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Abstract—Trusted execution environments (TEEs) are primary
enablers of confidential computing. This paper presents a sys-
tematization of the existing trusted execution environments in
industry and academia. We highlight the common mechanisms
these TEEs employ to provide different security guarantees and
offer a detailed comparative analysis of different TEE proposals.
TEEs are anticipated to be a promising solution for the security
challenges in the high-performance computing (HPC) domain.
However, this paper shows why the existing TEEs are unsuitable
for high-performance computing systems. Finally, we present our
call for action to work to evolve the TEE technologies with the
evolving high-performance computing landscape.

Index Terms—trusted execution environment (TEE), high-
performance computing (HPC), confidential computing.

I. INTRODUCTION

Confidential computing (which refers to the use of hardware-
enforced (cryptographic) protection of data in use in contrast
to the data at rest (storage) or in transit (I/O)) has recently
emerged as a new paradigm of computing [1], [2]. Confidential
computing creates trustworthy systems rather than point-wise
solutions against particular attacks. There are two primary ways
to enable confidential computing: privacy-preserving computa-
tion techniques (like homomorphic encryption1 and multi-party
computation2) and trusted execution environments (TEEs). A
comparative analysis of these techniques suggests that hardware
TEEs generally incur much lower performance costs than
other methods like homomorphic encryption and multi-party
computation [6]. TEEs scale well to larger data sizes [2] and
generally provide several additional security properties like
attestability and code confidentiality (as shown in Table I).
Trusted execution environment is defined as follows by the
Confidential Computing Consortium [2]:

“A Trusted Execution Environment (TEE) is com-
monly defined as an environment that provides a level
of assurance of data integrity, data confidentiality, and
code integrity. A hardware-based TEE uses hardware-
backed techniques to provide increased security guar-
antees for the execution of code and protection of data
within that environment.”

Table I provides a set of common properties which are held by
a TEE. Figure 1 shows how a trusted execution environment

1Homomorphic Encryption: A form of encryption that allows com-
putation on ciphertexts, generating an encrypted result which, when
decrypted, matches the result of the operations as if they had been
performed on the plaintext [3], [4].

2Multi-party Computation: A subfield of cryptography with the goal
of creating methods for parties to jointly compute a function over their
inputs while keeping those inputs private [3], [5].

TABLE I: Primary security properties of TEEs

Property Definition
Data
Confidentiality

unauthorized view of data is not allowed.

Data Integrity unauthorized entities are not allowed to alter the
data.

Code Integrity unauthorized entities cannot alter code in the TEE.
Code
Confidentiality

unauthorized entities are not allowed to view the
code inside the TEE.

Authenticated
Launch

enforcement of authorization checks before pro-
cess launch.

Programmability if this is a TEE with arbitrary code or fixed
function (code).

Attestability if a TEE can provide evidence/measurement of its
origin & current state.

Recoverability if a TEE can be recovered from a compromised
state.

will create a zone of trust for the sensitive application and its
data on a general-purpose computing node (Section IV will
discuss different mechanisms that are used today to enable this
zone of trust).

A. Security in High Performance Compute Environments

Fig. 1: Trusted execution in tra-
ditional computing systems.

Generally, computational
scientific research is carried
out in high-performance
computing (HPC) centers,
which provide the
required computing and
storage resources to users
(researchers). The scientific
computing problems are
large-scale computational
problems, which involve
large data sets as well. This
data is often provided by a
third-party (data provider)
and can be sensitive (fully or partially). Table II provides
a few examples of scenarios where different data providers
might provide some sensitive data to researchers to perform
some type of analysis through their applications.



TABLE II: HPC Use Cases

Domain Data Provider Data types Applications
Health care Hospital Health records, medical images, gene

sequences
Machine learning models

Transportation Public transportation authority Driving routes Graph analysis
Energy Utility company Home & building energy usage Real time demand/response

Fig. 2: Creating a zone of trust for sensitive data in HPC
centers. Left half shows a general TEE and the right half shows
how that TEE can be used to enable a data scientist to compute
on sensitive data provided by a trusted data provider and keep
it secure from other entities in the system.

The use of sensitive data in HPC centers makes it imperative
to build HPC systems which can be secure and can be trusted
by all the entities involved in a successful scientific workflow.
These entities include, multiple users (who might be sharing all
or a part of HPC system resources), HPC platform provider,
and the data provider. HPC platform providers have tried to
tackle this problem already. However, the current solutions can
have significant usability challenges as the sensitive data might
be hosted in specialized computing facilities and might require
specialized access protocols which can be cumbersome for the
users/researchers. In contrast, TEE based security solutions can
be built in normal computing facilities (without any restrictions
on users’ access mechanisms). Figure 2 provides a high-level
picture of how TEEs can help to create a zone of trust for
sensitive data in HPC centers.

B. HPC vs. Cloud Systems

Our focus of discussion in this paper is high-performance
computing systems (like those that might find usage in HPC
centers e.g., DOE national labs). In contrast to traditional
virtualized cloud systems, these HPC systems primarily fo-
cus on performance over manageability. Multiple (sometimes
heterogeneous) nodes, many cores per node, and integrated
accelerators are some characteristics of the HPC systems.
Moreover, the applications running on these systems often
bypass the OS for performance reasons. In contrast, cloud
systems usually rely on adding new privilege layers.

