
Robust Authenticated-Encryption

AEZ and the Problem that it Solves

Viet Tung Hoang1,2 Ted Krovetz3 Phillip Rogaway4,5

1 Dept. of Computer Science, University of Maryland, College Park, USA
2 Dept. of Computer Science, Georgetown University, USA

3 Dept. of Computer Science, California State University, Sacramento, USA
4 Dept. of Computer Science, University of California, Davis, USA

5 Dept. of Computer Science, ETH Zürich, Switzerland

October 4, 2014

Abstract. With a scheme for robust authenticated-encryption a user can select an arbitrary value λ≥ 0
and then encrypt a plaintext of any length into a ciphertext that’s λ characters longer. The scheme
must provide all the privacy and authenticity possible for the requested λ. We formalize and investigate
this idea, and construct a well-optimized solution, AEZ, from the AES round function. Our scheme
encrypts strings at almost the same rate as OCB-AES or CTR-AES (on Haswell, AEZ has a peak speed
of about 0.7 cpb). To accomplish this we employ an approach we call accelerated provable security: the
scheme is designed and proven secure in the provable-security tradition, but, to improve speed, one
instantiates by scaling down most instances of the underlying primitive.

Keywords:AEZ, arbitrary-input blockciphers, authenticated encryption, robust AE, misuse resistance,
nonce reuse, CAESAR competition, blockcipher modes, provable security, symmetric encryption.

Table of Contents

1 Introduction . 1
2 Prior AE Definitions . 4
3 RAE Security . 6
4 Verified Redundancy Enhances Authenticity . 8
5 Robust AE from a Generalized Blockcipher . 9
6 Wide-Block Enciphering: AEZ-core . 10
7 Definition of AEZ . 12
8 Security of AEZ[Ẽ] and AEZ[E] . 16
9 Estimated Security of AEZ Itself . 17
10 Software Performance . 18
Acknowledgments . 18
References . 19
A More on Related Work . 21
B Deferred Proofs . 22

B.1 Proof of Theorem 1 . 22
B.2 Proof of Theorem 2 . 23
B.3 Proof of Theorem 3 . 24
B.4 Proof of Theorem 4 . 24
B.5 Proof of Theorem 5 . 29
B.6 Proof of Theorem 6 . 30

C Tweaking a Wide-Block Blockcipher . 30
D An Insecure Variant of AEZ-core . 33

Robust Authenticated Encryption 1

1 Introduction

We expose the low cost and high benefit of building authenticated-encryption (AE) schemes that
achieve an unprecedentedly strong goal—what we call robust AE (henceforth RAE). We explain
why RAE is desirable, define its syntax and security, and explore its guarantees. Then we construct
an RAE scheme, AEZ, from AES4 and AES10 (four- and ten-round AES). AEZ’s efficiency—nearly
that of OCB [34] or AES-CTR—flies in the face of a community’s collective work [5, 12–14, 20, 26–
28, 36, 39–41, 52–54, 61] in which wide-block enciphering schemes—a special case of RAE—were
always far more expensive than conventional blockciphers. Achieving this efficiency has entailed
using a design paradigm, accelerated provable security, with implications beyond AE.

Ciphertext expansion. One can motivate RAE from a syntactic point of view. Recall that in a
nonce-based AE scheme, a plaintext M is mapped to a ciphertext C = EN,A

K (M) under the control
of a key K, nonce N , and associated data (AD) A. Typically the ciphertext expansion (or stretch)
λ = |C| − |M | is a constant or user-selectable parameter. For conventional AE, the stretch mustn’t
be too small, as customary definitions would break: a trivial adversary can get large advantage. This
is because AE definitions “give up” when the first forgery occurs. The issue isn’t only definitional:
no prior AE scheme provides a desirable security guarantee when the ciphertext expansion is small.

Still, we know that strong security is possible even for zero-stretch: a strong pseudorandom
permutation buys significant security, even from an AE point of view [6]. What is more, it would
seem to be useful to allow small stretch as, for example, short tags can save significant energy in
resource-constrained environments (as discussed, eg, by Struik [59]).

RAE takes a liberal approach towards ciphertext expansion, accommodating whatever stretch a
user requests. This leads to schemes that deliver more than conventional AE even when the stretch
is not small. Indeed we could have motivated RAE without considering small-λ, describing a desire
to achieve nonce-reuse misuse resistance [51], to automatically exploit novelty or redundancy in
plaintexts [6], or to accommodate the release of unverified plaintexts [1, 24]. But our ides are most
easily understood by asking what it means, and what it takes, to do well for any stretch.

Defining RAE. So consider an AE scheme that expands a plaintext M ∈ {0, 1}∗ by a user-
selectable number of bits6 τ ≥ 0. We ask: what’s the best privacy and authenticity guarantee
possible for some arbitrary, specified τ? Robust AE formalizes an answer.

Recall Rogaway and Shrimpton’s definition of a pseudorandom-injection (PRI) [51]: for each
nonce N and associated data A, for a fixed τ≥0, the scheme’s encryption algorithm should resemble
a uniformly chosen injective function πN,A,τ from binary strings to τ -bit longer ones. Decryption
of an invalid ciphertext (one lacking a preimage under π) should return an indication of invalidity.

PRIs were introduced as an alternative characterization of nonce-reuse misuse-resistant AE
(henceforth MRAE). But PRIs only approximate MRAE schemes with large stretch. We recast the
PRI notion as prescriptive: the user selects τ ≥ 0 and then the scheme must look like a PRI for the
chosen value. This is our basic definition for RAE.

RAE can be thought of as a bridge connecting blockciphers and AE. When τ=0 an RAE scheme
is an arbitrary-input blockcipher : a tweakable blockcipher (TBC) [35] that operates on messages
and tweaks of any length and is secure as strong (CCA-secure) pseudorandom permutation (PRP).

6 We’ll later permit arbitrary alphabets. To avoid confusion, we use λ to measure ciphertext expansion in characters
(bits, bytes, etc.—the alphabet arbitrary) and τ to measure it in bits.

2 Hoang, Krovetz, and Rogaway

The nonce, AD, and stretch comprise the tweak. On the other hand, when τ � 128 an RAE scheme
amounts to an MRAE scheme.

In defining RAE we are actually a bit more generous than what was sketched above, allowing
an RAE’s decryption algorithm to return information about an invalid ciphertexts beyond a single-
valued indication of invalidity. The information just needs to be harmless. To formalize this the
reference experiment uses a simulator S to provide responses to invalid decryption queries. It must
do this without benefit of the family of random injections π.

Enciphering-based AE. We can achieve RAE with enciphering-based AE. The idea, rooted in
folklore, was formalized by Bellare and Rogaway [6] and, in a different form, by Shrimpton and
Terashima [56]. In its modern incarnation, enciphering-based AE works like this:

Take the message you want to encrypt, augment it with τ -bits of redundancy, and then encipher the resulting
string by applying an arbitrary-input blockcipher. Tweak this using the nonce, AD, and an encoding of τ . On
decryption, check for the presence of the anticipated redundancy and reject the ciphertext if it’s not there.

We will prove that this method achieves RAE. In fact, we’ll prove that this is so even if the
decryption algorithm releases candidate plaintexts with incorrect redundancy.

AEZ. We construct a highly optimized RAE scheme, AEZ. We use the same name to refer to
the arbitrary-input blockcipher from which it’s built (using the strategy just described).7 With the
increasing ubiquity of hardware AES support, we choose to base AEZ on the AES round function.

AEZ attends to the length of its input; see Fig. 1. To encipher a plaintext of fewer than 32 bytes
we use AEZ-tiny, a balanced-Feistel scheme with a round function based on AES4, a four-round
version of AES. The construction builds on FFX [7, 18]. The more interesting case, AEZ-core, is
used to encipher strings of 32 bytes or more. It builds on EME [25, 27] and OTR [37]. Look ahead
to the top-left panel of Fig. 7. There are two enciphering layers, with consecutive pairs of blocks
processed together using a two-round Feistel network. The round function for this is again based
on AES4. The mask injected as the middle layer is determined, for each pair of consecutive blocks,
using another AES4 call.
Performance. AEZ-core is remarkably fast; as the description above already implies, we need
about five AES4 calls to encipher each consecutive pair of blocks, so ten AES rounds per block.
Thus our performance approaches that of AES-CTR. An implementation of AEZ on Haswell using
AES-NI has a peak speed of 0.72 cpb—about the same as OCB [34]. Look ahead to Fig. 8. Ad-
ditionally, invalid strings can be rejected, and AD processed, in about 0.4 AES calls per block, or
0.29 cpb peak (again on Haswell). Only the forward direction of AES is used, saving chip area in
hardware realizations. The context size, about 128 bytes, is small, and key-setup, about 1.2 AES
calls for a 128-bit key, is fast.

For a two-pass mode achieving MRAE, this cluster of performance characteristics is unexpected.
Part of the explanation as to how this is possible lies in the use of a design approach that benefits
from both classical and provable-security design. Let us explain.

Accelerated provable security. We designed AEZ using an approach we call accelerated
provable security. It works like this:

To achieve some complex cryptographic goal, design a scheme in the provable-security tradition, choosing
an underlying primitive and demonstrably achieving the goal when it’s instantiated by an object achieving

7 Since an RAE scheme is an arbitrary-input tweakable blockcipher when τ = 0, and is trivially built from one when
τ > 0, it makes sense to use one name.

Robust Authenticated Encryption 3

N, A, τ

C

0···0M
τ

AEZ-core

AEZ

AEZ-tiny

Tweak

T T

Fig. 1. High-level structure of AEZ. After appending to the message a block of τ zero bits we encipher it using
a tweak T comprising the nonce N , associated data A, and stretch τ . How this happens depends on the length of
what’s being enciphered: usually we use AEZ-core, but strings shorter than 32 bytes are enciphered by AEZ-tiny.
Both depend on the underlying key K, which is not shown in the diagram above.

some standard assumption. Then, to improve speed, selectively instantiate some of the applications of the
primitive using a scaled-down (eg, reduced-round) construction. Use heuristic or cryptanalytic reasons to
support the expectation that, despite the scaled-down instantiation, the scheme remains secure.

Specifically, AEZ is designed in terms of a tweakable blockcipher (TBC). If this TBC had been
instantiated in the “usual” way, using a blockcipher and the XE construction [35, 49], we would
have a provably-sound design on message space {0, 1}≥128. The cost would be about 2.5 times
the cost of AES-CTR. But to speed things up, we instantiate most TBC calls with an AES4-
based construction. Heuristics reasons suggest that security nonetheless remains. Our design was
specifically chosen so as to make the scaled-down instantiation plausible.

The thesis underlying accelerated provable security is that it can be instrumental for devising
highly efficient schemes for complex aims. We believe that if the instantiation is done judiciously,
then the scaled-down scheme retains at least some assurance benefit.

Accelerated provable-security is in some ways implicit in prior work; schemes like ALRED [15]
typify a trend in which reduced-round AES in used in contexts where full AES would demonstrably
do the job. Still, a complex design has not before been achieved by the strategy described.

RAE benefits. What do we hope to gain by developing and achieving RAE? Our definition and
scheme are meant to achieve all of the following: (1) If (M,A) tuples are known a priori not to re-
peat, no nonce is needed to ensure semantic security. (2) If there’s arbitrary redundancy in plaintexts
whose presence is verified on decryption, this augments authenticity. (3) Any authenticator-length
can be selected, achieving best-possible authenticity for this amount of stretch. (4) Because of the
last two properties, one can minimize length-expansion in many bandwidth-constrained applica-
tions. (5) If what’s supposed to be a nonce should accidentally get repeated, the privacy loss is
limited to revealing repetitions in (N,A,M) tuples, while authenticity is not damaged at all. (6) If
a decrypting party leaks some or all of a putative plaintext that was supposed to be squelched
because of an authenticity-check failure, this won’t compromise privacy or authenticity.

The authors believe that the properties enumerated would sometimes be worth a considerable
computational price. Yet the overhead we pay is very small: AEZ is about as fast as OCB.

4 Hoang, Krovetz, and Rogaway

Discussion. AEZ’s name is meant to simultaneously suggest AE, AES, and EZ (easy), the last
in the sense of ease of correct use. But the simplicity is for the user; we would not claim that the
AEZ design is simple. It has been getting simpler; we are now down to 63 lines of pseudocode.

Since McOE and COPA [2, 23], some recent AE schemes have been advertised as nonce-reuse
misuse-resistant despite being online.8 But online schemes are never misuse-resistant in the sense
originally defined [51].9 They never support automatic exploitation of novelty or verified redun-
dancy [6] and are always vulnerable to a simple message-recovery attack [47]. We disagree with
the presumption that two-pass AE schemes are routinely problematic; our work suggests that, on
capable platforms, there isn’t even a performance penalty. Finally, short messages routinely dom-
inate in networking applications, and we know of no application setting where it’s important to
limit latency to just a few bytes, the implicit expectation for proposed online schemes.

This paper upends some well-entrenched assumptions. Before, AE-quality was always measured
with respect to an aspirational goal; now we’re suggesting to employ an achievable one. Before,
substantial ciphertext expansion was seen as a necessary property of any good AE scheme; now
we’re saying to think of it as a user-supplied input and not be judgmental. Before, AE schemes
and blockciphers were considered fundamentally different species of primitives; now we’re saying
that, once the definitions are adequately strengthened, they’re pretty much the same thing. Before,
one could either give a provable-security design or one that follows a more heuristic tradition; now
we’re doing the one and yet still finding need for the other.

AEZ is one of 57 CAESAR submissions [8]. It’s distinguished by being the notionally strongest
submission. We expect it to help clarify the costs and benefits of a well-designed two-pass scheme.

2 Prior AE Definitions

Fix an alphabet Σ. Typically Σ is {0, 1} or {0, 1}8, but other values, like Σ = {0, 1, . . . , 9}, are
fine. For x ∈ Σ∗ let |x| denote its length. We write ε for the empty string and x�X for uniformly
sampling from a distribution X. If X is a finite set, it has the uniform distribution.

Syntax. We formalize a nonce-based AE scheme as a triple Π = (K, E ,D). The key space K
is a set of strings with an associated distribution. The encryption algorithm E is deterministic
and maps a four-tuple (K,N,A,M) ∈ (Σ∗)4 to a value C = EN,A

K (M) that is either a string in
Σ∗ or the distinguished symbol ⊥. Later we will allow AD to be a vector of strings, A ∈ (Σ∗)∗.
The distinction is insignificant insofar as we can always encode a vector of strings as a string. We
require the existence of sets N , A and M (the nonce space, AD space, and message space) such
that EN,A

K (M) �= ⊥ iff (K,N,A,M) ∈ K×N ×A×M. The decryption algorithm D is deterministic

and takes a four-tuple (K,N,A,C) to a value DN,A
K (C) ∈ Σ∗ ∪ {⊥}. The length of a string-valued

C = EN,A
K (M) is not allowed to depend on anything beyond |N |, |A| and |M |. In fact, usually

λ = |C| − |M | is a constant, in which case we call the scheme λ-expanding and refer to λ as the
ciphertext expansion, or stretch. We require that if C = EN,A

K (M) is a string then DN,A
K (C) = M .

Algorithm D rejects ciphertext C if DN,A
K (C) = ⊥ and accepts it otherwise.

AE and MRAE security. Both conventional-AE and MRAE security can be defined using a
compact, all-in-one formulation [51]. Let Π = (K, E ,D) be an AE-scheme. Consider an adversary A

8 By online we mean that the encryption algorithm can be realized in O(1) memory and a single pass over M .
9 If the first bit of ciphertext doesn’t depend on the last bit of plaintext an adversary easily wins the MRAE game.

