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ABSTRACT
In this paper, we present a set of security requirements
for critical systems, fundamental premises that those re-
quirements would entail, and ideas for implementations that
would instantiate those premises. We discuss the overriding
requirement guiding our paradigm: that “first principles” re-
flects the only real security strategy, where first principles
are ideally provable, often measurable; and at minimum,
possible to order and bound. These principles allow us to
take into account that many security policies may be even
be in conflict, and as such, proofs, measures, and ordering
gives an analyst (or even better, an automated system) the
metrics that one needs in order to make informed decisions
about how to resolve conflicts. We demonstrate several met-
rics that enable this, including state replication, data slicing,
collusion, and information theory.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection; H.1 [Information Sys-
tems]: Models and Principles

General Terms
Design, Management, Measurement, Reliability, Security,
Verification

Keywords
Assurance, continuous authentication, dynamic access con-
trol, fault tolerance, first principles, formal methods, iden-
tity binding, insiders, metrics, perfect privacy, probabilistic
computing, security policy, trust negotiation
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1. INTRODUCTION
As cocaine dealers, crane operators, and tweet-
ing politicians know, every venture involves risk.
You can’t eliminate it, so you limit your expo-
sure. Drug dealers hire drug mules; politicians
hire publicists. Banks hire risk managers. [37]

Security is based on risk management. Risk management
implicitly involves a tradeoff between the magnitude of the
risk and the cost of managing that risk. Some critical sys-
tems have risks of virtually unlimited magnitude. Mod-
ern tools of computer security, including firewalls [44] and
anomaly detection systems are inadequate to defend against
threats posed against those systems. While false positive
and false negative rates of anomaly detection systems can
be adjusted in concert with the value of the resource they
are defending, anomaly detection cannot efficiently detect
non-secure behavior on most computing systems and net-
works [15, 53]. Also, metrics for anomaly detection systems
are notoriously unreliable [2, 38]. Although it is possible
to estimate the value of “zombie computers” and the value
proposition of running a spam campaign to sell fake Rolexes
and Prada handbags [33], what is the value of a nuclear re-
actor or a missile guidance system? The economic argument
fails when the value is virtually limitless or no meaningful
value can be assigned. It is a fantasy to think that our cur-
rent security methods have any chance of protecting such
systems [51,52].

This fantasy is protected and promoted by an elaborate
and pernicious mythology based solely on existing practice
[56]. Security analysts, system administrators, and adver-
saries all use the same resources. Thus, they pose simi-
lar threats to computer security. Consider the “insider,” a
trusted systems administrator by day who sells stolen infor-
mation at night.

The answer to securing these systems is not a better
anomaly detection algorithm. Metrics without a formal ba-
sis (e.g., IDS tests) are useful for many systems, but inad-
equate for critical systems. The critical systems that run
aircraft carriers do not need to have the same software de-
signed to run Minesweeper, Firefox, and Microsoft Power-
Point. Indeed, critical systems used to be more complex
than consumer systems, but now the opposite is true. Thus,
general-purpose operating systems such as Windows and
Linux systems are neither appropriate nor necessary for crit-
ical systems [31]. They also cannot be secured because ac-
cess controls cannot be precisely constructed for non-trivial
systems [24].



Historically, the time and monetary cost of formal veri-
fication has been prohibitive, and so formal methods were
intractable for useful systems [6, 16]. However, times have
changed. First, increased connectivity has increased the
need to protect critical systems. Second, computational re-
sources make verification more feasible especially for special-
purpose systems. Third, advances in hardware enable us to
restrict programs and supporting software so that, while we
cannot trust that which we have not written ourselves [58],
the combination of the untrusted program and a trusted
sandbox allows some degree of trust in the combination.
Thus, formal methods are practical [6] for designing and im-
plementing secure systems. They are simply costly [39, 51].
Systems with risk of essentially unlimited magnitude require
such expense. They require an assured, trusted computing
base [10,46] of both hardware and software. This paper ar-
gues that such a system can be constructed from dynamic
collections of special-purpose, formally verified systems.

One complication is that most systems interact with peo-
ple, so requirements must take people into account [8]. Thus,
studies in human behavior [19] are essential for helping to
guide and evaluate the requirements by complicating the ap-
plication of basic principles [47]. For example, applying the
principle of least privilege must not force users to extreme
measures to do their work.

In this paper, we leverage a number of metrics including
fault tolerance, diversity, and various social science stud-
ies to create a metric for a subset of specific security goals
particularly useful for critical systems. Such metrics are
founded on scientific first principles akin to the physical
specifications of the cyber-physical devices that the systems
may control. We do not seek an overarching set of“science of
computer security metrics” because we feel that that many
metrics held up as such are not based on first principles—
e.g., those that make claims about intrusion detection sys-
tem efficacy.

The overriding requirement is that security for systems
requiring high assurance must be designed in from the be-
ginning of system development, using “first principles.” Ex-
isting strategies for managing classified information in multi-
level or otherwise compartmentalized [7] environments may
be layered on top of these principles. They may also conflict
with them. Indeed, existing strategies serve a specific pur-
pose in a particular environment. But such a purpose may
not hold in today’s environments.

2. PRINCIPLES AND ASSUMPTIONS
The heart of the following first principles are the notions of

“policy,”“data,” and “resource.” They underlie the security
of the system.

1. Data has an associated policy, as do resources. When
a resource accesses data, the resource must satisfy the
data policy and the data must satisfy the resource pol-
icy. In a sense, the data and resources are each encased
in a “computational container” that restrict what it
can do, or what can be done with it. This roughly cor-
responds to the ring access controls for data segments
in Multics, where a process accessing the data segment
had to meet requirements set on the data segment [48].
Specifically, the calling segment’s ring level had to lie
in the data segment’s access bracket.

