Code Optimization

Goals of code optimization: remove redundant code without changing the
meaning of program.
Objective:

1. Reduce execution speed

2. Reduce code size
Achieved through code transformation while preserving semantics.
A very hard problem + non-undecidable, i.e., an optimal program cannot
be found in most general case.
Many complex optimization techniques exist.
Trade offs: Effort of implementing a technique + time taken during
compilation vs. optimization achieved.
For instance, lexical/semantic/code generation phases require linear time
in terms of size of programs, whereas certain optimization techniques may
require quadratic or cubic order.
In many cases simple techniques work well enough.
Issues:

» What are principal sources of optimization?

» When are these optimizations applied?

10

Classification of optimizations

» Two kinds of classifications of various optimizations:
» Time of application: During which phase of compilation process is an
optimization applied?
> Scope of application: What is the area over which optimizations applied?
(Local, global, inter-procedural?)

» Time of application: An ideal optimizing compiler structure:
Source program

Scanner, parser, | _IR_[Optimizer fof. BetteTCode Generat%r
semantic analyze IR IR

Targetv

Machine code

» Source language optimizations: target independent.

> Intermediate code generation: majority of machine independent
optimizations performed here.

> Final code generation: (Machine dependent optimizations

> Interaction between various phases of optimization: one p%ase may facilitate
other phase. So order of application important.

Original code Transformed code
x = 1; x =1

y =0 y =0

it (p x=0; -
;;(x)y=1 J:.;(x)y=1;

)

10

Code optimization during various phases

» Source language optimizations:

>

>
>

Exploit constant bounds in loops and arrays

Inhibit code generation of unreachable code segments
Unroll loop bodies into equivalent sequential code:

Original code Transformed code
for i in 1..10 loop AT1I[1] := 2;

alil[i] = 2x*i; A[2]1[2] := 4;
end loop ..

Suppress run-time checks that are redundant. For instance, constant loop
bounds allow a loop index to be treated as a constrained subtype, possibly
obviating range and subscript checks involving the index.

Impact of language design on code quality. Positive impacts:

>
>

Named constants

Operator assigns (such as += in C). Allow redundant computations to be
identified easily.

case statement, which generate significantly better code than equivalent if
statement

Protected loop indices, which can be stored in registers and can often be
guaranteed to be limited to a fixed range.

Restricted jumps and gotos, which make flow analysis easier.

10

Code optimization during various phases

» Language features that produce poor code or inhibit various optimizations:

» By-name parameters
» Function that have side effects, which may make code elimination or code
movement impossible
» Alias creation, which can make redundant expression analysis very difficult
> Exceptions, which can cause unexpected (and invisible) jumps to handlers
that may have side effects.
> IR representation optimizations:
» Constant folding, Copy propagation, Reduction in strength, Inlining,
Common sub-expressions
» Loop-invariant, reduction in strength, loop unrolling,
» Dead code elimination, Code motion.
» Code generation optimizations:
» Careful allocation of registers
» Thorough use of instruction sets
» Thorough use of hardware addressing modes
» Exploitation of special hardware considerations

10

vy

v

Scope of optimization

Scope of optimization can be local, global, and inter-procedural.

Local: Usually applied to straight-line segments of code. (A basic block).

>

>
>
>

Constant folding

Copy propagation
Reduction in strength
Substitution of inline-code

Global: Optimizations that extend beyond basic blocks.

>

More difficult. Usually requires a technique called data flow analysis,
which attempts to collect information across jump boundaries.

Inter-procedural: Optimizations that extend beyond boundaries of
procedures of entire program. Much much more difficult:

>

>

| 4

analyze various parameter passing mechanisms;

possibility of non-local variable accesses;

may need to compute simultaneous information on all procedures that
might call each other;

possibility of separate compilation

10

Principal sources of optimization

> Register allocation:
» Good usage of registers important. Reduces the time it takes to go to
memory to pick up information (whether on stack/heap etc.)
> Problem: fixed number of registers vs. large number of variables. An

optimization problem.
» Two techniques used when designing microprocessors:

> Define efficient memory operations. Do not need to depend on a very
efficient register allocator.
> Define large collection of registers (32, 64, 128) so that register allocation
problem is easier. (Example: RISC chips).
» Unnecessary Operations: Avoid generating expressions that will not be
needed.
Approaches differ from simple local searches to searches across all

programs.