Robust Authenticated Encryption 5

initialization IdealΠ
K�K

oracle Enc(N,A,M)
C′ ← EK(N,A,M)

C�Σ|C′|

return C

oracle Dec(N,A,C)
return ⊥

initialization RealΠ
K�K

oracle Enc(N,A,M)
return EK(N,A,M)

oracle Dec(N,A,C)
return DK(N,A,C)

initialization PRIΠ
for (N,A) ∈ N ×A× L do πN,A � Inj(λ)

oracle Enc(N,A,M)
return πN,A(M)

oracle Dec(N,A,C)
if ∃M ∈M s.t. πN,A(M) = C then return M
return ⊥

initialization REALΠ

K�K

oracle Enc(N,A, λ,M)
return EK(N,A, λ,M)

oracle Dec(N,A, λ, C)
return DK(N,A, λ, C)

initialization RAEΠ and RAEΠ,S

for (N,A, λ) ∈ Σ∗×Σ∗×N do πN,A,λ � Inj(λ)
θ ← ε

oracle Enc(N,A, λ,M)
return πN,A,λ(M)

oracle Dec(N,A, λ, C)
if ∃M ∈M s.t. πN,A,λ(M) = C then return M
M ← ⊥ ←− for RAEΠ

(M, θ)← S(N,A, λ, C, θ) ←− for RAEΠ,S

return M

Fig. 2. Old and new security notions. The top three games are the usual ones for defining AE and MRAE security
(using Real and Ideal) and PRI security (using Real and PRI). The bottom two games are to define RAE security.

with access to an encryption oracle Enc and a decryption oracle Dec. We define the MRAE security
of A as Advmrae

Π (A) = Pr[ARealΠ ⇒ 1]−Pr[AIdealΠ ⇒ 1], the difference in the probability that A
outputs 1 when run in the Real and Ideal games of Fig. 2. Both begin by selecting K�K. Game
Real answers encryption queries (N,A,M) with EN,A

K (M) and decryption queries (N,A,C) with

DN,A
K (C). Game Ideal answers Dec(N,A,C) queries with ⊥ and Enc(N,A,M) queries with |C|

uniformly chosen characters, where C ← EN,A
K (M). For games Real and Ideal, adversaries may

not repeat an Enc or Dec query, ask an Enc query (N,A,M) �∈ N ×A×M, ask a Dec query
(N,A,C) �∈N×A×Σ∗, or ask a Dec query (N,A,C) after an Enc query of (N,A,M) returned C.

The above definition captures MRAE security because repeated nonces were allowed and were
properly serviced. For the conventional AE notion, Advae

Π (A), modify Real and Ideal by having
an Enc(N,A,M) query following an earlier Enc(N,A′,M ′) query return ⊥. This has the same effect
as prohibiting repeated N -values to the Enc oracle.

PRI security. We define security in the sense of a pseudorandom-injection (PRI) [51]. Fix a
λ-expanding AE scheme Π = (K, E ,D); for now, λ is a constant associated to a (well-behaved)
AE scheme. Let Advpri

Π (A) = Pr[ARealΠ ⇒ 1]− Pr[APRIΠ ⇒ 1] with the oracles again defined in
Fig. 2. There Inj(λ) denotes the set of all one-to-one functions from Σ∗ to Σ∗ that increase the
length of their inputs by λ-characters. The same query restrictions apply as before.

Besides defining PRI security, Rogaway and Shrimpton showed that, for large ciphertext ex-
pansion λ, the notion essentially coincides with MRAE security [51]. Below we clarify the role of
the the ciphertext expansion by giving a sharper extended version of their result. To state our
bound, define the misuse count as follows. Initially, set r = 0. Then, for each encryption query

6 Hoang, Krovetz, and Rogaway

Enc(N,A,M), if there was a prior query (N,A,M ′) such that |M ′| = |M |, increment r by 1. The
final value of r is the misuse count. Below we show that good PRI security implies good MRAE
security as long as q is small compared to |Σ|λ and r is small compared to |Σ|(λ+mmin)/2 (with all
variables defined below). The proof is in Appendix B.1.

Theorem 1. |Advpri
Π (A) −Advmrae

Π (A)| ≤ 2q/|Σ|λ + (r2 + r)/|Σ|λ+mmin+1 for any λ-expanding
AE scheme Π and adversary A, where r is the misuse count of A’s queries, q is the number of
queries it asks, and mmin is the length of the shortest string in the message space.

In short, the PRI definition captures best-possible security of a λ-expanding AE scheme, while the
MRAE formulation captures an unreachable ideal. The gap between the realizable and the ideal is
formalized by Theorem 1. It is large if the ciphertext expansion is too small. This is so because any
actual encryption algorithm must map distinct (N,A,M) and (N,A,M ′) to distinct ciphertexts,
whence real encryption can’t return uniformly random characters. Similarly, for any infinite message
space, some unqueried ciphertexts must be valid, whence a decryption oracle that always returns
an indication of invalidity is hoping for too much. Building on the PRI notion, we will now look
towards an even more precise way to capture best-possible AE security.

3 RAE Security

Syntax. The principle difference between a PRI and an RAE scheme is that, for the latter, the
ciphertext expansion λ is no longer a property of a scheme: it’s as arbitrary input from the user.
All values λ ∈ N should be allowed.10 Corresponding to this change, we’ll write EN,A,λ

K (M) and

DN,A,λ
K (C). The difference may look small, but its consequences are not.

Fix an alphabet Σ. Our formal definition again has an RAE scheme being a tripleΠ = (K, E ,D),
but with the signature of E and D updated. Encryption algorithm E is deterministic and maps a
five-tuple (K,N,A, λ,M) ∈ (Σ∗)3×N×Σ∗ to a string C = EN,A

K (M) of length |M |+λ. For maximal
utility when realized, we are not permitting a return value of ⊥: an RAE scheme must be able to
encrypt anyM using anyN ,A, and λ. Decryption algorithmD is deterministic and takes a five-tuple
(K,N,A, λ, C) to a value DN,A,λ

K (C) ∈ Σ∗ ∪ {⊥}. We require that DN,A,λ
K (EN,A,λ

K (M)) = M for all

K,N,A, λ,M . For now, we require if there’s no M such that C = EN,A,λ
K (M) then DN,A,λ

K (C) = ⊥.
Later in this section we will relax this requirement as a way to model the possibility of decryption
algorithms that reveal information beyond an indication of invalidity.

RAE security. Let Π = (K, E ,D) be an RAE scheme over alphabet Σ. Its security is defined
using the games REALΠ and RAEΠ at the bottom of Fig. 2. (For the moment, ignore RAEΠ,S .)
The adversary A has two oracles, an encryption oracle Enc and a decryption oracle Dec. For game
REAL, these are realized by the actual encryption and decryption algorithms, which now take
in the argument λ. For game RAEΠ we behave according to the family of random injections
πN,A,λ chosen at the beginning of the game, responding to each encryption query (N,A, λ,M) with
C = πN,A,λ(M) and responding to each decryption query (N,A, λ, C) by with π−1

N,A,λ(C), if that

inverse exists, and ⊥ if it does not. We let Advrae
Π (A) = Pr[AREALΠ ⇒ 1] − Pr[ARAEΠ ⇒ 1].

There are no restrictions on the kinds of queries the adversary may make.

10 It might be OK to set some reasonable upperbound λ ≤ λmax, but there shouldn’t be a nonzero lowerbound.

Robust Authenticated Encryption 7

To gain some appreciation for the RAE definition, consider an adversary that asks to encrypt
a message M using a single byte of stretch. Such a scheme would never be considered secure in
the MRAE setting, since forgeries are trivially possible with probability 1/256. But under the PRI
viewpoint, that isn’t a defect per se, as the user who requests one-byte expansion should expect
that 1/256 of all ciphertexts have some preimage. If a user should now try to decrypt the received
ciphertext C using the same K,N,A but λ = 0, then plaintext will emerge, not an indication of
invalidity, but a plaintext that is unrelated to the originally encrypted one.

Decryption-call leakage. An AE scheme will fail to approximate the RAEΠ abstraction if it
decryption algorithm, when presented an invalid ciphertext, routinely returns anything beyond an
indication of invalidity. We now explain how to relax this expectation so that a it’s OK to return
additional material as long as it is known to be useless.

We said earlier that, for an RAE scheme Π = (K, E ,D) and any N,A, λ, C, if there’s no M

such that C = EN,A,λ
K (M) then we expect DN,A,λ

K (C) to return ⊥. Let us now relax this require-

ment so that DN,A,σ
K (C) may instead return a string, as long as its length is not |C| − λ. Any such

string is trivially recognized as invalid, so, in effect, we are allowing D to returning both ⊥ and an
arbitrary piece of side information Y . We are not suggesting that the “real” decryption algorithm
should return anything other than ⊥ when presented an invalid ciphertext; instead, we are effec-
tively overloading D by folding into it a “leakage function” that captures that which a decryption
algorithm’s realization may leak about a presented ciphertext.

Using this generalized syntax, we define a game RAEΠ,S parameterized by a probabilistic
algorithm S, the simulator. Again see Fig. 2. Simulator S is called upon to produce imitation ci-
phertexts when there’s no preimage under πN,A,λ. To accomplish this task S is provided nothing
beyond the current oracle query and any saved state θ it wants to maintain. An RAE scheme is
judged secure if there’s a simulator S—preferably an efficient one—such that (E ,D) is indistin-
guishable from the pair of oracles defined in RAEΠ,S . We refine the RAE advantage by asserting
that Advrae

Π,S(A) = Pr[AREALΠ ⇒ 1] − Pr[ARAEΠ,S ⇒ 1]. The prior definition is just the former
one where the simulator S ignores its input and returns (⊥, ε).

The RAE definition effectively captures that, while it may be “nice” for decryption to reveal
nothing but ⊥ on presentation of an invalid ciphertext, there are plenty of other things we could
return without damaging privacy or authenticity. In fact, it really doesn’t matter what is returned
just so long as it’s recognizably invalid and doesn’t depend on the encryption function.

Illustration. Fig. 3 illustrates two possibilities for how an RAE scheme might encrypt 2-bit
strings with 2-bit ciphertext expansion (λ = 2). The key K, nonce N , and AD A are all fixed. For
encryption, the four possible plaintexts are bijectively paired with four of the 16 possible ciphertexts.
For decryption we show two possibilities. On the left is a conventional decryption algorithm: the
12 ciphertexts without a preimage decrypt to an indication of invalidity. One expects the simulator
to always return (⊥, ε). On the right is a sloppy decryption algorithm. The 12 ciphertexts with no
preimage decrypt to 12 distinct strings, all recognizably invalid, all of the form abcd ∈ {0, 1}4 with
cd �= 00. Here the simulator S might sample without replacement from the named set of size 12.

Discussion. The reader may have noticed that there is no distinction in the RAE security definition
between the nonce N and associated data AD A. For this reason, either could be dropped—say
the nonce—leaving us a signature EA,λ

K (M) and DA,λ
K (C). There’s an especially good argument for

doing this when the AD A is vector-valued: the user is already free to use one of its components

8 Hoang, Krovetz, and Rogaway

D

E
N,A,λ

K
E

D

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

⊥0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0
0
1

0
1
0
1

1
0
0
1

1
1
0
1

0
0
1
0

0
1
1
0

1
0
1
0

1
1
1
0

0
0
1
1

0
1
1
1

1
0
1
1

1
1
1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

N,A,λ
K

N,A,λ
K

N,A,λ
K

Fig. 3. Illustrating RAE. Two ways an RAE scheme might encrypt and decrypt a 2-bit string with 2-bit stretch.

as a nonce. Still, for greater uniformity in treatment across AE notions, and to encourage user’s to
provide a nonce, we have retrained the both N and A.

We gave our definition of RAE into two stages only for pedagogical purposes: this paper offers
only one definition for RAE. The the simulator S may be trivial or not; that is the only distinction.

Andreeva et. al [1] recently provided several security definitions also meant to capture the
requirement that a decryption algorithm releases only harmless information when presented an
invalid ciphertext and a repeated nonce. Our own work is radically different from theirs insofar as
we provide a single definition, RAE, that rolls into it this, among many, considerations.

4 Verified Redundancy Enhances Authenticity

If a plaintext contains redundancy, one naively expects that verifying its presence upon decryption
should enhance the authenticity guarantee provided. For the case of enciphering-based encryption,
which provides no authenticity guarantee on its own, this has been formally supported [6, 51]. But
even in this case the existing results are with respect to conventional notions of AE, and such
notions are too blunt to capture what one expects from verified redundancy. This is because the
notions “give up” as soon as a single ciphertext forgery is made.

Let Π = (K, E ,D) be RAE scheme and let v : Σ∗ → {0, 1} be a function for indicating the
“valid” strings: it determines Mv ⊆ Σ∗ by Mv = {M ∈ Σ∗ : v(M) = 1}. Let Πv = (K, E , D̃)
be the AE scheme built from Π that declares messages invalid if v says so: D̃N,A,λ

K (C) = M if

|M | = |C|−λ and v(M) = 1, or if |M | �= |C|−λ, where M = DN,A,λ
K (C), while D̃N,A,λ

K (C) = 0 ‖M
otherwise, with 0 a canonical point in Σ. Let dv = max�∈N

{
(|Mv ∩Σ�|)/|Σ|�

}
be the density

ofMv.

Suppose, for example, that Σ = {0, 1} and dv = 1/256: there’s a byte worth of redundancy
in the message space. We’d like to be able to make statements about the authenticity of Πv such
as “the chance that an adversary can forge 10 successive, distinct ciphertexts is negligibly more
than 2−80”. Conventional AE definitions don’t let one say such a thing; they stop at the bound
q/|Σ|λ where q is the number of queries and λ is the ciphertext expansion (assumed here to be a

Robust Authenticated Encryption 9

constant). One would like to obtain a much sharper bound via dv and λ—in our example, the forgery
probability should be about about q(dv/|Σ|λ)10. This way, even if, say, λ = 0 and dv = 1/2, we are
still able to make strong statements about the security of Πv. Intuitively, for an RAE scheme Π,
the scheme Πv should have about (λmin+ log(1/dv)) log(|Σ|) bits of authenticity, where λmin is the
minimum ciphertext expansion of any query—even after multiple successful forgeries and even in
the presence of decryption leakage, future forgeries still remain just as hard.

To capture the intuition above, in Theorem 2 we show that Πv itself is RAE-secure. The proof is
in Appendix B.2. Consequently, in game RAE, for any query (N,A, λ, C) with |C| = 	+λ to Dec,
the chance that this query is a successful forgery is about |Mv ∩Σ�|/|Σ|�+λ ≤ dv/|Σ|λ, despite
any decryption leakage and past successful forgeries.

Theorem 2. Let Π and Πv be defined as above. There is an explicitly given reduction R with the
following property. For any simulator S and any adversary A, there is a simulator S′ such that the
adversary B = R(A) satisfies Advrae

Π,S(B) = Advrae
Πv ,S′(A). Adversary B makes the same queries

as A and has essentially the same running time.

Note that for good RAE security, we want the simulator S to be efficient. This is important for
privacy, but when the concern is authenticity, it’s less of an issue: a computationally-unbounded
simulator may give the adversary some information that it can’t compute itself, but as long as the
adversary can’t forge, whatever the adversary learns from the simulator is irrelevant for authenticity.
Still, in the proof of Theorem 2, for each query (N,A, λ, C), the simulator S′ either runs S or samples
from Σ� ∩Mv, where 	 = |C| −λ. For functions v that arises from real-world usage, sampling from
Σ� ∩Mv will be simple and efficient, whence S′ will be about as fast as S itself.

5 Robust AE from a Generalized Blockcipher

We now show how to make an AE scheme that achieves RAE security. We begin with some basic
definitions. LetM⊆ Σ∗ and T be sets. A blockcipher Ẽ : K×T ×M→M is a mapping such that
Ẽ
T
K(·) = Ẽ(K,T, ·) is a length-preserving permutation on M for any K,T . Thus |ẼT

K(X)| = |X|
and there’s a unique D̃ : K × T × {0, 1}∗ →M∪ {⊥} such that ẼT

K(M) = C implies D̃T
K(C) = M

and D̃
T
K(C) = ⊥ when there’s no M such that Ẽ

T
K(M) = C. We call T the tweak space of Ẽ.