2. Resource and data policies require balancing security
properties (confidentiality, integrity, and availability)

in measurable ways, so that the mix of properties im-
plemented can be compared to the desired mix given
in the system requirements. The measurements need
not be quantitative or precise; in some cases, simply
bounding, comparing, or ordering elements is suffi-
cient. For example, instructions and data replicated
widely are likely to be both more available and have
higher integrity, but data sliced (for example, using
onion routing [12]) and stored widely will be more
likely to be confidential because it would be harder
to obtain every slice.

3. Systems must be able to enforce perfect privacy. That
is:

(a) Privacy: users control all data relating to them.
(b) Anonymity: others, including adversaries, are

provably unable to extract useful data.
(c) Non-persistence: no trace remains of data trans-

ferred or deleted.

Perfect privacy is bidirectional, but may be asymmetri-
cal. For example, an organization may require privacy
of its data (“don’t leak it outside the company”), but
a user may require privacy of their actions (no audit
trail). Or, a person in the United States may have the
option of placing a “block” on their credit report, re-
ceiving notification when someone has requested their
report, or both. It may not be possible for all com-
ponents of perfect privacy to hold for all parties in all
circumstances. It is an open question: under what
circumstances can all components hold for all parties?

4. The“system”includes hardware (computational and/or
physical), procedures, and a set of people who are
trusted to correctly carry out those procedures. Thus,
formal verification of these procedures using process or
workflow modeling is an integral part of validation.

5. All data is bound to an entity, physical or otherwise.
Unless anonymity is required, all entities are authen-
ticated at all endpoints. When a person generates or
manipulates data, that individual is associated with
the data unless the system’s overall policy forbids it.
For example, in U.S. elections, laws prevent associat-
ing a specific person with a specific ballot. In that
case, the entity is virtual and unbound to any physical
entity.

3. PREMISE
Given the above set of assumptions and principles, one

must provide evidence to assure the relevant target audience
that the system, and its attendant procedures, conform to
the requirements or specification of that system. We next
explore several technologies which, when combined, can pro-
vide this evidence.

3.1 Formal Verification
Formal verification uses mathematical techniques such as

code proofs, model checking [9], and automated theorem
proving [4] to verify the correctness of the specification and
design of a system. Certain languages and tools extend this
verification to the correctness of the implementation of a
system. Models of use and maintenance procedures can also
be verified [50].

The key problem with formal verification is that it is based
on assumptions—about physics, the quality of materials, the
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correctness of the tools used to do the verification, and the
correctness of components not checked. For example, even
if the physical design is validated, Figure 1 shows that layer
still relies on underlying components in layers 1–4. These
components may be flawed, and are vulnerable to supply
chain attacks. Therefore, to be complete, a formal verifi-
cation of a system would have to begin at the lowest levels.
The system and the verifiers would need to be manually ver-
ified until the system and verifiers can be bootstrapped to
develop and automatically verify the larger, specified sys-
tem. Such an approach is possible [34], albeit extremely
expensive. It is still limited, however, in that it is able to
verify the design but not the physical components. It is also
essential to use assumptions that extrapolate well to the fu-
ture, such as physics, rather than assumptions that to not,
such as ones involving human behavior [57].

3.2 Fault Tolerance
If a system cannot be proved to be correct at all times, it

must be prepared to tolerate failures. This means it must
be fault tolerant. Hence, one requirement is that the system
have rigorously defined metrics so that faults can be detected
and measured. As an (informal) example, a system that
provides confidentiality using cryptography could use as a
metric the estimated number of operations needed to factor
a number into two large primes.

Diverse redundancy can also provide measures of fault
tolerance. “Diverse” means the components are written in-
dependently and failures are independent of each other, for
example as the result of multiversion programming [27] or
compiler-generated diversity [14]. For example, a system
should have at least 3f + 1 independent replicas [30] to tol-
erate up to f faults. This provides a mathematical basis for
reasoning about the consequences of fewer replicas.

On the other hand, we cannot simply provide an equa-

tion such as

N∑
i=0

ReplicatedSystemi because this implies in-

dependence in the failure of each system including the in-
teraction of subsystems in their environment [20]. That is,
one can imagine that for some 0 ≤ j, k < N and j 6= k;

ReplicatedSubSystemj causes ReplicatedSubSystemk to be
less safe, or indicate a less safe system. However, we can
measure both software diversity [25, 36] and independence.
For example, we can compare the control paths of each
replica, determine how many paths of flow of control there
are, and determine how many subsequent elements of a sys-
tem depend on the outputs from previous elements. This
generates an initial set of probabilities that can be used to
augment an equation describing the composed system. It
also identifies the components that, at an initial cut, are
most likely to be the most heavily used. This suggests where
to focus the most attention. One can instrument the system
to collect runtime information on the paths taken during
testing and actual use. As the system runs, those prob-
abilities change, and new computations can be performed
as needed. A context-free grammar can be used to model
this, with the initial estimates of the probabilities set by the
flows of control, and changing as the data accumulates. By
comparing the predicted paths and the paths during testing
using techniques such as KL divergence [28] one can gain
confidence that the system is operating as designed.

As discussed in the previous section, formal verification
has limits. Fault tolerance also has limits because diver-
sity can be hard to achieve [3]. Therefore, we advocate an
approach that combines formal verification and fault toler-
ance. The fault tolerance aims to tolerate physical failure
and/or failure of components that the system is connected
to, but which are functionally outside of the system. The
formal verification aims to prove the correctness of the parts
of the system that it is able to verify. The reason we use
both fault tolerance and formal verification is that the two
complement each other, the fault tolerance compensating for
that which formal verification techniques do not verify, and
formal verification reducing the need for fault tolerance on
all parts of the system. Moreover, while Byzantine fault tol-
erance applied to defending against attacks can be limited
by the traditional 3f + 1 threshold model, methods exist
to use adversary structures to mitigate this [29]. Addition-
ally, some form of graceful transition and/or degredation to
a pre-defined failure mode (e.g., fail-safe, fail-soft, fail-hard,
fail-over) must be provided in the event that adversary re-
sources exceed the threshold.

