
Network-Theoretic Classification of
Parallel Computation Patterns

Sean Whalen
Berkeley Lab and

University of California, Davis
shwhalen@ucdavis.edu

Sean Peisert
Berkeley Lab and

University of California, Davis
sppeisert@lbl.gov

Matt Bishop
University of California, Davis
bishop@cs.ucdavis.edu

ABSTRACT
Parallel computation in a high performance computing en-
vironment can be characterized by the distributed memory
access patterns of the underlying algorithm. During exe-
cution, networks of compute nodes exchange messages that
indirectly exhibit these access patterns. Thus, identifying
the algorithm underlying these observable messages is the
problem of latent class analysis over information flows in
a computational network. Towards this end, our work ap-
plies methods from graph and network theory to classify
parallel computations solely from network communication
patterns. We also introduce an approximate pattern match-
ing algorithm using statistical hypothesis testing and com-
pare these approaches using massive datasets collected at
Lawrence Berkeley National Laboratory.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models—statistical, struc-
tural ; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems—distributed applications

Keywords
communication patterns, network theory, hypothesis testing

1. INTRODUCTION
As the field of high performance computing (HPC) plans

for the frontier of exascale performance, multi-core CPUs
are often combined with accelerators such as graphics pro-
cessing units (GPUs) and field programmable gate arrays to
form heterogeneous environments that increase performance
under both power and transistor constraints [1]. While ar-
chitectural evolution is one cornerstone of this frontier, un-
derstanding the characteristics of distributed computation
is essential for improving the efficiency and scalability of
software in HPC environments [2].

Towards this end we apply methods from graph theory,
network theory, and hypothesis testing to classify distributed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CACHES ’11, June 4th, 2011, Tucson, Arizona, USA
Copyright 2011 ACM 978-1-4503-0760-4/11/06 ...$10.00.

parallel computations based on their characteristic patterns
of communication. More generally, classification is the prob-
lem of structural pattern recognition applied to unknown
parallel computations that reveal themselves indirectly via
messages exchanged by a network of compute nodes. Identi-
fying the underlying algorithm is thus a type of latent class
analysis where a “hidden” algorithm must be identified only
from observable information flows. This task is non-trivial:
different algorithms can express similar patterns, and differ-
ent implementations can express different patterns.

This work was initially motivated by the need for anomaly
detection in HPC environments given the recent commod-
ification of cloud-based encryption and password cracking
services.1 However, it has broader applications in hetero-
geneous computing environments. Consider an algorithm
implemented on a general purpose CPU and later ported to
a GPU. Have algorithms with similar patterns on the CPU
been successfully ported to accelerators in the past? How
close is the new pattern to those of similar algorithms on the
GPU? Can we distinguish CPU and accelerator implemen-
tations based solely on information flows? The classification
of communication patterns is a step towards answering such
questions and may help identify algorithms suitable for par-
ticular architectures or dynamic replacement of suboptimal
implementations [3, 4].

In this paper, we first describe how communication pat-
terns are defined and dynamically captured from running
applications and the relation of these patterns to abstract
computational classes called dwarfs. Methods from graph
and network theory are then applied to the classification
problem and their shortcomings discussed. Finally, we in-
troduce a new algorithm for efficient, approximate matching
of communication patterns and suggest directions for devel-
oping metric-based pattern classifiers.

2. BACKGROUND

2.1 Message Passing Interface
Message Passing Interface (MPI) is a communications pro-

tocol standard used by many parallel programs to exchange
data using a distributed memory model. There are several
implementations such as OpenMPI and MPICH, each based
on the idea of logical processors with unique labels called
ranks communicating in groups called communicators. MPI

1An unnamed website brute forces WPA-PSK or ZIP pass-
words in 20 minutes for $17 using a cloud computing infras-
tructure, and Amazon’s EC2 GPU instances have been used
to brute force SHA-1 hashes.

