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Abstract— We consider the field of machine learning and 
where it is both useful, and not useful, for the distribution grid and 
buildings interface.  While analytics, in general, is a growing field 
of interest, and often seen as the golden goose in the burgeoning 
distribution grid industry, its application is often limited by 
communications infrastructure, or lack of a focused technical 
application. Overall, the linkage of analytics to purposeful 
application in the grid space has been limited. In this paper we 
consider the field of machine learning as a subset of analytical 
techniques, and discuss its ability and limitations to enable the 
future distribution grid. To that end, we also consider the potential 
for mixing distributed and centralized analytics and the pros and 
cons of these approaches. There is an exponentially expanding 
volume of measured data being generated on the distribution grid, 
which, with appropriate application of analytics, may be 
transformed into intelligible, actionable information that can be 
provided to the right actors – such as grid and building operators, 
at the appropriate time to enhance grid or building resilience, 
efficiency, and operations against various metrics or goals – such 
as total carbon reduction or other economic benefit to customers.   
While some basic analysis into these data streams can provide a 
wealth of information, computational and human boundaries on 
performing the analysis are becoming significant, with more data 
and multi-objective concerns. Efficient applications of analysis 
and the machine learning field are being considered in the loop.  
This paper describes benefits and limits of present machine-
learning applications for use on the grid and presents a series of 
case studies that illustrate the potential benefits of developing 
advanced local multi-variate analytics machine-learning-based 
applications.   

Keywords—Analytics, Machine Learning, Distribution Grid, 
DER, validation, verification, prediction, incipient failure 

I. INTRODUCTION  
A vision of the future distribution grid and its interface to 

buildings is one of cohesion, an interactive reliable environment 
where there are consumer benefits and motivations to leverage 
customer owned behind-the-meter assets to provide services to 
the grid, energy markets, other entities within the distribution 
feeder, and ultimately to the larger society as a whole. This 
future distribution grid may be a reliable, safe, and resilient 

energy transport platform that supports high penetration of 
Distributed Energy Resources (DER). The growth of 
communicative DER and connected behind-the-meter power 
electronic devices may introduce fluctuations and uncertainty 
not previously seen on the distribution grid if the resources 
operate independently, or are driven by independent 
communications and controls. However, these new data 
generating and communicative features may also offer a vast 
opportunity to increase the operational efficiency of both the 
grid and the buildings connected to it, but only if the data 
collected at all the various nodes can be easily transformed into 
intelligible, actionable information. 

Considering the customer interface to the grid, and vice 
versa, is a key opportunity to which analytics can be applied to 
enable greater interaction and unlock the potential of these 
resources.  For example, in the vision we describe of cohesion, 
the availability of the resource to provide a particular service 
must be understood for that asset to be utilized and rewarded.  
The average customer has no desire to perform power flow 
calculations and evaluate their available data on a minute by 
minute, or even daily basis, and a contribution to a new service 
such as power quality management may have a difficult 
transition into the language of the consumer.   Application of 
analytics at this interface will allow the automation of this 
function, providing useful information to the consumer 
regarding what they are participating in, while also giving the 
utility and grid a clear accurate understanding of the resources 
availability and performance.  The existing customers benefit 
from new markets, new customers can integrate more distributed 
resources, all customers will have improved reliability, and the 
utility can manage the distributed generation adequately.  We 
consider analytics to either derive information, diagnostics, 
prediction or a prescription or instruction for optimal control.   
While existing descriptive and diagnostic analytics for example, 
simple fault location and outage analysis, do not require forward 
thinking analytics, but a processing of information to distill 
useful information, utilizing this data in a prediction or 
prescription often requires a method of correction which can be 
enabled by machine learning.  We discuss this in later stages of 
this introductory paper.   
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To further this point, the large spatial footprint of the 
distribution grid and the diverse locations of its assets and node 
points make observability of normal, stochastic, and dynamic 
behavior and monitoring and diagnosis of abnormal (faults) and 
even planned (demand response or DER dispatch) events 
challenging tasks for the existing descriptive analytics field.  The 
lack of observability, controllability, and validation/verification 
of DER and other behind the meter assets including their 
availability due to consumer behavior, preference, and choice 
may be a barrier to developing new transaction based markets, 
where consumer resources interact with one and other to provide 
or receive these services.   