While software diversity through N -version programming
has been suggested, its value has been questioned due to
studies that failed to show significant improvement in relia-
bility [13, 27]. On the other hand, N -version programming
need not be used purely for its ability to provide ultra-high
reliability, but rather for simply increasing diversity to de-
tect failures [41]. Therefore, the system design must use
N -version programming appropriately.

Although software diversity itself is unlikely to have a neg-
ative effect on reliability, one might postulate that even some
diversity is still helpful [25], and so why not use it? The
downside is that the requisite voting system makes the entire
process more complex, and therefore the benefit of diversity
trades off between increasing the complexity of the system
and increasing the complexity of verification. While some
complexity is unavoidable, our goal is manageable complex-
ity. Therefore, we limit our use of diverse redundancy via
N -version programming to modules and layers where it pro-
vides known and measurable improvements, and where for-
mal methods cannot be applied (e.g., physical components



and other analog failures). Thus, our suggested process is:

1. Formally (and manually) verify the design of the sys-
tem and verifiers and bootstrap this to develop larger
systems. Do this N times, in N different ways, to at-
tempt to increase diversity.

2. Use the N versions of the verifier (each of which has
been independently verified, as mentioned above) to
automatically verify the system.

3. Use 3f + 1 redundancy to run the system.
4. (Optional) During testing and/or actual use, compare

the predicted paths taken through the system to the
paths actually taken, and measure divergence.

Thus we use both formal methods and fault tolerant algo-
rithms.

The fault tolerance metric does not address the conse-
quence of a user taking an action that they are authorized
to take—and therefore the system allows them to take—but
is nonetheless harmful in some respect. Given the focus on
the user action for this situation, we can define the “system”
to include hardware (computational and/or physical), pro-
cedures (including error handling to compensate when errors
are made following the procedures), and a set of people who
are trusted to adhere to those procedures. Thus, formal
verification of these procedures using process or workflow
modeling is an integral part of validation. We then mea-
sure the risk of a compromise of availability and integrity by
determining the minimum number of users who must col-
lude in order to take a particular action, and require that
for damaging actions, two or more users must collaborate to
take such actions. The system must enforce this metric. For
example, a nuclear submarine enforces the “two-man rule”
by requiring two keys to be turned simultaneously at oppo-
site ends of a room—something that no single person could
do [1, §15]. Those keys are “stored in safes locked by com-
binations in which nobody on board has the combination
to those safes, as that combination must come as part of a
launch order from a higher, external authority.” Thus the
two-man rule cannot easily devolve into “one person with a
gun.” Less prosaically, “Starfleet vessels require authoriza-
tion from the captain and/or senior officers, with the use of
command authorization codes in most cases.”1

We now present some example metrics to demonstrate
some considerations involved in developing appropriate met-
rics. The actual metrics will depend on the system re-
quirements and environment in which they are used. Note
that these equations assume complete independence between
replicas, but the equations can be appropriately modified for
systems with replicas that are not independent.

Let D be a measure of how different components are as
a real number between 0 (identical) and 1 (completely dif-
ferent). Let S be the fraction of the number of components
of the system covered by the diverse replicas considered in
D (that is, a number between 0 and 1 inclusive). Let f be
the number of faults to be tolerated. Let n be the number
of replicas of the components. Then the portion P of the
system that can be properly and diversely replicated is:

P =
n

3f + 1
×D × S

1Auto-destruct: http://en.memory-alpha.org/wiki/
Auto-destruct

Let M be the number of people controlling or monitoring
an object. Let A be the number of these people required
to take an action on or with the object that is harmful in
some respect. Let S be the fraction of the number of objects
considered in M (again a number between 0 and 1 inclusive).
Then C, the degree of collusion required to compromise the
system, is:

C = 1− M

A
× S

Having an M -person rule, therefore, is much like state repli-
cation in its ability to provide a statistical measure of the
amount of security that an object has.

Thus, one possible measure of availability and integrity is
P × C. The non-security metric would then be the com-
plement of this measure, which is (1 − P ) × (1 − C). In
most critical systems, the cost of the compromise of items
left unprotected cannot be expressed in numerical terms, for
example, in a monetary value lost due to compromise. How-
ever, the components can be ordered according to risk and
consequence of failure [5].

Measuring diversity and independence of people in“redun-
dant humans” is beyond the scope of this paper. It is best
left to social scientists who can study metrics for motiva-
tion, incentive, and background. For example, multiversion
programming by students tended not to work, because they
learned from the same instructor, whereas multiversion pro-
gramming a corporate environment did work because the
programmers had different training [27].

Although state (and human) replication provides protec-
tion for availability and integrity, they work against confi-
dentiality. The more systems and people that contain useful
and usable information, the less confidential the informa-
tion is. The simplest way to address this is to distribute en-
crypted parts of the information that cannot be decrypted
without each other, and therefore are of no value separately.
The more pieces into which this information is divided, the
more security against compromise of confidentiality is pro-
vided. How to do this division of data varies depending on
the data and environment.

One can do this at the cost of availability and integrity by
reducing state and human replication and instead dividing
information among those machines and humans. Alterna-
tively, one can do this by increasing replication by the “data
slicing” factor, which increases confidentiality without re-
ducing availability and integrity. This could be done using
Shamir’s secret splitting [49,54] where at least m of n slices
must be recovered to reconstruct the data, such that m < n.
For simplicity in this paper, we assume m = n. For exam-
ple, for a actual slices and s state replicas, there will be a
total of a×s machines supporting the same number of slices
and replicas. Given r required slices (data dependent), one
data disclosure security metric DD with respect to machine
replication is:

DD =
n

3f + 1
× a

r
× A

M

where n, f , A, and M are defined as previously. Thus for
each replica not“sliced,”the system becomes less secure with
regard to confidentiality, and for each additional slice, the
machine becomes more secure with regard to confidentiality.
By increasing both, then security with respect to all three
primary goals can be increased without compromise.