In this paper, using the existing literature, we identify the
common mechanisms trusted execution environments (TEEs)
use to isolate a sensitive application and its state from the
rest of the system. We show how the existing mechanisms do
not fit well with the modern high-performance computing
systems and what are the most promising directions to pursue
to ensure that the high-performance computing systems can
maintain isolation of sensitive applications [7], [8]. This paper
will help the community understand the critical challenges the

Fig. 3: History of the computing landscape. This figure shows
the evolution process of traditional high-performance comput-
ing systems. Computing systems have evolved from single pro-
cesses on a single-core system to multi-threaded applications
on heterogeneous multi-core systems.

confidential computing paradigm faces in the context of HPC
systems.

C. Contributions

Our main contributions in this work are:
• We provide a categorization and systematization of exist-

ing trusted execution environments (TEEs).
• We group TEEs based on the key mechanisms/ideas

they rely on to figure out the underlying principles that
confidential computing is based on today.

• We take a glance at the traditional computing systems and
how they evolved. Using our observations, we point out
many ways in which existing TEE technologies would not
fit with modern high-performance computing systems: 1)
large application modifications, 2) large TCB, 3) focus
on core-level execution, and 4) inconsideration of side-
channels.

• We provide a call for action on future research that can
enable TEEs to be used for high-performance computing
systems.

II. COMPUTING LANDSCAPE

A. History

Most of the protection mechanisms were invented when
the computing system model was very different from today.
Therefore, it is essential to look at the history of the computing
landscape and its evolution over time. Initially, the computing
system model was a single machine with a single core running
one application (shown in the left-most part of Figure 3). The
OS would make the application feel that it is the only thing
running on the system. This model had a vast TCB (you had
to trust all the components in the system). Over time, multiple
applications started to share the hardware (still a single-core
system, as shown in the middle part of Figure 3). The OS
time multiplexed the applications on the same hardware. The
OS started implementing virtual memory (VM) abstraction
to isolate one application from the others. Eventually, the
computing systems evolved such that the processor became



a multi-core processor (shown in the rightmost part of Fig-
ure 3). Applications evolved and started to have more than
one execution thread. In this model, the OS would manage
multiple threads of execution on multiple cores. In summary,
the systems became much more complex to manage; however,
they still used the VM-based isolation primitives to ensure
isolation among applications on these multi-core systems.

Traditionally, operating systems were responsible for man-
aging most aspects of memory, IO, and computing. The virtual
memory (VM) subsystem used for isolation also provided
applications an abstract view of physical memory, allowing
them to under-subscribe or over-subscribe physical memory.
The VM subsystem evolved, but the coupling of isolation
provision, and resource management stayed intact.

B. Current Computing Landscape

Next, we discuss the current (and future of) computing
landscape. In Section V, we will discuss how these advance-
ments in the high-performance computing landscape become
the reason for limited applicability of current TEE technologies
for HPC. Figure 4 shows a system level view of modern high
performance computing systems.

Accelerator Integration: Computing systems have started to
integrate different types of accelerators with general-purpose
CPUs. In modern computing systems, devices like GPUs,
FPGAs, and other accelerators have become a part of the VM
subsystem and share virtual address space with applications
running on the CPU. The memory allocation is still managed
by the OS on the CPU, as the accelerators do not run an OS.

Heterogeneous Memory Systems: Heterogeneous memory
systems have become much more prevalent today and rely
on emerging memory technologies and more traditional DDR
memories. For example, Intel’s Sapphire Rapids [9] will include
an HBM, a DDR5, and a (byte addressable) NVM (non-
volatile memory). The rationale behind using different memory
technologies is to allow for different memory types to be used
for different applications or phases of a single application. This
trend of heterogeneous memory systems makes it necessary
to have the ability to migrate data from one device (physical
address) to the other (physical address).

Remote Memory Systems: With an increasing adaption of
systems where the memory might live remotely (be the NUMA
systems or disaggregated systems), memory management might
not be entirely done by a (local) OS. Memory management
might rely on some remote software/hardware. Network inter-
faces today have started to rely on RDMA (remote DMA),
which bypasses OS mostly and copies the data into a process’s
virtual address space directly.

Highly Multi-threaded Applications: Especially, in high per-
formance computing systems, the applications are composed
of multiple threads, which might execute on multiple cores.
Traditionally, the threads used to execute on homogeneous CPU
cores, and OS used to manage what threads would execute
and where would they execute. In the modern computing
systems, the use of accelerators, scale out architectures, and
disaggregation of memory resources lead to new models of
computing. The host OS might not control all the threads of
execution for an application.

Fig. 4: Modern high performance computing systems. Appli-
cations on these systems scale across local node, (integrated or
remote) accelerators, and remote nodes.

Direct Memory Access by Devices: Historically, whenever
the devices needed to access application’s memory, they had to
do that via OS as well. All the memory accesses from/to the
device have historically being intercepted by the OS. This is not
true anymore for high performance computing systems. DMA
and RDMA allow direct access to memory by the devices.

III. HPC FOCUSED TRUSTED EXECUTION ENVIRONMENTS

Considering the evolving computing landscape and the secu-
rity concerns for high-performance computing environments we
point out important requirements that the secure architectures
focused on HPC should fulfill. We focus on these requirements
looking from the outside, i.e., these requirements need to be
met to make TEEs usable in HPC set-ups. Following are these
requirements:

• R1 Requirement 1: HPC-focused TEEs should have mini-
mum performance impact on HPC-style workloads (heav-
ily multi-threaded and have large working sets).

• R2 Requirement 2: TEEs should not require application
modifications or linking against special libraries as HPC
applications often rely on third party libraries.