When |T | = 1 we make the tweak implicit, writing E : K ×M → M, now with inverse D. We
define Perm(M) as the set of all length-preserving permutations onM, and Perm(T ,M) the set
of all mappings π̃ : T ×M→M where π̃(T, ·) ∈ Perm(M) for all T ∈ T . We usually use encipher
instead of encrypt when speaking of applying a blockcipher, and similarly for decipher and decrypt.

An arbitrary-input blockcipher is a blockcipher with message spaceM = Σ∗. To be maximally
useful, we will want a rich tweak space as well. These are versatile and unconventional objects. Just
a bit less general, a wide-block blockcipher has message space Σ≥n for some fixed n. Again one
prefers a rich tweak space.

The strong, tweakable, PRP advantage of an adversary A attacking a blockcipher Ẽ is defined

as Adv±p̃rp
˜E

(A) = Pr[K�K : A
˜EK(·,·),˜DK(·,·) ⇒ 1]−Pr[π̃�Perm(T ,M) : Aπ̃(·,·),π̃−1(·,·) ⇒ 1]. We’ll

write Adv±prp
E

(A) = Pr[K�K : AEK(·),DK(·) ⇒ 1]−Pr[π�Perm(M) : Aπ(·), π−1(·) ⇒ 1] if there’s
no tweak. If we prohibit the adversary A from querying the second oracle we drop the word “strong”
and write Advp̃rp

˜E
(A) and Advprp

E
(A) respectively.

10 Hoang, Krovetz, and Rogaway

Encode-then-encipher. Fix Σ. Let Ẽ : K × T × Σ∗ → Σ∗ be an arbitrary-input blockcipher
with tweak space T = Σ∗×Σ∗ × N. Let D̃ be its inverse. Let Encode : Σ∗ × N → Σ∗ be an
injective function satisfying |Encode(M,λ)| = |M | + λ. We write the second argument to Encode
as a subscript, Encodeλ(M) ∈ Σ|M |+λ. An example encoding function is Encodeλ(M) = M ‖ 0λ.

For any encoding function Encode there’s a corresponding Decode : Σ∗ × N → Σ∗ ∪ {⊥} such
that Decodeλ(X) = M if there’s an M satisfying Encodeλ(M) = X, while Decodeλ(X) = ⊥ if
there’s no such M . We expect Encode and Decode to be trivially computable, as in the example.

From Ẽ : K × T × Σ∗ → Σ∗ and Encode we define the encode-then-encipher construction as
the RAE scheme EtE[Encode, Ẽ] = (K, E ,D) where
EN,A,λ
K (M) = Ẽ

(N,A,λ)
K (Encodeλ(M)),

DN,A,λ
K (C) = M if D̃

(N,A,λ)
K (C) = X and M satisfies Encodeλ(M) = X,

DN,A,λ
K (C) = X if D̃

(N,A,λ)
K (C) = X and there’s no M satisfying Encodeλ(M) = X.

We stress that decryption does not simply return ⊥ when is called on an invalid (N,A, λ, C),
as is conventionally done; instead, we define decryption to “leak” the entire improperly encoded
string X. Nonetheless, Theorem 3 shows that EtE[Encode, Ẽ] is RAE-secure when Ẽ is secure as a
strong, tweakable PRP. Its proof appears in Appendix B.3.

Theorem 3 (EtE is RAE-secure). Let Encode and Ẽ : K× T ×Σ∗ → Σ∗ be defined as above.
Then there’s an explicitly given reduction R and an efficient simulator S with the following property.
For any adversary A, the adversary B = R(A) satisfies Advrae

EtE[Encode,˜E],S
(A) ≤ Adv±p̃rp

˜E
(B). It

makes at most q queries whose total length is at most that of A’s queries plus qλmax, where q is
the number of A’s queries and λmax is the largest stretch among them. The running time of B is
about that of A, plus the time associated to computations of Encode and Decode.

6 Wide-Block Enciphering: AEZ-core

Let n ≥ 1 be an integer and let {0, 1}≥2n = {x ∈ {0, 1}∗ : |x| ≥ 2n}. Define the block length of
a string x as �|x|/n�. We show how to build a strong PRP on {0, 1}≥2n from a TBC on {0, 1}n.
We’ll use about 2.5 TBC calls per n-bit block. Later we’ll instantiate the TBC using mostly AES4,
employing the accelerated provable-security paradigm to selectively scale-down. This will reduce
the amortized cost to about one AES call per block. Also see Appendix C for how to tweak a
wide-block blockcipher.

We begin by recalling the definition of a pseudorandom function (PRF) f : K ×M→ {0, 1}n.
For an adversary A attacking f , its PRF advantage is Advprf

f (A) = Pr[K�K : AfK(·) ⇒ 1] −
Pr[ρ�Func(M, n) : Aρ(·) ⇒ 1] where Func(M, n) is the set of all functions fromM to {0, 1}n.

AEZ-core. We’ll assume a tweak space T = {a, u, uu, v, vv, x, xx, y, yy} ∪ ({a, aa} × N). Suppose
we have a PRF f : K× (T × {0, 1}n)→ {0, 1}n. One can instantiate this with a TBC Ẽ on {0, 1}n
by setting fK(K, (T,X)) = ẼT

K(X). Consider the wide-block blockcipher AEZ-core[f] defined and
illustrated in Fig. 4. It loosely follows EME/EME2 [25, 27, 30], but avoids all doubling operations
and only uses the forward direction of the underlying TBC. AEZ-core[f] operates onM = {0, 1}≥2n

and itself takes in no tweak. Theorem 4 shows that it’s is a strong PRP. The proof is in Appendix B.4.

Theorem 4. Let n ≥ 1 be an integer and let T and f be as above. There’s an explicitly given
reduction R with the following property. For any adversary A, adversary B = R(A) satisfies

Robust Authenticated Encryption 11

M1 M1

C1 C1

fa

fa,1

X1

S

fx

Mm Mm

Cm Cm

fa

fa,m

X
m

Y1 Y
m

S S

’’

’’

fa fa

fxx

fyy

fy

X

Y

S
fvv

fv

fv

...

X
v

Y
v

Mx My

Cx Cy

Mu

Cu

S
fuu

fu

fu

Mv

Cv

Y
u

X
u

faa,1 faa,m

fa,1 fa,m

10 algorithm AEZ-core(K,M) //AEZ-core
11 M1M

′
1 · · ·MmM ′

m Muv MxMy ←M where |M1| = · · · = |M ′
m| = |Mx| = |My| = n and |Muv| < 2n

12 d← |Muv|; if d < n then Mu ←Muv; Mv ← ε else Mu ←Muv[1..n]; Mv ←Muv[n+ 1..|Muv|] fi
13 for i← 1 to m do Wi ←Mi ⊕ fa,i(M

′
i); Xi ←M ′

i ⊕ fa(Wi) od
14 if d = 0 then X ← X1 ⊕ · · · ⊕Xm ⊕ 0 else if d < n then X ← X1 ⊕ · · · ⊕Xm ⊕ fu(Mu10

∗)
15 else X ← X1 ⊕ · · · ⊕Xm ⊕ fu(Mu)⊕ fv(Mv10

∗) fi
16 Sx ←Mx ⊕X ⊕ fx(My); Sy ←My ⊕ fxx(Sx); S ← Sx ⊕ Sy

17 for i←1 to m do S′←faa,i(S); Yi←Wi ⊕ S′; Zi←Xi ⊕ S′; C′
i←Yi ⊕ fa(Zi); Ci←Zi ⊕ fa,i(C

′
i) od

18 if d = 0 then Cu ← Cv ← ε; Y ← Y1 ⊕ · · · ⊕ Ym ⊕ 0
19 else if d < n then Cu ←Mu ⊕ fuu(S); Cv ← ε; Y ← Y1 ⊕ · · · ⊕ Ym ⊕ fu(Cu10

∗)
20 else Cu←Mu ⊕ fu(S); Cv←Mv ⊕ fvv(S); Y ←Y1 ⊕ · · · ⊕ Ym ⊕ fu(Cu)⊕ fv(Cv10

∗) fi
21 Cy ← Sx ⊕ fyy(Sy); Cx ← Sy ⊕ Y ⊕ fy(Cy)
22 return C1C

′
1 · · ·CmC′

m CuCv CxCy

Fig. 4. The AEZ-core[f] construction. The method builds a strong-PRP on {0, 1}≥2n from an n-bit-output PRF f
that operates on its subscript and argument. It’s key K is implicit. The PRF can be realized by a TBC.

Adv±prp
AEZ-core[f](A) ≤ Advprf

f (B) + 2σ2/2n where σ is the total block length of A’s queries. Ad-

versary B uses the same running time as A, and makes at most 2.5σ queries.

Discussion. AEZ-core and its inverse are almost the same: the only change needed is to take
the rightmost column of tweaks in reverse order. Given that one must have some asymmetry in
an RAE scheme—an involution is certainly RAE-insecure—this is about as symmetric a design as
one could hope for. A high degree of symmetry can help maximize efficiency of both hardware and
software. Symmetry is the reason for the wire-crossing just before each Ci C

′
i.

Among the efficiency characteristics of AEZ-core is that one can selectively decrypt a chosen
block about 2.5 times more quickly than decrypting everything. When AEZ-core is turned into an
RAE scheme by the EtE construction, this observation is put to good use in achieving fast rejection
of ciphertexts whose final 0τ bits is plaintext is not correct. That it is undamaging to release this
timing information is guaranteed by results already show—in particular, that it is ok to release the
entire speculative plaintext.

AEZ-core confines “specialized” processing to the final 2–4 blocks. This helps with efficiency
and simplicity compared to having specialized processing at the beginning or at the beginning and
end. In particular, the 0τ authenticator used to make an RAE scheme will be put at the end of the

12 Hoang, Krovetz, and Rogaway

message (adding a variable number of zero-bits at beginning could destroy word alignment) and,
as long as τ ≤ 2n, it will be found in the final two blocks.

Numerous alternatives to AEZ-core were considered before arriving at our design. Correct al-
ternatives we know are slower or more complex, while most simplifications are wrong. For example,
consider trying to cheapen the design by using ci · faa,1(S) instead of faa,i(S) where each ci is a
public constant and the product is in GF(2n). This fails for any choice of ci. See Appendix D.

One variant of AEZ-core that does work is to eliminate the “left-hand” xor coming out of faa,i.
(One then has to define Xi as the output of fa instead of that output xor’ed with M ′

1, and change Yi
similarly.) We have kept this xor because it’s needed for symmetry.

7 Definition of AEZ

So far we have described two key elements of AEZ: the EtE construction and the AEZ-core[f]
wide-block blockcipher. Now we give AEZ’s complete description. First a bit of notation.

Notation. The bit length of a string X is written |X|. For the bitwise xor of unequal-length
strings, drop the necessary number of rightmost bits from the longer (10 ⊕ 0100 = 11). For X a
string, let X0∗ = X0p with p the smallest number such that 128 divides |X|+ p. By X ∗ we denote
the set of all strings over the alphabet X , including ε. By (X ∗)∗ we denote the set of all vectors
over X ∗, including the empty vector.

If |X| = n and 1 ≤ i ≤ j ≤ n then X(i) is the ith bit of X (indexing from the left starting at 1),
msb(X) = X(1), and X(i..j) = X(i) · · ·X(j). Let [n]t be the t-bit string representing n mod 2t

and let [n] be shorthand for [n]8; for example [0]16 = ([0]8)
16 = 0128 and [1]16 = (00000001)16. A

block is 128 bits. Let 0 = 0128. If X = a1 · · · a128 is a block (ai ∈ {0, 1}) then we define X�1 =
a2 · · · a128 0. For n ∈ N and X ∈ {0, 1}128 define n ·X by asserting that 0 ·X = 0 and 1 ·X = X
and 2 ·X = (X�1)⊕ [135 ·msb(X)]128 and 2n ·X = 2 · (n ·X) and (2n+ 1) ·X = (2n ·X)⊕X.

For K,X ∈ {0, 1}128 we write aesenc(X,K) for a single round of AES: SubBytes, ShiftRows,
MixColumns, then an AddRoundKey with K. For K = (K0,K1,K2,K3,K4) a list of five blocks
let AES4K(X) = AES4(K, X) be aesenc(aesenc(aesenc(aesenc(X⊕K0,K1),K2),K3),K4). For
K = (K0,K1, . . . ,K10) a list of 11 blocks define AES10K(X) = AES10(K, X) like we defined
AES4 but with ten rounds of aesenc. We do not omit the final-round MixColumns.

AEZ definition. See Figs. 5 and 6 for the definition of AEZ, and Fig. 7 for an illustration. Most
of it is self-explanatory. We briefly mention some of the algorithm’s more unusual elements.

AEZ operates on arbitrary byte strings. Not only is the plaintext M ∈ Byte∗ arbitrary, but
also the key K ∈ Byte∗ and nonce N ∈ Byte∗. The AD is even more general: an arbitrary-length
vector of arbitrary byte strings, A ∈ (Byte∗)∗. The requested ciphertext expansion of λ ∈ N bytes
will usually be measured in τ = 8λ bits.

At line 215, Encipher-AEZ-tiny may xor a bit into the ciphertext just before the algorithm’s
conclusion. This is done to avoid a simple random-permutation distinguishing attacks, for very short
strings, based on the fact that Feistel networks only generate even permutations [32]. A similar
trick, conditionally swapping two fixed points, has been used before [46]. Our approach has the
benefit that the natural implementation is constant-time.

We define Decipher(K,T, Y) as the unique X such that Encipher(K,T,X) = Y . Logically, this
is all we need say for the specification to be well-defined. Still, the additional pseudocode is easy

Robust Authenticated Encryption 13

100 algorithm Encrypt(K,N,A, τ,M) //AEZ authenticated encryption
101 X ←M ‖ 0τ ; (A1, . . . , Am)← A
102 T ← ([τ]128, N,A1, . . . , Am)
103 if M = ε then return AEZ-prf(K,T, τ)
104 return Encipher(K,T,X)

110 algorithm Decrypt(Key , N,A, τ, C) //AEZ authenticated decryption
111 (A1, . . . , Am)← A; T ← ([τ]128, N,A1, . . . , Am)
112 if |C| < τ then return ⊥
113 if |C| = τ then if C = AEZ-prf(K,T, τ) then return ε else return ⊥ fi fi
114 X ← Decipher(K,T,C)
115 M ‖ Z ← X where |Z| = τ
116 if (Z = 0τ) then return M else return ⊥

200 algorithm Encipher(K,T,X) //AEZ enciphering
201 if |X| < 256 then return Encipher-AEZ-tiny(K,T,X)
202 if |X| ≥ 256 then return Encipher-AEZ-core(K,T,X)

210 algorithm Encipher-AEZ-tiny(K,T,M) //AEZ-tiny enciphering
211 m← |M |; n← m/2; Δ← AEZ-hash(K,T)
212 if m = 8 then k ← 24 else if m = 16 then k ← 16 else if m < 128 then k ← 10 else k ← 8 fi
213 L←M(1 .. n); R←M(n+ 1 .. m); if m ≥ 128 then j ← 6 else j ← 7 fi

214 for i← 0 to k − 1 do R′ ← L⊕ ((E0,j
K (Δ ⊕ R10∗ ⊕ [i]128))(1 .. n)); L← R; R← R′ od

215 C ← R ‖ L; if m < 128 then C ← C ⊕ (E0,3
K (Δ ⊕ (C0∗ ∨ 10∗)) ∧ 10∗) fi

216 return C

220 algorithm Encipher-AEZ-core(K,T,M) //AEZ-core enciphering
221 Δ← AEZ-hash(K,T)
222 M1M

′
1 · · ·MmM ′

m Muv MxMy ←M where |M1| = · · · = |M ′
m| = |Mx| = |My| = 128 and |Muv| < 256

223 d← |Muv|; if d ≤ 127 then Mu ←Muv; Mv ← ε else Mu ←Muv[1..128]; Mv ←Muv[129..|Muv|] fi
224 for i← 1 to m do Wi ←Mi ⊕ E1,i