The work being developed by the multi-national laboratory 
team, funded through the Grid Modernization Initiative [1] will 
evaluate these challenges to develop data driven solutions 
leveraging multi-scale machine learning based analytics.  The 
work utilizes various data sets across the nodes within the end 
to end power system (e.g. generation to end use) to 
automatically produce accurate actionable information for the 
various parties and actors encompassing the power system.  At 
the heart of the work, applied analytics are required to turn these 
raw data into actionable information. Machine learning is 
required to enable a predictive prescriptive, computationally 
efficient and accurately managed modernized grid.   

Although the terms data and information are often used 
interchangeably, in the context of analytics, they differ: Data are 
measurements – for example voltage, current, phase angle, 
power, or even metadata such as location and sensor type – and 
information is the actionable result of an application of an 
analytics technique to the data – for example calculating the 
availability of a behind-the-meter resource, predicting 
availability over time or the mean time to failure of a component, 
verifying the success of a requested action, and determining the 
best course of action with available resources.  We examine 
where further development is needed to address gaps in existing 
analytics techniques to successfully apply these techniques to 
the grid and present notional case studies to demonstrate the 
potential value of these data analytics. 

This paper will answer key questions related to 1) Machine 
learning and its definition as specific to the grid and buildings 
interface 2) Existing state of the art in machine learning applied 
to building and grid datasets and 3) Key case studies of machine 
learning applied to building and grid datasets with value 
propositions to each 

II. CASE STUDIES AND STATE OF THE ART IN MACHINE 
LEARNING 

A significant volume of analyses are already being proposed 
for the power grid and buildings interface.  Analyses such as 
consumption, forecast of load, and outages at present often rely 
on single data sources, such as smart metering on/off status 
being utilized to diagnose an outage location. Within the 
existing analytics platforms where techniques such as machine 
learning are already implemented, there are numerous instances 
of siloed data sources and techniques, and the analytics 
developed are often specific to the architecture of one set of data 
and tools rather than being multi-variate and applying data 
fusion techniques.    This is the area where we intend to work 
and move the industry forward, ensuring that full advantage is 

taken of the data that are available, and that they are transformed 
into actionable information. 

Machine learning is a subfield of computer science that 
studies and constructs algorithms that can learn and make 
predictions from data. Machine learning traditionally is suitable 
for situations where a domain is poorly understood or random, 
and a system needs to adapt to changes in the environment.  In 
general it is applied when there is no knowledge to draw upon 
to create algorithmic solutions.  Adapting analytics to machine 
learning, and advancing machine learning to meet the needs of 
power systems, can solve the problems and achieve the goals 
defined in the previous section, delivering the right information 
at the right time to the right people.   

Machine learning uses techniques from many disciplines, 
including statistics, probability, game theory, and neurobiology.  
The basic principle is that a computer algorithm learns through 
experience with a set of tasks. The algorithm’s performance is 
measured by how much the results improve over time and the 
speed of calculation. Machine learning can assist in interpreting 
stochastic and random behavior and using this information to 
benefit the customer and grid operator. The case studies we 
describe in this paper will have cross-program application and 
can play a key role in enabling the modernized grid.  

On a broad scale, machine learning can be categorized into 
three areas:  supervised, unsupervised, and reinforcement 
learning. Supervised machine learning entails learning from 
labeled examples (features) and produces a function that 
predicts either a discrete (classification) or continuous 
(regression) outcome.  Unsupervised learning tries to describe 
patterns from data, while reinforcement techniques entail 
learning with rewards.  

