
Support for Extensibility and Reusability in a Concurrent Object-Oriented
Programming Language

Raju Pandey J.C. Browne
Computer Science Department Department of Computer Sciences

University of California The University of Texas at Austin
Davis, CA 95616 Austin, TX 78712

Abstract

In many concurrent programming languages programs
are difficult to extend and modify. This is because changes
in a concurrent program (either through modification or
extension) require re-implementation of some or all com-
ponents. This paper presents the design of a concurrent
object-oriented programming language based upon sep-
arate specifications of computations and interactions of
programs. Separate specification of computations and in-
teractions allows each to be separately modified and ex-
tended. We show that separation also facilitates extension
of other language composition mechanisms such as class,
inheritance, and template in order to define concurrent
program abstractions. The resulting language supports ex-
tensibility and modifiability of concurrent programs as well
as reusability of specifications of computations and inter-
actions.

1 Introduction

There is significant interest in concurrent programming
due to widespread availability of parallel and distributed
systems. In recent years, many parallel systems have been
introduced. These systems differ widely in their architec-
ture, their scope, and the target problem domain. The de-
sign and implementation of concurrent programs for this
wide range of machines has proven to be extremely diffi-
cult. Although there has been extensive work done in the
area of concurrent programming, concurrent programs are
still difficult to design, implement, and maintain. In many
of these approaches, they are difficult to extend and mod-
ify because changes in a concurrent program (through ad-
dition of new components or modification of existing com-
ponents) requires re-implementation in some or all compo-
nents. Also, it is difficult to reuse specifications of compo-
nents and interaction.

Concurrent object-oriented programming languages
show promise in alleviating the modularity and extensi-

bility problems. Concurrent objects form a natural basis
for modeling entities of applications. Further, extensibility
is naturally supported through the notion of inheritance.
Many object-oriented programming languages have been
proposed that extend a sequential object-oriented program-
ming language by adding mechanisms for specifying con-
currency and interaction. We note that the modifiability
and extensibility problems are present in many concurrent
object-oriented programming languages as well. For in-
stance, there is a problem with the inheritance of method
implementations in concurrent object-oriented program-
ming languages. This problem, termed the inheritance
anomaly [15], occurs when implementations of methods
of a class cannot be inherited in a subclass due to the dif-
ferences in synchronization constraints of the class and
the subclass. Concurrent classes therefore cannot be ex-
tended easily. Similarly, interaction specifications cannot
be reused easily.

The presence of the problems indicate that there are fun-
damental problems in the way a concurrent program is con-
structed from its components. We observe that concurrent
programs are difficult to extend and modify because spec-
ifications of components include specifications of both its
computations and interactions. Changes in either aspect
(due to addition or modification of components) may re-
quire that the components be re-implemented. Concurrent
programs can be modified easily if specifications of com-
putations and interaction are completely separated . We
call this approach “separation of concerns.” [19]

In this paper, we present the design of an object-oriented
concurrent programming, called CYES-C++. CYES-C++
is a concurrent extension of the C++ [21] programming
language. The basis for the design of CYES-C++ is de-
rived from the concept of separation of specifications of
computation and interaction. The language supports mech-
anisms for specifying computations and interactions sep-
arately. In addition, it supports mechanisms that can be
used for composing computational and interaction specifi-
cations in order to define concurrent program abstractions.

In proceedings of the International Parallel Processing Symposium 96

Many of the composition mechanisms such as class, inheri-
tance, and genericity of C++ have been extended in CYES-
C++ in order to define corresponding concurrent program
abstractions. For instance, a concurrent class (a concur-
rent extension of class) defines a composition of method
and interaction specifications, whereas inheritance forms a
composition mechanism for extending a concurrent class
by adding or modifying either component of a concurrent
class. Separation of the two therefore allows one to in-
herit both specifications and extend them in suitable ways.
The language therefore supports mechanisms that facili-
tate extensibility and modifiability of concurrent program
abstractions as well as reusbility of both method and inter-
action specifications.

