
Towards a Self-Adaptive Middleware for
Building Reliable Publish/Subscribe Systems

Sisi Duan1, Jingtao Sun2, and Sean Peisert1

1University of California, Davis, 1 Shields Ave, Davis CA, 95616, USA
2National Institute of Informatics, The Graduate University for Advanced Studies,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan
{sduan,speisert}@ucdavis.edu

sun@nii.ac.jp

Abstract. Traditional publish/subscribe (pub/sub) systems may fail or
cause longer message latency and higher computing resource usage in
the presence of changes in the execution environment. We present the
design and implementation of Mimosa Pudica, an adaptive and reliable
middleware for adapting various changes in pub/sub systems. At the
heart of Mimosa Pudica are two design ideas. First, the brokers can elect
leaders to manage the network topology in a distributed manner. Second,
software components can be relocated among brokers according to the
user’s pre-defined rules. Through these two mechanisms, brokers can be
connected in a self-adaptive manner to cope with failures and guarantee
delivery of messages. In addition, brokers can effectively utilize their
computing resources. Our experimental results of a large-scale pub/sub
system show that in the presence of environmental changes, each self-
adaptive process generates as few as 30 ms extra latency.

1 Introduction

Today’s large-scale publish/subscribe (pub/sub) systems require dynamically
applicability to be adaptive to various changes in systems and applications. For
instance, in the presence of environmental changes, message loss and broker/link
failures are desired to be handled. In addition, for many applications, the soft-
ware components of an application may need to be migrated from one node to
another, so as to be adaptive to limited computing resources and high loading
at a node. However, most existing approaches propose solutions in the software
layer while the pub/sub system structure itself is not able to be adaptive to fre-
quent changes. We propose Mimosa Pudica, a middleware that is dynamically
adaptive to various changes from both pub/sub systems and applications on top.
Base on the middleware, we build a reliable pub/sub system and also improve
the overall efficiency in system resource usage.

An amount of past research efforts have been devoted to developing reliable
pub/sub systems. Most of them guarantee that messages will eventually be de-
livered. In order to guarantee message order in the presence of failures, previous
efforts have relied heavily on the topology, either through redundant nodes or



2 S.Duan, J.Sun, S.Peisert

links. However, redundant nodes have a high cost in replication, and redundant
links usually require brokers to store large amount of redundant information,
which limits the scalability of a system and may even render brokers unusable.

In this paper, we propose a design of a self-adaptive and reliable pub/sub
system that scales more efficiently by not requiring redundant nodes or storage.
At the core of our system is Mimosa Pudica, a middleware that is adaptive to
various changes. We employ two novel design ideas. First, brokers of pub/sub
systems can elect leaders through our leader election algorithm to manage the
rest of brokers in a distributed manner. Second, the leader can automatically re-
locate the software components between brokers to achieve dynamic adaptation
of the pub/sub system, according to the user’s pre-defined rules. Based on such a
design, brokers can be dynamically added or deleted to handle failures. Further-
more, software components can be distributed to effectively utilize computing
resources and to prevent from node failures.

We use distributed destination databases that can be accessed by the brokers
to store routing information of brokers and all the pre-defined adaptation rules.
In the presence of environmental changes, the brokers access the destination
database to obtain a broker group information. After a leader election among
the group, the leader compiles the adaptation rules and notify brokers the re-
sults. Different groups of brokers run independently in a distributed manner to
adaptively manage topology and migrate software components. Through such a
mechanism, the system can cope with failures and better utilize broker resources.
In addition, due to the flexibility of our design, the software components of an
application can be reused and the rules can be free assembled and reused for
regular and repeated changes.

Our paper makes the following key contributions:

– We designed and implemented a middleware Mimosa Pudica. In the presence
of environmental changes, the system self-adaptively manages the topology
and relocates software components between brokers in a distributed manner.

– We implemented a reliable, crash-tolerant pub/sub system based on Mimosa
Pudica. Our solution can be built on top of any existing topology. In addition,
no redundancy of messages, brokers, or storage, is required.