Current, state-of-the-art machine-learning solutions often 
rely on “black box” approaches, of which there has been 
significant development, applied often where systematic 
knowledge is poor but applications are computationally intense, 
require ubiquitous data sets, and are often agnostic to the subject 
area; i.e., the same methods are used for disparate areas such as 
medical data, grid data, or social census data.   The application 
of machine learning in the power system is relatively new. 
Existing and recently developed machine-learning algorithms 
and approaches for power-distribution data problems can be 
divided into two categories:  1) utilizing established black box 
machine-learning methods to solve distribution-grid problems 
agnostic of power-system physics, and 2) improving and 
developing new methods utilizing power-system theory and 
models. 

III. CENTRALIZED VERSUS DISTRIBUTED ANALYTICS 
One of the benefits of machine learning is the flexibility 

between it being applied locally or in a distributed manner, at 
the grid edge or building to grid interface, or by improving the 
existing state of the art applied normally in a centralized big data 
stack fashion.   We now introduce centralized and distributed 
analytics as a preface to the case study discussion.   

Evaluation and maintenance of grid health currently depends 
on a centralized, deterministic approach in which data are 
collected and analyzed, and some control action is then taken.  
This practice is designed for the old electricity grid that 



functioned as a one-way conduit from a centralized plant to 
customers.    Centralized analytics use data to discover the state 
of a system or find controls through global optimization. For 
example, in the case of grid state estimation, centralized 
analytics entail finding system parameters that are most 
consistent with the data. The global optimization problem is 
huge and frequently impractical to solve.  However, in some 
cases an exact, or sufficiently accurate, optimal solution can be 
found by breaking systems into pieces and solving local 
optimization problems that each correspond to a piece of the 
system and results and information are updated among the 
pieces until convergence is achieved.  The latter, the distributed 
approach, is computationally advantageous (as a function of 
communication latency and processor availability) and, as with 
distributed analytics, the processing power and communication 
remain local when this “piecewise” solution methodology is 
applied.  

By contrast to traditional centralized grid data monitoring 
and analysis, building component health relies on a 
decentralized analytic approach in which each building 
component is monitored and analyzed individually.  DER and 
smart meters have changed the grid paradigm, adding isolated, 
disparate data sources in both the distribution grid and buildings. 
At the same time, some building components impact grid 
performance, for example, the power-quality impact of a high 
penetration of electric vehicle chargers, or new electronically 
commutated motors in air conditioners.  Actionable, evolving 
information is essential at both the building and grid level to 
enable reliable, efficient grid and building operations.   

Collecting and mining raw data centrally make it challenging 
to act in a timely fashion on the information embedded in those 
data, whereas distributed analysis is challenging for the overall 
systematic approach. Central data management also requires 
significant amounts of data storage and increases the frequency 
of data errors (inconsistency, incompleteness, redundancy).  To 
achieve the speed and efficiency required for grid operations, we 
need to move toward a hybrid approach to the central and 
decentralized model in which the computation takes place at the 
data sources themselves, or at the central area depending on the 
action, and actions are taken locally and reported globally.   In 
this resource we consider intelligence as needing to be 
embedded in the grid, while informing overall operations in a 
timely accurate manner, a hybrid approach.  

IV. LIMITATIONS OF EXISTING APPROACHES TO ANALYTICS AND 
MACHINE LEARNING 

There are areas where the existing black box approaches of 
machine learning will not currently be useful.   For example, 
machine learning can be brittle when faced with new situations, 
i.e. values that were not observed during training.  Examples of 
this on the existing distribution grid are the few cases where PV 
penetration has reached more than 100% of peak demand 
(excluding Hawaii and California) or where significant volumes 
of customers have engaged in transactions to provide a local 
distribution grid service such as phase balancing or reduction in 
transformer loading.  Without training on the impact of this 
scenario, machine-learning techniques, as currently applied, 
cannot easily provide operators sufficient confidence in the 
performance of advanced analytics. However, physics-based 

models and new techniques presented could create training sets 
for algorithms for situations that have not yet been experienced 
by the building or grid analytics node and assist in forecasting 
performance.  This is a key benefit of new machine-learning 
applications that can be used to improve robustness and 
constrain outputs to build confidence in the new grid paradigm 
for system operators, who are traditionally conservative actors. 
In general, operators manage the grid well within stakeholders’ 
bounds of safety, reliability, and comfort – which is not normally 
the most economically beneficial approach for the customers 
and leaves a significant bandwidth of untapped potential for 
building and grid services. 