The ideas that we present in this paper are general in
that they can be applied to extend any object-oriented con-
current programming language. We chose to apply them to
C++ due to the wide acceptability of C++ and rich support
in it for programming language abstractions. Further, we
were motivated by the availability of many C++ tools. In-
deed, we have been able to reuse many existing C++ and C
libraries and tools for constructing a prototype implemen-
tation for CYES-C++.

This paper is organized as follows: In Section 2 we
briefly describe the interaction specification mechanism
used for specifying interaction among methods. Section 3
describes the syntactic and semantic details of the compo-
sition associated with a concurrent class. In Section 4, we
describe the manner in which inheritance can be used to
extend the composition of a concurrent class. Section 5
describes an extension of the template mechanism that al-
lows one to capture common computational and interaction
abstractions in generic concurrent classes. We give a brief
overview of the related work in Section 6. Section 7 con-
tains a brief summary and the status of our research.

2 Interaction specification

Interaction among programs is specified by an algebraic
expression, called the event ordering constraint expression.
It is used to represent semantic dependencies among events
(specific invocations of operations or methods) of compo-
nent programs by specifying execution orderings — de-
terministic or nondeterministic — among the events. An
event ordering constraint expression is constructed from a
set of primitive ordering constraint expressions and a set
of interaction composition operators.

Primitive event ordering constraint expression: A primi-
tive event ordering constraint expression is used to defined
constraints on execution orderings of two events. It is de-
fined:

E = (e1 < e2)

A computation satisfies expression E if event e1 occurs be-
fore event e2 in the computation.

Interaction composition operators: Interaction compo-
sition operators are used to combine primitive and non-
primitive event ordering constraint expressions to construct
more complex expressions.
i) And constraint operator (&&): The and constraint op-
erator && is used to combine event ordering expressions
such that additional constraints can be imposed on a pro-
gram. An event ordering constraint expression containing
&& is defined:

E = (E1 && E2)

Intuitively, an execution of a program satisfies event order-
ing constraint expression E if it satisfies both E1 and E2.
ii) Or constraint operator(||): The or constraint operator
|| is used to incorporate nondeterminism in the orderings
of events. An event ordering constraint expression contain-
ing || is defined:

E = (E1 || E2)

Intuitively, an execution of a program satisfies event order-
ing constraint expression E if it satisfies at least one of the
event ordering constraint expressions E1 or E2.
iii) forall operator: The forall operator extends && in
order to specify ordering constraints over sets of events.
There are two ways in which the forall operator can be
specified. The format for the first is:

forall var v in S f E(v) g

The above expression specifies that event ordering con-
straint expression E(v) holds true for all events v in event
set S. The format for the other forall operator is:

forall occ i in S f E(S[exp(i)]) g

The above expression specifies that event ordering con-
straint expression E(S[exp(i)]) holds true for all events
S[exp(i)] of S. In this expression, variable i ranges over
the occurrence number1 of events of S. Here integer ex-
pression exp(i) determines the the occurrence number of
the event for which E must hold. The differences in the two
versions arise solely in the representation of events.
iv) Exists operator: The exists operator is similar to
forall in that it extends the or constraint operator over a
set of events.

The event ordering constraint expression is declarative
in nature. Its power stems from the ability to decompose
global interactions among programs into a set of local in-
teractions. The local interactions can then be represented

1Every invocation of an operation or method is assigned a unique pos-
itive integer in an event set, termed its occurrence number.

2

by event ordering constraint expressions, and combined
with suitable interaction composition operators to repre-
sent the global interaction. One of the implications of
the modularity property of event ordering constraint ex-
pressions is that interaction behaviors of programs can be
changed by modifying only the relevant and local interac-
tion specifications. Also, it forms the basis for reusability
of interaction behavior specifications in CYES-C++.