1 int main(int argc , char **argv) {

2 MPI_Init (&argc , &argv);

3 long terms_total = atol(argv [1]);

4

5 int rank , size;

6 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

7 MPI_Comm_size(MPI_COMM_WORLD , &size);

8

9 double pi;

10 calculate_pi(terms_total * rank / size , terms_total * (rank + 1) / size , &pi);

11

12 if(rank == 0) {

13 double data;

14 MPI_Status status;

15

16 for(int i = 1; i < size; i++) {

17 MPI_Recv (&data , 1, MPI_DOUBLE , i, MPI_ANY_TAG , MPI_COMM_WORLD , &status);

18 pi += data;

19 }

20

21 printf("%.18f", pi);

22 }

23 else {

24 MPI_Send (&pi, 1, MPI_DOUBLE , 0, 0, MPI_COMM_WORLD);

25 }

26

27 MPI_Finalize ();

28 }

Figure 1: Source code for computing the decimal expansion of π using the Message Passing Interface parallel
programming standard. The code is left unoptimized for the benefit of those not familiar with MPI.

programs have an initialization phase where each processor
joins a communicator and is assigned a rank, and a finaliza-
tion phase to gracefully terminate after computation.

Consider the MPI-enabled C program for computing π to
some number of digits shown in Figure 1.2 Lines 2, 6, and 7
perform MPI initialization. The desired number of terms in
the decimal expansion is read from the command line into
terms_total. Each processor then calls calculate_pi and
tells the function which one of size chunks to compute based
on its rank. After computing its chunk, every rank sends its
result to rank 0 on line 24. Rank 0 collects these results
on line 17 and adds them to the final output, displayed to
the desired precision on line 21. This is an example of a
simple communication pattern: all ranks call MPI_Send with
destination rank 0.

Sophisticated applications have richly structured commu-
nication patterns between many ranks in the communicator
and we use these patterns to classify parallel computations.
However, not all communication attributes (features) may
be helpful in classification—some may be redundant or even
detrimental to training models that generalize to new data.
We later describe how these features are selected, but first
detail how they are captured from active MPI applications.

2.2 Communication Logging
The Integrated Performance Monitoring (IPM) library [5]

provides low-overhead performance and resource profiling

2Adapted from code by David Letscher at St. Louis Univer-
sity.

for parallel programs. It logs features of MPI function calls
to a file such as the call name, the ranks involved, the num-
ber of bytes sent, and optional hardware counters including
the number of integer and floating point operations. The
library is enabled with a compile-time flag, usually provided
to the mpicc compiler wrapper.

Consider the following IPM log entry:

<hent call=“MPI Isend” bytes=“599136” orank=“1”
count=“26” />

These entries become rows in a two dimensional feature ma-
trix where rows represent individual calls and columns rep-
resent the features of each call. Functions names are mapped
to unique integers so the contents of the feature matrix are
purely numerical. The above entry then becomes:(

int(MPI Isend) 599136 1 26
)

The result is a matrix of features for each parallel program
we wish to classify, and from this we construct a directed
graph. The task at hand, then, is to differentiate patterns
of computation by assessing the pattern of information flow
between nodes in the graph, and what captured features are
important to this analysis.

2.3 Computational Dwarfs
A computational dwarf is “a pattern of communication

and computation common across a set of applications” [6].
Each dwarf is an equivalence class of computation and is
invariant to the programming language or numerical meth-
ods used for implementation. The common use of shared

Destination Rank

So
ur

ce
 R

an
k

S
o
u
rc
e
R
a
n
k

Destination Rank

So
ur

ce
 R

an
k

Destination Rank
Destination Rank

So
ur

ce
 R

an
k

Figure 2: Adjacency matrices for individual runs of performance benchmark madbench (256 nodes), atmo-
spheric dynamics simulator fvcam (64 nodes), and linear equation solver superlu (64 nodes). The number of
bytes sent between ranks is linearly mapped from dark blue (lowest) to red (highest), with white indicating
an absence of communication.

libraries such as BLAS and LAPACK provides some evi-
dence of these equivalence classes, though dwarfs imply a
level of algorithmic equivalence beyond code reuse.

