
Performance Measuring on
Blue Horizon and Sun HPC

Systems:

Timing, Profiling, and Reading
Assembly Language

NPACI Parallel Computing Institute 2000

Sean Peisert

peisert@sdsc.edu

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 2

Performance Programming

� This talk will give you the tools to use with
tuning code for optimal performance.

� Stick around for Larry Carter�s talk to take the
knowledge of profiling, timing, and reading
assembly language and learn how to actually
tune programs.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 3

Purpose

� Applications, as they are first written, can be
initially very slow.

� Sometimes, even the most well-planned code
can be made to run one or more orders of
magnitude faster.

� To speed up applications, one must
understand what is happening in the
application.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 4

Techniques

� By timing code, one can understand how fast
or slow an application is running but not how
fast it can potentially run.

� By profiling code, one can understand where
the application is taking the most time.

� By reading assembly language, one can
understand if the sections that the profiler
identifies as slow are acceptable or poorly
compiled.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 5

Benefits

� By tuning code in a knowledgeable way, one
can often significantly speed up an
application.

� Using the techniques of timing, profiling, and
reading assembly language, one can make
educated guesses about what to do instead
of shooting blindly.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 6

Timing Terms

� Code for a single node:
� Wallclock time

� CPU time

� Code for a parallel machine:
� Computation time

� Communication time
� Latency

� Bandwidth

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 7

Timing on Parallel Machines

� Latency is the time it takes to send a
message from one processor to another.

� Bandwidth is the amount of data in a given
time period that can be sent from one
processor to another.

[communication time] = [startup time] +

[message size]/[bandwidth]

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 8

Timing Latency

� Different machines might be suited for coarse
or fine-grained communication.

� The Sun HPC system and Blue Horizon both
do fairly well intra-node, but inter-node
communication is slower.

� Run �ring� benchmarks to time communication
latency.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 9

Ring

� Pass messages from one processor to the
next and back to the first in a ring fashion.

� Have it do multiple cycles (it has to warm up).

� Increase the size of the message passed until
the time to pass it stabilizes.

� It will help to characterize the performance of
message-passing to determine how large the
messages in a �real� program can/should be.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 10

Timing on Parallel Machines Tips

� Make sure that the system clocks on all
machines are the same.

� In addition to the time for communication and
computation, there is also �waiting.�

� Remember that some forms of
communication (i.e. MPI_Recv()) are
�blocking.�

� Goal is to minimize waiting and
communication relative to computation.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 11

Timing Example

� Determining �waiting time�:
start = MPI_Wtime();

MPI_Barrier(MPI_COMM_WORLD);

finish = MPI_Wtime();

cout << �Waiting time: � << finish-start << endl;

� Alternatives: Any �blocking� communication, such as:
MPI_Recv(...), MPI_Bcast, MPI_Gather, MPI_Scatter,
etc...

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 12

Performance Measuring with
Timings: Wallclock

� Wallclock time (real time, elapsed time)
� High resolution (unit is typically 1 µs)

� Best to run on dedicated machines

� Good for inner loops in programs or I/O.

� First run may be varied due to acquiring page
frames.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 13

Performance Measuring with
Timings: CPU

� CPU time
� User Time: instructions, cache, & TLB misses

� System time: initiating I/O & paging, exceptions,
memory allocation

� Low resolution (typically 1/100 second)

� Good for whole programs or a shared system.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 14

Timing Tips

� Wallclock time contains everything that CPU
time contains but it also includes waiting for
I/O, communication, and other jobs.

� For any timing results use several runs (three
or more) and use the minimum time, not the
average times.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 15

Wallclock Time

� gettimeofday() � C/C++
� Resolution up to microseconds.

� MPI_Wtime() � C/C++/Fortran

� Others: ftime, rtc, gettimer, ...

� Both Blue Horizon and �gaos� (Sun HPC)
have gettimeofday(), MPI_Wtime(), and ftime.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 16

gettimeofday()
 C++ Example

#include <sys/time.h>

struct timeval *Tps, *Tpf;

void *Tzp;

Tps = (struct timeval*) malloc(sizeof(struct timeval));

Tpf = (struct timeval*) malloc(sizeof(struct timeval));

Tzp = 0;

gettimeofday (Tps, Tzp);

<code to be timed>

gettimeofday (Tpf, Tzp);

printf("Total Time (usec): %ld\n",

 (Tpf->tv_sec-Tps->tv_sec)*1000000

 + Tpf->tv_usec-Tps->tv_usec);

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 17

MPI_Wtime()
C++ Example

#include <mpi.h>

double start, finish;

start = MPI_Wtime();

<code to be timed>

finish = MPI_Wtime();

printf(“Final Time: %f”, finish-start);

/* Time is in milliseconds since a particular date */

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 18

CPU Timing

� For timing the entire execution, use UNIX
�time�
� Gives user, system and wallclock times.