An alternate approach is to use information theory to pro-



vide an upper bound for a metric to measure loss of confi-
dentiality. That metric is simply the amount of data sent
via overt channels plus the amount of data sent via covert
channels [60], both of which can be automatically measured,
monitored, and in some cases, blocked in realtime. This can
also capture user actions against confidentiality, as well as
the risk of disclosure caused by increased replication (e.g.,
keeping all of the information in one place), as opposed to
slicing it up into pieces. Thus, the upper bound on the in-
security metric is for confidentiality is:

(1−DD)× I × V

where I is the amount of information moved and V the value
of that information.

In practice optimal security will be provided both when
3f +1 replicas are maintained for security, and S data slices
are maintained, resulting in (3f + 1) × S replicas with a
different data slice on each one. Note that undoing the slic-
ing need not necessarily involve reconstituting the original
element. Like “lossy compression,” the user requesting the
data may be able to reconstitute the needed portion of the
original element by obtaining a subset of the slices of the
data.

We emphasize that the metrics presented above are rough
sketches of the analysis that would need to be done. The
point is that, given an understanding of the environment
in which the system will function and of its function, the
metrics can be created. This technique of state machine
replication, redundant personnel, and data slicing address
Principles 1, 2, and 4 of our list.

3.3 Trust Negotiation
Trust negotiation is required for perfect privacy because

both sides need a means for authenticating other party of
a communication to the desired degree of assurance while
revealing no more than necessary or intended. Many tech-
nologies exist to accomplish this to the desired degree of
assurance, including TrustBuilder [32], zero knowledge tech-
niques [17], and trusted third parties. Such techniques en-
able negotiation to take place in which a computing system
enforces a policy where file sharing is disallowed without ex-
plicit consent from the owner. The negotiation considers the
action that a user wishes to take, the security policy of the
organization, and the privacy of the user. Such a system
should be designed and implemented consonant with the
integrity and confidentiality metrics of the system (as dis-
cussed above) so that the integrity of the negotiation process
can be monitored, and accidental disclosure bounded.

3.4 Binding
An entity must be strongly bound to its digital iden-

tity. This supports both anonymity (the entity is simply
unidentified) as well as accountability (the entity is iden-
tified to an appropriate degree). Password-based authenti-
cation is known to be insufficient, in large part because of
human frailties. Attempts to improve authentication by con-
straining passwords has increased the security burden on the
user while providing little, if any, security improvement [19].
Complex passwords aggravate existing vulnerabilities (such
as users writing down the password) while increased com-
puting power has made exhaustive search not just possible
but straightforward.

Traditional authentication is based on something you know,

something you are, something you have, or where you are.
But these have different strengths, depending upon environ-
ment. However, in general, “something you are” is harder
to fake than ”something you know,” harder to steal than
“something you have,” and more certain than “where you
are.” This suggests relying most heavily on techniques ref-
erencing a personal characteristic of the user.

Binding an entity to its digital identity is essential to do
not just once at a perimeter, but continuously while it ac-
cesses data and resources. Of course, such binding must at-
tempt to minimize susceptibility to masquerade attacks [35].
Dynamic, flexible access control [43] is one such approach.

Traditional access controls have evolved from static and
coarse-grained to dynamic and fine-grained. But too lit-
tle access inhibits usability, effectively creating a denial of
service for people trying to do their jobs; and too much
access invites breaches of security. Prohibitions fall into
two classes. Core prohibitions prevent disaster, and are ax-
iomatic to the system. Ancillary prohibitions, derived from
core prohibitions, hinder the ability of an attacker to vi-
olate core prohibitions, but are not in and of themselves
critical to the security of the system. Optimistic access con-
trol is a framework in which core prohibitions are always
enforced, and ancillary prohibitions are enforced only when
a specific threshold is crossed. The threshold may depend
upon history, trust, and a variety of other non-binary coun-
termeasures. For example, suppose account alice is logged
in from person Alice’s computer. Trust that alice is bound
to user Alice might be increased if Alice’s office door is open
and people are walking by her office frequently (which can
be verified by tracking the GPS locations from their cell
phone). On the other hand, if Alice’s door is closed, then
we may have less trust. The access control may require an
increase in trust should account alice attempt to take sen-
sitive actions on sensitive resources.

Strong, continuous, adaptive entity authentication elimi-
nates the security vulnerabilities inherent with using purely
perimeter-based solutions and tokens (such as HSPD-12
badges and smart cards) to mediate the relationship between
the human and the computing environment. When the en-
tities are people, widely-available authentication technolo-
gies such as facial recognition, voice recognition, GPS, and
so forth can provide unambiguous identity as certain and
intuitive as in the physical world. Many smartphones in-
corporate cameras, GPS receivers, accelerometers, and rate
gyros. Additional sensors such as galvanic skin response and
eye tracking enable continuous real-time user authentica-
tion. Early steps in the efficacy of many of these mechanisms
have been promising (“Cell phones show human movement
predictable 93% of the time.”) [21]

A single sign-in event enables access until the user logs
out. It is not continuous. The authentication discussed
above intelligently fuses sensor data with predictable human
behavior and limitations to enable probabilistic confidence
that the specific user is at the machine. The confidence can
be brought closer to certainty by the use of multiple mecha-
nisms. Conceivably, every keystroke [26] and mouse motion
can be automatically and transparently signed indicating
the confidence that the machine input was provided by the
specific individual. If confidence is eroded due to user incon-
sistency (such as injury or sickness), it can be restored by
requiring more complicated passwords or even more intru-



sive means such as DNA analysis (assuming that technology
is available).

