477, 1986.

[11] Andrew S. Grimshaw. Easy-to-Use Object-Oriented Paral-
lel Processing with Mentat. IEEE Computer, 26(6):39–51,
1993.

[12] C. A. R. Hoare. Monitor: An Operating System Structur-
ing Concept. Communication of the ACM, 17(10):549–557,
1974.

[13] C. A. R. Hoare. Communicating Sequential Processes.
CACM, 21(8):666–677, 1978.

[14] Dennis Kafura and Keung Lee. Inheritance in Actor based
Concurrent Object-Oriented Languages. In Proceedings
ECOOP’89, pages 131–145. Cambridge University Press,
1989.

[15] L.V. Kale and Sanjeev Krishnan. CHARM++: A Portable
Concurrent Object-Oriented System Based on C++. In
OOPSLA ’93, pages 91–108. ACM Press, 1993.

[16] Satoshi Matsuoka and Akinori Yonezawa. Analysis of
Inheritance Anomaly in Object-Oriented Concurrent Pro-
gramming Languages. In Research Directions in Object-
Based Concurrency. MIT Press, Cambridge, 1993.

[17] Ciaran McHale, Bridget Walsh, Seán Baker, and Alexis
Donnelly. Scheduling Predicates. In Object-Based Concur-
rent Computing Workshop, ECOOP’91, LNCS 612, pages
177–193. Springer Verlag, 1991.

[18] José Meseguer. Solving the Inheritance Anomaly in
Concurrent Object-Oriented Programming. In Proc. 7th
ECOOP’93. Springer Verlag, 1993.

[19] Christian Neusius. Synchronizing Actions. In ECOOP ’91,
pages 118–132. Springer Verlag, 1991.

[20] Raju Pandey and James C. Browne. Event-based Compo-
sition of Concurrent Programs. In Workshop on Languages
and Compilers for Parallel Computation, Lecture Notes in
Computer Science 768. Springer Verlag, 1993.

[21] S. Crespi Reghizzi and G. Galli de Paratesi. Definition of
Reusable Concurrent Software Components. In ECOOP
’91, pages 148–165. Springer–Verlag, 1991.

[22] Etsuya Shibayama. Reuse of Concurrent Object Descrip-
tions. In Concurrency: Theory, Language, and Architecture,
LNCS 491, pages 110–135. Springer–Verlag, 1989.

[23] Laurent Thomas. Extensibility and Reuse of Object-
Oriented Synchronization Components. In Parallel Archi-
tecture and Languages Europe, LNCS 605, pages 261–275.
Springer Verlag, 1992.

[24] Chris Tomlinson and Vineet Singh. Inheritance and Syn-
chronization with Enabled Sets. In OOPSLA ’89 Conference
on Object-Oriented Programming, pages 103–112. ACM
Press, 1989.

[25] Peter Wegner. Dimensions of Object–Based Language De-
sign. In OOPSLA’87, page 168. ACM Press, 1987.

[26] Peter Wegner and Stanley Zdonik. Inheritance as an Incre-
mental Modification Mechanisms or What Like is and Isn’t
Like. In ECOOP’88, LNCS 322, pages 55–77. Springer Ver-
lag, 1988.

[27] Y. Yokote and M. Tokoto. Concurrent Programming in Con-
currentSmalltalk. In A. Yonezawa and M. Tokoro, editors,
Object-Oriented Concurrent Programming, pages 129–158.
The MIT Press, 1987.

[28] A. Yonezawa, J. Briot, and E. Shibayama. Modeling
and Programming in Object–Oriented Concurrent Language
ABCL/1. In A. Yonezawa and M. Tokoro, editors, Object-
Oriented Concurrent Programming, pages 55–89. The MIT
Press, 1987.

[29] Akinori Yonezawa. Panel on Object-Based Concurrent Pro-
gramming. In Proceedings of the ECOOP-OOPSLA Work-
shop on Object-based Concurrent Programming, OOPS
Messenger, Vol 2, No 2, pages 3–4. ACM Press, 1991.