• R3 Requirement 3: HPC-focused TEEs should exclude
most of the OS from the TCB. Since, modern HPC
applications often bypass the OS for performance benefits
(by handing I/O in user-space libraries), reliance on OS
security primitives should be minimal.

• R4 Requirement 4: HPC-focused TEEs should be capable
of expanding across compute nodes as HPC applications
mostly scale across multiple nodes and rely on message
passing run-times like MPI for communication across
these nodes. Moreover, HPC centers (like data centers)
are expected to rely on disaggregated architectures (e.g.
pooling of memory resources), to increase the utilization
of compute/memory resources and save the cost. An HPC
focused TEE should consider disaggregated resources in
its threat model as well.

• R5 Requirement 5: HPC-focused TEEs should enable
enclaves which can scale to processing elements other than
the general purpose CPUs.

There exist multiple TEE technologies today. In the next
section, we will analyze if these existing techniques fulfill the
previously mentioned requirements of an HPC-focused TEE.



IV. SYSTEMATIZATION OF TRUSTED EXECUTION

ENVIRONMENTS (TEES)

In this section, we systematize and classify the existing TEEs
into different categories.

Generally, TEEs provide complete control over the trusted
computing base (TCB) [1]. The data/code confidentiality
and integrity properties of a TEE are usually enabled by
isolating an enclave’s memory (via the zone of trust shown in
Figure 1) from the rest of the system while an enclave is in
use. Before providing a classification of TEEs, we will first
look at some of the common primitives TEEs use to isolate
an enclave from the rest of the system. We also discuss the
mechanisms/ways the software or other hardware components
use these primitives.

1) Page Table Entry Metadata: Page table entry-level
metadata refers to any physical page metadata that TEEs
might maintain to identify an enclave page in the hardware.
Multiple TEEs rely on this information to implement access
control mechanisms. For example, SGX [10] maintains
EPCM (enclave page cache map) entries which keep track
of the enclaves that own the pages in EPC (enclave page
cache), along-with information on the validity of the EPC
page. Only SGX instructions can update the entries in
the EPCM; therefore, the system software can track any
unwanted change in the enclave’s address map. Another
example is AMD SEV [11], which uses bit 47 of the
physical address in a page table entry to identify whether this
page is secure. The hypervisor or the host OS manages this bit.

2) Encryption: Encrypting physical memory is a very
common primitive used by TEEs (e.g., AEGIS [12],
SGX [10], Graviton [13], HETEE [14], ARM RME [15]) to
ensure confidentiality of data belonging to an enclave (and
can be a strong mitigation against physical attacks). Usually,
the TEEs rely on an encryption key which is generated and
stored in an (isolated) trusted processor (or some hardware
component). For example, AMD SEV [11] relies on an
ARM-based processor (AMD Platform Security Processor)
for key management. As the cache blocks move from/to
the processor chip to/from the DRAM, the key is used to
encrypt/decrypt the cache blocks transparently.

3) Physical memory isolation via ISA extensions: RISC-V
based TEEs (e.g., Keystone [16], CURE [17], Elasticlave [18],
TIMBER-V [19]) mostly rely on PMP (physical memory
protection) ISA extension. PMP controls U (user) and S
(supervisor) modes’ access to certain memory regions. The
allowed access (r-w-x) permissions and the memory region can
be configured using PMP address (pmpaddr) and configuration
(pmpcfg) registers. There also exist proposals for providing
physical memory protection to IO devices via IOPMP [20].

4) Use of tags/identifier in hardware: Some TEEs also use a
tag or identifier to distinguish enclave data from other software
in the system (for access control). For example, CURE [17]
uses enclave ID for bus arbitration to enable enclave to the
peripheral binding. For this purpose, CURE [17] hardware
relies on a filter engine on the system bus. Bastion [21]

depends on a module ID, which is a new component in
caches and TLB and acts as a tag for the currently executing
process. ARM TrustZone [22] uses a single-bit identifier to
distinguish between the secure and non-secure world (for
device communication). SiFive’s WorldGuard [23] can tag bus
transactions to differentiate between software contexts that
originated a request, allowing the target to determine if it
trusts the requestor. HECTOR-V [24] also relies on identifiers
embedded in interconnects, which helps create a safe IO path.
AMD SEV [11] hardware tags all code and data with its VM
ASID (inside the SoC), indicating the VM, which is the data
owner.

5) Privileged Software/Hardware: Trusted execution envi-
ronments mostly do not trust the OS and try to bypass the
OS privileges. They usually do this through additional hard-
ware/software components to perform privileged operations
focused purely on security. For example, CURE [17] uses a
hardware-based security monitor to monitor the system bus’s
access. Keystone [16] uses an M-mode software-based secu-
rity monitor to manage physical memory isolation primitive
(i.e., PMP). Similarly, ARM RME (realm management exten-
sion) [15] relies on a monitor to enforce its security guarantees.

A. Classification of TEEs

We present a classification taxonomy of existing trusted
execution environments to enable a better understanding of
the vast design space that is covered by TEEs. Figure 5 show
this taxonomy with some examples of TEEs from each class.
TEEs can be classified based on different factors. We use the
following factors for this classification:

• Isolation level: This defines at what level the secure and
non-secure components are isolated.

• Threat model configurability: This determines if the threat
model of a TEE can be configured (either at the run time
or the implementation time).

• Enclave privilege level: This is the privilege level at which
the enclave operates.