K (M ′
i); Xi ←M ′

i ⊕ E0,0
K (Wi) od

225 if d = 0 then X ← X1 ⊕ · · · ⊕Xm ⊕ 0 else if d ≤ 127 then X ← X1 ⊕ · · · ⊕Xm ⊕ E0,4
K (Mu10

∗)
226 else X ← X1 ⊕ · · · ⊕Xm ⊕ E0,4

K (Mu)⊕ E0,5
K (Mv10

∗) fi
227 Sx ←Mx ⊕Δ⊕X ⊕ E0,1

K (My); Sy ←My ⊕ E−1,1
K (Sx); S ← Sx ⊕ Sy

228 for i←1 to m do S′←E2,i
K (S); Yi←Wi ⊕ S′; Zi←Xi ⊕ S′; C′

i←Yi ⊕ E0,0
K (Zi); Ci←Zi ⊕ E1,i

K (C′
i) od

229 if d = 0 then Cu ← Cv ← ε; Y ← Y1 ⊕ · · · ⊕ Ym ⊕ 0

230 else if d ≤ 127 then Cu ←Mu ⊕ E−1,4
K (S); Cv ← ε; Y ← Y1 ⊕ · · · ⊕ Ym ⊕ E0,4

K (Cu10
∗)

231 else Cu←Mu ⊕ E−1,4
K (S); Cv←Mv ⊕ E−1,5

K (S); Y ←Y1 ⊕ · · · ⊕ Ym ⊕ E0,4
K (Cu)⊕ E0,5

K (Cv10
∗) fi

232 Cy ← Sx ⊕ E−1,2
K (Sy); Cx ← Sy ⊕Δ⊕ Y ⊕ E0,2

K (Cy)
233 return C1C

′
1 · · ·CmC′

m CuCv CxCy

Fig. 5. Main routines of AEZ. The tweakable blockcipher E, the hash AEZ-hash, and the PRF AEZ-prf are all
defined in Fig. 6. Requested ciphertext expansion is τ = 8 · λ bits.

to describe. AEZ-tiny deciphering is identical to AEZ-tiny enciphering except we must count back-
wards instead of forwards, and must do the even-cycles correction (line 215) at the beginning instead
of the end. Specifically, Decipher-AEZ-tiny(K,T,M) is identical to Encipher-AEZ-tiny(K,T,M)
except that line 214 is changed to count from k − 1 down to 0, while line 215 has each C replaced
by M before moving the line up to just after line 212. And AEZ-core deciphering is identical
to AEZ-core enciphering except that we must take the xy-tweaks in reverse order. Specifically,
Decipher-AEZ-core(K,T,M) is identical to Encipher-AEZ-core(K,T,M) except we swap tweaks
(0, 1) and (0, 2), and we swap tweaks (−1, 1) and (−1, 2). These appear at lines 227 and 232.

The TBC Ei,j
K (X) takes a tweak (i, j) ∈ {−1, 0}×[0..7]∪{1, 2, 3}×N. The first component selects

between AES10 (when i = −1) and AES4 (when i ≥ 0). Either way, the construction is based on

14 Hoang, Krovetz, and Rogaway

300 algorithm AEZ-hash(K,T) //AXU hash. T is a vector of strings
301 (T1, . . . , Tt)← T
302 for i← 1 to t do
303 m← max(1, �|Ti|/128); X1 · · ·Xm ← Ti where |X1| = · · · = |Xm−1| = 128

305 if |Xm| = 128 then Δi ← E2+i,1
K (X1)⊕ · · · ⊕ E2+i,m

K (Xm)

306 if |Xm| < 128 then Δi ← E2+i,1
K (X1)⊕ · · · ⊕ E2+i,m−1

K (Xm−1)⊕ E2+i,0
K (Xm10∗)

307 return Δ1 ⊕ · · · ⊕Δt ⊕ 0

310 algorithm AEZ-prf(K,T, τ) //PRF used when M = ε
311 Δ← AEZ-hash(K,T)

312 return (E−1,3
K (Δ) ‖ E−1,3

K (Δ⊕[1]128) ‖ E−1,3
K (Δ⊕[2]128) ‖ · · ·)[1..τ]

400 algorithm Ei,j
K (X) //Scaled-down TBC

401 (I, J, L)← Extract(K)
402 k0 ← (0, I, J, L,0); k1 ← (0, J, L, I,0); k2 ← (0, L, I, J, I)
403 K ← (0, I, L, J, I, L, J, I, L, J, I)
404 if i = −1 and 0 ≤ j ≤ 7 then return AES10K(X ⊕ jJ)
405 if i = 0 and 0 ≤ j ≤ 7 then return AES4k0(X ⊕ jJ)

406 if 1 ≤ i ≤ 2 and j ≥ 1 then return AES4ki(X ⊕ (j mod 8)J ⊕ 2�(j−1)/8�L)
407 if i ≥ 3 and j ≥ 1 then return AES4k0(X ⊕ (j mod 8)J ⊕ 2�(j−1)/8� · L⊕ (i− 2)8J)
408 if i ≥ 3 and j = 0 then return AES4k0(X ⊕ (i− 2)8J)

410 algorithm Extract(K) //Map key to subkeys
411 z ← [0][1] · · · [15]; m← max(1, �|K|/128); K1 · · ·Km ← K where |K1| = · · · = |Km−1| = 128
412 for i← 1 to 3 do
413 for j ← 0 to m do ci,j ← AES4(z,z,z,z,z)([i]64[j]64); Ci,j ← (ci,j , ci,j , ci,j , ci,j , ci,j); od
414 if |Km|=128 then Xi ← AES4Ci,1(K1)⊕AES4Ci,2(K2)⊕ · · ·⊕AES4Ci,m−1(Km−1)⊕AES4Ci,m(Km)
415 if |Km|<128 then Xi ← AES4Ci,1(K1)⊕AES4Ci,2(K2)⊕ · · ·⊕AES4Ci,m−1(Km−1)⊕AES4Ci,0(Km10∗)
416 return (X1, X2, X3)

Fig. 6. AEZ’s hash, PRF, and TBC. The last carries out key processing that an implementation would normally
do at session-setup.

XE [35, 49]. Still, algorithm E is not secure as a tweakable-PRP: this is where the scaling-down has
been done.

Note the mod 8’s at lines 406–407. Unlike the offset sequence used for OCB [34], we limit our-
selves to eight successive J values; after that, we add in the next power-of-two times L. This allows
a small table of 2j · J values to be precomputed and used regardless of the length of the message.
In this way we limit the frequency of doublings yet avoid number-of-trailing-zeros calculation.

To deal with arbitrary-length keys, procedure Extract turns the provided key into 48 bytes,
(I, J, L), using an almost-universal hash function with a fixed but “random-looking” key. The ap-
proach is rooted in the leftover hash lemma [3, 17, 29]. The hash we use is simple and parallelizable,
and in the spirit of AEZ-hash.

We impose a limit that AEZ be used for at most 248 bytes of data (about 280 TB); by that
time, the user should rekey. This usage limit stems from the existence of birthday attacks on AEZ,
as well as the use of AES4 to create a universal hash function.

Cost accounting. Let us summarize the computational cost of AEZ in “AES-equivalents,”
where 1 AES-equivalents is 10 AES rounds. Assume a message of m blocks, the last of which
may be fragmentary. To encipher or decipher m ≥ 2 blocks: at most m + 2.4 AES-equivalents
(latency 3.6). This assumes K, N , τ , and A have already been processed. To encrypt or decrypt
m ≥ 2 blocks: at most m + 3.8 AES-equivalents (latency 3.6). This assumes that K, A, and τ

Robust Authenticated Encryption 15

Mv

C v

M1 M1

C1 C1

X1

S

M
x

My

C
x

Cy

-1, 1

Mm Mm

Cm Cm

Xm

Y1

S S

’’

’’

Tm -1T1

TmT1

L R

L R

X

S-1, 5

0, 5

0, 50, 00, 0

2, 1 2, m

0, 0 0, 0

0, 11, 1 1, m

1, m1, 1 0, 2

i+2, 1 i+2, m−1

Y

∆i

-1, 2

∆

∆

∆⊕ 1
0, 6

0, 6

0, 6

0, 6

0, 6

0, 6

0, 6

0, 6

∆⊕ 0

∆⊕ 3

∆⊕ 2

∆⊕ 6

∆⊕ 5

∆⊕ 7

X
v

Y
v

Ym

* *

∆⊕ 4

...

10*

...

...

Cu

-1, 4

0, 4

0, 4

S

X
u

Y
u

Mu

∆i

Tm

Tm -1

i+2, 1 i+2, m−1

i+2, m

i+2, 0

Fig. 7. Illustrating AEZ enciphering. Rectangles with pairs of numbers are TBCs, the pair being the tweak (the
key, always K, is not shown). Top row: enciphering a message M of (32 or more bytes) with AEZ-core. The diagram
shows processing a string that is (exclude the middle panel) or isn’t (include the middle panel) a multiple of 16 bytes.
Bottom left: AEZ-hash is an xor-universal hash built from AES4. It computes Δ =

⊕
Δi from a vector-valued

tweak T comprising A, N , and τ . Its i-th component T1 · · ·Tm is hashed as shown. Bottom right: AEZ-tiny, when
operating on a string M = L ‖R of 16–31 bytes. More rounds are used if M has 1–15 bytes.

have already been processed and that |N | ≤ 128 and τ = 128. To reject an invalid ciphertext of
m ≥ 2 blocks: at most 0.4m + 2.4 AES-equivalents (latency 2.8). Same assumptions. To setup an
m block key: 1.2m AES-equivalents (latency 0.4). This assumes that needed constants have been
precomputed. To setup a string-values AD: 0.4m (latency 0.4). To encipher or decipher messages
of 1–15 bytes is somewhat slower: 10, 6.8, and 4.4 AES-equivalents for 1, 2, and 3 bytes.

Parameterized counterparts. For a TBC-parameterized generalization of AEZ, let AEZ[Ẽ]
be identical to AEZ except for using the TBC Ẽ : K × Taez × {0, 1}128 → {0, 1}128 in place of E
(assume the correct tweak-space Taez). The key space of Ẽ is then taken as the key space for the
constructed RAE scheme. Note that AEZ = AEZ[E], with E the algorithm defined by lines 400–416.

Taking the above a step further, given a conventional blockcipher E : K× {0, 1}128 → {0, 1}128
we can define AEZ[E] as AEZ[Ẽ] where Ẽi,j

K (X) = EK(X ⊕ (i + 1)I ⊕ jJ) for I = EK(0) and
J = EK(1). The scheme AEZ[AES] can be regarded as a natural “scaled up” version of AEZ. We
emphasize that AEZ is not AEZ[AES], which is about 2.5 times as slow.

16 Hoang, Krovetz, and Rogaway

Schemes AEZ[Ẽ] and AEZ[E] are close to AEZ, but enjoy conventional provable-security guar-
antees, as we now describe.

8 Security of AEZ[Ẽ] and AEZ[E]

We show that if Ẽ is secure as a tweakable PRP then AEZ[Ẽ] is RAE-secure. In fact, the statement
holds even if the decryption algorithm is modified so as to leak the entire improperly encoded
string obtained by deciphering an invalid ciphertext. So, for the remainder of this section, assume
the modification of AEZ in which the else clause of line 116 returns the deciphered message X
rather than ⊥. This change only makes our results stronger, explicitly modeling the possibility of
a decryption implementation leaking some or all of X. The actual decryption algorithm returns ⊥.

Our provable-security results for AEZ need to assume that the adversary avoids enciphering
or deciphering extremely short strings—at least those under 16 bytes, say, for which AEZ-tiny, a
Feistel-based construction, will not enjoy a desirable bound. While provably-secure options are now
available for enciphering very short strings, they still do not have competitive efficiency.

As the alphabet for AEZ is Σ = Byte, in this this section we write |x| for the byte length
of x. For an encryption query (N,A, λ,M), define the number of blocks processed as �|N |/16� +∑

i�|Ai|/16� + �(|M | + λ)/16�. This query is small if M �= ε and 16 ≤ |M | + λ < 32, and tiny
if M �= ε and |M | + λ < 16. Likewise, for a decryption query (N,A, λ, C), the number of blocks
processed is �|N |/16� +

∑
i�|Ai|� + �(|C|)/16�. The query is small if 16 ≤ |C| < 32 and |C| �= λ,

and tiny if |C| �= λ and |C| < 16. The proof for the following is in Appendix B.5.

Theorem 5. Let Ẽ : K×Taez × {0, 1}128 → {0, 1}128 be a TBC and Π = AEZ[Ẽ]. Then there are
efficient, explicitly given algorithms R and S with the following property. Let A be an adversary for
attacking Π. Assume it never asks any small or tiny query. Then B = R(A) satisfies Advrae

Π,S(A) ≤
3.5s2/2128+Advp̃rp

˜E
(B), where s is the total number of processed blocks, plus 2 blocks per message.

Adversary B makes at most 2.5s queries and has about the same running time as A.

An alternative approach to justifying the security of AEZ is to speak of the security of AEZ[E], the
cousin of AEZ defined from a conventional blockcipher E using the XE construction to make the
needed TBC. Its security can be captured by the following result. The proof is in Appendix B.6.

Theorem 6. Let E : K× {0, 1}128 → {0, 1}128 be a blockcipher and Π = AEZ[E]. Then there are
efficient, explicitly given algorithms R and S with the following property. Let A be an adversary for
attacking Π. Assume it never asks a small or tiny query. Then B = R(A) satisfies Advrae

Π,S(A) ≤
13s2/2128+Advprp

E (B), where s is the total number of processed blocks, plus 2 blocks per message.
Adversary B makes at most 2.5s queries and has about the same running time as A.

If one wants to accommodate small queries then we still have a provable, albeit much inferior
result. Let Feistel[r, n] denote an ideal r-round Feistel network on {0, 1}2n. The best known provable
bound for Feistel networks [44, Theorem 7] states that if an adversary makes q ≤ 2n

128n queries then

Adv±prp
Feistel[6,n](A) ≤ 8q

2n + q2

22n+1 . Translating this to our setting, one is bound to make at most

q ≤ 264

128·64 = 251 small queries, and the security advantage is q/261 + 4s2/2128. These restrictions
seem to be more of the artifacts of the analysis in [44, Theorem 7] than reflecting the actual security
of Feistel networks: assuming that the round functions of Feistel[6, n] are instantiated from full AES,
the fastest known attack, for n ≥ 64, is still the exhaustive key search on AES.

Robust Authenticated Encryption 17

Fig. 8. AEZ vs. OCB performance. The x-axis is message length, in bytes, and the y-axis is cycles per byte
(cpb). The graph is best viewed in color: solid purple circles are for AEZ; unfilled yellow circles are for OCB3 [34].
Performance of the two is close, both having peak speeds around 0.7 cpb and being similar on most shorter messages
as well. The execution vehicle is an Intel Haswell processor using AES-NI.

9 Estimated Security of AEZ Itself

Consider all that would go on in enciphering a message M by the AEZ-core algorithm of AEZ[AES].
The design would seem to be excessive: each block Mi would be subjected to 30 rounds of AES
(ten shared with a neighboring block)—not counting the additional AES rounds to produce the
highly unpredictable, M -dependent value S, the value derived from which gets injected into the
process while 20 rounds yet remain. It is in light of such apparent overkill that AEZ-core selectively
prunes some of the AES calls that AEZ[AES] would perform. In particular, we prune invocations
where we aim to achieve computational xor-universal hashing. We leave enough AES rounds so that
each block Mi is effectively processed with 12 AES rounds, eight of these subsequent to injection
of the highly-unpredictable S and four of them shared with a neighboring block. The key steps in
calculating S are not pruned, nor are the TBCs used to mask u- and v-blocks.

To estimate the security of AEZ it seems appropriate to replace the s2/2128 term of Theorem 5 by
s2/2113, resulting in the bound 4s2/2113+t/2128, because of the higher maximal expected differential
probability of AES4 [33] compared to an ideal hash or cipher, where t is the time (including the
description size) in which the adversary runs.