Colella et al. identified seven dwarfs in HPC applications
[7]: dense linear algebra, sparse linear algebra, spectral meth-
ods, n-body methods, structured grids, unstructured grids,
and monte carlo methods. Asanovich et al. asked if these
seven also captured patterns from areas outside of HPC [6].
They found six additional dwarfs were needed to capture
the distinct patterns of computation found in areas such as
machine learning, computer graphics, and databases.

The distinct adjacency matrices of dwarfs provide a first
step towards classification. Consider a three node cluster
where rank 0 sends messages to ranks 1 and 2, rank 1 sends
a message to rank 2, and ranks 1 and 2 send messages back
to 0. This leads to the following matrix representation:0 1 1

1 0 1
1 0 0

Adjacency matrices are plotted as a grid where the axes are
rank numbers and filled pixels denote communicating ranks.
The matrices for single runs of three parallel programs are
shown in Figure 2 and exhibit distinct patterns. Another
layer of structure can be seen by extending the adjacency
matrix into a third dimension, mapping an additional com-
munication feature onto the z-axis. Two such mappings are
shown in Figure 3.

Communication patterns are strongly tied to distributed
memory access within a parallel program. To see this, ex-
amine the diagonal of Figure 2’s center panel and note the
communication between a rank and its immediate neighbors.
Such a pattern is a signature of finite difference equations
and is found across many HPC applications. Another type
of equation will have a different signature unless its pattern
of distributed memory access is similar.

The structure seen in Figures 2 and 3 is typical of MPI ap-
plications and suggests that classification is possible. By the
same argument, however, distinguishing applications within
the same dwarf class may be difficult due to their topo-
logical similarity. Complicating matters, the same program
may alter its communications given different parameter val-
ues, datasets, or communicator sizes (see Figure 5). As a
result, we must look beyond the matrix representations of

these patterns.

3. METHODOLOGY

3.1 Node Distributions
We treat a communication pattern as a directed graph

with ranks as nodes and MPI calls as edges3 and measure
various statistical properties of this graph. The first of these,
the node degree distribution, counts the total number of
nodes having a particular number of edges (degree). This
analysis is restricted to the out-degree distribution measur-
ing only outbound edges. In our previous example, two
nodes have degree 2 and a single node has degree 1. The
degree distribution for two individual runs of the madbench
performance benchmark are shown in panels (a) and (c) of
Figure 4.

Node degree distributions are a summary statistic over
the adjacency matrix and the types of messages exchanged,
reflecting the layered per-call adjacency matrices in the left
panel of Figure 3. Though offering additional structural
insight, node degree distributions summarize a single aspect
of the graph that may fail to distinguish different patterns.
In these cases, the notion of centrality can be helpful.

Centrality measures the importance of a node in the graph,
and this importance can be defined in several ways. We ex-
amine the betweenness centrality (CB), measuring the per-
cent of shortest paths passing through a node v in an undi-
rected graph [8]:

CB(v) =
∑

s6=v 6=t∈V

σst(v)

σst

where σst(v) is the number of shortest paths between nodes
s and t that pass through v. This number is normalized by
the total number of shortest paths between s and t. The
CB of v, then, is the sum of these normalized shortest path
counts over all node pairs not containing v.

Intuitively, nodes acting as coordinators of computation
such as rank 0 have high CB . As an artifact of IPM, broad-

3Each logged call is given a unique edge, but later graphs
are restricted to one edge per message type to reduce run-
time and overfitting. For example: if rank 1 transmits three
MPI_Recv messages to rank 2, it will result in three edges
here but a single edge later.

0
20

40
60 0

20

40

60
0

1

2

3

Src

Dst

M
P
I
C
a
ll

0
20

40
60 0

20

40

60
0

200

400

Src

Dst

R
ep

ea
t
C
o
u
n
t

Figure 3: Adjacency matrix of general relativity simulator cactus augmented by MPI call (left) and message
size (right).

cast messages also have high centrality. This can be seen
in panels (b) and (d) of Figure 4. Note that despite sim-
ilar degree distributions, the second run has very different
centrality distributions.

