Problem Set $4-$ Due Tuesday, April 27, 2010, at 4:15 pm

Problem 1. Describe a decision procedure to solve the following problem: given a regular expression α, is α a shortest regular expression for $L(\alpha)$? How efficient is your procedure?

Problem 2. Are the following statements true or false? Either prove the statement or give a counterexample to it.

Part 2A. If $L \cup L^{\prime}$ is regular than L and L^{\prime} are regular.
Part 2B. If L^{*} is regular than L is regular.
Part 2C. If $L L^{\prime}$ is regular than L and L^{\prime} are regular.
Part 2D. If L and L^{\prime} agree on all but a finite number of strings, then one is regular iff the other is regular.

Part 2E. If R is regular, L is not regular, and L and R are disjoint, then $L \cup R$ is not regular.

Problem 3. Define $A=\left\{x \in\{a, b, \not \forall\}^{*}: x\right.$ contains an equal number of a 's and b 's or x contains consecutive $\sharp \mathrm{s}$ or consecutive letters $\}$.

Part 3A. Can you use the pumping lemma to prove that L is not regular? Explain.
Part 3B. Prove that A is not regular. Hint: consider closure under homomorphisms and problem 2E.

Problem 4. Give a context free grammar for $L=\left\{a^{n} b^{m}: n \neq 2 m\right\}$. Try to make your grammar unambiguous - and explain why it is unambiguous.

Problem 5. A regular grammar is a context-free grammar $G=(V, \Sigma, R, S)$ in which every rule is of the form $A \rightarrow \varepsilon$ or $A \rightarrow a B$, where a is a terminal and A and B are variables. Show that L is regular iff L is generated by a regular grammar.

Problem 6. Consider the grammar G defined by $S \rightarrow A A, A \rightarrow A A A|b A| A b \mid a$.
(a) Carefully and precisely describe the $L(G)$ in an easy-to-recognize form.
(b) Is $L(G)$ regular? Prove your answer either way.
(c) Is G ambiguous? Prove your answer either way.
(d) Is $L(G)$ inherently ambiguous? Give a convincing argument either way.

