Rice's Theorem

Rice's theorem helps explain one aspect of the pervasiveness of undecidability. Here is the theorem and its proof, following the needed definition.

A property of languages is a predicate $P: \mathcal{P}(\Sigma^*) \to \{\text{false, true}\}\ \text{for some alphabet }\Sigma$. That is, the input to P is a language and the output is a truth value. The value P(L) = true (we can write "P(L)") means that L has the property P; the value P(L) = false (we can write " $\overline{P(L)}$ ") means that L does not have property P. Example properties are: is finite, is infinite, is regular, is r.e., contains the empty string, contains the string 1011, contains some palindrome, contains only palindromes.

A nontrivial property of r.e. languages is a property of languages P such that $P(L_0)$ for some r.e. language L_0 and $\overline{P(L_1)}$ for some r.e. language L_1 . In English, some r.e. language has the property and some r.e. language does not. All the example properties we listed above are nontrivial with the exception of "is r.e.".

Theorem [Rice]: If P is a nontrivial property of r.e. languages then

$$L_P = \{ \langle M \rangle : P(L(M)) \}$$

is undecidable. More specifically, (1) if $P(\emptyset)$ then L_P is not r.e., and (2) if $\overline{P(\emptyset)}$ then L_P is not co-r.e.

Proof: We prove the second claim; the first is similar. So we are assuming that \emptyset does not have property P: $P(\emptyset) = \mathsf{false}$. We show $A_{\mathrm{TM}} \leq_{\mathrm{m}} L_P$. To show this, we must exhibit a Turing computable function f for which $\langle M' \rangle = f(\langle M, w \rangle)$ is a machine accepting a language with property P iff M accepts w. Let the behavior of M' on input x to be:

Run M on w.

If M rejects, reject.

Run M_1 on x where M_1 is a (fixed) machine for which $P(\langle M_1 \rangle) = 1$. We know such an M_1 exists because P is a *nontrivial* property of r.e. languages.

If M_1 accepts, *accept*; if M_1 rejects, *reject*."

Clearly M' is Turing computable from M and w. Observe that

(1) if M accepts w then $L(M') = L(M_1)$, which is a language with property P.

(2) if M does not accept w, then $L(M') = \emptyset$ which, by assumption, is a language that does not have property P.

Now try to do case (2) on your own.