Moreover, we contend that the assumption that the adversary avoids asking tiny or small queries
can be lifted. To justify this heuristically, consider a collection of independent, ideal, k-round Feistel
networks on {0, 1}2n; the round functions are all uniformly random and independent. The best
attack known, due to Patarin [42], that distinguishes them from a family of independent, truly
random even permutations requires at least 2(k−4)n plaintext/ciphertext pairs. From our choice of
the number of rounds, this attack needs at least 272 plaintext/ciphertext pairs, and thus doesn’t
violate our up-to-the-birthday-bound security goal.

We emphasize that AEZ was specifically designed so that scaling-down most of its AES calls
would seem safe. This is design-specific: obviously one cannot indiscriminately scale a scheme’s
primitives. A previous design, where AEZ-core followed the NR approach [40, 41], could not be as
effectively scaled-down: there we could scale down from 3 AES per block to 1.8, whereas now we
can go from 2.5 AES calls per block to just 1.

18 Hoang, Krovetz, and Rogaway

10 Software Performance

The development of AEZ has generally presumed an instruction set architecture (ISA) with round-
level support for AES, such as Intel’s AES-NI or ARM’s version 8 ISA. On these systems the AES
unit can be kept busy processing several AES4 computations in parallel while idle processing units
handle load, store, and xor overhead. On Intel’s Haswell architecture, for example, unrelated AES
rounds can issue every cycle and take seven cycles to retire, so seven parallel AES4 calculations can
complete in 34 CPU cycles, while idle superscalar processing units can handle other computations.
This observation has led us to design AEZ to conveniently process eight blocks at a time.

AEZ overhead beyond AES rounds has been minimized. As an example of this, our AES4 key
schedule omits the final round key, allowing aesenc’s included xor operation to be used for other
purposes. Such optimizations lead to AEZ peak speeds, on Haswell, of around 0.72 cpb—not far
from the theoretical maximum of 0.63 cpb. On processors that are not superscalar or do not support
AES rounds at the assembly level, we expect AEZ to continue achieving performance approximately
the same as OCB, and within 10% of AES-CTR for long strings.

Fig. 8 compares the performance of AEZ and OCB on messages of all byte lengths up to 1600
bytes. The two are not only similar for long messages but for short strings too. Only when messages
are shorter than 16 bytes, where AEZ-tiny increases the number of AES4 calls used, does OCB
become significantly faster.

One might expect the two-pass nature of AEZ to be a performance burden because data must
be dragged into cache from memory twice. We have found that modern processors, like Intel’s
Haswell, have such efficient hardware prefetching that bringing data into cache twice, in a sequential
streaming fashion, is not expensive at all. It requires no explicit prefetching. Encrypting 1MB on
Haswell is as efficient as encrypting 32KB despite 1MB exceeding the 256KB level-2 cache. Two
passes may have a more significant cost on systems with poor prefetching facilities, although this
might be mitigated by software prefetching.

Another benefit of AEZ’s two passes is that the second pass is not needed to discover that a
ciphertext is inauthentic, leading to message rejection costing as little as 0.28 cpb on Haswell. On
long messages, approximately 2/5 of AES4 calls are performed during the first pass, which aligns
perfectly with the peak times we’ve observed for encryption and fast-rejection.

All timings we have reported in this paper were gathered on a 2.9 GHz Intel Core i5-4570S
CPU using its time-stamp counter to gather elapsed CPU cycles over encryption calls. Our imple-
mentation is written in C using “intrinsic” functions to access CPU-specific functionality. It was
compiled using GCC 4.9 with options -march=native -O3. Our optimized implementation will be
made publicly available and freely licensed.

Acknowledgments

Many thanks to Tom Shrimpton, who provided important interaction on RAE definitions and their
implications. Liden Mu and Chris Patton proofread our specification document and did implemen-
tations that helped verify our own. We received good comments and corrections Danilo Gligoroski,
Tom Ristenpart, and Yusi (James) Zhang. Thanks to Dustin Boswell for an April 2013 email on
the importance of making AE easier to use, Stefan Lucks for a Jan 2012 discussion on the problem
unverified plaintexts, and René Struik for an August 2013 DIAC presentation on the utility of

Robust Authenticated Encryption 19

minimizing ciphertext expansion. Thanks to Terence Spies for catalyzing the idea of unifying AE
and blockciphers both in definition and schemes.

Hoang was supported by NSF grants CNS-0904380, CCF-0915675, CNS-1116800 and CNS-
1228890; Krovetz was supported by NSF grant CNS-1314592; and Rogaway was supported by NSF
grants CNS-1228828 and CNS-1314885. Many thanks to the NSF for their continuing support. Part
of this work was done when Hoang was working at UC San Diego.

References

1. E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha, and K. Yasuda. How to securely release unverified
plaintext in authenticated encryption. Cryptology ePrint report 2014/144. Feb 25, 2014.

2. E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, E. Tischhauser, and K. Yasuda. Parallelizable and authen-
ticated online ciphers. ASIACRYPT 2013. LNCS 8269, Springer, pp. 424–443, 2013.

3. B. Barak, Y. Dodis, H. Krawczyk, O. Pereira, K. Pietrzak, F. Standaert, and Y. Yu. Leftover hash lemma,
revisited. CRYPTO 2011. LNCS 6841, Springer, pp. 1–20, 2011.

4. M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre. Online ciphers and the Hash-CBC construction.
CRYPTO 2001. LNCS 2139, pp. 292–309, 2001. Also Cryptology ePrint Archive 2007/197.

5. M. Bellare and P. Rogaway. On the construction of variable-input-length ciphers. FSE 1999. LNCS 1636, Springer,
pp. 321-344, 1999.

6. M. Bellare and P. Rogaway. Encode-then-encipher encryption: how to exploit nonces or redundancy in plaintexts
for efficient cryptography. ASIACRYPT 2000. LNCS 1976, Springer, pp. 317–330, 2000.

7. M. Bellare, P. Rogaway, and T. Spies. The FFX mode of operation for format-preserving encryption. Draft 1.1.
Submission to NIST. Feb 20, 2010.

8. D. Bernstein. Cryptographic competitions: CAESAR call for submissions, final (2014.01.27). Available at
http://competitions.cr.yp.to/caesar-call.html.

9. J. Black and M. Cochran. MAC reforgeability. LNCS 5665, Springer, FSE 2009, pp. 345–362, 2009.
10. J. Black and P. Rogaway. Ciphers with arbitrary finite domains. CT-RSA 2002. LNCS 2271, Springer, pp. 114–

130, 2002.
11. A. Boldyreva, J. Degabriele, K. Paterson, and M. Stam. On symmetric encryption with distinguishable decryption

failures. Cryptology ePrint Report 2013/433, 2013.
12. D. Chakraborty and M. Nandi. An improved security bound for HCTR. FSE 2008. LNCS 5086, Springer,

pp. 289–302, 2008.
13. D. Chakraborty and P. Sarkar. HCH: A new tweakable enciphering scheme using the hash-encrypt-hash approach.

IEEE Transactions on Information Theory, 54(4), pp. 1683–1699, 2008.
14. D. Chakraborty and P. Sarkar. A new mode of encryption providing a tweakable strong pseudorandom permu-

tation. FSE 2006. LNCS 4047, Springer, pp. 293–309, 2006.
15. J. Daemen and V. Rijmen. A new MAC construction ALRED and a specific instance ALPHA-MAC. Fast

Software Encryption. LNCS 3557, Springer, pp. 1–17, 2005.
16. J. Daemen and V. Rijmen. The Pelican MAC function. Cryptology ePrint report 2005/088. 2005.
17. Y. Dodis, R. Gennaro, J. H̊astad, H. Krawczyk, and T. Rabin. Randomness extraction and key derivation using

the CBC, cascade and HMAC modes. CRYPTO 2004. LNCS 3152, Springer, pp. 494–510, 2004.
18. M. Dworkin. Recommendation for block cipher modes of operation: methods for format-preserving encryption.

NIST Special Publication 800-38G: Draft. July 2013.
19. N. Ferguson. Authentication weaknesses in GCM. Manuscript. May 20, 2005.
20. S. Halevi. EME∗: extending EME to handle arbitrary-length messages with associated data. INDOCRYPT 2004.

LNCS 3348, Springer, pp. 315–327, 2004.
21. J. Katz and M. Yung. Unforgeable encryption and chosen ciphertext secure modes of operation. FSE 2000,

LNCS 1978, Springer, pp. 284–299, 2000.
22. R. Fisher and F. Yates. Statistical tables for biological, agricultural and medical research. London: Oliver &

Boyd, 1938.
23. E. Fleischmann, C. Forler, S. Lucks, and J. Wenzel. McOE: A family of almost foolproof on-line authenticated

encryption schemes. FSE 2012. LNCS 7549, Springer, pp. 196–215, 2011. Also Cryptology ePrint Report 211/644
(29 Nov 2011; revised 5 Dec 2013).

20 Hoang, Krovetz, and Rogaway

24. P. Fouque, A. Joux, G. Martinet, and F. Valette. Authenticated on-line encryption. SAC 2003. LNCS 3006,
pp. 145–159, 2004.

25. S. Halevi. EME∗: extending EME to handle arbitrary-length messages with associated data. INDOCRYPT 2004.
LNCS 3347, Springer, pp. 315–327, 2004.

26. S. Halevi. Invertible universal hashing and the TET encryption mode. Cryptology ePrint report 2007/014.

27. S. Halevi and P. Rogaway. A parallelizable enciphering mode. CT-RSA 2004. LNCS 2964, Springer, pp. 292–304,
2004.

28. S. Halevi and P. Rogaway. A tweakable enciphering mode. CRYPTO 2003. LNCS 2729, Springer, pp. 482–499,
2003.

29. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. Construction of a pseudo-random generator from any one-way
function. SIAM Journal on Computing, 28(4), pp. 1364–1396, 1999.

30. IEEE. 1619.2-2010 – IEEE standard for wide-block encryption for shared storage media. IEEE press, 2010.

31. R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations. STOC 1989,
pp. 44–61, 1989.

32. B. Kaliski, R. Rivest, and A. Sherman. Is DES a pure cipher? (Results of more cycling experiments on DES).
CRYPTO 85. LNCS 218, Springer, pp. 212–226, 1986.

33. L. Keliher and J. Sui. Exact maximum expected differential and linear probability for two-round Advanced
Encryption Standard. IET Information Security, 1(2), pp. 53–57, 2007.

34. T. Krovetz and P. Rogaway. The software performance of authenticated-encryption modes. FSE 2011.
LNCS 6733, Springer, pp. 306–327, 2011.

35. M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. CRYPTO 2002. LNCS 2442, Springer, pp. 31–46,
2002.

36. D. McGrew and S. Fluhrer. The security of the extended codebook (XCB) mode of operation. SAC 2007.
LNCS 4876, Springer, pp. 311–327, 2007.

37. K. Minematsu. Parallelizable rate-1 authenticated encryption from pseudorandom functions. EURO-
CRYPT 2014. LNCS 8441, Springer, pp. 275–292, 2014.

38. K. Minematsu and Y. Tsunoo. Provably secure MACs from differentially-uniform permutations and AES-based
implementations. FSE 2006. LNCS 4047, Springer, pp. 226–241, 2006.

39. M. Nandi. Improving upon HCTR and matching attacks for Hash-Counter-Hash approach. Cryptology ePrint
report 2008/090. Feb 28, 2008.

40. M. Naor and O. Reingold. On the construction of pseudo-random permutations: Luby-Rackoff revisited. Journal
of Cryptology, 12(1), pp. 29-66, 1999.

41. M. Naor and O. Reingold. The NR mode of operation. Undated manuscript realizing the mechanism of [40].

42. J. Patarin. Generic attacks on Feistel schemes. ASIACRYPT 2001. LNCS 2248, Springer, pp. 222–238, 2001.
Also see Cryptology ePrint report 2008/036.

43. S. Patel, Z. Ramzan, and G. Sundaram. Efficient constructions of variable-input-length block ciphers. SAC 2004.
LNCS 3357, Springer, 2004.

44. J. Patarin. Security of balanced and unbalanced Feistel schemes with linear non equalities. Cryptology ePrint
report 2010/293. May 2010.

45. J. Patarin. Security of random Feistel schemes with 5 or more rounds. CRYPTO 2004. LNCS 3152, Springer,
pp. 106–122, 2004.

46. J. Patarin, B. Gittins, and J. Treger. Increasing block sizes using Feistel networks: the example of the AES.
Cryptography and Security: From Theory to Applications. LNCS 6805, Springer, pp. 67–82, 2012.

47. R. Reyhanitabar and D. Vizár. Careful with misuse resistance of online AEAD. Unpublished manuscript dis-
tributed on the crypto-competitions mailing list. August 24, 2014.

48. P. Rogaway. Authenticated-encryption with associated-data. ACM CCS 2002. ACM Press, pp. 98–107, 2002.

49. P. Rogaway. Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC.
ASIACRYPT 2004. LNCS 3329, Springer, pp. 16–31, 2004.

50. P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of operation for efficient authen-
ticated encryption. ACM CCS 2001, pp. 196–205.

51. P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. EUROCRYPT 2006.
LNCS 4004, Springer, pp. 373–390, 2006. Also Cryptology ePrint Report 2006/221, retitled Deterministic
authenticated-encryption: a provable-security treatment of the key-wrap problem.

52. P. Sarkar. Efficient tweakable enciphering schemes from (block-wise) universal hash functions. Cryptology ePrint
report 2008/004.

Robust Authenticated Encryption 21

53. P. Sarkar. Improving upon the TET mode of operation. Information Security and Cryptology (ICISC 2007).
LNCS 4817, Springer, pp. 180–192, 2007.

54. P. Sarkar. Tweakable enciphering schemes using only the encryption function of a block cipher. Cryptology
ePrint report 2009/216.

55. R. Schroeppel. Hasty Pudding Cipher Specification. AES candidate submitted to NIST. June 1998 (revised
May 1999). http://richard.schroeppel.name/hpc/hpc-spec

56. T. Shrimpton and S. Terashima. A modular framework for building variable-input-length tweakable ciphers.
ASIACRYPT (1) 2013. LNCS 8269, Springer, pp. 405–423, 2013.

57. M. Simpĺıcio, P. Barbuda, P. Barreto, T. Carvalho, and C. Margi. The MARVIN message authentication code and
the LETTERSOUP authenticated encryption scheme. Security and Communications Networks, 2(2), pp. 165–
180, 2009.

58. M. Simpĺıcio and P. Barreto. Revisiting the security of the ALRED design and two of its variants: Marvin and
LetterSoup. IEEE Transactions on Information Theory, 58(9), pp. 6223–6238, 2012.

59. R. Struik. AEAD ciphers for highly constrained networks. DIAC 2013 presentation. Aug 13, 2013.
60. P. Wang, D. Feng, C. Lin, and W. Wu. Security of truncated MACs. Inscrypt 2008. LNCS 5487, Springer,

pp. 96–114, 2009.
61. P. Wang, D. Feng, and W. Wu. HCTR: a variable-input-length enciphering mode. Information Security and

Cryptology (ICISC 2005). LNCS 3822, Springer, pp. 175–188, 2005.

A More on Related Work

RAE and AEZ build on a large body of related work. While we have summarized much of this
throughout this paper, here we give some additional context and high points.

Blockciphers accommodating truly arbitrary inputs were first realized by Schroeppel’s Hasty
Pudding Cipher (HPC) [55]. Ahead of its time, the work not only built a blockcipher on all of
{0, 1}∗, but also provided it a tweak. If one were to first overcome the problem that HPC’s tweak
is limited in length, it could be used with the EtE construction to make an RAE scheme.

The problem of constructing from conventional blockciphers those with arbitrary or near-
arbitrary domains was first identified Bellare and Rogaway [5], who wanted to construct these
objects with a conventional-looking mode. But the mechanism they suggested was somewhat slow,
was limited to a domain of ({0, 1}n)+, and only achieves conventional (not strong) PRP security.