Further, the interaction specification mechanism is gen-
eral in that it is not based on the semantic properties of
any specific synchronization primitive. The generality of
the approach also is useful in that it allows one to create
separate abstractions of interaction which can be combined
with other mechanisms such as inheritance and genericity
to construct powerful concurrent program abstractions. We
next describe how such compositions are supported in the
language.

3 Concurrent class

Concurrent objects in CYES-C++ are represented by
defining a concurrent class. An interface of a concur-
rent class contains an interaction section, in addition
to public, private, and protected sections of C++
classes. The interaction section of a concurrent class con-
tains definitions of event sets and event ordering constraint
expressions used to represent interaction among the pub-
lic methods of the concurrent class. Computational and
interaction behaviors of methods of concurrent objects are
therefore completely separated. The semantics associated
with a concurrent class specifies that all invocations of pub-
lic methods on a concurrent object execute in parallel, ex-
cept for those whose executions must satisfy all ordering
constraints specified in the interaction section.

In Figure 1, we show the concurrent class specification
for concurrent queue objects. There are four constraints
on the methods of queue: i) put invocations are sequen-
tial, ii) get invocations are sequential, iii) put events are
delayed if the queue is full, and iv) get events are delayed
if the queue is empty. In the figure, the constraints have
been represented symbolically. In Section 3.1, we derive
event ordering constraint expressions for the constraints.
The semantics of the composition specifies that the meth-
ods execute in parallel by default. For instance, every in-
vocation of method put on an instance of queue starts to
execute in parallel. However, before it can be executed, all
ordering constraints specified in the interaction section of
queue must be satisfied. These constraints therefore de-
termine if the invocation can proceed or should be delayed
with respect to other invocations.

concurrent class queue f
public:

queue();
˜queue();
void put(char);
char get();
Boolean Full();
Boolean Empty();

interaction:
SeqAdds;
SeqRems;
SyncQFull;
SyncQEmpty;

private:
...

g;

Figure 1: Concurrent class specification of concur-
rent queue objects

3.1 Event set

Event sets form the abstraction for identifying and rep-
resenting invocations of methods that interact with other
method invocations. They are fundamental to the interac-
tion specification mechanism in that they allow us to repre-
sent both application-specific and application-independent
states of a concurrent object. The application-specific state
of an object is dependent on the semantics associated with
an object. For instance, a queue object may have two
states: full and empty. Both of these states are derived from
the semantics of the object. An application-independent
state, on the other hand, is defined for all objects. It is used
to define the semantics of objects in general. An example
of an application-independent state is the state of method
invocations that are waiting to be executed. We call such
states synchronization states.

For every method M of a concurrent class, the following
default event sets are supported in CYES-C++: i) M denot-
ing the set of all invocations of method M, ii) M:waiting
denoting the set of all invocations of M that are waiting at
an instance, iii) M:running denoting the set of invocations
of M that are currently executing, and iv) M:terminated
denoting all invocations of M that have terminated. In ad-
dition, CYES-C++ supports the following mechanisms for
defining event sets in terms of other event sets:

Conditional event sets: Conditional event sets are used to
capture states of concurrent objects and to associate these
states with events. The term M:B denotes an event set. It
contains all events of event set M for which the boolean
condition B is true. An example of a conditional event set
is the event set get:empty(). It captures all get invoca-

3

tions for which the condition empty() is true.
Named event sets: CYES-C++ supports the ability to name
event set expressions. For instance, the expression

fullqueue = put:full()

defines an event set fullqueue that contains all events of
set put:full().
Event set expressions: Event sets can be combined with
other event sets with the union (+) and difference (�) op-
erators. Hence, an expression of the form

fullqueue = fullqueue + putlast:full()

extends fullqueue to include events of set
putlast:full().

We now illustrate the manner in which specifications
of event sets, events, and event ordering constraint expres-
sions can be used. The example shown here derives expres-
sions for the interaction section of the concurrent queue
class in Figure 1.