– Our evaluation results show that each adaptation process only imposes a
temporary of 30 ms to 50 ms extra latency to the event delivery, which
proves the efficiency of our approach.

2 Related Work

Building reliable pub/sub systems have been widely studied [2, 3, 9–12, 26]. Pe-
riodic subscription [9], where subscribers actively re-issue their events [2], works
well in preventing message loss. The use of redundant paths [2, 3, 10, 12] or re-
dundant links [11] handles broker/link failures. As long as all the brokers in at
least one path are correct, messages can be reliably delivered. However, it may
consume high bandwidth and storage at brokers and become very inefficient in
the absence of failures. P2S [3] on the other hand, demonstrates a framework



Towards a Self-Adaptive Middleware for Building Reliable Pub/Sub Systems 3

of using existing fault-tolerant libraries in pub/sub systems. It directly adapts
Paxos [14], a classic crash-tolerant replicated state machine approach. However,
the current framework employs a centralized set of replicated brokers and must
be carefully designed in scalable systems.

There are four types of self-adaptation mechanisms. The first type [18, 22] is
policy-based. Most of them focus on how to define the context. The second type
dynamically changes coordination between programs run on different comput-
ers [25]. It enables client-side objects to automatically select and invoke server-
side objects according to the requirements and system architectures. However,
this type only modifies the relationships between distributed programs instead
of the computers executing them. The third type is genetic programming [13].
Most approaches focused only on target applications or systems such that they
have no space to execute and evaluate large number of generated programs. The
forth type is aspect-oriented programming (AOP) [23]. Unlike our work, exist-
ing adaptations do not support the migration of programs because reflective and
AOP approaches are primitive to modify programs running on a single computer.

3 Approach

In this section we present background for our pub/sub system. We begin by in-
troducing the preliminaries and then describe the design of destination database,
the key component for data storage. Last, we show leader election, which is used
to select a leader such that adaptation can be managed by brokers.

3.1 Preliminaries

We assume asynchronous model, where messages can be delayed, duplicated,
dropped, or delivered out of order and brokers may crash and subsequently
recover. For any n brokers between any pair of publisher and subscriber, up to
bn−1

2 c crash failures are tolerated. In other words, in order to handle f broker
failures, there are at least 2f + 1 brokers on the path.

We aim to achieve the in-order delivery, where all the messages from a pub-
lisher to a set of corresponding subscribers are delivered in the same sequential
order. Liveness guarantees that if a message is delivered to a subscriber, all the
subscribers to the same topic eventually receive the same message. Liveness is
ensured under partial synchorny [5]. That is, synchrony holds only after some
unknown global stabilization time, but the bounds on communication and pro-
cessing delays may be unknown.

3.2 Destination Database

We use a destination database that can be accessed by all the brokers. The des-
tination database maintains all the routing information of the brokers and a set
of pre-defined rules for adaptation purposes. When a broker communicates with
the destination database and requests for group communication, the destination



4 S.Duan, J.Sun, S.Peisert

database replies with the identities of a group of brokers on the path based on
the broker identity, the message information, and the corresponding publisher
and subscriber information. It serves a simple purpose of storage, i.e., it does not
manage the configurations of brokers or make any adaptation decisions. Instead,
and all the adaptation decisions are made in a distributed manner by brokers.

In order to avoid single point of failure, we propose a two layer structure
of distributing destination databases. The first layer contains replicated servers
that stores metadata and the second layer contains several databases, each of
which stores information of a set of brokers and a whole set of rules. The broker
information can be replicated at different databases to prevent loss of data when
certain database fails. When a broker requests for group information, it simply
accesses the closest second layer database. The database replies directly if it has
the information of all brokers on the path. Otherwise, it sends a request to the
first layer database, obtains metadata, accesses the corresponding database(s)
to get the information of the brokers, and sends a reply to the broker.