In a follow-up paper [6] the same authors evidenced the utility of arbitrary-input blockciphers
by explaining how semantic security could be achieved by enciphering messages with novelty, and
they showed how how authenticity could be achieve by enciphering messages with redundancy (this
time using a strong PRP). These observations formed the basis for our work.

Around the same time as the last two work, Naor and Reingold (NR) constructed a blockcipher
on ({0, 1}n)+ by sandwiching a layer of ECB between layers of a “blockwise-universal” hashing [40,
41]. The approach came to be used in many proposals, including XCB [36], which was standardized
in IEEE 1619.2 [30].

The other method inspiring further wide-block blockciphers was EME [27], which involves two
layers of blockcipher-based enciphering and a light layer of mixing in between. A follow-on design,
EME2 [20], become the other wide-block blockcipher of 1619.2 [30], Both it and XCB are tweakable
and operate on a message space of {0, 1}≥n. EME/EME2 provides the starting point for AEZ-core.

As for extending blockciphers to short blocks, a different line of work was begun [10]. Format-
preserving encryption aimed to deal not only with small domains but also those defined as arbitrary
finite sets, sets of numbers [0..N − 1], or strings over arbitrary alphabets. Adapting Feistel designs
to arbitrary alphabets, realizations of FFX [7], now a draft NIST standard [18], would form the
basis of AEZ-tiny.

22 Hoang, Krovetz, and Rogaway

Meanwhile, notions of AE were appearing. Probabilistic versions came first [6, 21], then a nonce-
based version [50], then AD finally appeared [49]. Next the MRAE goal—RAE’s closest definition
counterpart—was defined [51]. The main motivation for that work was to minimize the damage
that could be done by nonce-reuse.

Other authors had the same concern but weren’t willing to use two-pass schemes. Fleischmann
et. al [23] built on Bellare et. al [4] to define a security notion for online-AE intended to confer some
lower level of nonce-reuse misuse resistance. The approach has gained popularity—many CAESAR
submissions follow it, especially after COPA [2] made clear that one could achieve this weakened
flavor of nonce-reuse misuse-resistance with a parallelizable scheme. The RAE definition goes a
different direction, strengthening instead of weakening the original MRAE definition.

Following up on directions from prior work [11, 23, 24], AE security in the face of decryption-
algorithm leakage was studied by Andreeva et. al [1] in work concurrent with our own. A principle
motivation for those authors has been to express when it is OK for an online decryption algorithm
to be incrementally releasing unverified plaintext. For us, this is a direction not taken, for such
leakage can never be generically harmless [47]. In effect, leaking equality of message prefixes is
leaking an enormous amount of information.

Ferguson made clear early on that AE algorithms could fail badly when tags are too short [19].
Still, no definitions for AE security were ever offered appropriate to the short-tag setting. But the
general concern for making short MACs work well goes back to Black and Cochran [9] and Wang
et. al [60].

Some examples of using AES4 where AES itself would do include ALRED, LETTERSOUP,
MARVIN, and Pelican [15, 16, 57]. These inspired our predilection to cut certain AES rounds even
when provable security couldn’t promise this was fine. The approach should not be confused with
that of Minematsu and Tsunoo [38], where AES4 provably does suffice for the protocol devised [38].
The approach leverages the low MEDP for AES4, a line of work culminating in the bound of Keliher
and Sui [33].

Many authors have proposed ideas to eliminate use of the inverse-direction of a blockcipher in
modes that previously needed this. The method we us in AEZ is inspired by Minematsu’s OTR [37].

The CAESAR competition [8], organized by Dan Bernstein, was the proximal motivation to
define RAE and to try to develop a nice scheme for achieving it.

B Deferred Proofs

B.1 Proof of Theorem 1

It suffices to show that
∣∣Pr[AIdealΠ ⇒ 1] − Pr[APRIΠ ⇒ 1]

∣∣ ≤ (r2 + r)/|Σ|λ+mmin+1 + 2q/|Σ|λ.
Without loss of generality, assume that q ≤ |Σ|λ−1; otherwise the claim is trivial. Consider games
G1–G4 in Fig. 9. Game G1 corresponds to game IdealΠ and game G4 corresponds to game PRIΠ .
We explain the game chain up to the terminal one. Game G2 is identical to game G1, except that
in procedure Enc, it ensures that ciphertexts C are distinct. Partition the encryption queries based
on the nonce, the associated data, and the size of the message. Suppose that in game G1 we have p
partitions of size s1, . . . , sp ≥ 1. Games G1 and G2 are identical-until-bad, and thus∣∣Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1]

∣∣ ≤ Pr[AG1 sets bad]

≤
p∑

i=1

si(si − 1)

|Σ|mmin+λ+1
=

p∑
i=1

(si − 1)2 + (si − 1)

|Σ|mmin+λ+1
≤ r2 + r

|Σ|mmin+λ+1
;

Robust Authenticated Encryption 23

proc Enc(N,A,M) Games G1 / G2

	← |M |; C�Σ�+λ

if C ∈ RanN,A,� then bad← true; C�Σ�+λ\RanN,A,�

RanN,A,� ← RanN,A,� ∪ {C}
DomN,A ← DomN,A ∪ {(M,0λ)}
return C

proc Dec(N,A, λ, C)
if |C| < λ then return ⊥
	← |C| − λ; (M, v)� (Σ� ×Σλ)\DomN,A

DomN,A ← DomN,A ∪ {(M, v)}
return ⊥

proc Enc(N,A,M) Games G3 / G4

	← |M |; C�Σ�+λ

DomN,A ← DomN,A ∪ {(M,0λ)}
return C

proc Dec(N,A,C)
if |C| < λ then return ⊥
	← |C| − λ

(M, v)� (Σ� ×Σλ)\DomN,A

DomN,A ← DomN,A ∪ {(M, v)}
if v = 0λ then bad← true; return M
return ⊥

Fig. 9. Games used in the proof of Theorem 1. Here 0 is a canonical element of Σ. Games G2 and G4 contain
the corresponding boxed statements, but games G1 and G3 do not.

the last inequality is due to the fact that (s1 − 1) + · · · + (sp − 1) = r. Game G3 is a simplified
version of game G2; the change is conservative. Game G4 is identical to game G3, except that in
procedure Dec, it samples a λ-character string v and returns a non-⊥ answer if v = 0λ, where 0
is a canonical point in Σ. Let L′ be the multiset of |C| in A’s decryption queries in game G4, and
let L be the multiset {	 | 	 ≥ 0 and 	+ λ ∈ L′}. Then

∣∣Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]
∣∣ ≤ Pr[AG3 sets bad] ≤

∑
�∈L

|Σ|�
|Σ|�+λ − q

=
∑
�∈L

1

|Σ|λ − (q/|Σ|�)

≤
∑
�∈L

1

|Σ|λ − q
≤ q

|Σ|λ − q
≤ 2q

|Σ|λ ;

the last inequality is due to the assumption that q ≤ |Σ|λ−1. Summing up,

∣∣Pr[AIdealΠ ⇒ 1]− Pr[APRIΠ ⇒ 1]
∣∣ ≤ 3∑

i=1

∣∣Pr[AGi ⇒ 1]− Pr[AGi+1 ⇒ 1]
∣∣

≤ r2 + r

|Σ|λ+mmin+1
+

2q

|Σ|λ

as claimed.

B.2 Proof of Theorem 2

The reduction R creates from A the adversary B as follows. It runs A. When the latter makes an
encryption query (N,A, λ,M), if v(M) = 1 then the former sends the same query to its encryption
oracle and returns the answer to A; otherwise it returns ⊥. When A makes a query (N,A, λ, C),
adversary B sends the same query to its decryption oracle to get M . If |M | = |C|−λ and v(M) �= 1
then it returns 0 ‖M to A, where 0 is a canonical point in Σ. Otherwise, it returns M . Finally, it
outputs the same guess as A.

24 Hoang, Krovetz, and Rogaway

For any query (N,A, λ, C) that it receives, S′ stores (N,A, λ, |C|) in a set Lλ. It also maintains,
for each (N,A, λ,) in Lλ, a set BN,A,λ,�. Initially, BN,A,λ,� = Σ�−λ\Mv. The simulator S′ works
by running the simulator S. For each query (N,A, λ, C), the simulator S′ tosses a biased coin, the

head will land with probability
|BN,A,λ,�|

|BN,A,λ,�|+(|Σ|�−Σ|�−λ)
, where 	 = |C|. If the head shows up, S′ will

sample M �BN,A,λ,�, remove M from BN,A,λ,�, and return M . Otherwise, it will run S on query
(N,A, λ, C) and output whatever S returns. Then

Pr[AREALΠv,S′ ⇒ 1] = Pr[BREALΠ,S ⇒ 1], and

Pr[ARAEΠv,S′ ⇒ 1] = Pr[BRAEΠ,S ⇒ 1] .

Subtracting, we’ll get Advrae
Π,S(B) = Advrae

Πv ,S′(A).

B.3 Proof of Theorem 3

The reduction R creates from A the adversary B as follows. It runs A. Whenever A makes an
encryption query (N,A, λ,M), adversary B sends (T,Encodeλ(M)) to its left oracle, with T =
(N,A, λ), and returns the answer to A. When A makes a decryption query (N,A, λ, C), adversary
sends (T,C), with T = (N,A, λ) to its right oracle to get answer X, and then returns Decodeλ(X)
to A. Finally, it outputs the same guess as A.

Let Π = EtE[Encode,Perm(T , Σ∗)] be the variant of EtE[Encode, Ẽ] in which ẼK is replaced
by an ideal tweakable, length-preserving random permutation π̃ : T ×Σ∗ → Σ∗. It suffices to build
a simulator S such that Advrae

Π,S(A) = 0 for any adversary A. Wlog, assume that the simulator is
given only queries (N,A, λ, C) of λ > 0, and assume that the adversary never repeats its queries.
For each λ ∈ Z

+ and each 	 ≥ λ, let V�,λ = Σ�\Rλ, where Rλ is the range of Encodeλ(·). Then
|V�,λ| = |Σ|� − |Σ|�−λ ≥ 1

2 |Σ|�. For each query (N,A, λ, C) it receives, the simulator S stores
(N,A, λ, |C|) in a set Lλ. It also maintains, for each (N,A, 	, λ) ∈ Lλ, an (initially empty) set
BN,A,�,λ. On input (N,A, λ, C), if |BN,A,�,λ| < |V�,λ| then S picks M �V�,λ\BN,A,�,λ, adds M to
BN,A,�,λ, and returns M , where 	 = |C|. Otherwise, the simulator returns ⊥. Then Advrae

Π,S(A) = 0.

What’s left is to show how to implement the sampling M �V�,λ\BN,A,�,λ efficiently, for 	 > 5.
If |V�,λ\BN,A,�,λ| > 1

4 |Σ|� then S keeps sampling in Σ� until it hits a point M ∈ V�\BN,A,�. The
expected number of sampling operations is O(1), and each sampling runs in O(+λ) time. The set
BN,A,�,λ is implemented via a hash, and thus the amortized cost of checking if M ∈ V�,λ\BN,A,�,λ is
O(+λ). At the moment |V�,λ\BN,A,�,λ| = 1

4 |Σ|�, the simulator stores the elements of V�,λ\BN,A,�,λ in
an arrayHN,A,�,λ, and then performs a Fisher–Yates shuffle [22] (commonly known as Knuth shuffle)
overHN,A,�,λ. The running time of this shuffling is O(|Σ|� ·(+λ)), but it’s done after |V�,λ|− 1

4 |Σ|� ≥
1
4 |Σ|� invocations of S, and thus the amortized cost is only O(+λ). If |V�,λ\BN,A,�,λ| ≤ 1

4 |Σ|�, since
the array HN,A,� is already built, S picks M ← HN,A,�,λ[m], where m =

⌊
1
4 |Σ|�

⌋
+ 1− |V�\BN,A,�|.

B.4 Proof of Theorem 4

The reduction R creates from adversary A the adversary B as follows. For each encryption query M
(respectively, decryption query C) of A, adversary B runs the encryption of AEZ-core on M (re-
spectively, decryption of AEZ-core on C), but each call to fK(T, x) is replaced by querying (T, x)
to the oracle. It then outputs the same guess as A. Let Func(T , n) be the set of all functions

Robust Authenticated Encryption 25

ρ : T ×{0, 1}n → {0, 1}n. Let AEZ-core[Func(T , n)] denote the ideal variant of AEZ-core[E], where
fK is replaced by ρ�Func(T , n). It suffices to show that

Adv±prp
AEZ-core[Func(T ,n)](A) ≤ 2σ2

2n
(1)

We now prove claim (1) for an even computationally unbounded adversary A. Without loss of
generality, assume that A is deterministic. Assume that σ ≤ 2n; otherwise the theorem is trivial.
Assume further that A doesn’t make redundant queries: it never repeats a prior query, once it
makes an encryption query (T,M) to get C then it won’t query (T,C) to the decryption oracle,
and likewise, once it makes a decryption query (T,C) to get M then it won’t query (T,M) to the
encryption oracle. Let q ≤ 2σ be the number of queries of A and let qi be the number of queries
that have at least 2i+2 full blocks. We claim that 2

∑
i∈N qi ≤ σ. Let P be a q×σ matrix. For each

j ≤ q, let 	j be the length of the ith query and color the first 2 · �	j/2n� entries of the jth column
of P. Then the total number of colored entries in P is

q∑
j=1

2 ·
⌊
	j
2n

⌋
≤

q∑
j=1

⌈
	j
n

⌉
= σ .

On the other hand, each qi is the number of colored entries in the (2i+1)th row of P, and also the
number of colored entries in the (2i + 2)th row. Hence 2

∑
i∈N qi is the number of colored entries

of P, justifying the claim above.

Consider games G1 and G2 in Fig. 10. Adversary can call Enc(·) for encryption queries, and
Dec(·) for decryption queries. Game G1 is the random game: Enc and Dec implements π and
π−1, where π is an ideal random length-preserving permutation on {0, 1}≥2n. In game G2, for each
Enc(M) query, we output a uniformly random C = (C1, C

′
1, . . . , Cm, C ′

m, Cu, Cv, Cx, Cy) of length
|M | subject to the following conditions:

• C ′
i �= M ′

i and C ′
i is also different from M̃ ′

i and C̃ ′
i produced by any prior (M̃, C̃), for every

i ≤ m.

• Cy �= My and Cy is also different from M̃y and C̃y produced by any prior (M̃, C̃).

Likewise, for each Dec(C) query, we output a uniformly random M = (M1,M
′
1, . . . ,Mm,M ′

m,
Mu,Mv,Mx,My) of length |C| subject to the conditions that:

• M ′
i �= C ′

i and M ′
i is also different from M̃ ′

i and C̃ ′
i produced by any prior (M̃, C̃), for every

i ≤ m.

• My �= Cy and My is also different from M̃y and C̃y produced by any prior (M̃, C̃).

Since the two games G1 and G2 are identical-until-bad, and thus

Pr[AG1 ⇒ 0]− Pr[AG2 ⇒ 0] ≤ Pr[AG1 sets bad] ≤
∑
i∈N

2qi(2qi − 1)

2n+1
≤ 2q

2n

∑
i∈N

qi ≤
σq

2n
.