Relying solely on centrality to classify the computation
would have resulted in a false negative (incorrectly labeling
patterns as different algorithms). The degree distribution
works for this example but will result in a false positive
(incorrectly labeling patterns as the same) for others. Thus,
multiple such measures are important for differentiating par-
allel computations.

However, these statistics are based solely on topological
properties of the computational network and do not incor-
porate other attributes of information flow. In addition they
are potentially sensitive to the number of compute nodes. It
is vital that any classification operate independently of the
communicator size, whether the computation is performed
with 32, 64, 128, or more nodes.

3.2 Graph Isomorphisms
In our setting, two parallel computations using the same

algorithm are often isomorphic: given the set of vertices V (G)
and edges E(G) for some graph G, graph isomorphism is a
bijection between two graphs G and H:

f : V (G)→ V (H)

This mapping preserves the edge structure of the graphs:
uv ∈ E(G) if and only if f(u)f(v) ∈ E(H) [9]. Isomorphic
communication patterns imply that messages are passed be-
tween the same nodes in each graph regardless of the as-
signed rank number, akin to scrambling the columns of the
adjacency matrix.

As two computations performed on different numbers of
nodes cannot be isomorphic, we are instead interested in the
related problem of subgraph isomorphism. Two graphs are
subgraph isomorphic if some subgraph of G is isomorphic
to H: for example, if some subset of the communication
graph for atmospheric dynamics simulator fvcam on 256
nodes is isomorphic to the same program run with 128 nodes.

Graph isomorphism has not been proven NP -complete
or a member of P , while subgraph isomorphism is NP -
complete via reduction to the maximum clique problem.

Runtime complexity is of serious concern as HPC networks
often contain hundreds of nodes. Our investigations fo-
cus on Ullman’s subgraph isomorphism algorithm [10], the
VF2 algorithm [11], and the NetworkX implementation of
VF2 [12]. The Ullman and VF2 algorithms are implemented
in the VFLib library4 and have worst-case time complex-
ity O(N !N2) and O(N !N), respectively.

IPM logs are converted to directed graphs with MPI calls
encoded as edge attributes. Such attributed relational graphs
(ARGs) [13] prune the state space of the isomorphism test
and reduce false positives. The results of pairwise subgraph
isomorphism tests are shown in the left panel of Figure 6 and
full details of the datasets are given in Section 3.4. True pos-
itives are shown in black and false negatives in grey. Blocks
represent graphs constructed from different runs of the same
program and thus should be classified the same.

These blocks illustrate the primary problem with isomor-
phism testing: exact matching requirements result in false
negatives for all data-dependent topologies (see Figure 5).
Ideally, such topologies will be classified the same if differ-
ences are within some bounded variance. To address this,
the next section introduces an approximate matching algo-
rithm based on a series of statistical hypothesis tests and is
followed by a comparison of both approaches.

3.3 Hypothesis Testing
A graph isomorphism requires exact node correspondence

between two graphs. This requirement results in many false
negatives when applied to communication patterns whose
statistics can vary with architecture, communicator size, pa-
rameters, and datasets. Current approximate graph match-
ing methods such as graph edit distance [13] are often more
computationally expensive than exact graph matching. In-
stead, we present a matching algorithm based on statistical
hypothesis testing. First we review the relevant concepts
and notation then discuss our approach in these terms.

A hypothesis test is a statistical method to determine
whether a null hypothesis H0 or alternative hypothesis Ha

best explain some data [14]. The null hypothesis commonly

4http://www.cs.sunysb.edu/~algorith/implement/
vflib/implement.shtml

1,000 1,500 2,000 2,500
0

10

20

30

40

Degree

N
u
m
b
er

o
f
N
o
d
es

(a) Node degree distribution, madbench run 1

0 100 200 300 400
0

20

40

60

80

Centrality

N
u
m
b
er

o
f
N
o
d
es

(b) Centrality distribution, madbench run 1

1,000 1,500 2,000
0

10

20

30

Degree

N
u
m
b
er

o
f
N
o
d
es

(c) Node degree distribution, madbench run 2

0 50 100 150 200 250
0

5

10

15

Centrality

N
u
m
b
er

o
f
N
o
d
es

(d) Centrality distribution, madbench run 2

Figure 4: Node degree and betweenness centrality distribution for two runs of performance benchmark
madbench. Despite similar node degree distributions these runs exhibit different centrality distributions.

theorizes the data is a result of chance and is accepted or
rejected at a significance level α using some statistical test.
If rejected, Ha is accepted as true with α probability of a
type-I error (false positive).