V. APPLICATIONS OF MACHINE LEARNING TO THE BUILDINGS 
TO GRID INTERFACE 

We consider three case studies areas across the spectrum of 
the building to grid interface including 1) DR and DER Local 
Availability and Verification, 2) Incipient Failure Detection in 
Distribution, and 3) Topology and Parameter Estimation.  For 
each of these cases we consider the present state of the art, the 
problem we are trying to solve and the potential for distributed 
machine learning to create benefit for consumers and grid 
operators.   

A. DR and DER Local Availability and Verification 
At the building to grid interface, the ability of customers to 

transact or exchange resources is being considered as a new 
operational paradigm, both individually and in clustered 
aggregate systems with the grid.  At the heart of this structure is 
controllable load, DR and DER  The ability of new controllable 
DER devices to reliably provide controllable action depends on 
several factors. For one, these devices’ response to input 
signaling and frequency fluctuation needs to be quantified. For 
aggregated loads like buildings, efficient load modeling is 
necessary to understand their cumulative response. Finally, 
efficient, low-overhead control schemes need to be designed and 
deployed in a distributed manner to create ubiquitous ancillary 
services from the distribution grid. Under present conditions, 
achieving all of these goals would be difficult. 

The decentralized approach of transactive energy systems 
encompasses both energy and non-energy transactions in the 
distribution grid and buildings.  The characteristics of 
transactive systems are that they have distributed control, 
provide feedback (via DER), concurrently address multiple 
objectives (e.g., load vs. comfort), are multi-scaled 
(microseconds, years), leverage automation (e.g., local action of 
voltage events) with the human-in-the-loop (control actions), 
and engage in coordination (negotiate decisions for competing 
objectives).   Transactive system analysis encompasses several 
dimensions across time, space, stakeholders, and decision of 
risk. Distributed machine-learning techniques can enable 
customers and operators to leverage monetary and non-
monetary benefits (e.g., health, comfort and environmental 
quality) of actions, while also communicating the overall 
verification of response to the upper grid hierarchy. 

Within building energy consumption monitoring is provided 
by a complex network of building occupancy and local 
equipment sensors plus smart metering. Providing useful 
information from the grid operator to the building, or vice versa, 



must use a single system that conveys the right information.  Our 
goal is to use existing information about individual buildings to 
build a class of statistical models that characterize operations of 
the buildings under different/varying grid conditions, and then 
to reconstruct/learn the operational parameters of the probability 
distributions for multiple buildings simultaneously. The 
building side will benefit from improved forecasting and value 
streams being enabled for participating in non-kilowatt-only 
services.  Grid operators will benefit from improved forecasting 
of customer behavior and new methods for enhancing stability 
on a grid with millions of resources. 

Within this case we can consider the P-Q consumption of 
multiple buildings and complex loads within the distribution 
grid, enabling buildings and behind-the-meter resources to act, 
in clusters, like conventional generators, thereby enhancing grid 
stability. [2] developed a machine learning driven estimation 
method to determine the electrical performance of clusters of 
behind the meter resource, which is often limited by utilization 
of weather versus electrical measurements.  These types of 
techniques are the pre-cursors to a distributed environment with 
predictive resource capabilities (Fig.1) 

Fig. 1. Example of application of machine learning to prediction of a variable 
solar resource behind the meter 

Building operators who are managing multiple objectives 
such as building comfort, system load, component failure risks, 
and extreme event responses need timely interpretable 
information about the building. [3] used a machine-learning 
technique called Learning-based Model Predictive Control that 
combined models with statistics to estimate occupancy and 
heating load based only on temperature measurements. To 
compensate for heating by occupancy control action chosen (AC 
on/off), [4] demonstrated a demand-response strategy synthesis 
that uses regression trees to partition the data space into small, 
manageable regions and then to  partition the partitions until the 
data spaces can have simple models to fit them (easier for 
humans to interpret).  Predictor variables are disturbances 
(weather, temperature) and controllable actions.  During 
extreme events and peak-demand periods, utility customers 
could be incentivized to reduce electricity consumption.  
Establishing methods of reporting a customer’s reduction in 
electricity use is critical for increasing the effectiveness of 
demand-response programs. Transactive control applications 
are generally designed to be self-organizing and localized; that 
is, they are decentralized and not coordinated.     