On the other hand, because

Adv±prp
AEZ-core[Func(T ,n)](A) = Pr[AG1 ⇒ 0]− Pr[AH2 ⇒ 0]

≤ Pr[AG1 ⇒ 0]− Pr[AG2 ⇒ 0] + Pr[AG2 ⇒ 0]− Pr[AH2 ⇒ 0],

26 Hoang, Krovetz, and Rogaway

proc Enc(M)

(M1,M
′
1, . . . ,Mm,M ′

m,Mu,Mv,Mx,My)←M

Domy ← Domy ∪ {My}; C� {0, 1}|M|

(C1, C
′
1, . . . , Cm, C′

m, Cu, Cv, Cx, Cy)← C
for i = 1 to m do

Domi ← Domi ∪ {M ′
i}

if C′
i ∈ Domi then

bad← true; C′
i � {0, 1}n\Domi

Domi ← Domi ∪ {C′
i}

if Cy ∈ Domy then

bad← true; Cy � {0, 1}n\Domy

C ← (C1, C
′
1, . . . , Cm, C′

m, Cu, Cv, Cx, Cy)
Domy ← Domy ∪ {Cy}; return C

proc Dec(C) Games G1 / G2

(C1, C
′
1, . . . , Cm, C′

m, Cu, Cv, Cx, Cy)← C

Domy ← Domy ∪ {Cy}; M � {0, 1}|C|

(M1,M
′
1, . . . ,Mm,M ′

m,Mu,Mv,Mx,My)←M
for i = 1 to m do

Domi ← Domi ∪ {C′
i}

if M ′
i ∈ Domi then

bad← true; M ′
i � {0, 1}n\Domi

Domi ← Domi ∪ {M ′
i}

if My ∈ Domy then

bad← true; My � {0, 1}n\Domy

M ← (M1,M
′
1, . . . ,Mm,M ′

m,Mu,Mv,Mx,My)
Domy ← Domy ∪ {My}; return M

Fig. 10. Games G1 and G2 in the proof of Theorem 4. Game G2 includes the corresponding boxed statement,
but game G1 does not.

proc Validate(M,C, cmd)

(M1,M
′
1, . . . ,Mm,M ′

m,Mu,Mv,Mx,My)←M ; (C1, C
′
1, . . . , Cm, C′

m, Cu, Cv, Cx, Cy)← C; X,Y ← 0n

for i = 1 to m do
if cmd = ‘enc’ then

Vi ← ρa,i(M
′
i)⊕Mi

if (H[i,MiM
′
i] = ⊥) ∧ (Vi ∈ Doma) then bad← true else Doma ← Doma ∪ {Vi}

H[i,MiM
′
i]← Xi ← ρa(Vi)⊕M ′

i ; H[i, CiC
′
i]← Yi ← Xi ⊕ Vi ⊕ ρa,i(C

′
i)⊕ Ci; Ui ← ρa,i(C

′
i)⊕ Ci

if Ui ∈ Doma then bad← true else Doma ← Doma ∪ {Ui}
else

Ui ← ρa,i(C
′
i)⊕ Ci

if (H[i, CiC
′
i] = ⊥) ∧ (Ui ∈ Doma) then bad← true else Doma ← Doma ∪ {Ui}

H[i, CiC
′
i]← Yi ← ρa(Ui)⊕ C′

i; H[i,MiM
′
i]← Xi ← Yi ⊕ Ui ⊕ ρa,i(M

′
i)⊕Mi; Vi ← ρa,i(M

′
i)⊕Mi

if Vi ∈ Doma then bad← true else Doma ← Doma ∪ {Vi}
X ← X ⊕Xi; Y ← Y ⊕ Yi

if Mu �= ε then X ← X ⊕ ρu(pad(Mu)); Y ← Y ⊕ ρu(pad(Cu))
if Mv �= ε then X ← X ⊕ ρu(pad(Mv)); Y ← Y ⊕ ρv(pad(Cv))
A← ρx(My)⊕X ⊕Mx; B ← ρy(Cy)⊕ Y ⊕ Cx; S ← A⊕B
if (A ∈ Domxx) ∨ (B ∈ Domyy) then bad← true
Domxx ← Domxx ∪ {A}; Domyy ← Domyy ∪ {B}
if S ∈ Set then bad← true else Set← Set ∪ {S}
//Constraints for ρ if bad and coll are not set
//ρxx(A) = My ⊕B; ρyy(B) = Cy ⊕A
//ρaa,i(S) = Vi ⊕ Yi for every i = 1, . . . ,m
//ρvv(S)[1..|Mv|] = Cv ⊕Mv if Mv �= ε
//ρuu(S)[1..|Mu|] = Cu ⊕Mu if Mu �= ε
//ρa(Ui) = Yi ⊕ C′

i if cmd = ‘enc’, and ρa(Vi) = Xi ⊕M ′
i otherwise, for every i = 1, . . . ,m

Fig. 11. Procedure Validate to determine if ρ is valid. If ρ is indeed valid, the commented code dictates the
constraints on ρ so that the real game results in the given transcript (M1, C1, cmdi), . . . , (M

q, Cq, cmdq). Sets are
initialized to ∅, and the flag bad is initialized to false. Function pad takes as input a string x with length |x| ≤ n, and
then returns x if |x| = n, and returns x10n−|x| otherwise.

it suffices to prove that

Pr[AG2 ⇒ 0]− Pr[AH2 ⇒ 0] ≤ 2σ2 − σq

2n
. (2)

Robust Authenticated Encryption 27

Since A is deterministic, for any i ≥ 0, the (i+1)th query of A is completely determined from the
transcript (M1, C1, cmd1), . . . , (M

i, Ci, cmdi) of the interaction between A and the oracles up to
the ith queries, and A’s guess is uniquely determined from the full transcript (M1, C1, cmd1), . . . ,
(M q, Cq, cmdq), with each cmdj ∈ {‘enc’, ‘dec’}. Let S be the set of all possible transcripts in
game G2 that makes A output 0. For each s ∈ S, let 	(s) be the total length of A’s queries,
according to s. In game G2 the chance that s is produced is at least 2−�(s), and thus∑

s∈S
2−�(s) ≤ 1

because the left-hand side doesn’t exceed the probability that A outputs 0 in game G2. On the
other hand, the chance that s = (M1, C1, cmd1), . . . , (M

q, Cq, cmdq) is produced in game G2 is at
most

q−1∏
i=0

1

2|M i| − σ/2
≤ 2−�(s)

q−1∏
i=0

1

1− σ/22n+1
≤ 2−�(s)

1− σq/22n+1
≤ 2−�(s) ·

(
1 +

σq

22n

)
≤ 2−�(s) ·

(
1 +

σq

2n

)
,

where the second inequality is due to the fact that (1 − x1) · · · (1 − xq) ≥ 1 − (x1 + · · · + xq) for
any 0 ≤ x1, . . . , xq ≤ 1. We claim that for any s ∈ S, the chance that s is produced in game H2 is
at least 2−�(s)(1− (2σ2 − 2σq)/2n), and thus

Pr[AG2 ⇒ 0]− Pr[AH2 ⇒ 0] ≤
∑
s∈S

2−�(s) ·
(
1 +

σq

2n

)
− 2−�(s)

(
1− 2σ2 − 2σq

2n

)

≤
∑
s∈S

2−�(s) · 2σ
2 − σq

2n

establishing (2). To justify the claim above, consider an arbitrary transcript s ∈ S. Let s =
(M1, C1, cmd1), . . . , (M

q, Cq, cmdq). We say that the function ρ is valid if it doesn’t trigger the
flag bad to true when we run Validate(M1, C1, cmd1), . . . ,Validate(M

q, Cq, cmdq), where the
code of Validate is specified in Fig. 11. If bad is not set then the commented code in Validate
specifies the constraints for ρ on tweaks T ∈ T \Tvalid, where Tvalid is the set of tweaks T such that
ρ(T, ·) is used in running Validate(M1, C1, cmd1), . . . ,Validate(M

q, Cq, cmdq). If ρ is valid then
the constraints never assign two different values to a point, and thus the conditional probability
that ρ satisfies the prescribed constraints, given that ρ is valid, is at least 2−�(s). What remains is
to prove that the probability that bad is set is at most (2σ2 − 2σq)/2n.

Code interpretation. In the code, we maintain a map H : N × {0, 1}n → {0, 1}n such that
H[i,MiM

′
i]← Xi and H[i, CiC

′
i]← Yi. Wlog, consider the case cmd = ‘enc’. First, the assignment

H[i,MiM
′
i] ← Xi doesn’t overwrite an existing point in H, because if there is a prior query

(M̃, C̃, c̃md) such that M̃iM̃
′
i = MiM

′
i then Xi = X̃i, and if there is a prior query (M̃, C̃, c̃md) such

that C̃iC̃
′
i = MiM

′
i then Xi = Ỹi. When we run the assignment H[i,MiM

′
i] ← Xi ← ρa(Vi) ⊕M ′

i ,
if bad is not set and H[i,MiM

′
i] = ⊥ then ρa has never been evaluated on Vi, and thus Xi is

a fresh random string. Next, the assignment H[i, CiC
′
i] ← Yi doesn’t overwrite an existing point

in H, as C ′
i �= M ′

i and C ′
i �= C̃ ′

i for any prior query (M̃, C̃, c̃md). Moreover, when we run the
assignment H[i, CiC

′
i]← Yi ← Xi ⊕ Vi + ρa,i(C

′
i)⊕ Ci, as ρa,i has never been evaluated on C ′

i, the

28 Hoang, Krovetz, and Rogaway

string Yi is a fresh random string. In other words, H is a random oracle, and Xi ← H[i,MiM
′
i] and

Yi ← H[i, CiC
′
i] for any query (M,C) and any i ≤ �|M |/2n� − 2.

A technical lemma . We show that for any two queries (M,C, cmd) and (M̃, C̃, c̃md), it’s unlikely
that X ⊕Mx = X̃ ⊕ M̃x, unless M [1..|M | − n] = M̃ [1..|M̃ | − n]. By symmetry, it’s unlikely that
Y ⊕ Cx = Ỹ ⊕ C̃x, unless C[1..|C| − n] = C̃[1..|C̃| − n].

Lemma 1. For any two queries (M,C, cmd) and (M̃, C̃, c̃md), (a) if M [1..|M |−n] �= M̃ [1..|M̃ |−n]
then Pr[X ⊕Mx = X̃ ⊕ M̃x] ≤ 2−n, and (b) if C[1..|C| − n] �= C̃[1..|C̃| − n] then Pr[Y ⊕ Cx =
Ỹ ⊕ C̃x] ≤ 2−n.

Proof. We’ll give a proof for part (a); part (b) follows due to symmetry. If M [1..|M | − 2n] =
M̃ [1..|M̃ | − 2n] then Mx �= M̃x and X = X̃. Hence X ⊕Mx �= X̃ ⊕ M̃x. Consider the case that
M [1..|M | − 2n] �= M̃ [1..|M̃ | − 2n]. Let m = �|M |/2n� − 2 and m′ = �|M̃ |/2n� − 2. Wlog, assume
that m ≥ m′. We consider the following cases.

Case 1: m > m′. Then Xm is independent of X̃, and thus the chance that X ⊕Mx = X̃ ⊕ M̃x is
at most 2−n.

Case 2: m = m′ and there is an index i ≤ m such that MiM
′
i �= M̃iM̃

′
i , and thus Xi and X̃i are

independent. Then X ⊕M ′
0 = X̃ ⊕ M̃ ′

0 with probability at most 2−n.

Case 3: m = m′ and MiM
′
i = M̃iM̃

′
i for every i ≤ m. If Mu �= M̃u then one of them must be

nonempty; wlog, suppose that Mu �= ε. Then Xu = ρu(Mu) is independent of X̃, and X ⊕Mx =
X̃ ⊕ M̃x with probability at most 2−n. So suppose that Mu = M̃u. Then Mv �= M̃v, and thus one of
them must be nonempty; wlog assume that Mv �= ε. Then Xv = ρv(Mv10

∗) is independent of X̃,
and X ⊕Mx = X̃ ⊕ M̃x with conditional probability at most 2−n. ��

Accounting for bad events. The flag bad is set only if one of the following happens:

• There are some (M,C, cmd) and (M̃, C̃, c̃md) such that (1) M [1..|M | − n] �= M̃ [1..|M̃ | − n],
but (2) X⊕Mx = X̃⊕M̃x. From Lemma 1, this happens with conditional probability at most
q2/2n+1.

• There are some (possibly the same) queries (M,C, cmd) and (M̃, C̃, c̃md) and i, j ≥ 1 and
such that (1) either i �= j or MiM

′
i �= M̃jM̃

′
j but (2) ρa,i(M

′
i)⊕Mi = ρa,j(M̃

′
j)⊕M̃j . Summing

over for at most σ − 2q pairs MiM
′
i and M̃jM̃

′
j , this event happens with probability at most

(σ − 2q)2/2n+1.

• There are some (M,C, cmd) and (M̃, C̃, c̃md) such that (1) X ⊕ Mx �= X̃ ⊕ M̃x, but (2)
ρx(My)⊕X ⊕Mx = ρx(M̃y)⊕ X̃ ⊕ M̃x. This event happens with probability at most q2/2n+1.

• The dual of the bad events above, where Mi becomes Ci, X becomes Y , and so on. This
happens with probability at most (2q2 + (σ − q)2)/2n+1.

• There are some (possibly the same) queries (M,C, cmd) and (M̃, C̃, c̃md) and i, j ≥ 1 and
such that (1) either i �= j or MiM

′
i �= C̃jC̃

′
j but (2) ρa,i(M

′
i)⊕Mi = ρa,j(C̃

′
j)⊕ C̃j . Summing

over for at most σ − 2q strings MiM
′
i at most σ − 2q) strings C̃jC̃

′
j , this event happens with

probability at most (σ − 2q)2/2n.

Robust Authenticated Encryption 29

• There is a query (M,C, cmd) and a prior query (M̃, C̃, c̃md) such that S = S̃. As S =
ρx(My) ⊕Mx ⊕X ⊕ ρy(Cy) ⊕ Cx ⊕ Y , S̃ = ρx(M̃y) ⊕ M̃x ⊕ X̃ ⊕ ρy(C̃y) ⊕ C̃x ⊕ Ỹ , and either
Cy �∈ {My, M̃y, C̃y} or My �∈ {Cy, M̃y, C̃y}, this happens with probability at most q2/2n+1.

Summing up, the chance that bad is set is at most

2.5q2 + 2(σ − 2q)2

2n
=

2σ2 − 8σq + 10.5q2

2n
≤ 2σ2 − 2σq

2n
;

the last inequality is due to the fact that σ ≥ 2q.

B.5 Proof of Theorem 5

The reduction R creates from A the adversary B as follows. It runs A. Each time the latter makes
an Enc query, the former runs the encryption procedure of AEZ[Ẽ], but each ẼT

K(X) is replaced
by querying (T,X) to the oracle of B. Likewise, for each Dec query of A, adversary B runs the
decryption procedure of AEZ[Ẽ], but each ẼT

K(X) is replaced by querying (T,X) to the oracle of B.
Finally, B outputs the same guess as A.

Let AEZ[Perm(Taez, 128)] be the ideal variant of AEZ[Ẽ] where Ẽ is replaced by an ideal TBC
π̃ : Taez × {0, 1}128 → {0, 1}128. Let S be the simulator in Theorem 3. It suffices to show that

Advrae
AEZ[Perm(Taez,128)],S(A) ≤ 3s2

2128
. (3)

Let H be the ideal variant of AEZ-hash in which E is replaced by π̃. Note that s is the sum of
the number of processed blocks from two sources: AEZ-core, and AEZ-prf; let these numbers be σ
and t respectively. Equation (3) is obtained via the following results:

– Theorem 3 in Section 5 to justify the RAE security from the EtE construction,
– Theorem 4 in Section 6 to justify that AEZ-core is a secure length-preserving strong tweakable-

PRP on Byte≥32, contributing 2σ2/2128 to the total advantage,

– Theorem 7 in Appendix C for tweaking AEZ-core. This part contributes at most (σ/4)2

2128
+

Advaxu
H (σ) ≤ 0.1σ2

2128
+Advaxu

H (σ) to the total advantage.