Example 3.1. (Interaction specification). We first define
two named event ordering constraint expressions:

Serialize(S) f
forall occ i in S f
(S[i] < S[i+1])

gg
Priority(S1, S2) f
forall var a in S1 f
forall var b in S2 f

(a < b)
ggg

Expression Serialize orders events of set S according
to their occurrence number. (Term S[i] denotes the ith
invocation of a method in set S). Expression Priority
gives events of S1 higher priority over events of S2. We
now define four event sets, each capturing those method
invocations that may interact with other methods:

AddQ = put
RemQ = get
QEmpty = get:empty()
QFull = put:full()

Set AddQ contains all events that add information to the
queue. Set RemQ contains all events that remove informa-
tion from the queue. Set QEmpty contains all events for
which the queue is empty. Similarly set QFull contains all
events for which the queue is full.

We now instantiate the named event ordering constraint
expressions with suitable named event sets:

SeqAdds = Serialize(AddQ)
SeqRems = Serialize(RemQ)
SyncQEmpty = Priority(AddQ, QEmpty)
SyncQFull = Priority(RemQ, QFull)

Expression SeqAdds therefore serializes all events in set
AddQ (invocations of put). Expression SyncQEmpty, on
the other hand, delays all events in set QEmpty (invocations
of method get for which the queue is empty) with respect
to invocations of events of AddQ. �

We emphasize the following: i) Interaction among the
methods is specified by defining generic event ordering
constraint expressions such as Serialize and Priority,
and by instantiating them with specific event sets. The ex-
pressions can be reused in other interaction specifications
as well. This shows one of the many ways in which ab-
stractions for interaction can be created and reused. ii) In-
teractions are defined by identifying those method invoca-
tions that interact, and by representing them through the
abstractions of named event sets. An example is the no-
tion of the set AddQ which captures the abstraction of all
events that add information to the queue. We will see later
in the paper that such an abstract representation of interact-
ing events make it easier to extend or modify interaction
behaviors of methods.

4 Extensibility

In this section, we examine the notion of inheritance
as a mechanism for extending program composition of a
concurrent class by adding and/or modifying methods and
their interaction behaviors.

4.1 Inheritance anomaly

In many concurrent object-oriented programming lan-
guages there is a problem with the inheritance of method
implementations. This problem, termed the inheritance
anomaly [15], arises due to the differences in synchroniza-
tion requirements of a class and its subclasses. We illus-
trate the problem through the following example:

Example 4.1. (Inheritance anomaly). Let a concurrent
class C define two methods m1 and m2. Implementations
ofm1 andm2 contain, in addition to specifications of com-
putations, synchronization primitives used to define their
interaction behavior. Let S be a subclass of C. It extends
class C by defining a new method, saym3. Methodm3 in-
teracts with m1 and m2, thereby changing the interaction
behaviors ofm1 andm2, as defined in C. Methodsm1 and
m2 need to be re-implemented in S in order to represent
the modified interaction behaviors. The implementations
of m1 and m2, thus, are not inherited in S. �

The inheritance anomaly arises because specifications of
methods contain specifications of both computational and

4

interaction behaviors [20]. Since specifications of meth-
ods include specifications of both computational and in-
teraction behaviors, any changes in the interaction behav-
ior may, therefore, require changes in the implementa-
tion as well. There are two components to the resolu-
tion of the inheritance anomaly: the first is separation of
specifications of computational and interaction behaviors
of methods. Separation makes it possible to inherit the
two behaviors separately, and to modify either to reflect
changes in the concurrent program composition of a con-
current class. The second is the ability to make changes
in the interaction behaviors of methods. The inheritance
anomaly has been studied in great detail and many solu-
tions [12, 23, 17, 22, 16] have been proposed. Most of
these solutions are based on the separation of synchroniza-
tion constraints from method implementations.. Changes
in interaction behavior of a method is achieved by chang-
ing the relevant synchronization constraints. Different in-
stances of the inheritance anomaly do not occur in CYES-
C++ because concurrent objects are specified as a com-
position of separate computational and interaction behav-
ior specifications. In addition, CYES-C++ supports many
mechanisms to allow changes in the interaction behavior
of methods.

