Improving Forensic Analysis
Through Transaction-Based
Security

Sean Peisert
Sid Karin

UCSD/SDSC

ol
]




Forensic Analysis

® forensics:“ The use of science and technology to investigate and
establish facts in criminal or civil courts of law.” (American
Heritage Dictionary)

® Forensic analysis helps to recreate past events. As an example, it
may be used to determine what an intruder has done to a

computer system, and used to try to help recover from the
Intrusion.

® Problems we seek to address:
® Forensic analysis may have legal considerations

® Forensic analysis may be hard.

® Forensic analysis may require a huge amount of data.




Existing Approaches

® “Coroner’s Toolkit” (Farmer & Venema)

® Gathers existing data and attempts to analyze the state
of a system, primarily including “mactimes” and
unallocated disk space disk (deleted files).

® Jakedown

® Dr. Andrew Gross (fmr. UCSD ECE Ph.D. student)
automated and formalized forensic methods that he
developed and used with Tsutomu Shimomura to
capture Kevin Mitnick.




Forensics & Debugging

“Forensic analysis” and “debugging” have a lot in
common.

Both attempt to use available evidence to recreate
an event, be it an intrusion or a bug.

Both are aided by a combined approach of
instrumenting a system to give the right data, then
analyzing the data.

This could be debugging output, log output, system
call traces, etc...




Forensics and
Fault- Tolerance

Fault-tolerance techniques do not involve analysis of faults, like
debugging, but detecting failures and recovering a system back to a
correct state.

Checkpointing stores information which can be used to restart a
system. |t usually involves saving frequent snapshots of states of
the system.

Message logging, a form of checkpointing, involves not only saving
checkpoints, but the decisions that were made at non-
deterministic points in the code.

A system can theoretically be implemented using message logging
to store less data than standard logs. This may improve forensic




Legal Considerations

® |n a legal case, rules for handling evidence
demand that a chain of custody be
guaranteed. On a computer, sufficient
information must be logged to do this.

® Most logging mechanisms can be spoofed.
As a technique for defending against
spoofing, more information than usual must
be recorded to obtain legally-valid data.




Transactions

Transaction: A result-oriented unit of communications processing
(Cisco Systems Internetworking Terms and Acronyms)

“Iransaction” is a commonly used term among database
programmers to describe an interaction with the database server.

Any SQL query, for example, can be considered a transaction at a
certain level, regardless of what the query asks.

Transactions can frequently be recorded to track changes in case
something catastrophic happens to the system and it needs to be
restored/reconstructed.

We consider a transaction to be atomic unit of interaction, from




Transaction-Based Security

® T[ransaction-based systems, more generically, are
systems for which some primary aspect of
operation is broken into (complete) atomic units.

® [ransaction-based security is a transaction-based
system which uses one or more levels of uniform

transaction units for security purposes.

® We consider transactions for forensic analysis.




Real-VVorld
Transaction Systems

® Databases and web servers are examples of real-
world transaction-based systems.

® |n principle, one can recreate events in a database
by determining everything that a user has looked at
or modified by entering SQL statements.

® Database systems and web servers already support
journaling, i.e.”total” software logging.




Journalling vs.
Message Logging

® |ournaling relates to message logging in that both
save data about what happened.

® Message logging saves primarily information from
the non-deterministic points in a system

® |ournalling can save information about every
activity.

® |ournalling may be more complete, though
message-logging may be more efficient.




\A4N]=

® The WISE system considers transactions for access
to resources.

® The WISE system does not necessarily consider
simply one “level” of action to make use of on a
computer system, like a database server does with
SQL queries.

® The WISE concept can be applied so that the
system could be implemented in as “low” a level as
the hardware or as “high” a level as simple human




WISE and Forensics

® Does a WISE-enabled system provide
better forensics!?

® VWhat data does a WISE interaction create
which could be useful for forensics?

® VWhat does the concept of “protected
resources’ add to forensics!?




Basic Questions

® |n principle, transaction-based systems in general,
like database systems, can record anything. How
close can we approach this on an entire computer
system!?

® How much benefit for forensic purposes do we get
by recording more information through VVISE!?

® Most computer systems are handicapped by the
lack of sufficient pertinent information recorded.




Tradeoffs

® Computer security always involves
tradeoffs with other elements of a
computer system, such as usability and
performance.