• Openness: This determines if the TEE is an industrial
solution or academic. Usually the industrial solutions are
closed-source and academic solutions are open-source.

• Abstraction level: This is the level of abstraction at which
the TEE provides an interface to the user.

• Target computing: This is the type of computing which
the TEE is mainly designed for.

A more systematic and detailed comparison of different
TEEs is provided in Table V (in Appendix section). Here, we
provide some discussion and observations on different classes
of TEEs that are shown in Figure 5 with important examples.

We observe that the current TEEs which provide the highest
isolation level usually achieve it via physical isolation or
partitioning at a very coarse granularity. For example, AWS
Nitro enclaves are an example of highly isolated enclaves which
provide (constrained) enclave virtual machines with no storage,
network, or interactive access [25]. AWS Nitro enclave has only
a single point of connection to the outside world which hap-
pens via bi-directional VM socket (vsock) between the parent
instance and an enclave [25]. The major drawback of highly
isolated enclaves is the difficulty to use them. For example,



Trusted Execution
Environments

Isolation
level

High

Nitro [25]
TZone [22]
RME [15]

Low

SGX [10]

Threat model
configurable?

Yes

CURE [17]
Keystone [16]

No

SGX [10]
SEV [26]

Target
computing

embedded

Sancus [27]
ERTOS [28]
TyTan [29]
TLite [30]

cloud

SEV [26]
nitro [25]

modern

HETEE [14]
TDMem [31]

PIE [32]

Enclave
privilege level

Kernel

TZone [22]
SEV [26]

User

SGX [10]
Sanctum [33]

Abstraction
level

VM

SEV [26]
TDX [34]

Container

SCONE [35]
Haven [36]

Process

SGX [10]

Openness

Academic

Keystone [16]
Sanctum [33]

Industrial

SGX [10]
SEV [26]

TZone [22]

Fig. 5: Classification of TEEs and references to some examples of each class

applications will have to rely on message passing, RPC or
micro-services to interact with their secure compartment on
the enclave virtual machine (in case of AWS Nitro). Other
examples of highly isolated enclaves, ARM TrustZone [22] and
Realms [15], partition the entire physical address space at a
very coarse granularity (into secure and non-secure worlds).

There are also many examples of configurable TEEs (which
can lead to variable TCB sizes). Configurability is a desirable
property in the current heterogeneous world. Applications ex-
ecuting on a modern (heterogeneous) HPC system might not
have the same sensitivity level (or require the same security
guarantees, e.g., integrity is not essential if the application is
not going to reuse previously written data). CURE [17] provides
the ability to define enclave trust boundaries (at different
granularity levels). AEGIS [12] provides the ability to have
both a trusted and untrusted OS. ShEF [37], a trusted execution
environment for FPGAs, provides the ability to customize
encryption logic parallelism and authentication block size.

TEEs could opt for a specific security vs. cost tradeoff
depending on the computing type they are targeting. We
observe that most of the earlier TEEs focused on general-
purpose desktop/cloud or embedded computing (e.g., [11], [22],
[27]). However, some recent examples of academic propos-
als target parts of modern computing systems. For example,
HETEE [14] targets server rack-scale computing. Graviton [13]
and HIX [38] tried to enable isolated execution on GPUs,
ShEF [37] targets FPGAs and TDMem [31] focused on RDMA-
based disaggregated systems.

Privilege-level based classification divides enclaves into
kernel-space or user-space enclaves. Kernel-space enclaves can
run trusted kernel-mode software inside the enclave, which
means that these enclaves generally have a large TCB. For
example, Keystone [16] requires having a kernel-space runtime
(for user-space application’s resource management) inside the
enclave. SEV [11] allows kernel-space enclaves, where the
guest OS is a part of the enclave. SGX [10], on the other
hand, is a user-space enclave and has smaller TCB (compared to
SEV). However, user-space enclaves have to pass the (trusted)
user-space and (untrusted) kernel-space boundary to perform
system-level services, which can also have security concerns.

V. LIMITATIONS OF EXISTING TEES

Next, we discuss some limitations of existing trusted execu-
tion environments and show how they hinder the adoption of
secure execution environments for modern computing systems.

Confidential computing environments rely on hardware prim-
itives to protect/isolate an enclave’s memory from the rest of the
system. These primitives can sometimes impose restrictions on
the system’s resource management, decreasing the usability and
efficiency of the system. We present the following observations
on the kind of limitations confidential computing can impose
on modern HPC environments:

A. Heavy Application Code Modifications

Today, we do not have primitives that allow fine separation
of management and protection. As a result, the entire OS is
mostly not trusted in the confidential computing threat model.

Therefore, the programming model of most of the TEEs
provides limited support for traditional C libraries (e.g., sim-
pler muslc replaces more complicated glibc). The program-
ming model requires heavy modifications in userspace appli-
cations (especially the large applications which run on high-
performance computing systems) and limits their functionality.

B. Large Trusted Compute Base (TCB)

Since the OS is mostly not trusted in the confidential
computing threat model, delegating resource management to
the OS can lead to vulnerabilities. For example, managing
an enclave’s address space allows a malicious OS to launch
page fault-based attacks on enclaves. These attacks are possible
because OS can modify access permission of enclave’s pages,
which would lead to page faults, and thus OS can figure out the
enclave access pattern. Such attacks, called controlled channel
attacks [39] are deterministic (and noise-free) and can have
large leakage bandwidth compared to other noisy side channels.
The proposed solutions to the controlled channel attacks require
the enclave to control its page tables and enforce secure-paging
policies within an enclave. Examples of such proposals include
Autarky [40], Keystone [16], and CURE [17]. The drawback
of these approaches is that they lead to a larger TCB and more
complexity in the enclave.



