Problem Set 3 - Due Tuesday, April 20, 2010, at 4:15 pm

Problem 1. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA. We say that M accepts a string x in the all-paths sense if every computation of M on x ends in a state in F; that is, $\hat{\delta}\left(\left\{q_{0}\right\}, x\right) \subseteq F$. Let $L^{\prime}(M)$ denote the set of all $x \in \Sigma^{*}$ such that M accepts x in the all-paths sense. Show that L is regular iff $L=L^{\prime}(M)$ for some NFA M.

Problem 2. Do Sipser exercises 1.19(b) and 1.21(b) from page 86.

Problem 3. Find a regular expression representing the encoding of binary numbers divisible by 3. Show your work in systematically devising this regular expression, starting from a DFA for the same language.

Problem 4. Prove that the following languages are not regular.
Part A. $L=\left\{w w w: w \in\{a, b\}^{*}\right\}$.
Part B. $L=\left\{a^{2^{n}}: n \geq 0\right\}$.

Problem 5. Decide if the following languages are regular or not, proving your answers either way.
Part A. $L=\left\{w \in\{0,1\}^{*}: w\right.$ is not a palindrome $\}$.
Part B. $L=\left\{w \in\{0,1\}^{*}: w\right.$ has an equal number of 01 's and 10 's $\}$.
Part C. $L=\left\{w \in\{0,1,2\}^{*}: w\right.$ has an equal number of 01's and 10 's $\}$.

Problem 6. Let α be a regular expression. Show that there is a regular expression β having the exact same length as α and satisfying $L(\beta)=(L(\alpha))^{R}$.