® We can perform near-perfect forensic
analysis if we capture all data. It is
impractical to capture all data, though.




So, what do we care about!?

® What matters in security?
® Data Integrity
® Data Confidentiality

® System Availability

® What can we do forensically to address the three
primary general security issues! What is a threat!?
What can we analyze? Ultimately, two things:

® Disk accesses (reads & writes)

® Network accesses (send/receive/lookup)




What to ask!?
Some questions that can

Which files were viewed or modified? How?

Were programs run? Was a compiler run? Were
user-written functions written! VWhat did the
programs do!

Who is involved?

Was there an interactive session?

Was there a network access? A DNS lookup!?




What information do we
have access to!?

® Most forensic analysis uses system logs. In
principle, we can do more:

® System calls
® [ibrary calls (dynamically linked and static)
® Function calls (if we have the source)

® File access tables

® Network traffic




System Calls
“syscalls”

® Intrusion detection has long seen system calls as
useful for anomaly detection (Hofmeyer, Forrest
and Somayaji)

® Can we use their technique of limiting data just to
privileged processes, very specific syscalls, or some
other limit, to determine the amount of data
necessary!

® Can we utilize their technique of statistical analysis
of sequences of system calls?




Syscall Considerations

Darwin, a FreeBSD derivative, has 331 system calls
which programs utilize to access system functions

like “open,’ “fork,” “mount,” “read,” and “exit.”

9 ¢¢

If we log syscalls, we won’t “miss” anything, because
they would encompass both the operating system
and all applications.

Which syscalls are most important to forensics!?

What about “covert-channels’ that don’t use
syscalls?




Experiment #1:
System Calls

Set up a BSD system with kernel-loadable modules which
records all syscalls and their arguments.

Run a short, known, simple series of events.

Attempt to recreate the events using only syscalls and
automate the system. How well does it work!?

Follow-up:What can we learn from analyzing for tty
sessions!

Follow-up: Can we determine if just a few specific system
calls are necessary (i.e. open, close, and mmap), or all of




Experiment #2:
Dynamic Library Calls

® Record all dynamically-made library calls by
modifying lib.c.

® Attempt to recreate events. How well
does it work?




Experiment #3: Library Call
Comparison

® |nstrument /dev and /proc to run “truss” on
binaries or modify each system call
individually using “Id preload™.

® Determine whether library calls are made
to dynamic shared libraries or is statically
linked into a program.

® Static library calls are a warning flag!




Experiment #4:
Function Calls

User-defined function calls are extremely difficult to capture.
We can’t easily know the function names and arguments
without modifying source code. Modifying source code is
dangerous because of memory manipulation.

Soulution: Java compiler as a proof-of-concept that does not
suffer from memory manipulation.

Another solution: Instrument logging by going through a
profiler. It’'s already built in!

Attempt to recreate events. How well does it work!?




Experiment #5:
Binaries Executed

® [f non-system binaries are executed, determine
whether they are actually just scripts calling system
binaries or are user-written.

® Do this by capturing series of “typical” system calls
to determine “signatures” of known applications, as
Hofmeyer & Forrest did.

® Does this work? Is it effective?




Experiment #6: Network

® Assuming we can obtain all of the information we need
about the filesystem from system and library calls, we can
look at networks.

® Can we learn enough by logging DNS names queried,
ports used, packet types, etc...!

® Can we track these vulnerabilities,among others:

® Port opened (vulnerability created)

® DNS queried

® Packets sent (information leaked)




Experiment #/7: Users

® | og the “table of accesses” in realtime to
determine which user is doing what.

® Does it help!? Is it accurate? Are
compromised accounts being used! Does
it tell us about compilation?




Experiment #8:
Message Logging

® “Message logging” is a popular form of
checkpointing in fault-tolerant systems.

® Can we use message logging in non-deterministic
conditions to replay an intrusion for forensic
purposes with less data than typical logging?

® Can we use the fault-tolerance technique of not
displaying system results until they have been
properly logged?




Summary

Forensics can use transaction-based systems to capture
the right data.

Forensics is closely related to both debugging and fault-

tolerance and can rely on the previous research towards
both.

Experiments will demonstrate precisely which data needs
to be captured and analyzed.

Analysis of the experiments and related disciplines may
show that recording only small amounts of data is
practical and viable.




