
Code Optimization

I Goals of code optimization: remove redundant code without changing the
meaning of program.
Objective:

1. Reduce execution speed
2. Reduce code size

Achieved through code transformation while preserving semantics.
I A very hard problem + non-undecidable, i.e., an optimal program cannot

be found in most general case.
I Many complex optimization techniques exist.

Trade offs: Effort of implementing a technique + time taken during
compilation vs. optimization achieved.
For instance, lexical/semantic/code generation phases require linear time
in terms of size of programs, whereas certain optimization techniques may
require quadratic or cubic order.
In many cases simple techniques work well enough.

I Issues:
I What are principal sources of optimization?
I When are these optimizations applied?

1 / 10

Classification of optimizations

I Two kinds of classifications of various optimizations:
I Time of application: During which phase of compilation process is an

optimization applied?
I Scope of application: What is the area over which optimizations applied?

(Local, global, inter-procedural?)

I Time of application: An ideal optimizing compiler structure:

”Better”
IR

Scanner, parser,
semantic analyzer

Optimizer for
IR

IR

Source program

Code Generator

Target
Machine code

I Source language optimizations: target independent.
I Intermediate code generation: majority of machine independent

optimizations performed here.
I Final code generation: (Machine dependent optimizations)
I Interaction between various phases of optimization: one phase may facilitate

other phase. So order of application important.
Original code Transformed code

x = 1; x = 1;

... ...

y = 0; y = 0;

... ...

if (y) x = 0;

... ...

if (x) y = 1 if (x) y = 1;

2 / 10

Code optimization during various phases

I Source language optimizations:
I Exploit constant bounds in loops and arrays
I Inhibit code generation of unreachable code segments
I Unroll loop bodies into equivalent sequential code:

Original code Transformed code

for i in 1..10 loop A[1][1] := 2;

a[i][i] = 2*i; A[2][2] := 4;

end loop ...

I Suppress run-time checks that are redundant. For instance, constant loop
bounds allow a loop index to be treated as a constrained subtype, possibly
obviating range and subscript checks involving the index.

I Impact of language design on code quality. Positive impacts:
I Named constants
I Operator assigns (such as += in C). Allow redundant computations to be

identified easily.
I case statement, which generate significantly better code than equivalent if

statement
I Protected loop indices, which can be stored in registers and can often be

guaranteed to be limited to a fixed range.
I Restricted jumps and gotos, which make flow analysis easier.

3 / 10

Code optimization during various phases

I Language features that produce poor code or inhibit various optimizations:

I By-name parameters
I Function that have side effects, which may make code elimination or code

movement impossible
I Alias creation, which can make redundant expression analysis very difficult
I Exceptions, which can cause unexpected (and invisible) jumps to handlers

that may have side effects.

I IR representation optimizations:
I Constant folding, Copy propagation, Reduction in strength, Inlining,

Common sub-expressions
I Loop-invariant, reduction in strength, loop unrolling,
I Dead code elimination, Code motion.

I Code generation optimizations:
I Careful allocation of registers
I Thorough use of instruction sets
I Thorough use of hardware addressing modes
I Exploitation of special hardware considerations

4 / 10

Scope of optimization

I Scope of optimization can be local, global, and inter-procedural.
I Local: Usually applied to straight-line segments of code. (A basic block).

I Constant folding
I Copy propagation
I Reduction in strength
I Substitution of inline-code

I Global: Optimizations that extend beyond basic blocks.
I More difficult. Usually requires a technique called data flow analysis,

which attempts to collect information across jump boundaries.

I Inter-procedural: Optimizations that extend beyond boundaries of
procedures of entire program. Much much more difficult:

I analyze various parameter passing mechanisms;
I possibility of non-local variable accesses;
I may need to compute simultaneous information on all procedures that

might call each other;
I possibility of separate compilation

5 / 10

Principal sources of optimization

I Register allocation:
I Good usage of registers important. Reduces the time it takes to go to

memory to pick up information (whether on stack/heap etc.)
I Problem: fixed number of registers vs. large number of variables. An

optimization problem.
I Two techniques used when designing microprocessors:

I Define efficient memory operations. Do not need to depend on a very
efficient register allocator.

I Define large collection of registers (32, 64, 128) so that register allocation
problem is easier. (Example: RISC chips).