6

10

Local optimization: Remove unnecessary ops

» Common sub-expression elimination: Remove many occurrences of an
expression by its value (constraint: the value should not change across
various occurrences).

Original code Transformed code

a = (b + c)*m; TL =b + c; a = Tixm;
x=Db + c; x = T1;
y=(+c)*z; y =T1 * z;

» Dead code elimination: Dead code is code that is never executed or
that does nothing useful.

Original code Transformed code
Tl := k
X :=x + T1 X =X+ Kk
y :=x-T1 y :=x -k
} }
» Unnecessary jump elimination:
Original code Transformed code
x =1; x =1;
y = 2; y = 2;
if (x < y) jmp Li; jmp L2;
jmp L2; L1:
L1:

}

Local optimization: Transform costly ops

» Strength reduction: Replace an expensive operation by a cheaper one.

Original code Transformed code
X 1= x*2; shift left (x);
X 1= y73; X =y *y*y;

» Constant folding: evaluate constant expressions at compile time. Can be
complex in expressions when some of the components are constants.
Example: Igth, amt: constant. Fold by reordering.

Original code Transformed code

x := 1gth * (b + c/a)* amt; x := lgth*amt(b + c/a)

Reordering may be problematic if numbers are floats.

What if a variable is assigned once.. Almost like a constant. Called
Constant propagation and needs to be done globally.

» Procedure call: Expensive to make procedure calls (save register states,
build AR etc.). Two approaches to minimizing cost:

» Procedure inlining: replace procedure call with the code of body.
» Recognize tail recursion and replace it with gotos.

Original code Transformed code
int ged(int u, int v) { int ged(int u, int v) {
if (v == 0) return u; begin: if (v == 0) return u;
else return gecd (v, u%v); else { int t1 = v; int t2 = u%v ;
} u=tl; v=1t2;
goto begin;

10

Code Optimization - cont’d

» Much optimization techniques depend on predicting program’s behavior:
» Collection information about variables, values, procedures
» How are expressions used/reused?
» Do variables remain constant or change value?
Note: Compiler must make worst case assumptions about information it
collects or risk generating incorrect code. Called Conservative
estimation of program information.
» Another approach: Use statistical behavior about a program. Gather
statistics through actual executions and use that to
» predict which paths are most likely to be taken,
> which procedures are most likely to be called often,
» which sections of code are likely to be executed frequently.
Use this information to adjust jump structure, loops, and procedure code
to minimize execution speed for most commonly occurring executions.

10

Local optimization: Loop Optimization

» Programs spend 90% of time in 10% of code. (Mostly in loops) so it
makes sense to optimize this portion of code...

» Factoring loop invariant expressions: Replace invariant expression from
within the loop:
Original code Transformed code
for k := 1 to 1000 do fact := 2x(p-q);
clk] := 2x(p - @)*(n-k+1) denom := sqr(n) + n;
/ (sqr(n)+n); for k := 1 to 1000 do
c[k] := fact*(n-k+1)/denom;
Compiler needs to move code so it needs to determine if some expression
is dependent on loop indices.
» Reduction in strength: Replace more expensive operations by less

expensive ones.

Original code Transformed code
for i := 1 to 1000 do i -1;
sum := sum + af[il; T2 := 4 % i; T3 := a[T2];

i+ 1

}
> Loop unrolling:

Original code Transformed code
for i := 1 to 20 do for i := 1 to 20 do
begin begin
for j := 1 to 2 do write(x[i,1], x[i,2]);
write(x[i, j1); end;
end;

Removes the overhead of setting up loop. Also, more optimization can be
applied to the basic block.
» Loop fusion: combine two loops to create one loop.

Global Optimization

» Dead code elimination: Dead code is code that is never executed or that

does nothing useful.
May appear from copy propagation:

Tl := k

x :=x + Tl

y = -T1
by

x :=x +k

y :=x -k

» Code motion: Used for optimizing code size.

case p of
1: c :=a+b *d;
2: m := bxd - r;
3: f := a - bxd;
end;
Replace by
T1 := bx*d;
case p of

1: ¢ :=a + T1;
2: m:=T1 - r;
end;

11/10