What remains is to bound (i) the AXU advantage of H, (ii) the PRF-advantage of the ideal variant
of AEZ-prf and (iii) the advantage in distinguishing AEZ-core on π̃ and AEZ-core on an ideal
random function f : Taez × {0, 1}128 → {0, 1}128. For (i), note that CollH(m,m′) ≤ 1/(2128 − 1) for
every m,m′ ∈ N, and thus

Advaxu
H (z) ≤ 0.5z(z − 1)

2128 − 1
≤ 0.5z2

2128

for any z ∈ {0, . . . , 2128}. For (ii), the PRF advantage of the ideal variant of AEZ-prf is at most
t2/2128. For (iii), note that A’s queries results in calling π̃(0,0) at most σ times. Suppose that A’s
queries result in calling π̃ on tweaks T1, . . . , Tm �= (0, 0) with q1, . . . , qm queries respectively. Note
that q1, . . . , qm ≤ σ/2 and q1+· · ·+qm ≤ 1.5σ. By PRP/PRF Switching Lemma [31], the advantage
in distinguishing π̃ and f on tweaks T1, . . . , Tm with q1, . . . , qm queries respectively, and on tweak
(0, 0) with σ queries, is at most

σ2

2 · 2128 +
m∑
i=1

q2i
2 · 2128 ≤

σ2

2 · 2128 +
m∑
i=1

qiσ

4 · 2128 ≤
0.9σ2

2128
.

30 Hoang, Krovetz, and Rogaway

Summing up,

Advrae
AEZ[Perm(Taez,128)],S(A) ≤ 3.5σ2 + t2

2128
≤ 3.5s2

2128

as claimed.

B.6 Proof of Theorem 6

Let q be the number of calls to E. Then q ≤ 2.5s − 2. Let π : {0, 1}128 → {0, 1}128 be an ideal
random permutation, and let π̃i,j(X) = π(X⊕(i+1)I⊕jJ) where I = π(0) and J = π(1) for every

(i, j) ∈ Taez. From Theorem 5, what remains is to show that, Advp̃rp
π̃ (D) ≤ 1.5(q + 2)2/2128 for

any adversary D that makes at most q queries, which is implied by [49, Theorem 7]. (The theorem

statement of [49, Theorem 7] states that Advp̃rp
π̃ (D) ≤ 4.5q2/2128, but in our setting, the proof

of [49, Theorem 7] actually yields Advp̃rp
π̃ (D) ≤ 0.5q2/2128 + (q + 2)2/2128 and then upperbounds

q + 2 ≤ 2q.)

C Tweaking a Wide-Block Blockcipher

In Section 5 we have shown that RAE can be achieved from the EtE construction using a an
arbitrary-input blockcipher with tweak space T = Σ∗×Σ∗×N. In AEZ, we consider Σ = Byte and
then build an arbitrary-input blockcipher but without the tweaks, which is AEZ-core for messages
at least 32 bytes, and AEZ-tiny for shorter messages. We now show how to tweak this generalized
blockcipher. We’ll use the XEX processing [35, 49] to tweak AEZ-core. Recall that AEZ-tiny is a
Feistel network whose round functions are derived from a TBC E : T ′ × {0, 1}128 → {0, 1}128.
To tweak AEZ-tiny, we’ll expand the tweak space of E to T × T ′ via the XE processing [35, 49].
(Since there’s no query to E−1

K , we don’t need XEX processing.) In both cases, we’ll hash the tweak
T ∈ T via an almost-xor universal (AXU) hash. To save the context size, AEZ-tiny and AEZ-core
will use the same key for the AXU hash. To justify this sharing, we’ll extend the ±p̃rp security as
follows. The tweak space T is partitioned into two sets T ± and T +. The adversary can only make
decryption queries for tweaks T ∈ T ±. This definition, put forward by Krovetz and Rogaway [34],
aims at minimizing the overhead of tweaking a blockcipher. Below, we’ll extend the classic notion
of AXU hash for a possibly infinite message space.

AXU hash. Let n ≥ 1 be an integer and let H : K × U → {0, 1}n. For our application, each
U ∈ U will be a vector whose components are string vectors. We write ‖U‖ to denote the length
of the string encoding of U . For each m,m′ ∈ N, define CollH(m,m′) as the maximum, taken
over all y ∈ {0, 1}n and distinct U,U ′ ∈ U such that �‖U‖/n� = m and �‖U ′‖/n� = m′, of
Pr[K�K : HK(U)⊕HK(U ′) = y]. If there are no such U and U ′ then CollH(m,m′) = 0. For each
s ∈ N, let

Advaxu
H (s) = max

q,m1,...,mq
m1+···+mq=s

{ ∑
1≤i<j≤q

CollH(mi,mj)
}

Expanding the tweak space. Let n ≥ 1 be an integer and M ⊆ {0, 1}∗ be a set such that
(i) |x| ≥ n for every x ∈ M, and (ii) if x ∈ M then {0, 1}|x| ⊆ M. Suppose that we have an

Robust Authenticated Encryption 31

AXU hash H : K × U → {0, 1}n and a tweakable blockcipher Ẽ : K′ × V ×M → M, where V is
partitioned to V± and V+. Consider the following way XT[H, Ẽ] to build a tweakable blockcipher
Ẽ : (K ×K′)× T ×M→M, with T = U × V and T ± = U × V± and T + = U × V+. On input M
and tweak T = (U, V), let S = 0m ‖HK(U) ‖ 0|M |−m−n, where m = max{0, |M | − 2n}. If T ∈ T ±

then ẼTK,K′(M) = S ⊕ Ẽ
V
K′(M ⊕ S), otherwise ẼTK,K′(M) = Ẽ

V
K′(M ⊕ S). The following says that Ẽ

achieves the extended ±p̃rp security. This result is close to one of Liskov, Rivest, and Wagner [35].
We can justify the key sharing of AEZ-tiny and AEZ-core by applying Theorem 7 for n = 128,

M = Byte16 ∪Byte≥32, V+ = {0} × N ×A, V± = {(1, 0)}, Ẽ(1,0)K as AEZ-core, and Ẽ
(0,T)
K as the

TBC implementing the round functions of AEZ-tiny with tweak T .

Theorem 7. Let Ẽ : K×M → M be a tweakable blockcipher and and H : K′×T → {0, 1}n
be an AXU hash. There is an explicitly given reduction R with the following property. For any
adversary A, adversaries B = R(A) satisfies

Adv±p̃rp

XT[H,˜E]
(A) ≤ q2/2n +Adv±p̃rp

˜E
(B) +Advaxu

H (s),

where s is the total block length of the string encodings of the tweaks in A’s queries and q is the
number of A’s queries. Adversary B has about the same running time as A plus the time using H
to process the tweaks in A’s queries. It makes q queries as A, and the total block length of its
queries is the same as that of A.

Proof. The reduction R creates from A the adversary B as follows. It samples K1�K1 and
runs A. For each encryption query (T,M) of A, with T = (U, V), adversary B computes S ←
0m ‖HK(U) ‖ 0|M |−m−n, where m = max{0, |M | − 2n}, and queries (V,M ⊕ S) to its left oracle to
gets answer C. It returns C⊕S to A if T ∈ T ±, and returns C to A otherwise. For each decryption
query (T,C) of A, with T = (U, V), adversary B computes S ← 0m ‖ HK(U) ‖ 0|C|−m−n, where
m = max{0, |C| − 2n}, and queries (V,C ⊕ S) to its right oracle to gets answer M , and returns
M ⊕ S to A. Finally, it outputs the same guess as A.

Let Perm(V ,M) denote the set of all functions f : V ×M → M such that each f(V, ·) is a
length-preserving permutation onM, for every V ∈ V . Let XT[H,Perm(V ,M)] denote the variant
of XT[H,E] in which EK′ is replaced by an ideal π̃�Perm(V ,M). It suffices to show that

Adv±p̃rp
XT[H,Perm(V,M)](A) ≤ q2/2n +Advaxu

H (s) .

Consider games G1–G6 in Fig. 12. In each game, adversary A interrogates oracle Enc for encryption
queries, and oracleDec for decryption queries. Without loss of generality, assume that the adversary
doesn’t make redundant queries, that is, (i) it doesn’t repeat prior queries for each oracle, (ii) once
it queries (T,M) to Enc to get C, it won’t query (T,C) to Dec, and (iii) once it queries (T,C)
to Dec to get M , it won’t query (T,M) to Enc. Game G1 corresponds to the real setting and
game G6 to the random setting.

We explain the game chain to the terminal one. Let Func(V ,M) be the set of functions f :
V ×M → M such that each f(V, ·) is length-preserving, for every V ∈ V . Game G2 is identical
to G1, except that instead of using an ideal π̃�Perm(V ,M) we’ll use an ideal f �Func(V ,M).
Suppose that A uses 	 tweaks T1, . . . , T�, and makes qi queries for tweak Ti. Games G1 and G2 are
identical-until-bad, and thus

Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1] ≤ Pr[AG2 sets bad] ≤
�∑

i=1

q2i
2n+1

≤ q2

2n+1
.

32 Hoang, Krovetz, and Rogaway

proc Enc(T,M)

(U, V)← T ; m← max{0, |M | − 2n}
S ← 0m ‖HK(U) ‖ 0|M|−m−n

x←M ⊕ S; y� {0, 1}|M|

if T ∈ T ± then Mask ← S else Mask ← 0|M|

if x ∈ Dom(V) then
y ← P [V, x]; return y ⊕Mask

if y ∈ Ran(V) then

bad← true; y� {0, 1}|M|\Ran(V)

P [V, x]← y; Dom(V)← Dom(V) ∪ {x}
R[V, y]← x; Ran(V)← Ran(V) ∪ {y}
return y ⊕Mask

proc Dec(T,C) Games G1 / G2

(U, V)← T ; m← max{0, |C| − 2n}
S ← 0m ‖HK(U) ‖ 0|C|−m−n

y ← C ⊕ S; x� {0, 1}|C|

if y ∈ Ran(V) then (x← R[V, y]; return x⊕ S)
if x ∈ Dom(V) then

bad← true; x� {0, 1}|C|\Dom(V)

P [V, x]← y; Dom(V)← Dom(V) ∪ {x}
R[V, y]← x; Ran(V)← Ran(V) ∪ {y}
M ← x⊕ S; return M

proc Enc(T,M)

(U, V)← T ; m← max{0, |M | − 2n}
S ← 0m ‖HK(U) ‖ 0|M|−m−n

x←M ⊕ S; C� {0, 1}|M|

if T ∈ T ± then Mask ← S else Mask ← 0|M|

if x ∈ Dom then

bad← true; C ← P [V, x]⊕Mask

y ← C ⊕Mask; P [V, x]← y
Dom(V)← Dom(V) ∪ {x}
R[V, y]← x; Ran(V)← Ran(V) ∪ {y}
return C

proc Dec(T,C) Games G3 / G4

(U, V)← T ; m← max{0, |C| − 2n}
S ← 0m ‖HK(U) ‖ 0|C|−m−n

y ← C ⊕ S; M � {0, 1}|C|

if y ∈ Ran(V) then bad← true; M ← R[V, y]⊕ S

x←M ⊕ S; P [V, x]← y; Dom(V)← Dom(V) ∪ {x}
R[V, y]← x; Ran(V)← Ran(V) ∪ {y}
return M

proc Enc(T,M)

(U, V)← T ; C� {0, 1}|M|

if C ∈ Ran(V) then

bad← true; C� {0, 1}|M|\Ran(V)

Dom(V)← Dom(V) ∪ {M}
Ran(V)← Ran(V) ∪ {C}
return C

proc Dec(T,C) Games G5 / G6

(U, V)← T ; M � {0, 1}|C|

if M ∈ Dom(V) then

bad← true; M � {0, 1}|C|\Dom(V)

Dom(V)← Dom(V) ∪ {M}; Ran(V)← Ran(V) ∪ {C}
return M

Fig. 12. Games G1–G6 in the proof of Theorem 7. Games G1, G3, G6 include the corresponding boxed state-
ments, but games G2, G4, G5 do not. In each game, there is an implicit procedure Initialize that samples K1 �K1.
Sets are initialized to ∅. Every entry of all arrays is initialized to ⊥.

In game G3, instead of sampling y at random and computing C as y ⊕ Mask, we sample C at
random at let y ← C ⊕Mask. The change is conservative. In game G4, both Enc and Dec always
return a fresh random answer. Games G3 and G4 are identical-until-bad, and thus

Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1] ≤ Pr[AG4 sets bad] .

We now bound the chance that G4 sets bad. Without loss of generality, we can assume that the
adversary is non-adaptive, because the answers from the oracles are always independent, uniformly
random strings. Game G4 sets bad only if the adversary can find distinct (U,M) and (U ′,M ′) such
that |M | = |M ′| and

(0m ‖HK(U) ‖ 0|M |−n−m)⊕M = (0m ‖HK(U ′) ‖ 0|M ′|−m−n)⊕M ′, (4)

where m = max{0, |M | − 2n}. If U = U ′ then M �= M ′ because (U,M) �= (U ′,M ′), and thus
Equation (4) won’t happen. If U �= U ′ then Equation (4) happens with probability at most

Robust Authenticated Encryption 33

Coll(�‖U‖/n�, �‖U ′‖/n�). Hence Pr[AG4 sets bad] ≤ Advaxu
H (s). Next, game G5 is the simplified

version of game G4. Game G6 is identical to G5, except that we maintain the consistency among
the queries. Then

Pr[AG5 ⇒ 1]− Pr[AG6 ⇒ 1] ≤ Pr[AG5 sets bad] ≤
�∑

i=1

q2i
2n+1

≤ q2

2n+1
.

Summing up, Adv±p̃rp
XT[H,Perm(V,M)](A) ≤ Pr[AG1 ⇒ 1]− Pr[AG6 ⇒ 1] ≤ q2/2n +Advaxu

H (s). ��

D An Insecure Variant of AEZ-core

Numerous variants of AEZ-core were considered to arrive at AEZ-core. Most simplifications of the
final version do not work. As an example, consider trying to cheapen the design by using ci ·faa,1(S)
instead of faa,i(S) to whiten the middle of each Feistel network, where each ci is a public constant,
and the dot is the multiplication in GF(2n). For example, one might hope this works for ci = 1 or
ci = i. But this modification is insecure for any choice of ci values.

For each L ⊆ {1, . . . , n + 1} let θ(L) = ⊕i∈L ci. Let D �= ∅ be a subset of {1, . . . , n + 1}
such that θ(D) = 0n. Such a set D must exists. Assume to the contrary that θ(L) �= 0n for all
nonempty L ⊆ {1, . . . , n + 1}. Then for any distinct nonempty subsets L,L′ ⊆ {1, . . . , n + 1}, we
have θ(L) �= θ(L′). This means that for 2n+1 − 1 nonempty subsets L ⊆ {1, . . . , n + 1} we have
2n+1 − 1 > 2n corresponding distinct elements θ(L) of GF(2n), which is a contradiction.

We now describe an attack to the modified AEZ-core. Our attack only uses strings of length
	 = 2n(n + 3). Let M and M̃ be arbitrary distinct 	-bit strings such that they agree everywhere
except the last two blocks. Query M and M̃ to the first oracle to get answers C and C̃ respectively.
In the real game, we’ll have Xi = X̃i and Ỹi = Yi ⊕ (ci · (S ⊕ S̃)) for every 1 ≤ i ≤ n+ 2. Next, let
C∗ be the “mixed” ciphertext such that, for every 1 ≤ i ≤ n+3, the (2i− 1)’th and 2i’th blocks of
C∗ are the same as those of C̃ if i ∈ D, otherwise C∗ would borrow the corresponding two blocks
of C. Query C∗ to the second oracle to get an answer M∗. Let D = {1, . . . , n + 2}\D. In the real
game, the query C∗ will generate Y ∗

i = Ỹi for every i ∈ D, and Y ∗
i = Yi for every i ∈ D. Then

Y ∗ =
⊕
i∈D

Ỹi ⊕
⊕
j∈D

Yj = Y ⊕
⊕
i∈D

((S ⊕ S̃) · ci) = Y .

Consequently, S∗ = S and thus M∗ and M agree at the (2n + 3)th and (2n + 4)th blocks. The
latter event happens with probability at mos 2−n in the random game. Hence this attack wins with
advantage at least 1− 2−n.