A type of hypothesis test called a goodness-of-fit test can
be used to determine the equality of probability distribu-
tions. We use the two-sample Kolmogorov-Smirnov (KS)
test [15], first computing the D-statistic for two empirical
cumulative distribution functions:

Dm,n = max
x
|Ŝm(x)− Ŝn(x)|

where m and n are the total event counts of their respective
distributions. We then compute the probability that differ-
ences in the distributions are due to chance and reject if this
value is less than our threshold α:

P (Dm,n ≥ DO|H0) < α

for the observed value DO [14]. Though defined theoretically
for continuous distributions, a modified KS test can be used
with discrete distributions [16].

To perform a KS test, the counts of MPI messages sent by
each rank are normalized to form a probability distribution
and the cumulative sum is taken to produce Ŝ. For exam-
ple: summed over all destination ranks, source rank 1 of
program A may transmit 15 MPI_Send, 20 MPI_Recv, and 5
MPI_Barrier messages. The probability mass function is
then 37.5%, 50%, and 12.5% respectively for these calls
and 0% for all others. If source rank 1 of program B trans-
mits 18 MPI_Send, 19 MPI_Recv, and 4 MPI_Barrier mes-
sages, the probability mass function is 43.9%, 46.3%, and
9.7%. Taking their respective cumulative sums to obtain
Ŝ40 and Ŝ41, the KS test determines that these distributions
are not significantly different at the α = 0.01 level. If the
probability mass functions remained the same but instead
2000 calls were logged, the test would determine the distri-
butions are not the same at the α = 0.01 level since there
is far more data and the differences are less likely due to
chance.

To determine if two communication patterns are gener-
ated by the same program, a KS test is applied to identi-

Destination Rank

So
ur

ce
 R

an
k

Destination Rank

S
o
u
rc
e
R
a
n
k

Destination Rank

So
ur

ce
 R

an
k

Destination Rank

S
o
u
rc
e
R
a
n
k

Figure 5: Data dependent topology demonstrated by molecular dynamics simulator namd under different
molecular arrangements. The number of bytes sent between ranks is linearly mapped from dark blue (lowest)
to red (highest), with white indicating an absence of communication.

cal ranks in the communicators. For example: rank 1 of
program A is compared to rank 1 of program B, rank 2
compared to rank 2, and so on. For communicators of dif-
ferent size, the comparisons are performed between ranks
present in the smallest communicator only. If more than
some threshold of ranks are equivalent at significance level
α, the programs are deemed equivalent. Both parameters
provide an adjustable tolerance to topological differences.
We found half the size of the smallest communicator to be
an effective threshold.

3.4 Comparison
Hypothesis testing results are shown in the right panel of

Figure 6 and both approaches are summarized in the table
below. Our 31 gigabyte dataset consists of 202 IPM logs
generated by cactus (astrophysics), fvcam (atmospheric
dynamics), gtc (particle physics), hyperclaw (gas dynam-
ics), lbmhd (plasma physics), madbench (benchmark), mhd
(plasma physics), namd (molecular dynamics), paratec
(materials science), pf2 (plasma physics), pmemd (molecular
dynamics), pstg3r (atomic physics), superlu (linear equa-
tion solver), and su(3) (lattice gauge theory). Programs are
logged with different combinations of 32, 64, 128, and 256
ranks. A true positive denotes matching patterns generated
by different runs of the same program; a false negative occurs
when these patterns do not match. Similarly, a true nega-
tive occurs when patterns generated by different programs
do not match; a false positive occurs when they do. A per-
fect classification algorithm will have only true positives and
true negatives.

