Problem Set 4 – Due Tuesday, April 27, 2010, at 4:15 pm

- **Problem 1.** Describe a decision procedure to solve the following problem: given a regular expression α , is α a *shortest* regular expression for $L(\alpha)$? How efficient is your procedure?
- **Problem 2.** Are the following statements true or false? Either prove the statement or give a counter-example to it.
- **Part 2A.** If $L \cup L'$ is regular than L and L' are regular.
- **Part 2B.** If L^* is regular than L is regular.
- **Part 2C.** If LL' is regular than L and L' are regular.
- **Part 2D.** If L and L' agree on all but a finite number of strings, then one is regular iff the other is regular.
- **Part 2E.** If R is regular, L is not regular, and L and R are disjoint, then $L \cup R$ is not regular.
- **Problem 3.** Define $A = \{x \in \{a, b, \sharp\}^* : x \text{ contains an equal number of } a$'s and b's or x contains consecutive \sharp s or consecutive letters $\}$.
- **Part 3A.** Can you use the pumping lemma to prove that L is not regular? Explain.
- Part 3B. Prove that A is not regular. Hint: consider closure under homomorphisms and problem 2E.
- **Problem 4.** Give a context free grammar for $L = \{a^n b^m : n \neq 2m\}$. Try to make your grammar unambiguous—and explain why it is unambiguous.
- **Problem 5.** A regular grammar is a context-free grammar $G = (V, \Sigma, R, S)$ in which every rule is of the form $A \to \varepsilon$ or $A \to aB$, where a is a terminal and A and B are variables. Show that L is regular iff L is generated by a regular grammar.
- **Problem 6.** Consider the grammar G defined by $S \to AA$, $A \to AAA \mid bA \mid Ab \mid a$.
- (a) Carefully and precisely describe the L(G) in an easy-to-recognize form.
- (b) Is L(G) regular? Prove your answer either way.
- (c) Is G ambiguous? Prove your answer either way.
- (d) Is L(G) inherently ambiguous? Give a convincing argument either way.