To place this into context, a traditional access control ma-
trix is a mapping of a subjects s ∈ S and objects o ∈ O to
a set of rights r ∈ R expressed as a matrix A (whose entries
are a). When a subject tries to perform an action on an
object, the set of rights in the appropriate entry is checked.
If the right is present, the action proceeds; otherwise, it is
blocked. In this form, the matrix implements a binary deci-
sion function where the only possible responses are to allow
or block access.

A conditional access control matrix contains functions of
rights rather than rights. Let M be a set of information
needed to determine whether a subject s may access an ob-
ject o. For example, m ∈ M may be the time of day, a se-
curity clearance, execution history, and/or the state of the
application or system. Then define a function f : S × O ×
R ×M → R. Each entry in the conditional access control
matrix a[s, o] is f(s, o, r′,m′), where r′ ⊆ R and m′ ∈M .

As an example, consider a login mechanism that blocks all
logins to an account after n failed attempts. In the above
formulation, s would be the user, o would be the account, r
would be the (singleton) set of the login right l, m would be
the number of previous incorrect login attempts, and

f(s, o, l,m) =

{
l if m < n
∅ otherwise

Were the function defined (slightly) differently, m could in-
clude the environmental parameter of a trusted user vouch-
ing for Alice, thereby overriding the m < n check.

The concepts of “risk,”“trust,” and “consequence” are dif-
ficult or impossible to quantify. However, they can often be
ordered. Thus, one promising approach approach of char-
acterizing subjects, objects, and actions using attributes [5]
and ordering threats accordingly so that bounds and scales
of threats can be assessed.

3.5 Summary
In summary, we have described a system in which:

1. Data relates to computational resources by way of a
data policy and a resource policy, which must satisfy
each other.

2. Provides metric-driven balancing of security compo-
nents: availability, confidentiality, and integrity.

3. Is capable of enforcing perfect privacy on data.
4. Includes hardware, procedures, and a set of people who

are trusted to adhere to those procedures.
5. There is strong, continuous binding of an individual to

data.

4. CASE STUDY: MEDICAL SYSTEMS
In this section we discuss how our approach can be ap-

plied to a specific scenario, and discuss metrics related to
availability, confidentiality, and integrity, and the tradeoffs.

A medical center has a data policy intended to maximize
availability and integrity of medical records but not at the
expense of privacy. This policy requires quadruple redun-
dancy: there is always a backup, a backup for the backup,
a third- and fourth-level backup. Thus, given constraints
imposed by Byzantine fault tolerance, if the system has 4
replicas, it can tolerate the failure of a single system. The
privacy requirement means that the environment and nature

of the data require that each record be sliced into four pieces
and stored separately in order to prevent reconstruction of
the data from any single part of the data. Thus, since each
record must be replicated four times and sliced into four
parts, and given that each replica and slice must be main-
tained independently, 16 machines are required to maintain
the availability, integrity, and confidentiality of the system.

In this particular environment, there are situations in which
medical records are the inputs to medical devices such as
surgical or life support equipment. Such systems are critical
systems, and many operate in a SCADA fashion. Like any
other SCADA system, they can be compromised at the su-
pervisory control, network, or remote terminal unit level. As
such, end-to-end validation and verification [11] of all pro-
cess control actions taken by the operator is essential. But,
for these systems, availability and integrity might supersede
confidentiality (privacy) at times (such as when the system
is controlling a patient’s vital functions).

Consonant with societal trends, suppose also that the se-
curity policy supports “perfect privacy.” That is, patients
truly “own their own medical records”—patients must grant
permission to any physician to see his records, or to any
medical system that must access the patient’s records. If
the physician accessing the records is the patient’s own per-
sonal physician, then no security violation has taken place
because the patient has already granted her access. If the
physician is not, as may occur in a “break-the-glass” emer-
gency such as a patient being in cardiac arrest and must ac-
tivate a system requiring the patient’s records, then under
this (hypothetical) policy, the physician needs to authenti-
cate and immediately document the reason for viewing the
records (strong authentication), or a second physician may
provide their credentials to avoid documenting the reason
for one hour, or three physicians together may provide their
credentials to avoid documenting the reason at all.

The reason for the three possibilities is the problems at-
tendant on creating documentation. First, if the audit logs
are not bound to the objects they refer to, they are extra
objects that can be attacked separately from the documents,
and hence decreases security by increasing the attack sur-
face. Second, the availability of such logs implicitly violates
user privacy. Therefore, this method of computing must en-
able auditing but log data in such a way that it is bound to
the relevant objects. Further, when audit data involving a
user is collected, the user should know that it is being col-
lected, agree to its collection, know under what conditions
the data may be read and used (that is, that the data is
protected from unauthorized snooping), and that the data
is part of the object being tracked, itself.

So if documentation by the physicians is provided, then
it is kept as a cryptographic append-only “watermark” as
part of the medical record itself (to maintain provenance
and attribution for the event), and not contained in ex-
ternal logs (which may well be non-persistent and difficult
to attribute). This “watermark” contains the data and the
metadata, thereby limiting the spread of audit logs to other
locations that may compromise privacy of the users involved
(in this case, the physicians and patients). Sharing this
documentation requires similar methods. Suppose that the
records can be sent outside the hospital to authorized view-
ers. By watermarking the file to indicate that the person
who authenticated to the system and sent the file was a
specific individual, that identity is bound to the distributed



data because the watermark cannot be altered without de-
stroying the data in the record. Further, the transmission
requires a handshake that demonstrates that the recipient
also authenticated. The recipient’s identity is also part of
the watermark, providing strong authentication.

This system seems to provides a means for balancing avail-
ability, confidentiality, and integrity, and provides a dynamic,
flexible means for doing so, based on events external to the
computer system (e.g., number of physicians involved). Note
that this policy addresses many but not all of our stated
requirements. For example, patients are able to maintain
perfect privacy, but what if a physician wishes to be anony-
mous? In this case, there is a conflict between user control
of the record and anonymity of the physician, and therefore,
perfect privacy cannot be maintained by all parties.