3.3 Leader Election

Leader election selects a leader among a set of brokers. A leader collects the
information of environmental changes, makes decisions according to the adapta-
tion rules as described in §4, and notifies all the brokers the adaptation decisions.
We now describe the leader election process and illustrate it in Algorithm 1.

Algorithm 1 Leader Election Algorithm

1: Initialization:
2: Bi, Bj · · · {Brokers}
3: DD {Destination Database}
4: ∆ {Timer}
5: v ← 0 {View Number}
6: Leader() {Elect Leader}
7: timeout() {Timeout}
8: starttimer() {Start Timer}
9: canceltimer() {Cancel Timer}

10: F () {Adaptation Results}
11: Broker Bi:
12: on event adaptation
13: send [LE, o, Bi, Bj , nd] to DD
14: on event timeout(∆)
15: v ← v + 1 {Re-Elect Leader}
16: ElectLeader(v, group)
17: on event [GI, Bk · · ·Bp]

18: group← Bk · · ·Bp {Group Info}
19: ElectLeader(v, group)
20: on event ElectLeader(v, group)
21: Bq ← Leader(group)
22: send [Leader, Bq, v] to group
23: starttimer(∆) {Monitor}
24: on event [Leader, Bq, v]
25: count← count+ 1
26: if count← f and i← q
27: action← F(rules) {Actions}
28: send [NL, Bq, v, action] to group
29: on event [NL, Bq, v, action]
30: canceltimer(∆)
31: Destination Database:
32: on event [LE, o, Bi, Bj , nd]
33: group← Bk · · ·Bp {Group}
34: send [GI, Bk · · ·Bp] to group

When a broker Bi (or publisher/subscriber in corner cases) requests for leader
election, Bi sends a message [LE, o, Bi, Bj , nd] to the destination database, where
o represents the type of adaptation request, Bj is the broker to be added/deleted,
and nd contains the corresponding information. For instance, if Bi detects Bj to



Towards a Self-Adaptive Middleware for Building Reliable Pub/Sub Systems 5

be faulty, the message is [LE, 1, Bi, Bj ,M(src, dst)], where 1 represents broker
deletion, M(src, dst) is the message Bi is currently forwarding from src to dst.
The destination database then sends a message [GI, Bk · · ·Bp] to the brokers Bk

to Bp between src and dst. After receiving the group information, the brokers
start leader election. The leader election proceeds with views. All the brokers
follow the same criteria when electing a new leader, as shown below. When the
new leader receives at least f + 1 matching [LEADER] messages (including its
own message), it sends a message to all the brokers to confirm its leadership and
notifies brokers the adaptation results.

1) Broker Bq is elected such that a) Bq is on the path; b) Bq is not suspected
to be faulty; c) Bq has not been elected in previous views; and d) Bq is the
closest to the publisher on the path.

2) When a broker votes for a new leader, it starts a timer. If it has not received
the [NL] message before its timer expires, it suspects the current leader to be
faulty, increases v by 1 and votes for another new leader.

4 Design

This section describes the design of our Mimosa Pudica middleware system. We
first present our system requirements and then describe the system architecture
in details. We also show four adaptation rules and examples of applying the them
to build our reliable pub/sub system.

4.1 Requirements

Existing middleware systems typically assume that formal descriptions focus on
actions [24] and it is essential to identify which actions are controlled by the
environment, which actions are controlled by the machine, and which actions of
the environment are shared with the machine. Our Mimosa Pudica middleware
focuses on where the software components should be migrated to and achieve the
entire system’s adaptability by relocating software components. Mimosa Pudica
meets the following requirements.
Fault tolerance. Our middleware is designed to tolerate fail-stop broker/link fail-
ures (i.e., crashes) in a timely manner such that faulty brokers are removed and
can be later recovered.
Self-adaptation. Distributed pub/sub systems essentially lack a global view due
to the decoupling of publishers and subscribers. Our system coordinate software
components between brokers in order to support their applications in a self-
adaptive manner for higher efficiency in resource usage.
Separation of concerns. All the software components of an application should
be defined independently with our adaptation mechanism. This is because the
applications where adaptive rules are defined inside software components can
not be reused. Both the software components and adaptive rules are desired to
be reused for better resource usage.