We give an example that illustrates the way in which
the state partitioning anomaly can be resolved. The state
partitioning anomaly occurs in the behavioral abstraction-
based languages [12, 23, 14] when additions or modifica-
tions of methods in a subclass partition the states of objects
of a superclass. Since the implementation of a method in-
cludes the state transitions that an object makes after the
execution of the method, changes in the states (due to the
state partitioning) therefore require that the method be re-
implemented in the subclass in order to include transitions
to the newly defined states. In CYES-C++, since states
are captured through event sets, state partitioning is repre-
sented by additions or modifications of event sets.

Example 4.2. (State partitioning). Let queueone be a
subclass of queue. It defines a method gettwo. Method
gettwo accesses two elements of the queue object atom-
ically. Invocations of gettwo are delayed with respect
to put if the buffer is empty or has one element. Note
that a queue object can be in one of the three states: full,
empty, or partially filled. The addition of method gettwo

thus partitions the partially filled state of queue into two:
queue with one item, and queue with more than one item.

In CYES-C++, state partitions can be represented by
defining new event sets in queueone. Let method one()

return true if a queueone object contains one item. We
first define the following event set:

GetOne = gettwo:one()

The event ordering constraint expression

SyncQOne = Priority(AddQ, GetOne)

represents the interaction between events of GetOne and
events of AddToQ. We add events of gettwo to the follow-
ing sets:

QEmpty = queue::QEmpty + gettwo:empty()
RemQ = queue::RemQ + gettwo

The event ordering constraint expressions of queue apply
to invocations of gettwo as well. �

In [18], we show many other instances of inheritance
anomalies, and how they are resolved in CYES-C++.

5 Genericity

C++ provides the template mechanism for specifying
generic classes which capture essential elements of ob-
jects or functions. In this section, we describe the man-
ner in which the template mechanism is extended to define
generic concurrent classes.

Generic concurrent classes capture common computa-
tional and interaction behavior specifications of methods
of concurrent classes. They can be instantiated with user
classes to associate the computational and interaction be-
haviors with user defined abstractions. Such classes sup-
port reusability of both computational and interaction be-
havior specifications. We present an example of a generic
concurrent class below:

Example 5.1. (Generic sync class). CC++ [5] supports
the notion of sync synchronization variables. A sync vari-
able is a write-once-read-many variable. All reads to the
variable are delayed until the first write has taken place.
In CYES-C++, a generic class that captures the computa-
tional and interaction behavior of a sync variable is de-
fined in the following manner:

template <class T> concurrent class sync f
public:

virtual T & read();
virtual void write(T &);

private:
T data;

interaction:
ReadSet = freadg;
WriteSet = fwriteg;
Interaction(WriteSet, ReadSet)

g

Expression Interaction(WriteSet, ReadSet) de-
fines the interaction between read and write invocations
as:

5

Interaction(WriteSet, ReadSet) f
forall occ i in ReadSet f

(WriteSet[0] < ReadSet[i])
gg

We omit implementations of read and write here. The
generic sync class can now be instantiated to define dif-
ferent sync concurrent classes and objects. We show two
instantiations of the sync generic concurrent class below:

sync<int> intSyncVar;
typedef sync<userClass> userClassSync;

Variable intSyncVar is an integer sync variable. Class
userClassSync is a sync class whose contents are
defined by the class userClass. Interaction be-
haviors of reads and writes to intSyncVar and ob-
jects of userClassSync are defined by the event or-
dering constraint expression Interaction(ReadSet,

WriteSet); reads are delayed until the first write has oc-
curred. We would like to underline the fact that there are
no restrictions on instantiations of the sync generic concur-
rent class; any user defined class can therefore behave like
a sync primitive. �

The template and concurrent class mechanism can there-
fore be used to define generic concurrent classes that cap-
ture essential concurrency, interaction, and computational
attributes of concurrent classes. These generic classes can
then be composed with other classes to construct concur-
rent classes. CYES-C++ therefore allows one to construct
libraries of generic synchronization primitives that can be
instantiated with user-defined classes.