I Unnecessary Operations: Avoid generating expressions that will not be
needed.
Approaches differ from simple local searches to searches across all
programs.

6 / 10

Local optimization: Remove unnecessary ops

I Common sub-expression elimination: Remove many occurrences of an
expression by its value (constraint: the value should not change across
various occurrences).

Original code Transformed code

a = (b + c)*m; T1 = b + c; a = T1*m;

x = b + c; x = T1;

y = (b + c) * z; y = T1 * z;

I Dead code elimination: Dead code is code that is never executed or
that does nothing useful.

Original code Transformed code

T1 := k

...

x := x + T1 x := x + k

y := x - T1 y := x - k

} }

I Unnecessary jump elimination:
Original code Transformed code

x = 1; x = 1;

y = 2; y = 2;

if (x < y) jmp L1; jmp L2;

jmp L2; L1: ...

L1: ...

}

7 / 10

Local optimization: Transform costly ops

I Strength reduction: Replace an expensive operation by a cheaper one.
Original code Transformed code

x := x*2; shift left (x);

x := y^3; x := y * y * y;

I Constant folding: evaluate constant expressions at compile time. Can be
complex in expressions when some of the components are constants.
Example: lgth, amt: constant. Fold by reordering.
Original code Transformed code

x := lgth * (b + c/a)* amt; x := lgth*amt(b + c/a)

Reordering may be problematic if numbers are floats.
What if a variable is assigned once.. Almost like a constant. Called
Constant propagation and needs to be done globally.

I Procedure call: Expensive to make procedure calls (save register states,
build AR etc.). Two approaches to minimizing cost:

I Procedure inlining: replace procedure call with the code of body.
I Recognize tail recursion and replace it with gotos.

Original code Transformed code

int gcd(int u, int v) { int gcd(int u, int v) {

if (v == 0) return u; begin: if (v == 0) return u;

else return gcd (v, u%v); else { int t1 = v; int t2 = u%v ;

} u = t1; v = t2;

goto begin;

}

8 / 10

Code Optimization - cont’d

I Much optimization techniques depend on predicting program’s behavior:
I Collection information about variables, values, procedures
I How are expressions used/reused?
I Do variables remain constant or change value?

Note: Compiler must make worst case assumptions about information it
collects or risk generating incorrect code. Called Conservative
estimation of program information.

I Another approach: Use statistical behavior about a program. Gather
statistics through actual executions and use that to

I predict which paths are most likely to be taken,
I which procedures are most likely to be called often,
I which sections of code are likely to be executed frequently.

Use this information to adjust jump structure, loops, and procedure code
to minimize execution speed for most commonly occurring executions.

9 / 10

Local optimization: Loop Optimization

I Programs spend 90% of time in 10% of code. (Mostly in loops) so it
makes sense to optimize this portion of code...

I Factoring loop invariant expressions: Replace invariant expression from
within the loop:

Original code Transformed code

for k := 1 to 1000 do fact := 2*(p-q);

c[k] := 2*(p - q)*(n-k+1) denom := sqr(n) + n;

/ (sqr(n)+n); for k := 1 to 1000 do

c[k] := fact*(n-k+1)/denom;

Compiler needs to move code so it needs to determine if some expression
is dependent on loop indices.

I Reduction in strength: Replace more expensive operations by less
expensive ones.

Original code Transformed code

for i := 1 to 1000 do i := 1; T1 := i - 1;

sum := sum + a[i]; T2 := 4 * i; T3 := a[T2];

...

i := i + 1;

}
I Loop unrolling:

Original code Transformed code

for i := 1 to 20 do for i := 1 to 20 do

begin begin

for j := 1 to 2 do write(x[i,1], x[i,2]);

write(x[i, j]); end;

end;

Removes the overhead of setting up loop. Also, more optimization can be
applied to the basic block.

I Loop fusion: combine two loops to create one loop.

10 / 10

Global Optimization

I Dead code elimination: Dead code is code that is never executed or that
does nothing useful.
May appear from copy propagation:

T1 := k

...

x := x + T1

y := x - T1

...

by
...

x := x + k

y := x - k

...

I Code motion: Used for optimizing code size.

case p of

1: c := a + b * d;

2: m := b*d - r;

3: f := a - b*d;

end;

Replace by

T1 := b*d;

case p of

1: c := a + T1;

2: m := T1 - r;

end;

11 / 10