6 S.Duan, J.Sun, S.Peisert

Service availability. Our system guarantees that service should always be avail-
able with limited resources, whereas most existing approaches explicitly or im-
plicitly assume that their targets of the systems have enriched resources.
General-purpose. Our adaptation mechanism is designed to be a practical mid-
dleware that also supports general-purpose applications in the system.

4.2 System Architecture

Our proposed approach dynamically adds/deletes brokers and deploys software
components of an application from one broker to one or multiple brokers, ac-
cording to the predefined rules. As a result, our distributed pub/sub system is
self-adaptive to various changes.

At the core of our system is a middleware system between OS and applica-
tions, as shown in Fig. 1. This architecture consists of two important parts: an
adaptation manager and a runtime system. The adaptation manager manages
the runtime system. It controls the behavior of components, selects rules from
destination database, and determines where and when to migrate the software
components. The runtime system is responsible for managing, executing, and
migrating software components, as well as enabling them to invoke methods at
other software components. In order to use these methods during migration, the
software components are first serialized and then migrate themselves from one
server to another. When the software components arrive at their destinations,
servers can communicate with each other for naming inspection.

Adaptation manager. In order to be self-adaptive to the changes of environ-
mental properties, the deployment of components is managed by the adaptation
manager. They are fully distributed and no centralized management server is
required. In the presence of environmental changes, brokers follow several steps
to be self-adaptive, as shown below.

Middleware

Runtime 
system

UDP

multicast for

control

message

OS/Hardware

TCP/IP

Java virtual machine

OS/Hardware

TCP/IP

Java virtual machine

Network

TCP

channel for

components 

migration

Mobility-

transparent

method 

invocation

Component 

Migration

Manager 

Message

Receiver

Adaptation 
manager

Pub/Sub 

System& 

Network

Monitor

Self-adaptive

Rule-

 Interpreter

Event 

Checker

Middleware

Runtime 
system

Mobility-

transparent

method 

invocation

Component 

Migration

Manager 

Message

Receiver

Adaptation 
manager

Pub/Sub 

System& 

Network

Monitor

Self-adaptive

Rule-

 Interpreter

Event 

Checker

Component

B

Component

B

specific

components

layer

Relocation of component B

Component

C

Component

A

Fig. 1. Mimosa Pudica middleware system
architecture.

Step 1: When a broker detects the
environmental changes, it first send
messages to the destination database
to obtain the group information. The
brokers select a leader according to
leader election algorithm as shown in
Algorithm 1.
Step 2: The leader invokes the adap-
tation rules, compiles them, and noti-
fies brokers the adaptation results, e.g,
which broker should be added/deleted,
or which one or part of the soft-
ware components should be migrated
to other brokers.
Step 3: Depending on the adapta-
tion rules and results, as described in
§4.3, brokers activate different software



Towards a Self-Adaptive Middleware for Building Reliable Pub/Sub Systems 7

components. When a broker is deleted, neighbors of the broker are connected or
new broker is added. The monitors of the brokers that are connected notify their
software components. The brokers can then build the connection. On the other
hand, when the software components are migrated to the destination broker,
the monitor of destination broker notifies its software components. The methods
of the migrated software component are then invoked by destination software
components through reflection mechanism.

The adaptation manager contains three sub-modules: event checker, rule in-
terpreter, and system and network monitor. The event checker identifies the
type of event messages received by components runtime system and passes the
event number to rule interpreter. The rule interpreter then searches rule from
the destination database and executes it. Lastly, the system and network mon-
itor dynamically monitors the state of brokers, e.g., threads count, CPU usage,
used heap memory and the loaded class count, etc. Meanwhile, it also regularly
monitors the changes of the component runtime system.