Application of grid and building machine learning, could 
improve the accuracy and accountability for these services, 
which would enable an increase in the potential revenue streams 
and energy savings as well as enabling utility interaction with 

participating customers and an expansion of localized services 
to include ancillary services, distribution voltage regulation, and 
distribution balancing.   The Bonneville Power Administration 
stated that to enable a comparable project at scale, i.e. with 
millions of available participating customers each with DER, the 
control schemes would require enhanced programmability, 
reliability, cost, and cost recovery for the utility.  Application of 
advanced analytics with machine learning could address these 
requirements.     The predicted impact of making use of these 
resources would be derived locally, with analytics informed by 
the grid and the state of the building and trained to apply to the 
local conditions.  The current radial and manual configuration 
of the distribution grid state will change as the grid modernizes. 
The grid services being discussed here must be spatially and 
temporally verifiable to a particular electrical feeder, substation, 
and potentially phase of the distribution system.  Incorporating 
these services requires that building and grid information be 
strongly linked and that services be verified, able to evolve, and 
repeatable.   

New approaches to DER and DR controls and coordination 
will be essential with millions of resources available as 
described above. Millions of distributed smart grid assets require 
innovative approaches as existing theories that work on a scale 
of hundreds rather than millions of customers will no longer 
hold true. The increased volume of customer interaction would 
pose a significant computational and hierarchical burden using 
today’s methods, and bounds of error for existing approaches 
will become untenable for large-scale control problems.   
Conceptual data-driven improvement of verifying and 
predicting DER controls could be made for example by cycling 
through aggregation and reinforcement learning.  Machine-
learning schemes built on observations collected from novel 
devices can help in realizing this vision.  Aggregate load 
modeling and dynamic characterization of loads are possible 
using pattern-recognition schemes operating on training data. 
Theoretical machine learning provides the necessary 
mathematical foundation to develop distributed algorithms with 
low sample complexities that guarantee convergence of 
consensus and other control algorithms. These can aid in fast 
recovery, using load resources, after a frequency event. Further, 
the distributed nature of the algorithms will ensure an equitable 
share of the ancillary services among different distribution 
resources, and more reserve accountability will be enabled 

B. Incipient Failure Detection in Distribution 
Detection and identification of incipient failures within the 

electrical grid infrastructure can be considered in two realms a) 
direct sensing detection of failure and b) analysis of available 
local data for signs of failure.  Proactive detection schemes can 
enable condition based maintenance and preventative responses 
that prevent potentially disruptive, costly, and potentially even 
catastrophic outages and failures before they occur. Large power 
transformers are commonly measured directly due to the high 
impact an outage would cause and the relative cost of that outage 
in comparison to a direct sensor.       While large power 
transformers have a clear value proposition for specific 
monitoring and measurement of condition through techniques 
such as dissolved gas analysis, distribution asset monitoring is a 
field which does not benefit from the economies of scale in the 
same regard.  Each component is a magnitude smaller at least, 

 



and for every large power transformer, there may be thousands 
of distribution level transformers.   At present, condition 
monitoring and maintenance in the distribution system is based 
upon a run to failure, and age based approach.  Often the first 
sign of a distribution transformer failure is an outage for a 
number of customers, detected via smart metering, or a customer 
call to indicate a component with a visible failure, i.e. smoke.  