Test

Subgraph Isomorphism KS

True Positives 922 2930
False Negatives 2542 534
True Negatives 14492 14398
False Positives 0 94

Total Runtime 17m40s 23s

Note the small increase in false positives for the KS test due

to approximate matching. We consider this an acceptable
tradeoff for the large reduction in false negatives and runtime
compared to subgraph isomorphism testing.

4. RELATED WORK
IPM logs have previously been used to study the perfor-

mance of MPI applications. Fürlinger et al. [17] provide a
general introduction to the IPM package and discuss sev-
eral concepts related to this work including visualization of
adjacency matrices and examining the distribution of MPI
calls for an entire process. Shalf et al. [18] perform similar
analysis to evaluate the communication requirements of par-
allel programs for improving processor interconnect designs.
The adjacency matrices of several NAS parallel benchmarks,
augmented by number of messages and message size, are pre-
sented by Riesen [19].

Ma et al. [20] introduce a communication correlation co-
efficient to characterize the similarity of parallel programs
using several metrics. The first compares the average trans-
mission rate, message size, and unique neighbor count for
each rank, while the second computes the maximum com-
mon subgraph. Their evaluation was limited to 4 programs
in the NAS parallel benchmark.

In addition to graph and network theory, we have pre-
viously used machine learning to classify parallel compu-
tation [21, 22] and discuss related machine learning efforts
elsewhere. This approach achieves greater accuracy than
those found in Section 3.3 but requires substantially more
computation and care to prevent overfit models.

Other parallel programming standards such as OpenMP
are based on a shared, as opposed to distributed, memory
model. In an effort to increase the portability of parallel
software, recent work uses compiler techniques to translate
OpenMP into MPI source code [23, 24], and our approach
should apply when such techniques are used. While we fo-
cus on latent analysis using only runtime communications,
source code translation has also been used to replace in-
efficient computations [3, 4]. The classification of commu-
nication patterns thus has strong ties to compilers, static
analysis, and code optimization.

0 50 100 150 200
0

50

100

150

200

Graph Index

G
ra
p
h
In
d
ex

0 50 100 150 200
0

50

100

150

200

Graph Index

G
ra
p
h
In
d
ex

Figure 6: Pairwise comparison of 202 communication patterns using subgraph isomorphism testing (left)
and hypothesis testing (right). Comparisons are symmetric and reflect along the diagonal. Blocks represent
graphs constructed from different runs of the same program and thus should be classified the same. True
positives, false negatives, and false positives are shown in black, grey, and red, respectively.

5. CONCLUSION
This work applies methods from graph and network the-

ory to identify the latent class of a parallel computation
from the observable information passed between nodes in a
computational network: given logs of MPI messages from
an unknown program, the task is to infer the program most
likely to have generated those logs. Our original motivation
was the detection of anomalous behavior on HPC clusters,
though we present our work in a general context and suggest
applications to heterogeneous computing are possible.

As initially postulated by work on computational dwarfs [6,
7], communication patterns tend to be highly structured and
reflect the distributed memory access patterns of the under-
lying algorithm. When dealing with algorithm implementa-
tions, however, many other factors affect the communication
patterns of theoretical algorithms. Different implementa-
tions of the same algorithm, shared libraries, compiler op-
timizations, architecture differences, software flaws, debug
flags, and numerous MPI implementations all make this task
more difficult. Further, some parallel programs have data-
dependent communication topologies, varying both slightly
(see Figure 5) and greatly as with multi-use (“swiss-army”)
libraries or interpreters such as Matlab.

Using gigabytes of data covering over a dozen parallel pro-
grams, we constructed directed communication graphs and
found network-theoretic measures such as node degree and
centrality distributions capture insufficient information to
distinguish parallel computation. Adjacency matrices serve
to visually differentiate communication patterns but cannot
group data-dependent topologies. Towards this end we ex-
amined graph and subgraph isomorphisms for testing equiv-
alency with the latter allowing comparison between commu-
nicators of different size. While isomorphism tests work for
small or sparse graphs, we found many topologies exhibit the
worst-case exponential time complexity of these algorithms.
In addition, isomorphism tests are not sufficiently tolerant
of data-dependent computation.