Component runtime system. The component runtime system has three mod-
ules: message receiver, component migration manager, and mobility-transparent
method invocation. The message receiver, which has at most one message re-
ceiver thread, is responsible for receiving messages. The component migration
manager receives command from adaptation manager. Each component has a
particular life-cycle state. e.g., create, terminate, migrate, and duplicate. When
the component state is changed, adaptation manager notifies the component mi-
gration manager the adaptation decision. The decision contains the components
that should be moved, the components that should be cloned and moved, and the
destination of migration. With this module, runtime systems at different servers
can exchange messages through TCP channels by using Object Input/Output
Stream. When a component is transferred over the network, both the code and
the state of the component are transmitted into a bit stream and then transferred
to the destination. At the destination side, the mobility-transparent method in-
vocation module dynamically invokes the components through the class name
and method name. The incomplete tasks will be run after migration.

4.3 Adaptation Rules

When external environment changes, software components can be managed ac-
cording to the predefined rules. To facilitate the definition of rules we use the
Ponder language developed by the Imperial College[4]. Specifically, we use a sub-
set of the Ponder language, i.e. the Ponder obligation rules. We list four rules
using Ponder for topology management and software components mobility. We
also include a few use cases of applying the rules in our pub/sub system. For sim-
plicity, we illustrate the cases using a simple topology as shown in Fig. 2, where
messages are sent and forwarded from publisher P to subscriber S through 5
brokers. In addition to the four rules, system developers can add new rules to
destination database to meet different system requirements.
Rule 1 (Delete Brokers) Dynamically delete a number of brokers. By using
this rule, system can reduce the number of the brokers and handle failures.



8 S.Duan, J.Sun, S.Peisert

Destination 

Database

B B B SB

leader

P B0 1 2 3 4

(a) Examples for Rule 1-3.

Destination 

Database

B B B SB

leader

P B0 1 2 3 4

A0 A1

A0 A1update update

update

(b) Example for Rule 4.

Fig. 2. Examples of applying rules.

type oblig deleteBrokerRules(target database, Broker<T> broker){
subject AdaptationManager;

on deleteBrokerRequest();

do database.deleteBroker(broker);}
In the presence of failures. As illustrated in Fig. 2(a), broker B2 crashes and its
previous broker B1 detects it. The leader B0 compiles Rule 1 and deletes B2. It
notifies both B1 and B3. Broker B1 and B3 simply make a connection.
Rule 2 (Add Brokers) Dynamically add a number of brokers. The new broker
only manages the routing information of its neighbors and is not required to
know the state of other brokers. By using this rule, pub/sub system can better
handle failures and improve system load balancing.

type oblig addBrokerRules(target database, Broker<T> broker){
subject AdaptationManager;

on addBrokerRequest();

do database.addBroker(broker);}
Too few brokers on a path. In the above example in Fig. 2(a), the leader B0 can
add a new broker B5 to replace B2. In this case, B5 simply makes a connection
with both B1 and B3 without knowing the identities of other brokers. Broker
B1, B3, and B5 then update their routing tables.
Rule 3 (Failure Judgment) Before the presence of broker failures, software
components can be migrated to correct brokers to continue running. This rule
works in systems where brokers are equipped with failure detectors or monitors.
In this way, our system does not have to terminate the system operations.

type oblig failureJudgmentRules(target database, Broker<T> broker){
subject AdaptationManager;

on migrateBrokerRequest(Monitor, max input rate,; min output rate);

do database.goBroker(broker);

when max input rate <= min output rate;}
Before the presence of failures. When B2 predicts its failure, it starts adaptation
and sends message to the destination database. Leader B0 compiles Rule 3 and
migrates all the software components from B2 to B1, B3, or both. In this specific
case, broker B1 and B3 should also be connected for message delivery. After
software migration, the leader also complies Rule 1 and connect B1 and B3.
Rule 4 (Task Transfer) Publishers may send different requests to brokers.
However, some of the brokers may fail to communicate with subscribers. This
rule can compress the parts of software component of brokers and transfer to