5. IMPLEMENTATION IDEAS
The paradigm that we have proposed is not easy to prac-

tice. However, we assert that there are a variety of ways
to implement such a paradigm. We propose a set of solu-
tions that addresses the tradeoffs in a way that particularly
addresses security policies of critical systems. For example
point-to-point communication is particularly vulnerable to
DDoS attacks. Wireless spread spectrum techniques miti-
gate this problem in wireless networks by spreading normal
narrow band signals over a much wider band of frequencies
thus forcing jammers who do not know such spread pattern
to invest much more effort to launch attacks. In the same
way, the techniques that we have presented here can require
adversaries to invest significant resources to compromise the
integrity of computer networks.

Typically, the first step in the execution of a computa-
tional task is to secure the resources necessary to complete
the task. This static approach to computing has several
drawbacks: power is consumed while waiting for all the nec-
essary resources to be secured, and assured availability de-
mands that these resources are captive, which makes them
an attractive target.

Dynamic computing uses a just-in-time approach to re-
source allocation. No computing resources are dedicated to
the job until all resources have been scheduled and are avail-
able when needed. This enables the allocation of processing,
storage, and networking to be optimized on the fly for dif-
ferent criteria. Dynamic computing seeks “design-arounds”
to reduce certain vulnerabilities. For example, optimiza-
tion for processing performance may demand low network
latency. Optimization for security may eschew performance
(and availability) in favor of randomization to reduce signal-
to-noise ratio and increase confidentiality.

Other, modern approaches to secure computing, using in-
novative, dynamic techniques have been proposed and im-
plemented. Self cleansing intrusion tolerance [40], fluid in-
formation systems [45], and crafting secure systems from
the gates up [59] are all ideas related to our own. However,
self-cleansing intrusion tolerance and fluid information sys-
tems both use some variation of an “exquisite knowledge”
approach which assumes that humans or agents operating
under the direction of other humans can detect malevo-
lent activity and steer computing chores away from compro-
mised resources. The exquisite-knowledge based assumption
is that the human has the ability to detect malevolent activ-
ity. History (and billions of dollars of research) has shown
that this simply is not the case.

Oracle based approaches depend on an incorruptible el-
ement to assure security in what are essentially computing
systems as they exist today. They assume that such an in-
corruptible oracle exists and then build extensions to that
system that can accomplish useful computing tasks. “Craft-
ing secure systems from the gates up” calls this oracle the
“lease unit.” The assumption is that the lease unit cannot
be corrupted so all security critical functions point back to
this lease unit. The Intel Trusted Platform Module (TPM)
architecture [22] is another example of an oracle-based ap-
proach. The drawback to the oracle-based approach is that
the adversary simply attacks the oracle or its inputs. Once
either has been compromised, the adversary has control over
the computation resource under the control of the oracle.

However, one distinction is that these techniques all look
essentially like current technology, and as such, all have sim-
ilar weaknesses to current pathologies as existing systems.
In contrast, we advocate a computing system that is de-
signed from the ground up to be incapable of revealing any
meaningful data in a way that conflicts with its policy. Ex-
tracting useful computing from a first-principles-secure sys-
tem requires knowledge external to the computing system
itself. Separating computing resources from the informa-
tion being protected assures that the protection is applied
only to the critical information. The computing resources
simply become reservoirs and conduits (infrastructure) of
convenience. Our proposed dynamic computing systems use
entirely different paradigms (such as signal-to-noise manage-
ment) to assure security. These alternative paradigms are
designed from the ground up to both tolerate and expose
malevolent activity.

Dynamic Data Storage.
Dynamic computing also enables novel approaches to data

storage. For example, since the data required for a computa-
tion need only be available at the moment the computation
is executed, no“data warehousing” function (typically a ded-
icated data center) is required. In contrast, data storage is
optimized around other criteria.

Optimization for security may seek to utilize “cloud” stor-
age facilities to effectively hide data files. In this exam-
ple, a data file maybe bulk encrypted, packetized, and each
packet may be stored on some combination of independent
cloud providers. Redundant storage of each of these pack-
ets enables increased confidence in the integrity of the data
through statistical methods, Byzantine fault tolerance, or
simple voting approaches. The location of all of these pack-
ets is tracked through the use of a Dynamic Data Track-
ing Table (D2T2; analogous to a File Allocation Table or
FAT). Recovery of the original data file can be accomplished
by recalling each packet (while checking the integrity of
each packet for increased confidence), and then decrypting.
Packet recall can be sped up using techniques such as “bit
torrent.” Absent the tracking information in the D2T2, an
adversary will have a very difficult time reconstructing the
original data file.

File sharing is accomplished by recalling the secret key
associated with the file, decrypting and re-encrypting that
one using the sharer’s public key, and sending that encrypted
chunk out to the cloud. The re-encrypted file is then packe-
tized and returned to the cloud and the tracking information
in the D2T2 is passed to the recipient. The recipient can now
recall and reconstruct the file using their private key. Mul-



tiple recipients can share a single file stored in the cloud by
using each of their keys during file transfer re-encryption.

Dynamic Data Storage also provides opportunities for
strong forensics by enabling the recipient to maintain records
that answer two questions. First, the recipient can prove au-
thorization to receive the file through the ownership of the
tracking information with his public key in the D2T2. Sec-
ond, the recipient can show that he obtained the file through
legitimate means by retaining the information used to recall
the packets.

The D2T2 is larger and far more complicated than a FAT.
Adoption of this approach will, however, reduce overall data
storage volume because redundant copies of large files need
no longer be stored by individuals. Instead of storing the
MP3 file for each song on their playlist, individuals need
only store the D2T2 entry for their songs which can then
be recalled and played as needed. Use of Dynamic Data
Storage will also enable record companies to reduce piracy
of their intellectual property by making songs available to
the consumer while controlling the distribution channel.