The scheduling and synchronization of threads by an un-
trusted OS can lead to multiple security issues3. For example,
an untrusted OS can influence a machine learning model
leading to poisoning attacks by controlling the order in which
the threads of the training algorithm are executed [41]. To solve
this problem, some TEEs have implemented limited thread
handling inside the enclave, which might reduce the system’s
efficiency overall. For example, enclaves (like SGX [10])
might enforce a static number of threads because they might
only allow statically-defined entry points for executing threads.
Many of the TEEs based on SGX have similar limitations.
Enclaves like Keystone [16] do not support multi-threaded
execution at all at the time of writing this paper. In summary,
today’s enclaves generally do not have good support for multi-
threaded execution unless they are willing to have a large TCB.
Interestingly, virtual machine (VM) based enclaves include a
guest OS in the TCB and allow multi-threaded applications to
run transparently. Not only do the VM-based enclaves have a
very large TCB, but multi-threaded execution in virtual ma-
chines can also have significant performance implications. For
example, when threads yield during synchronization operations,
they can cause costly KVM exits [42], [43].

C. Focus on Core Level Execution

A significant limitation of most of today’s TEEs is that
they focus on a core-level view of memory permissions. This
behavior limits the applicability of the TEEs to heterogeneous
HPC systems.

The lack of an OS or another privileged software on ac-
celerators makes it very hard to take the memory manage-
ment controls from the host OS. In addition, accelerators are
generally more sensitive to address translation latencies [44],
so access control through additional privileged components is
complex. Therefore, if the memory level view of access control
is unavailable, it is hard for different compute elements to
share the same trusted memory. This behavior is also true for
disaggregated/remote memory systems. In those systems, the
host OS and other privileged software or component on the host
node would not entirely control the remote parts. It becomes
hard to rely on a core-level execution view to ensure security.

Another implication of core-level view of memory permis-
sions is that they require synchronization of memory permis-
sions across the cores, which are used to execute all the threads
of an application. This synchronization is costly [45], and
today we do not have good hardware primitives (currently,
inter-processor interrupts can be used). Moreover, the synchro-
nization becomes even more challenging when the application
scales to accelerators or remote compute nodes.

Devices also suffer because of the core-centric behavior
of current TEEs. Today, most TEEs use untrusted (shared)
memory buffers (e.g., bounce buffers in Linux) as temporary
storage for the data moving between the devices and an enclave.
The use of temporary buffers leads to extra copies of the data
and has performance implications as well. This behavior also
implies that the DMA functionality would not work securely
with current TEEs.

3scheduling based denial of service attacks are common, but gener-
ally not a part of the threat model of confidential computing systems.

D. No Consideration of Side Channels

TEEs do not consider system components that are not
memory or cores. In other words, current TEEs generally do
not focus on things that are not architecturally visible. This
behavior allows cache or system-bus-based side channel attacks
possible on TEEs [46]–[48]. High bandwidth leakage channels
can be possible, especially on modern high-performance com-
puting systems with high-bandwidth links between physically
isolated components.

E. Other Limitations

This subsection briefly discusses other (less critical)
limitations of TEEs that do not fit in any of the above
categories.

1) Memory Isolation Primitives and Fragmentation:
Most of the hardware primitives used by TEEs today
limit the maximum number of enclaves possible or cause
fragmentation issues. For example, ARM TrustZone [22]
uses an address space controller to create an OS hypervisor
mapping. Keystone [16] relies on contiguous physical memory
for an enclave (as PMP defined physical memory range has
to be contiguous). Similarly, CURE requires the physical
memory of an enclave to be contiguous. If multiple enclaves
are executing simultaneously, the requirement of contiguous
physical memory for each enclave can cause fragmentation
and potentially overuse of resources.

2) Limitations on maximum number of enclaves: The
memory isolation primitives used by the existing TEEs
can also limit the maximum number of executing enclaves
simultaneously. For example, PMP-based TEEs (like Keystone)
cannot have more enclaves than the number of PMP entries
(latest specifications allow upto 64 entries [49]). Similarly,
AMD SEV has limitations on the number of maximum
enclave VMs. The maximum number possible on the AMD
EPYC system was 15 due to a fixed number of slots
for encryption keys (one needed for each enclave VM)
in the memory controller [50]. Sanctuary [51] also has a
limitation on the maximum number of enclaves due to address
space controller constraint [52]. CURE [17] can support 13
enclaves concurrently due to limitations of the hardware
arbiter they use. The limitation on a maximum number of
enclaves can be a big issue for multi-tenant computing systems.

3) Limitations on data movement: Cryptographic isolation
primitives inhibit the transparent data movement in
heterogeneous memory systems. For example, to ensure
that two same plain text pages at different physical addresses
have different cipher texts (as a protection mechanism against
cipher-text block move attacks), AMD SEV uses a physical
address-based tweak algorithm [53], [54] which uses a block’s
physical address and an encryption key (xor-encrypt-xor
tweak [55]). Since the host-physical address is used to
determine the cipher-text of a page, the hypervisor cannot
move a page between the two physical addresses once it
is allocated to the secure VM. The hypervisor has to lock
the physical pages in memory which leads to pre-allocation



Fig. 6: Required trusted system view

of all the required physical memory and can cause under-
utilization of resources and unintended effects on NUMA
affine workloads [42]). The transparent movement of physical
pages from one device to the other would have required the
data to transit via the memory controller so that it can be
decrypted and re-encrypted again using the new physical
address, which can be costly.