Towards a Self-Adaptive Middleware for Building Reliable Pub/Sub Systems 9

one or several brokers. By using this rule, our system can effectively reduce the
number of network transmission.

type oblig taskTransferRules(target database, Broker<List<T>>brokers){
subject AdaptationManager;

on transferBrokerRequest(Compression brokers, local ip info, remote ip info);

do database.goBroker(brokers);

when brokers.getBrokersID() <= User Defined;}

Broadcast to several brokers. As shown in Fig. 2(b), if B0 receives an update
command and is required to update two of the applications A0 and A1, B0 will
compress the two update commands and migrate to all the brokers that run at
least one application, e.g., B2 runs A0 and B4 runs A1, B0 migrates the update
components to both B2 and B4. After receiving the update command, broker B2

and B4 retrieve the corresponding command and update A0 and A1 respectively.
Conflict Resolution. Adaptations may have conflicts with each other, even
when each of them is appropriately composed. In our current implementation,
all the rules are executed by the leader. Therefore, when there are conflicts be-
tween groups of brokers (e.g. overlapping brokers), the leaders of different groups
first analyze whether there are conflicts between the rules of their visiting com-
ponents. Once conflicts are found, the executing sequences are decided according
to their arrival sequences. In other words, an adaptation request will be executed
until all the conflicting requests that arrive earlier are executed. In the future,
we will further develop the system such that each broker can simultaneously
execute their rules by adding priorities or privileges to rule format [15].

5 Evaluation

In this section we evaluate the performance by assessing the adaptation latency
in the presence of broker failures and software components migration. First, our
approach handles broker failures by connecting neighboring brokers and intro-
ducing new brokers while no known previous work use similar approach. Second,
the migration of software components prevents from failures and is shown to
be very efficient. We carry out experiments on Deterlab [1], utilizing up to 30
machines. Each machine is equipped with a 3 GHz Xeon processor and 2 GB of
RAM. They run Linux 2.6.12 and are connected through a 100 Mbps switched
LAN. We use up to 24 publishers and subscribers. Publishers run concurrently
with an average workload of 1, 250 events per second.

Implementation. Each component is implemented as a general-purpose and
programmable entity. Defined as a collection of Java objects and packaged in
the standard JAR file format, components can be migrated and duplicated be-
tween servers. Our middleware is built on the Java Virtual Machine (JVM)
and can be abstracted away between different operating systems. The current
implementation uses the Java object serialization package to marshal and du-
plicate components. The package dose not support the capture of stack frames
of threads. Instead, when a component is duplicated, the runtime system issues



10 S.Duan, J.Sun, S.Peisert

events to invoke the specified methods. The methods are executed before the
component is duplicated or migrated and active threads are suspended.

Adaptation Latency. We assess the adaptation delay of 1) adding/deleting
brokers, as shown in Rule 1 and 2 in §4.3, and 2) migrating software components,
as shown in Rule 3 and 4. We mainly evaluate two settings in the presence of
broker failures: simple topology and bottleneck server crashes. Different sizes of
random non-cyclic broker topologies are generated for each experiment. Simple
topology simply evaluates failures in a single path where there is no side effect
in the presence of broker failures. In comparison, the goal of the case where
bottleneck broker crashes is to assess the latency when multiple paths request
for adaptation in the presence of failures.

0 50 100 150
0

20

40

60

80

Publications

L
at

en
cy

(m
s)

Fig. 3. End-to-end latency in the pres-
ence of broker failures.

Add/Delete Brokers. We periodically in-
ject random broker failures every 50
publications and assess end-to-end la-
tencies. It can be observed in Fig. 3 that
the average latency is 8 ms to 12 ms.
When there are failures, subscribers ex-
perience a temporary 65 ms to 85 ms
peak latency. The long latency resumes
to normal after a few publications.