6 Related work

Several concurrent programming languages have used
the concept of encapsulated “object” as a basis for spec-
ifying concurrency. For instance, the concept is used in
i) rendezvous-based languages such as ADA [7]; ii) ap-
proaches based on message passing such as CSP [10]; iii)
approaches based on abstract data types (ADT) such as
Monitors [9], ADT with path expressions [3]; and iv) actor-
based approaches [1]. Further, many object-oriented con-
current programming languages have used C++ as the ba-
sis for including concurrency and synchronization. Ex-
amples of such languages are: CC++ [5], Mentat [8],
Charm++ [13],COOL [4], �C++ [2], and ACT++ [11].

The different approaches to interaction specification in
these languages can be categorized into three: i) lan-
guages that use traditional synchronization primitives such
as locks and semaphores [4, 2], write-once-read-many vari-
ables [5], and data flow based data dependencies [8] for
specifying interaction among methods. ii) Languages such

as enable-based approaches [17, 22], disable based ap-
proaches [6], and behavior abstraction based approaches
[12, 23, 14] that use boolean conditions to determine if a
method should be executed or delayed. iii) Approaches
that use regular expression [3] and temporal logic expres-
sions for specifying interaction.

Many of the interaction specification mechanisms do
not allow one to define abstractions of interaction be-
haviors that can be reused. Also, event ordering con-
straint expressions support composition operators for mod-
ular development of interactions. This forms the basis
for extensibility and reusability of interaction specifica-
tions. Further, event ordering constraint expressions allow
specifications of interaction among specific invocations of
methods, whereas all interaction specification mechanisms
specify interaction constraints for all invocations of meth-
ods. Event ordering constraint expressions therefore pro-
vide greater flexibility in terms of specifying interaction
in that any interaction behavior for any invocation of a
method can be specified.

There is some similarity between our notion of con-
ditional event sets and accept states of the behavior-
abstraction based languages in that both capture invoca-
tions of methods for which specific boolean conditions are
true. In the case of the behavior-abstraction based lan-
guages, however, the interaction behavior of the events of
accept sets is predefined. In the case of event ordering con-
straint expression, on the other hand, any interaction be-
havior can be specified for the events of the event set by
defining suitable event ordering constraint expressions.

7 Summary and status

We have presented the design of a concurrent object-
oriented programming language that supports extensibil-
ity and modifiability of programs as well as reusability of
computational and interaction specifications. The basis for
the design of the language is based on separation of speci-
fications of computation and interaction. Separation of the
two specifications allows one to extend or modify either
of the components. Also, the abstractions for computation
and interaction can be combined with other program com-
position mechanisms such as templates to construct con-
current program abstractions.

We have developed a prototype implementation for
CYES-C++. We have done preliminary performance anal-
ysis of a number of simple applications (such as the N-
Body problem and Gaussian Elimination algorithm). The
results show that languages based on separation of con-
cerns can be implemented efficiently. The details of the im-
plementation and the performance analysis can be found in

6

[18]. Our current and future effort involves porting the cur-
rent implementation to other platforms and extensive per-
formance analysis of many large applications.

References

[1] Gul A Agha. ACTORS: A Model of Concurrent Com-
putation in Distributed Systems. The MIT Press,
Cambridge, Massachusetts, 1986.

[2] Peter A. Buhr and Richard A. Strossbosscher. �C++
Annotated Reference Manual. Technical Report Ver-
sion 3.7, University of Waterloo, Waterloo, Ontario,
Canada, N2L 3G1, June 1993.