4) Compute on Modern Computing Systems: The state of an
enclave or secure process on context switch cannot be protected
easily if the enclave is scaling across multiple computing
elements (some of which might not even have an OS), which
can be physically distant from one another.

VI. PROMISING FUTURE RESEARCH DIRECTIONS

In this section, we discuss the promising research directions
enabling confidential computing on high-performance comput-
ing systems. These research directions can help in mitigating
the critical limitations of today’s TEEs: heavy application
changes, large TCB, core-level isolation view, and inability to
protect against side-channels.

Figure 6 shows the trust model we need for modern high-
performance computing systems (like the one shown in Fig-
ure 4). The local (general purpose) node, accelerator node, and
remote node share part of the trusted memory and should not
need to trust any component other than the core/s they are
executing on.

We argue that given the way computing is evolving, we
do not necessarily treat security and performance as a trade-
off, but we can achieve both together. We emphasize that the
system view in Figure 6 also fits well with the optimizations
which can extract more performance from a computing system.
Therefore, synergistically building secure and performant sys-
tems is the right thing. A similar observation by Orenbach et
al. [56] suggests that enclaves have many similarities with ac-
celerators: significant invocation overheads, space constrained
private memory, and inability to directly invoke OS services
such as network and I/O. The solutions to these problems
for accelerators [57], [58] mostly involve bypassing the OS
(for performance reasons), which is an attractive property for
enclaves as well.

We discuss some of the promising future directions:

A. New hardware primitives

Most of today’s commonly used operating systems (Linux,
Windows, macOS) use a monolithic kernel, which provides a
fixed abstraction to the user-mode applications and depends
on a generic or a homogeneous view of applications while

managing their resources. However, many other kernel designs
have been proposed in the past. For example, exokernel [59]
proposed an idea of application-level resource management.
The applications again are pursuing this direction by trying
to relinquish the monolithic nature of the kernel. Today, the
applications are mainly doing this for performance reasons.

For example, in modern computing systems, HPC applica-
tions often bypass the OS and handle I/O in user-space libraries
or run-times via a specialized HPC networking stack (e.g.,
RDMA [60] via InfiniBand [61]). The noteworthy point is that
these libraries tend to make certain assumptions about HPC.
For example, modern MPI libraries assume that they can fully
utilize CPU cores to spin on network hardware resources to
check for progress. Less dependence/reliance on a (primarily
untrusted) OS fits well with the confidential computing model.
Moving the resource management code to user space also
means a larger software TCB for the enclave.

The increasing code bloat implies that the software will
always have exploitable bugs. On the other hand, hardware
has more trust due to two primary properties: immutability and
privilege [62]. Therefore, we emphasize focusing on increasing
the hardware TCB components. We believe that there is an
opportunity for computer architects to think of new hardware
primitives as the ones we have today do not work well, as
discussed in Section V.

B. Horizontal privilege levels

As discussed before, the vertically integrated model of
privilege levels does not work for evolving high-performance
computer systems. We emphasize horizontal privilege levels,
where there can be a variable number of vertical layers in each
horizontal privilege level (e.g., there might not be an OS in the
privilege hierarchy of an accelerator). Depending on the threat
model, one horizontal layer can have more privilege than the
other. An example of a similar system is ARM TrustZone [22]
which divides the system into a secure and a normal world.
However, it does that only for a CPU system and cannot
create a secure world for accelerator or other remote computing
elements/memory nodes.

C. Data centric enclaves

Current TEEs, when trying to isolate software from the rest
of the system (via TEE-based containers, for example), end
up with usability constraints and eventually try to emulate
existing system components (like POSIX or devices) inside the
contained systems and eventually have to deal with the same
problems they started with [63]. Since today’s threat models
mainly consider untrusted software, the “unit of protection”
should be individual data items [63]. Data-centric enclaves
can solve this problem, which inherently rely on memory/data
level isolation view rather than core-level isolation view. One
example of such architecture is Border Control [64] which
keeps the protection checks of IO-MMU consistent with the
TLB checks via a hardware structure. This way, Border Control
can maintain the memory level view of permissions and protect
against accelerator-based attacks.

D. Capability based enclaves

The idea of capabilities (first proposed a few decades
ago [65]) provides ways to enable compartments at different



TABLE III: Survey of Attacks on TEEs/Enclaves

Type of attacks Examples
Side channel [46]–[48]
Controlled channel [39], [69]
Encryption Attacks [53], [54]
IO Based Attacks [55], [70]

TABLE IV: Example of Tools/Frameworks for TEEs

Type of tool Examples
TEE Containers Graphene [71], SCONE [35],

SGX-LKL [72]
Simulation FireSim [73], gem5 [74]
Profiling TS-Perf [75], sgx-perf [76] , Tee-

perf [77]

abstraction layers of computing systems. Capability based
machines have also existed for a long time now (e.g., M-
Machine [66], Rice research computer [67], CHERI [68]).
Capability based architectures inherently do not have to fol-
low a vertically integrated privilege hierarchy, rather these
architectures rely on capabilities of different components in
the system to perform access control checks. Therefore, using
capabilities to implement enclaves seems a promising idea for
(heterogeneous) high-performance computing systems.