In the event of a prediction of incipient failure, there is 
potential for delaying catastrophic failure with preventative 
action such as unloading the device, or a deeper dive analysis to 
find the root cause in the data.   In doing this there is potential 
for utilizing the future DER and building resources available to 
operators. Some synergistic work in different fields for 
predicting behavior has been performed. [5] created a predictive 
model with data gathered from vehicle drivers to generate 
individualized driver models. This model uses the prior two 
seconds of driver pose to estimate the future four seconds.   The 
approach showed that driver state (attentive, distracted) can 
increase the accuracy of prediction.  [6] leverages a new data 
source, µPMUs (micro phasor measurement units) to help 
distribution planners accurately anticipate and control risks and 
opportunities for improvement on the distribution grid instead 
of relying on reactive operations (Fig. 2). The method illustrated 
in  [6] uses event clustering to interpret events and predict issues 
such as anomalous tap change detection, arc flash, and capacitor 
bank switching.  At the building to grid interface, the ability of 
customers to transact or exchange resources is being considered 
as a new operational paradigm, both individually and in 
clustered aggregate systems with the grid.  At the heart of this 
structure is controllable load, demand response (DR) and 
distributed energy resources (DER). 

 
Fig. 2. Clustered repetitive behavior can be utilized in incipient failure 
detection in tap changers 

A new promising approach currently under development 
assumes the stochastic linear dynamics of the device, and that 
the associated dynamic parameters that represent the normal 
behavior can be extracted from data using the state of the art 
regression-based algorithms with sparsity regularizations [7][8]. 
The amplitude of the failure related noise can be learned from 
the time series data. These parameters are then used to predict 
the near-term evolution and rigorously identify anomalies that 
significantly deviate from the predicted behavior. The long-term 
changes in parameters will serve as an indication of an incipient 
failure.    

Most approaches considered in these realms could be 
decentralized or distributed with only key data being 
communicated.  A centralized analytics approach to fault 
analysis is limited by the requirement that a human in the loop 
make decisions, which in itself is an inefficiency.  Centralized 

approaches for fault analysis rely on whether smart meter 
reporting status is “on” or “off,” a key example of the limitations 
of centralized analytics.  The bandwidth for communicating 
status and other useful information from smart meters has been 
tied to vendor and proprietary data structures, and is, in turn, 
limited by customer communications. Decentralized 
architectures based on machine learning can propel this 
information to a new level.  Incipient failure detection also 
requires detailed interpretation of high-fidelity sources, which is 
computationally intensive, so decentralization and 
communication of “mean time to failure” form a more efficient 
approach.   New automated, online streaming algorithms, in the 
distributed environment will enable a) Classification of 
anomalies into key types that will inform a range of conditioned-
based maintenance including vegetation management and 
transformer and switch replacement over a longer time period 
and b) Reduced loads on communications networks due to the 
distributed and local nature of the algorithms to be deployed. 

C. Topology and Parameter Identification 
Distribution utilities typically do not model the network 

structure below the medium-voltage distribution lines and hence 
do not have full observability of their network topology or 
detailed models of the thousands of low-voltage distribution 
components in play. Additionally, it can be difficult to track 
changes that occur to the medium-voltage distribution system, 
so the utility may not know the current state of the system. Lack 
of accurate knowledge of the current topology is problematic in 
a planning environment but especially challenging following 
extreme damage events, e.g. hurricanes. Further, accurate 
distribution topology and parameter estimation is necessary for 
improved situational awareness, control and optimization of 
DERs and Electric Vehicles and validation of line parameters. 
As placement of meters specifically for topology estimation is 
expensive, it is imperative to use the available power system 
data for identifying the network.  Learning in this regime also 
needs to be amenable to prevalent availability of data, where 
sensors for voltage and power injections are placed only at a 
subset of the buses in the grid.   In secondary circuit modeling 
for example a large portion of the per-unit voltage drop/raise 
occurs over the service transformers and lines that have large 
impedances, and accurate accounting for these is essential for an 
efficient environment.  Significant portions of these errors can 
be attributed to the GIS system, which is typically corrected with 
manual inspection, requiring considerable personnel hours and 
resources. This can also be challenging to perform with 
underground wiring and inside customer owned buildings [9].   

The current state-of-the art is to assume that the topology in 
the distribution grid is correct for planning studies, but also 
assumes a conservative large margin of error in the studies. This 
can lead to an increased interconnection cost as the conservative 
approach breaches more requirements and requires mitigation.  
In transformer modeling at the low voltage side, the models 
assume a fixed voltage drop or include a typical model. 