To address this issue we developed an algorithm that per-
forms statistical goodness-of-fit tests for the message distri-

bution of corresponding ranks in two communication graphs.
This identifies both exactly and approximately equivalent
computations as seen in Figure 5 and is extremely fast. A
significance level allows tuning the false positive and false
negative rates of the algorithm. However, swiss-army pro-
grams elude this approach.

We plan to investigate classification based on distributions
of over-represented subgraphs called motifs [25] as well as
weighing point-to-point and collective communication sep-
arately. Statistical measures such as Claussen’s offdiago-
nal complexity [26] may be useful for approximate topology
comparison. Graph edit distance [13], Bayesian [27] and
spectral [28] approaches to edit distance, graph kernels [29],
and factor graphs [30] offer additional approaches to approx-
imate graph matching.

These directions may provide increased generality for top-
ologies not yet observed or performance bounds in adversar-
ial environments [31]. However, the results presented in this
paper show that error-tolerant methods for matching paral-
lel communication patterns are practical for inferring latent
classes of computation.

6. ACKNOWLEDGEMENTS
Thanks to Scott Campbell and David Skinner for captur-

ing IPM data at NERSC and to members of the Cyber Secu-
rity project at LBNL for helpful discussions. This research
was supported in part by the Director, Office of Compu-
tational and Technology Research, Division of Mathemat-
ical, Information, and Computational Sciences of the U.S.
Department of Energy, under contract number DE-AC02-
05CH11231, and also by the U.S. Department of Homeland
Security under Grant Award Number 2006-CS-001-000001
under the auspices of the Institute for Information Infras-
tructure Protection (I3P) research program. The I3P is
managed by Dartmouth College. The views and conclusions
contained in this document are those of the authors and not
necessarily those of its sponsors.

7. REFERENCES
[1] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M.

Hjelmervik, and O. O. Storaasli, “State-of-the-art in
heterogeneous computing,” Scientific Programming,
vol. 18, no. 1, pp. 1–33, 2010.

[2] P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
S. Kumar, E. Lusk, R. Thakur, and J. L. Träff, “MPI
on a Million Processors,” in Proceedings of the 16th
European PVM/MPI Users’ Group Meeting,
pp. 20–30, 2009.

[3] R. Metzger and Z. Wen, Automatic Algorithm
Recognition and Replacement: A New Approach to
Program Optimization. MIT Press, 2000.

[4] R. Preissl, M. Schulz, D. Kranzlmüller, B. R.
de Supinski, and D. J. Quinlan, “Transforming MPI
source code based on communication patterns,” Future
Generation Computer Systems, vol. 26, no. 1,
pp. 147–154, 2010.

[5] J. Borrill, J. Carter, L. Oliker, D. Skinner, and
R. Biswas, “Integrated Performance Monitoring of a
Cosmology Application on Leading HEC Platforms,”
in Proceedings of the 2005 International Conference on
Parallel Processing, pp. 119–128, 2005.

[6] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis,
P. Husbands, K. Keutzer, D. Patterson, W. Plishker,
J. Shalf, S. Williams, and K. Yelick, “The landscape of
parallel computing research: A view from Berkeley,”
2006.

[7] P. Colella, “Defining Software Requirements for
Scientific Computing,” 2004.

[8] L. Freeman, “A Set of Measures of Centrality Based
on Betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41,
1977.

[9] D. B. West, Introduction to Graph Theory. Prentice
Hall, 2nd ed., 2001.

[10] J. R. Ullmann, “An Algorithm for Subgraph
Isomorphism,” Journal of the ACM, vol. 23, no. 1,
pp. 31–42, 1976.

[11] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento,
“A (Sub)Graph Isomorphism Algorithm for Matching
Large Graphs,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 10,
pp. 1367–1372, 2004.