� For timing segments of code:

� ANSI C
#include <times.h>

Clock_t is type of CPU times

clock()/CLOCKS_PER_SEC

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 19

CPU Timing

� SYSTEM_CLOCK() � Fortran (77, 90)
� Resolution up to microseconds

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 20

SYSTEM_CLOCK()

INTEGER TICK, STARTTIME, STOPTIME, TIME

CALL SYSTEM_CLOCK(COUNT_RATE = TICK)

...

CALL SYSTEM_CLOCK (COUNT = STARTTIME)

<code to be timed>

CALL SYSTEM_CLOCK (COUNT = STOPTIME)

TIME = REAL(STOPTIME-STARTTIME) / REAL(TICK)

PRINT 4, STARTTIME, STOPTIME, TICK

4 FORMAT (3I10)

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 21

Example time Output

5.250u 0.470s 0:06.36 89.9% 7787+30041k 0+0io 805pf+0w

� 1st column = user time

� 2nd column = system time

� 3rd column = total time

� 4th column = (user time + system time)/total time in %. In other
words, the percentage of time your job gets alone.

� 5th column = (possibly) memory usage

� 7th column = page faults

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 22

time Tips

� Might need to specifically call
/usr/bin/time instead of the built-in
time.

� Look for low �system� time. A significant
system time may indicate many exceptions or
other abnormal behavior that should be
corrected.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 23

More About Timing

� Compute times in cycles/iteration and
compare to plausible estimate based on the
assembly instructions. For instance, with the
times in microseconds:

� (([program time]-[initialization time]) * [clock
speed in Hz])/[number of cycles]

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 24

More About Timing

� Compute time of the program using only a
single iteration to determine how many
seconds of timing, loop, and execution
overhead are present in every run.

� Subtract the overhead time from each run
when computing cycles/iteration.

� Make sure that the system clock on each
machine is the same time.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 25

Profiling � Where does the time
go?

� Technique using xlc compiler for an executable
called �a.out�:

� Compile and link using �-pg� flag.

� Run a.out. The executable produces the file
�gmon.out� in the same directory.

� Run several times and rename �gmon.out� to
�gmon.1, gmon.2, etc��

� Execute: �gprof a.out gmon.1 gmon.2 >
profile.txt�

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 26

Profiling: gprof output

� Output may look like this:

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 72.5 8.10 8.10 160 50.62 50.62 .snswp3d [3]
 7.9 8.98 0.88 __vrec [9]
 6.2 9.67 0.69 160 4.31 7.19 .snnext [8]
 4.1 10.13 0.46 160 2.88 2.88 .snneed [10]
 3.1 10.48 0.35 2 175.00 175.00 .initialize [11]
 1.8 10.68 0.20 2 100.00 700.00 .rtmain [7]
 1.5 10.85 0.17 8 21.25 1055.00 .snflwxyz@OL@1
 0.7 10.93 0.08 320 0.25 0.25 .snxyzbc [12]

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 27

Profiling Techniques

� Look for the routing taking the largest
percentage of the time. That is the routine,
most possibly, to optimize first.

� Optimize the routine and re-profile to
determine the success of the optimization.

� Tools on other machines: prof, gvprof,
Apprentice (SGI), Prism (Sun), xprofiler
(IBM).

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 28

Profiling Multithreaded Programs

� On the Sun HPC, use Prism, i.e.:

prism -n [#procs] -bsubargs "-m ultra" executable

� On the IBM Blue Horizon, use �xprofiler�.

� Both are X-Windows tools with GUI�s that can profile
parallel code with multiple threads.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 29

Assembly Code

� Being able to read assembly code is critical to
understanding what a program is doing.
Writing assembly code is often unnecessary,
however.

� To get useful assembly code on Blue
Horizon, compile with the �-qsource� and -
qlist� options.

� After being compiled, the output gets put in a
�.lst� file.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 30

Reading .lst Files

� At the top of the file, there is a list of line
numbers. Find the line number(s) of the inner
loop(s) of your program, then scroll down to
where those lines appear (in the leftmost
column).

� If you are using timers around your inner
loop, it will usually be between the timing
statements.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 31

Don�t Panic!

� There are a few commands that one wants to
learn. They appear in the third column and
they describe what the program is doing. If
there are �unnecessary commands,� the
program is wasting time.

� Additionally, there are �predicted� numbers of
cycles in the fifth column. Determining how
well these match up with the actual number of
cycles per iteration is very useful.

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 32

Basic PowerPC Commands

� fadd = floating-point add

� subf = floating-point subtract

� lfd = load double word

� lwz = load integer word

� stw = store integer word

� bc = branch on count

� addi = add immediate

� ori = or immediate

NPACI Parallel Computing Institute 2000 � Timing, Profiling and Reading Assembly Language � Sean Peisert 33

More Information

� contact: peisert@sdsc.edu

� slides and sample code downloadable from:
http://www.sdsc.edu/~peisert/research.html

PRISM Documentation:
http://docs.sun.com:80/ab2/coll.514.2/PRISMUG/

Parallel Communication Benchmarks:
http://www.cse.ucsd.edu/users/baden/cse268a/PA/pa1.htm

Timer & Profiler Documentation:
man [gprof, prism, xprofiler, MPI_Wtime, etc...]