[10] have demonstrated that theoretically correlations in 
nodal voltage magnitudes can be used to design greedy 
algorithms that provably learns the operating topology of radial 
grids. One benefit of this effort is its easy extension to the case 
where voltage and injections measurements are available only 

 



from a subset of the grid nodes, provided missing nodes are 
separated by two or more hops in the operational tree. The 
learning algorithm is based on trends in fluctuations in voltages 
that arise from fluctuations in loads and get propagated by the 
power flow relations (Fig. 3).  Proof-of-concept algorithms have 
also been demonstrated using simplistic real datasets for 
parameter estimation  and topology detection [9]. 

Fig. 3. Topology detection algorithms deployed on the distribution grid  

D. Summary of Case Studies 
At the building to grid interface, the ability of customers to 

transact or exchange resources is being considered as a new 
operational paradigm, both individually and in clustered 
aggregate systems with the grid.  At the heart of this structure is 
controllable load, demand response (DR) and DER. Other new 
machine learning approaches to parameter estimation could 
include self organizing maps for outlier and bad data detection, 
random forest for topology identification and robust regression 
for grid parameter estimation all being developed through the 
Grid Modernization Initiative work.  In all these methods, the 
accuracy of the metering and sensing is a challenge, which 
learning based methods distributed through multi-variate 
sources can seek to improve significantly. There is thus a benefit 
to utilizing new techniques which predict and prescribe.   

To summarize, an automated, streaming algorithm for 
learning distribution network topology will enable a) 
improvements in control and optimization of distribution grid 
resources b) validation of topology switching action by system 
operator and c) increased situational awareness and system 
restoration following extreme damage events.  Consumer 
benefits will include improved power quality, and less outage 
time during extreme events, lesser interconnection costs through 
enablement of better control actions for stability and voltage 
regulations.  

VI. BENEFITS AND STAKEHOLDERS 
This paper has presented a vision of the future distribution 

grid and buildings operation as a cohesive environment where 
customers are rewarded for utilizing behind-the-meter 
distributed energy resources, and the distribution grid is enabled 
as an automated, reliable, safe, resilient energy-transport vehicle 
with high penetration of DER.    The rewards to customers and 
other end users include energy cost savings and enhanced grid 
reliability and resiliency.  These benefits are interlinked; for 
example, enhanced reliability could reduce customer energy 
cost by reducing unplanned solar-photovoltaic (PV) outages 
caused by voltage variability.  

For the benefits assessment, we identified some of the areas 
in which grid and building applications would benefit from 
enhanced information derived from local data provided at the 
distributed level. We also identified where distributed analytics 

would benefit both the building and grid versus a centralized 
approach. These included availability of markets-based 
analytics for millions of resources, dynamic behind the meter 
controls to provide ancillary services.  

In all of the case studies presented a combination of 
customer or ratepayer resources, and grid resources will be able 
to be coordinated and optimized. This will reduce the overall 
cost of energy to the consumer while increasing system 
reliability and reducing customer outage time. At the same time, 
advanced analytics will give grid operators useful visibility into 
the performance and controllability of these resources. The 
current lack of visibility of these behind-the-meter resources is 
a key obstacle to their participation in new and existing markets. 
If the operator cannot see a resource, the operator cannot use it 
[11]. The benefit to the grid must be co-optimized with the 
benefit to the customer (reduced energy cost).  Co-optimizing 
these benefits is a challenge that new power-flow-linked local 
machine-learning-driven analytics are ideally suited to solve. 
The interoperable, data-vendor-agnostic approach of these 
analytics allows for a low-economic-barrier entry into the 
market for individual end users wishing to utilize their systems’ 
flexibility to reduce their electricity bills.  The customer 
themselves will not require detailed knowledge of the 
performance of the analytics, but more consider a framing of 
their needs for resources such as driving their car for a planned 
trip, or scheduling laundry.  The benefits are not limited to 
customers who participate in behind-the-meter and transactive 
markets.  There are significant numbers of customers who may 
not participate in these markets but will be affected by the 
development of these markets. For example, if the cost of 
electricity increases because of additional maintenance or 
integration costs associated with high penetration of DER, all 
customers will be directly affected.  Therefore,  we consider here 
the benefits to the ratepayer of enhanced reliability and 
resiliency and therefore reduced or at a minimum stabilized cost 
of being served by a particular utility [12]. 