[12] A. A. Hagberg, D. A. Schult, and P. J. Swart,
“Exploring Network Structure, Dynamics, and
Function using NetworkX,” in Proceedings of the 7th
Python in Science Conference (G. Varoquaux,
T. Vaught, and J. Millman, eds.), pp. 11–16, 2008.

[13] A. Sanfeliu and K. Fu, “A distance measure between
attributed relational graphs for pattern recognition,”
IEEE Transactions on Systems, Man and Cybernetics,
vol. 13, no. 3, pp. 353–362, 1983.

[14] J. D. Gibbons and S. Chakraborti, Nonparametric
Statistical Inference. CRC Press, 5h ed., 2010.

[15] F. J. Massey, “The Kolmogorov-Smirnov Test for
Goodness of Fit,” Journal of the American Statistical
Association, vol. 46, no. 253, pp. 68 – 78, 1951.

[16] W. J. Conover, “A Kolmogorov Goodness-of-Fit Test
for Discontinuous Distributions,” Journal of the
American Statistical Association, vol. 67, no. 339,
pp. 591–596, 1972.

[17] K. Fürlinger, N. J. Wright, and D. Skinner, “Effective

Performance Measurement at Petascale Using IPM,”
in Proceedings of the 16th IEEE International
Conference on Parallel and Distributed Systems,
pp. 373–380, 2010.

[18] J. Shalf, S. Kamil, L. Oliker, and D. Skinner,
“Analyzing Ultra-Scale Application Communication
Requirements for a Reconfigurable Hybrid
Interconnect,” in Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, 2005.

[19] R. Riesen, “Communication Patterns,” in Proceedings
of the 20th International Conference on Parallel and
Distributed Processing, pp. 275–282, 2006.

[20] C. Ma, Y. M. Teo, V. March, N. Xiong, I. R. Pop,
Y. X. He, and S. See, “An approach for matching
communication patterns in parallel applications,” in
Proceedings of the 2009 IEEE International
Symposium on Parallel and Distributed Processing,
pp. 1–12, 2009.

[21] S. Peisert, “Fingerprinting Communication and
Computation on HPC Machines.” 2010.

[22] S. Whalen, Security Applications of the e-Machine.
PhD thesis, University of California, Davis, 2010.

[23] A. Basumallik and R. Eigenmann, “Towards
automatic translation of OpenMP to MPI,” in
Proceedings of the 19th International Conference on
Supercomputing, pp. 189–198, 2005.

[24] A. Basumallik, S. Min, and R. Eigenmann,
“Programming Distributed Memory Sytems Using
OpenMP,” in Proceedings of the 2007 IEEE
International Parallel and Distributed Processing
Symposium, pp. 207–214, 2007.

[25] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon, “Network motifs: Simple
building blocks of complex networks,” Science,
vol. 298, no. 5594, pp. 824–827, 2002.

[26] J. C. Claussen, “Offdiagonal complexity: A
computationally quick complexity measure for graphs
and networks,” Physica A, vol. 375, pp. 365–373, Feb.
2007.

[27] R. Myers, R. C. Wison, and E. R. Hancock, “Bayesian
graph edit distance,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 22, no. 6,
pp. 628–635, 2000.

[28] A. Robles-Kelly and E. R. Hancock, “Graph edit
distance from spectral seriation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 27,
no. 3, pp. 365–378, 2005.

[29] N. Shervashidze, P. Schweitzer, E. J. van Leeuwen,
K. Mehlhorn, and K. M. Borgwardt,
“Weisfeiler-Lehman Graph Kernels.” 2010.

[30] J. Reichardt, R. Alamino, and D. Saad, “The interplay
of microscopic and mesoscopic structure in complex
networks.” 2010.

[31] M. Barreno, P. L. Bartlett, F. J. Chi, A. D. Joseph,
B. Nelson, B. I. P. Rubinstein, U. Saini, and J. D.
Tygar, “Open problems in the security of learning,” in
Proceedings of the 1st ACM Workshop on AISec,
pp. 19–26, 2008.