We break down the peak latency into
four phases: 1) timeout, where brokers
use timers to detect the failures of their subsequent brokers; 2) vote for leader
election, where brokers to obtain group information from destination database;
3) leader election, where brokers elect a new leader; and 4) adaptation, where
the leader makes adaptation. We use instant acknowledgment (ack) messages
for brokers to detect the failures, where if a broker has not received ack message
before its timer expires after forwarding a message, it suspects its subsequent
broker to be faulty.

0 20 40 60 80

Simple Topology

Bottleneck Server Crashes

Timeout Vote Leader election Reconnection

Fig. 4. Adaptation delay in details.

As observed in Fig. 4, the value of the timer is set to 30 ms, which is also
the bottleneck of the overall delay. Indeed, if a smaller timer is used, the overall
latency can be greatly reduced but it also increases the false negatives since
slow brokers are detected to be faulty. The second phase generates 8 ms average
latency for simple topology and 15 ms latency for complicated topology. This is
due to the fact that paths with overlapping broker(s) are given access sequentially
by destination database to avoid conflicts. In this particular experiment, the
bottleneck server is the only overlapping server that crashes. Therefore, they run
leader election concurrently, which generates 15 ms latency for simple topology
and 22 ms in complicated topology. The adaptation phase causes 18 − 20 ms
latency for both settings since leaders compile the rules independently.



Towards a Self-Adaptive Middleware for Building Reliable Pub/Sub Systems 11

Migrate Software Components. We assess the delay of software components mi-
gration. We run four applications, each of which corresponds to one pre-defined
rule, to evaluate the performance. Each software component has a life-cycle, as
shown in Table 1. When the requirements change, its life-cycle will be changed
to another state. Our experiment results show that the four applications gener-
ate 161 ms, 201 ms, 189 ms, and 184 ms latencies respectively. The temporary
delays of the four cases are small because we only migrate the source code and
the state of the components. Among all the applications, “app.RemoteSearch”
generates the longest delay. This is because all the corresponding threads and
processes need to be deleted when executing the delete rule.

Table 1. Migration of software components.

Runtime ID Rule Component ID Component NameLife cycleComponent TimeDelay(ms)

13618708105680001501261633499959 /Rules/AddRule dc36fae696d04cd18ff1eab7429606f1 app.Chat creation 5:32 PM 161

13618708105680001501261633499959 /Rules/DeleteRule b89ebe96181540259ce8e09a4e858485app.RemoteSearch creation 5:35 PM 201

13618708105680001501261633499959/Rules/FaiJudgmentRule 2ea7663f79fa479a8a974222caf353dc app.FileTransfer creation 5:37 PM 189

13618708105680001501261633499959 /Rules/UpdateRule 5c55518e36404973b6a62dc665b32c6c app.Update creation 5:40 PM 184

· · · · · · · · · · · · · · · · · · · · ·

To summarize, a smaller value of the timers can reduce the overall latency
but can also increase the false negatives. Also, when more than one overlapping
brokers of multiple paths fail, the overall adaptation delay can also be increased.

6 Conclusion and Future Work

We present a self-adaptive middleware for building reliable pub/sub systems.
Our approach does not require redundant brokers, network links, or storage at
brokers in order to tolerate crash faulty brokers. It fits naturally in any existing
topology. In addition, our approach self-adaptively manages the topology and
software components among brokers and can be easily managed to serve different
purposes. We have shown how our Mimosa Pudica middleware manages the
adaptive rules in the presence of environmental changes. Our evaluation results
show that our adaptation approach imposes a temporal period of slightly longer
latency in the presence of environmental changes. In the future, we will further
develop the system to address Byzantine failures and to add privileges for the
adaptation rules and resolve the possible conflicts and divergences.

Acknowledgement
This research is based on work supported by the National Science Foundation
under Grant Number CCF-1018871. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect those of the National Science Foundation.