Dynamic Processing.
The proliferation of systems that utilize embedded mi-

crocontrollers without fully understanding the security lim-
itations of these systems is a great cause for concern. For
example, a self-parking system for a car may use an em-
bedded microcontroller to orchestrate all of those moves.
The embedded microcontroller brings with it a multitude of
vulnerabilities that have been well characterized and docu-
mented. The fact that this microcontroller is linked to the
audio system that enables the user to update his MP3 files
automatically every time the car is parked at home erodes
confidence even further.

The emergence of RISC computing years ago was a re-
action to the complexity (and inherent compromises) in a
CISC machine. The move to RISC was only based on per-
formance considerations and didn’t go far enough. Moving
away from embedded microcontrollers, everything that can
be executed using a special purpose machine should be ex-
ecuted using a special purpose machine [23]. The technolo-
gies to do so exist today. The only thing keeping us from
using special purpose machines everywhere possible is the
paradigm that we bring to the problem.

Typically, an embedded system is built around an FPGA.
The designer instantiates a microcontroller IP core on that
FPGA and then uses the remaining gates to execute the
specific functions required for the application. Then code is
written to link the entire system together. Use of the micro-
controller IP core introduces a general purpose computing
element with all of its inherent vulnerabilities. Another way
to approach an embedded system using an FPGA would be
to use a finite state machine (FSM). The FSM would be
designed to execute the proper functionality, and then the
FSM would be instantiated on the FPGA. The FPGA is
field programmable so it can be rewritten in the field. This
means that the functionality can be dramatically changed
any time the user desires. This approach can be expanded
to enable general purpose computing. One could envision
a “cloud of gates” which can be configured to perform the
user’s specific function and then wiped clean and returned
to the cloud as an alternative to the “cloud of computers”
that we currently think of when we say cloud computing.

Notionally, the functionality of the “cloud of gates” would

work like this: First, the user prepares a “processing pack-
age” consisting of data and executable packaged to execute
on a reconfigurable computing platform (e.g., an FPGA).
Then the processing package “certifies” the platform for pro-
cessing and a bootloader establishes the necessary executable
on the platform. Next, the data is processed using the ex-
ecutable and the result is transmitted to the user. Finally,
the computing platform is freed for next processing package.
In this way everything that can be executed on a special pur-
pose machine is executed on a special purpose machine. And
all of the vulnerabilities that go with general purpose com-
puting can be eliminated. One could think of this as zero
instruction set computing (or “ZISC”).

There are enormous problems associated with “place and
route” that drives users to microcontroller IP cores. There
will be a cost-benefit tradeoff (at least if the beginning) until
ZISC design tools are widely available. The place-and-route
problem associated with ZISC can be mitigated by enforc-
ing redundancy and diversity of ZISC cores as described in
Section 3.2. ZISC cores would be at a higher complexity
level than “gates” but not as high as an x86 microcontroller.
Of course, ZISC cores also would be less capable than x86
microcontrollers, but sufficient for specific tasks. Note that
ZISC cores cannot be modified outside the machine: the FP-
GAs cannot be reprogrammable, and need to be discarded
and replaced (or set up so they can only be programmed on
the original machine). For larger processing problems where
a designer needs to maintain a high level of certainty, “prob-
abilistic computing” offers an alternative. The designer can
break the problem down into provable-core-sized pieces and
present each piece of the processing problem to a cloud of
independent, ZISC cores. By examining the consensus re-
sults returned from each independent core, the designer can
obtain probabilistic confidence in the result. Thus, proba-
bilistic computing enables the designer to gain high confi-
dence in the result while not requiring that the system be
fully formal methods provable.

Dynamic Networks.
Another opportunity for dynamic computing is networks.

Typical homeowners use a single ISP that handles all of their
residential network traffic. That traffic travels in serial fash-
ion out of the network, and, in response, traffic is returned
on the same network. Even if the data is encrypted, an ad-
versary with access to the pipe is able to collect all bits and,
given enough time and computing, decrypt every message
sent and received. So this approach is vulnerable both to
breach of confidentiality and also denial of service (DoS).

Dynamic computing applied to networks would suggest
a “Meta ISP” to provide provide assured, secure data com-
munications. The Meta ISP may choose to contract with as
many different ISPs as is necessary to assure that data trans-
mission is secure and robust. The Meta ISP may choose to
do bulk encryption of data before transmission, and then
packetize this encrypted data, and then commutate it over
as many different regular ISPs as is necessary to assure that
security and reliability standards are met. The Meta ISP
would reassemble the packets and decrypt the message at
the other end. Ignoring the endpoints in this limited-scope
example, a man-in-the-middle attack would be fabulously
difficult. A DoS on any single ISP may affect data transmis-
sion rates but shutting data down completely would require



that every ISP be disrupted. The National Broadband Map2

indicates that the typical urban or suburban home is served
by 6 different ISPs. So, a Meta ISP can be accomplished us-
ing existing ISPs. The same approach can be used to provide
greater bandwidth during normal operations.

6. SUMMARY AND FUTURE WORK
We have presented a set of requirements for critical sys-

tems, fundamental premises that those requirements would
entail, and ideas for implementations that would instantiate
those premises. We have described why current systems—in
particular general purpose computer systems—cannot meet
those requirements. The overriding requirement guiding our
paradigm is the notion that“first principles”reflects the only
real security strategy, where first principles are ideally prov-
able, often measurable; and at minimum, possible to order
and bound. These principles take into account that many
security policies may be even be in conflict, and as such,
proofs, measures, and orderings gives an analyst or an au-
tomated system the metrics needed to make informed de-
cisions about how to resolve conflicts. We also presented
several metrics that enable this, including replication, data
slicing, collusion, and information theory.