[3] R. H. Campbell and A. N. Habermann. The Specifica-
tion of Process Synchronization by Path Expressions.
In Lecture Notes on Computer Sciences, volume 16,
pages 89–102. Springer Verlag, 1974.

[4] R. Chandra, A. Gupta, and J. L. Hennessy. COOL: A
Language for Parallel Programming. In Languages
and Compilers for Parallel Computing Conference,
pages 126–147. Springer Verlag, 1992.

[5] K. Mani Chandy and Carl Kesselman. Compositional
C++: Compositional Parallel Programming. Techni-
cal Report Caltech-CS-TR-92-13, Cal Tech, 1992.

[6] Svend Frolund. Inheritance of Synchronization Con-
straints in Concurrent Object–Oriented Programming
Languages. In ECOOP ’92, LNCS 615, pages 185–
196. Springer Verlag, 1992.

[7] Narain H. Gehani. Ada: Concurrent Programming.
Prentice Hall, Englewood Cliffs, N.J., 1984.

[8] Andrew S. Grimshaw. Easy-to-Use Object-Oriented
Parallel Processing with Mentat. IEEE Computer,
26(6):39–51, 1993.

[9] C. A. R. Hoare. Monitor: An Operating System
Structuring Concept. Communication of the ACM,
17(10):549–557, 1974.

[10] C. A. R. Hoare. Communicating Sequential Pro-
cesses. CACM, 21(8):666–677, 1978.

[11] D. G. Kafura and G. Lavender. Recent Progress in
Combining Actor-Based Concurrency with Object-
Oriented Programming. In ACM OOPS Messen-
ger, Proceedings OOPSLA/ECOOP 90 workshop on
Object-Based Concurrent Systems, volume 2, pages
55–58, April 1991.

[12] Dennis Kafura and Keung Lee. Inheritance in Ac-
tor based Concurrent Object-Oriented Languages. In
Proceedings ECOOP’89, pages 131–145. Cambridge
University Press, 1989.

[13] L.V. Kale and Sanjeev Krishnan. CHARM++: A
Portable Concurrent Object-Oriented System Based
on C++. In OOPSLA ’93, pages 91–108. ACM Press,
1993.

[14] Satoshi Matsuoka. Language Features for Re-use
and Extensibility in Concurrent Object-Oriented Pro-
gramming. PhD thesis, The University of Tokyo,
Japan, June 1993.

[15] Satoshi Matsuoka and Akinori Yonezawa. Analysis
of Inheritance Anomaly in Object-Oriented Concur-
rent Programming Languages. In Research Direc-
tions in Object-Based Concurrency. MIT Press, Cam-
bridge, 1993.

[16] José Meseguer. Solving the Inheritance Anomaly in
Concurrent Object-Oriented Programming. In Proc.
7th ECOOP’93. Springer Verlag, 1993.

[17] Christian Neusius. Synchronizing Actions. In
ECOOP ’91, pages 118–132. Springer Verlag, 1991.

[18] Raju Pandey. A Compositional Approach to Concur-
rent Programming. PhD thesis, The University of
Texas at Austin, August 1995.

[19] Raju Pandey and James C. Browne. Event-based
Composition of Concurrent Programs. In Work-
shop on Languages and Compilers for Parallel Com-
putation, Lecture Notes in Computer Science 768.
Springer Verlag, 1993.

[20] Raju Pandey and James C. Browne. A Compositional
Approach to Concurrent Object-Oriented Program-
ming. In IEEE International Conference on Com-
puter Languages. IEEE Press, May 1994.

[21] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison Wesley, Second Edition edition,
1991.

[22] Laurent Thomas. Extensibility and Reuse of Object-
Oriented Synchronization Components. In Paral-
lel Architecture and Languages Europe, LNCS 605,
pages 261–275. Springer Verlag, 1992.

[23] Chris Tomlinson and Vineet Singh. Inheritance and
Synchronization with Enabled Sets. In OOPSLA ’89
Conference on Object-Oriented Programming, pages
103–112. ACM Press, 1989.

7