Ratepayers reap substantial savings from grid and grid-to-
building interface performance enhancements and new markets 
because: (1) Visibility into the instantaneous generation of 
intermittent renewable sources can assist in optimal operation of 
both the grid, buildings  and the renewable resources. Variability 
can be tracked by observing the localized performance of PV 
units, allowing scheduling of charging/discharging of grid 
storage and EVs in an automated fashion that accounts for 
transmission and distribution constraints as well as opportunities 
for participation to achieve wider system objectives. (2) 
Communication to the control center of information on the 
aggregate controllability of a node relieves system operators of 
a computational burden and facilitates seamless integration of 
this information into operators’ current decision-making 
process, reducing requirements for significant information 
technology services that might otherwise be required in a data-
rich utility environment. (3) Aggregation of resources at a node 
can facilitate scheduling of those resources in a complementary 
manner and thus reduce stress on the grid, enabling benefits 
from condition-based maintenance rather than the “run to 
failure” approach. A potential failure could be predicted and 
DER utilized to extend system operating lifetime or to reduce 
load and enable reconfiguration to avoid failure. (4) Operators 

 



of larger commercial buildings have an increased choice of 
markets in which they can participate.  

Examples of grid regulation schemes that are improved with 
enhanced application of grid informed machine learning include 
a) Providing reactive power in addition to kilowatt-hour-driven 
schemes, reducing need for traditional regulation equipment 
such as local capacitors b) Controlling voltage and providing 
accurate knowledge of voltage, which enables local 
participation in voltage regulation c) Improving voltage and 
power quality at the building, enabling more up time for 
generation resources d) Saving energy for the building owner by 
allowing participation in new markets and better quantification 
of resource availability at all grid levels. 

VII. SUMMARY 
Generic “big data black box” machine-learning approaches 

can only be a starting point for this work. New, innovative 
machine-learning approaches are needed that incorporate 
complex constraints imposed by engineering, physical, 
communication, security, and other principles unique to power 
systems.  Power system data are being collected from a variety 
of sources, including Phasor Measurement Units (PMUs), 
meters, outage-management systems,  supervisory control and 
acquisition data recorders, weather, and DER. The diversity in 
volume and time “stamps” of these data sets are important to the 
findings derived from the data. Additionally, many utilities are 
tapping into other data sets, including smart meters, call centers, 
social media, billing systems, and mobile apps to support grid 
planning and operations. The volume of data from these and 
additional data sets is expected to grow exponentially in the next 
few years. Machine-learning analytics would support each area 
of grid modernization by using this growing volume of data to 
improve detection of normally invisible phenomena, learn grid 
topology, and support security applications including detection 
of physical or cyber-based attacks. Machine-learning analytics 
will also enable resilience and reliability applications, for 
example predictive models for responding to hazards or models 
for reconstructing events.  Lack of useful operational visibility 
and information from extensive disparate data sources will drive 
the need for forward-thinking integrated approaches.  The “brute 
force” approach to data collection is to analyze every node with 
bigger and better computing, which is often not available to 
utilities and customer-facing industries.   A more efficient 
approach is to combine data sources with metadata; aggregate 
and fuse the data; incorporate buildings physics (for example 
air-flows); and develop sophisticated, relevant, and 
computationally efficient analytics.   

In summary, the overall goals of this activity within the Grid 
Modernization Initiative are to make use of new and improved 
machine learning-based analytics to improve the state of the art 
in the fields of building and grid science.  This will be 
completeed by evaluating operator and customer information 
that would benefit from a distributed, learning-based approach 
rather than centralized analytics, and with minimum investment, 
improve the visibility, observability, verification, and validation 
of the building-to-grid resource. 
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