The requirements that we have presented are by no means
the only possible requirements for a “clean-slate, ground-up,
first-principles” system. And the implementation ideas that
we have presented are by no means the only ways of instan-
tiating such requirements. Many other requirements and
implementations are possible. The next steps in this re-
search must involve additional work tying together the vari-
ous, sometimes disparate components of this system, as well
as deep focus on case studies that may help to introduce
additional requirements or fine-tune existing (and possibly
conflicting) requirements.
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M. Félegyházi, C. Grier, T. Halvorson, C. Kanich,
et al. Click Trajectories: End-to-End Analysis of the
Spam Value Chain. In 32nd IEEE Symposium on
Security and Privacy, pages 431–446, 2011.

[34] R. J. Lipton and L. Snyder. A Linear Time Algorithm
for Deciding Subject Security. Journal of the ACM
(JACM), 24(3):455–464, 1977.

[35] T. F. Lunt and R. Jagannathan. A Prototype

Real-Time Intrusion-Detection Expert System (IDES).
In Proc. of the IEEE Symposium on Security and
Privacy, pages 59–66, 1988.

[36] M. R. Lyu, J.-H. Chen, and A. Avizienis. Software
Diversity Metrics and Measurements. In Proc. of the
Sixteenth Annual Computer Software and Applications
Conference (COMPSAC), pages 69–78, 1992.

[37] A. Marantz. Dept. of Hoopla, “Odds Are”. The New
Yorker, page 22, April 2, 2012.

[38] J. McHugh. Testing Intrusion Detection Systems: A
Critique of the 1998 and 1999 DARPA Intrusion
Detection System Evaluations as Performed by the
Lincoln Laboratory. ACM Trans. Inf. Syst. Secur.
(TISSEC), 3(4):262–294, Nov. 2000.

[39] J. S. Moore, T. W. Lynch, and M. Kaufmann. A
Mechanically Checked Proof of the AMD5K86TM

Floating-Point Division Program. IEEE Transactions
on Computers, 47(9):913–926, 1998.

[40] A. Nagarajan, Q. Nguyen, R. Banks, and A. Sood.
Combining Intrusion Detection and Recovery for
Enhancing System Dependability. In Proc. of the
IEEE/IFIP 41st International Conference on
Dependable Systems and Networks Workshops, 2011.

[41] L. Nagy, R. Ford, and W. Allen. N -version
Programming for the Detection of Zero-Day Exploits.
In IEEE Topical Conference on Cybersecurity, 2006.

[42] I. Newton. The Correspondence of Isaac Newton,
volume 1, page 416. Cambridge Univ. Press, 1959.

[43] S. Peisert. Optimistic Access Control and Anticipatory
Forensic Analysis of Insider Threats. In Insider
Threats: Strategies for Prevention, Mitigation, and
Response, number 10341 in Dagstuhl Seminar
Proceedings. Dagstuhl, 2010.

[44] S. Peisert, M. Bishop, and K. Marzullo. What Do
Firewalls Protect? An Empirical Study of
Vulnerabilities and Attacks. Technical Report
CSE-2010-8, UC Davis, March 2010.

[45] C. W. Probst and R. R. Hansen. Fluid Information
Systems. In Proceedings of the 2009 New Security
Paradigms Workshop (NSPW), pages 125–132, 2009.

[46] J. Rushby. Design and Verification of Secure Systems.
In Proceedings of the 8th ACM Symposium on
Operating Systems Principles, pages 12 – 21, 1981.

[47] J. H. Saltzer and M. D. Schroeder. The Protection of
Information in Computer Systems. Proceedings of the
IEEE, 63(9):1278–1308, 1975.

[48] M. D. Schroeder and J. H. Saltzer. A Hardware
Architecture for Implementing Protection Rings.
Communications of the ACM, 15(3):157–170, 1972.

[49] A. Shamir. How to Share a Secret. Communications of
the ACM (CACM), 22(11):612–613, 1979.

[50] B. I. Simidchieva, S. J. Engle, M. Clifford, A. C.
Jones, S. Peisert, M. Bishop, L. A. Clarke, and L. J.
Osterweil. Modeling Faults to Improve Election
Process Robustness. In Proc. of Electronic Voting
Technology Wkshp./Wkshp. on Trustworthy
Computing (EVT/WOTE), 2010.

[51] B. Snow. We Need Assurance! In Proceedings of the
21st Annual Computer Security Applications
Conference (ACSAC), 2005.

[52] B. Snow. Our Cyber Security Status is Grim (and the



way ahead will be hard). Synaptic Labs 2012 Annual
Reports Video Series, 2012.

[53] R. Sommer and V. Paxson. Outside the Closed World:
On Using Machine Learning for Network Intrusion
Detection. In Proceedings of the IEEE Symposium on
Security and Privacy, 2010.

[54] M. W. Storer, K. Greenan, E. L. Miller, and
K. Voruganti. POTSHARDS: Secure Long-Term
Archival Storage Without Encryption. Technical
Report Technical Report UCSC-SSRC-06-03, Storage
Systems Research Center, University of California,
Santa Cruz, Sept. 2006.

[55] E. Talbot. Cyber Security Challenges and
Opportunities. Keynote Address for the 2011
Workshop on Governance of Technology, Information,
and Policies (GTIP), December 2011.

[56] E. B. Talbot, D. Frincke, and M. Bishop.
Demythifying Cybersecurity. IEEE Security and
Privacy, 8(3):56–59, May/June 2010.

[57] N. N. Taleb. Fooled by Randomness: The Hidden Role
of Chance in Life and in the Markets. Random House,
2001.

[58] K. Thompson. Reflections on Trusting Trust.
Communications of the ACM, 27(8):761–763, 1984.

[59] M. Tiwari, H. M. G. Wassel, B. Mazloom, S. Mysore,
F. T. Chong, and T. Sherwood. Complete Information
Flow Tracking from the Gates Up. In Proc. of the 14th
Intl. Conference on Architectural Support for
Programming Languages and Operating Systems, 2009.

[60] C.-R. Tsai and V. D. Gligor. A Bandwidth
Computation Model for Covert Storage Channels and
its Applications. In Proc. of the IEEE Symposium on
Security and Privacy, April 1988.