References

1. T. Benzel. The science of cyber security experimentation: the DETER project. AC-
SAC, 2011.

2. R. Chand and P. Felber, “Xnet: A reliable content-based publish/subscribe system,”
in SRDS, 2004, pp. 264–273.



12 S.Duan, J.Sun, S.Peisert

3. T. Chang, S. Duan, H. Meling, S. Peisert, and H. Zhang. P2S: a fault-tolerant
publish/subscribe infrastructure. DEBS, 2014, pp. 189–197.

4. N. Damianou, N. Dulay, et al , “The Ponder Policy Specification Language,” in
POLICY, 2001, pp.18–38.

5. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial syn-
chrony. JACM 35(2):288–323, 1988.

6. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces
of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2, pp. 114–131, Jun. 2003.

7. J. Hauer, et al. A component framework for content-based publish/subscribe in
sensor networks. EWSN, pp. 369–385, 2008.

8. J. Hoffert, A. S. Gokhale, and D. C. Schmidt. Timely Autonomic Adaptation of
Publish/Subscribe Middleware in Dynamic Environments. IJARAS, 2(4), pp. 1–24,
2011.

9. Z. Jerzak and C. Fetzer, “state in publish/subscribe,” in DEBS, 2009, pp. 1–12.
10. R. S. Kazemzadeh and H.-A. Jacobsen, “Reliable and highly available distributed

publish/subscribe service,” in SRDS, 2009, pp. 41–50.
11. R. S. Kazemzadeh and H.-A. Jacobsen, “ Partition-Tolerant Distributed Pub-

lish/Subscribe Systems,” in SRDS, 2011, pp. 101–110.
12. R. S. Kazemzadeh and H.-A. Jacobsen, “Opportunistic multipath forwarding in

content-based publish/subscribe overlays,” in Middleware, 2012, pp. 249–270, pri-
vate communication.

13. J. R. Koza, “Genetic Programming,” On the Programming of Computers by Means
of Natural Selection, MIT Press, 1992.

14. L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,
1998.

15. E. Lupu, and M. Sloman, “Conflicts in policy-based distributed systems manage-
ment,” , IEEE Trans. on Software Engineering, 25.6, 1999, pp.852–869.

16. P. Oreizy, N. Medvidovic, and R. N. Taylor “Runtime software adaptation: frame-
work, approaches, and styles,” in ICSE, 2008, pp. 899–910, 2008.

17. T. Sivaharan, G. S. Blair, and G. Coulson , “Green: A configurable and re-
configurable publish-subscribe middleware for pervasive computing,” in OTM Con-
ferences, 2005, pp. 732–749.

18. J. Sun and S. Ichiro, “Dynamic Deployment of Software Components for Self-
Adaptive Distributed Systems,” in IDCS, 2014, LNCS 8729, pp. 149–203.

19. R. N. Taylor, N. Medvidovic, and P. Oreizy , “Architectural styles for runtime
software adaptation,” in WICSA/ECSA, 2009, pp. 171–180.

20. M. A. Tariq, et al, “Dynamic publish/subscribe to meet subscriber-defined delay
and bandwidth constraints,” in Euro-Par, 2010, pp. 458–470.

21. T. Yasuyuki, A. Ohsuga, and S. Honiden, “Rewriting Logic Model of Compositional
Abstraction of Aspect-Oriented Software,” in FOAL, 2010, pp. 53–62.

22. T. Hiroki, et al, “A rule-based framework for managing context-aware services
based on heterogeneous and distributed Web services,” in SNPD, 2014, pp. 1–6.

23. P. K. McKinley, S. M. Sadjadi, E. P. Kasten, et al, “Cheng: Composing Adaptive
Software, ” in IEEE Computer Vol.37, No.7, 2004, pp.56-64.

24. P. Zave, and M. Jackson, “Four dark corners of requirements engineering,”
TOSEM, 1997, pp.1–30.

25. J. Zhang and B. H. Cheng, “Model-based development of dynamically adaptive
software,” in ICSE, 2006, pp. 371–380.

26. K. Zhang, V. Muthusamy, and H. Jacobsen, “Total order in content-based pub-
lish/subscribe systems,” in ICDCS, 2012.