VII. A BRIEF DISCUSSION ON TOPICS BEYOND THE SCOPE

OF THIS SOK STUDY

In this section, we briefly discuss few topics that are not in
the main scope of this paper.

A. Survey of Attacks on TEEs/Enclaves

There is a lot of research on bypassing the security guaran-
tees of TEEs/enclaves. Table III shows some of the attacks that
are possible on TEEs/enclaves.

1) Protection Against Side Channel Attacks: TEEs primarily
do not consider side channels. However, there are a few
exceptions [17], [33]. Komodo [78] obliviates computing to
protect against side channels. Sanctum [33] protects against
cache side channels by enforcing distinct cache sets per enclave.
Keystone [16] also allows the ability to include side channels
in the threat model.

2) Protection Against IO Attacks: Since IO devices are
generally not a part of the CPU package and are not trusted,
they can come from a malicious vendor. Such devices can
break the confidentiality of the enclave’s data when it leaves
the CPU package. For example, Lee et al. [70] presented an
off-chip attack on enclaves by snooping the memory bus. Some
of the TEEs (e.g., CURE [17], HECTOR-V [24]) use enclave
to peripheral binding to protect against IO-based attacks.

B. Tools for TEE Platforms

Table IV provides a brief survey of different kinds of
tools/infrastructure that can help the usage of TEEs or advance
research on TEEs. TEE containers help in the execution of
unmodified code on TEEs. These containers often provide an
emulated view of specific system components and might have
many of the limitations of the underlying TEE. Application
profiling helps to understand their behavior better and poten-
tially optimize their execution on given hardware. Standard

profiling tools might not be able to interact with the enclave
applications due to the specialized execution mode of enclaves.
Though some specialized profiling tools exist for enclaves, as
shown in Table IV, there is still room for improvement in this
space. Simulation support for TEEs is essential. TEEs usually
rely on a hardware-software co-design. However, most of the
architectural simulators are not full-system and might not be
able to support all components needed to simulate a TEE.
On top of that, the details of the targeted TEE might not be
openly available. However, there are options for the simulation
of RISC-V-based TEEs (as shown in Table IV).

C. Formal Verification of TEEs

Formal verification provides means to evaluate if a security
mechanism is correct and does what it claims. There are a
few examples of TEEs which have been formally verified.
Komodo [78] and Sanctum [33] are a couple of examples of
TEEs with a formal proof of their correctness. RISC-V’s PMP
(which is used by many TEEs, e.g., Keystone [16]) has also
been formally verified [79].

VIII. CONCLUSION

In this paper, we provided a systematization study of existing
trusted execution environments (TEEs) which are one of the
main enablers of confidential computing. We discussed the
primary mechanisms or primitives the existing TEEs use. We
also provided a list of the limitations of the existing TEEs,
which we believe are the main reasons why the current TEEs
are not suitable for high-performance computing. The existing
primitives to build TEEs require large application modifica-
tions, lead to large TCB, focus on core-level execution, and do
not consider side channels a part of their threat model. These
limitations make it very hard to run HPC applications under
TEEs, cause significant slowdowns for HPC workloads, and do
not ensure their security due to an insufficient threat model. We
believe the existing TEE technologies are point solutions for
different computing targets. And in the future, we need to either
generalize the TEE technologies to be able to use them for any
computing domain or come up with point solutions focused
on high-performance computing. We also provided a list of the
directions we believe can enable TEEs to be a good fit for high-
performance computing systems. We believe that this document
can provide the community with essential insights to guide their
future research on confidential computing technologies in the
right direction.



APPENDIX: SUMMARY OF COMPARATIVE ANALYSIS OF TEES

Table V. Taxonomy of different TEE features. Each column shows the status of a
particular TEE property and the mechanism to achieve that property is shown in parentheses.

Blank entries indicate that the information on that property was not available.
TEE Data

Conf.
Data In-
tegrity

Code In-
tegrity

Code
Conf.

Auth.
Launch Attestability Custom. Isolation

Software
Attacks1
Protected

Hardware
Attacks2
Protected

Side
Channel
Protection

TCB Level3
Changes
Needed
(HW,SW)

IO
Handling4 Use Cases Notes

Autarky [40] 3 3 3 7 7 3 7 7 7
physical
attacks

controlled
channels

CPU, OS
Driver,
LibOS

process (3, 3) clear desktop/cloud based on
SGX

AWS Nitro [25] 3(P, VM) 3(P, VM) 3(P, VM) 3(P, VM) 3(E) 3(E) 7 3(VM) other VMs 7 7
VM, OS,
Nitro HV VM 7, 3 vsock cloud VMs highly iso-

lated

AEGIS [12] 3(PTR, E) 3(IT) 3(PTR) 3(H) 3(H) 3 3
processes,
OS

physical
attacks 7 CPU, OS processes (3, 3) clear desktop/cloud academic

Bastion [21] 3(MP) 3 3 3 3(H) 7 3(IA, MP) processes,
OS

physical
attacks 7

CPU, HV,
gOS VM 3, 3 cloud

dynamic
RoT, Ul-
traSPARC

CURE [17] 3(IA) 3(IA) 3(IA) 3(IA) 3 3
system
bus arbiter
(IA)

processes,
OS

IO attacks,
physical
attacks

3(cache &
controlled) configurable

process
(user/kernel
space)

(3, 3)

3(enclave
to
peripheral
binding)

variable target con-
figurability

Elasticlave [18] 3(MP) 3 3 3 3 3(MP) processes,
OS

physical
attacks

CPU, SM,
RT process 7, 3 secure variable RISC-V

based

ERTOS [28] 3(MP) 3(MP) 3(MP) 3(MP) 7 3(MP)
ERTOS
module of
FreeRTOS

tasks (7, 3) embedded
systems

relies on
PMP

Graviton [13] 3(E, I) 3(MAC) 3(MAC) 3(E) 3 3 7 3(P, IA) OS, HV,
processes 7

GPU, on-
package
memory

GPU ker-
nels 3, 3

GPU com-
puting

HECTORV [24] 3(MP) 3 3 7 7
3(SP, IA,
MP) processes

other
peripherals
on SoC

7 HW process 3, 7
peripheral
binding

heterogeneous
systems

RISC-V
based
systems

HETEE [80] 3(E) 3(E) 3(E) 3(E) 3 3 7 3
processes,
OS 7

hardware
security
controller,
PCIE
fabric

multi-node
(com-
puting
elements)

7, 7
rack-scale
computing

relies on a
hardware
security
controller

HIX [38] 3(E) 3 3 3 3 7 3
OS,
processes GPU

CPU-GPU
applica-
tions

PCIE root
complex
& MMU,
GPU
driver

secure

GPU
(hetero-
geneous
comput-
ing)

relies on
SGX

Iso-X [81] 3(P) 7 3 7 3 7 HW only process
OpenRISC,
dynamic
RoT

IceClave [82] 3(E) 3(IT) 3(E) 7 3 processes physical
attacks 7

embedded
processor
(in SSD
controller)

offloaded
applica-
tions

in-storage
computing
(flash
based
SSDs)

extends
TrustZone
in ARM
processor
of SSD
controller

Komodo [78] 3 3 3 7 3
OS,
processes

physical
attacks 7

formally
verified

KeyStone [16] 3(MP) 3(MP) 3(H) 3(MP) 3(E) 3 3 3(MP) OS,
processes 3(extension) SM, CPU,

runtime

process
(U+S
mode)

(7, 3) 7 variable RISC-V
based

ARM
Realms [15] 3(P) 7 7

3(cache
access
checks)

7 process embedded,
mobile

uses a
security
monitor

Sanctum [33] 3 3 3 3
processes,
OS 7 3 process RISC-V

based

Sancus [27] 3 7 3 3 3 HW only embedded hardware
only TCB

SecureBlue++
[83] 3 3 7 3 7 HW only POWER

ShEF [37] 3(E,
MAC)

3(E,
MAC)

3(E,
MAC)

3(E,
MAC) 3(E) 3(E) 3 3

CPU OS,
processes 7

FPGA,
shell logic

FPGA bit-
stream (7, 3) cloud FP-

GAs

first work
on FPGA
TEE

SGX [10] 3 3 3 7 7 3 7 7 7
Small
desktop
Apps.

large5 CPU, SGX
driver process (3, 3)

outside
enclave, in
clear

desktop/cloud



SEV [11] 3(E) 7 7 3 3
3(hashing
VM) 7

VM level
(through
page
table’s C
bit)

processes,
OS

physical
attacks 7 gOS, CPU VM 7, 7 clear cloud

SEV-ES [84] 3(E) 7 7 3 3 3 VM level processes,
OS

physical
attacks 7 gOS, CPU VM 7, 7 cloud

protects
VM
execution
state

SEV-SNP [85] 3
3(nested
paging)

3(nested
paging) 3 3 3 7 VM level processes,

OS
physical
attacks 7 gOS, CPU VM 7, 7 cloud

not very
strong
integrity
guarantees

Penglai [86] 3(MP) 3(MT) 3 3 7
OS,
processes CPU process

targets
scalability,
RISC-V
based

TDX [34] 3 3 3 3 VM level HV, OS,
processes VM cloud VMs

TDMem [31] 3(MP, E) 3(MAC)
hashing of
FPGA bit-
stream

3(FPGA
based)

3(MP,
address
translation
tables)

memory
access
attacks
from the
donor and
donee

7

kernel
(donee
only),
FPGA
boards

RDMA
disag-
gregated
systems

needs
FPGA,
3(kernel)

cloud dis-
aggregated
systems

one of the
earliest
works on
disag-
gregated
systems

TrustZone [22] 3(P) 7 7 3(P) 7 7
3(cache
access
checks)

non-secure
world 7 7

CPU,
secure OS process (3, 3) clear embedded,

mobile

AXI
bus time
slicing

TIMBERV [19] 3(MP) 3(MT) 3 3 3(E) 7

tagged
entry
points,
regions
MPU

processes,
OS 7 7 CPU process (3, 3) clear embedded

systems

one of the
few to rely
on tagged
mem.

Note: Conf. : Confidentiality, Auth. : Authenticated, E: Encryption, P: Partitioning, VM: virtual machine, HV : hypervisor, IT: integrity tree, H : hashing, MP : memory protection checks, IA : id assignment
gOS : guest OS, MAC : message authentication code, SP : secure processor, Custom. : Customizability, RoT : root of trust, MT : Memory Tagging

1Software attacks have software and 2hardware attacks have hardware as the attack surface. 3Level is the granularity/level at which protection is provided.
Other Notes: These TEEs generally do not consider side channels. Threat of side channels depend on the data sensitivity and leakage rate.

SGX provides strong protection against integrity attacks. SEV-SNP provides some gaurantees against inegrity attacks. 4 I/O includes GPUs, accelerators and FPGAs as well.
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