Quiz 1 Solutions

Questions 1-4 were graded out of 10 points; questions 5-13 were graded out of 25 points total; question 14 was graded out of 20 points. So the total possible was 85 points.

1. Complete the following, being mathematically precise and following the conventions of your text: An NFA is a five-tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where: Q is a finite set, Σ is an alphabet, $q_{0} \in Q, F \subseteq Q$, and δ is a function having domain and range

$$
\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow \mathcal{P}(Q)
$$

2. Draw a DFA for the language:

$$
L=\left\{x \in\{a, b, c\}^{*}: x \text { contains at least one } a \text { and at least one } b\right\}
$$

Make your DFA use a minimal possible number of states. Don't forget the c's.
3. List the first five strings, according to the lexicographic ordering, ${ }^{1}$ of the language $L=\left\{x \in\{a, b, c\}^{*}: x\right.$ contains at least one a and at least one $\left.b\right\}$.
$a b, b a, a a b, a b a, a b b$

[^0]4. Write the simplest regular expression you can for the language
$L=\left\{x \in\{0,1,2\}^{*}: x\right.$ contains exactly two ' 2 's $\}$ $(0 \cup 1)^{*} 2(0 \cup 1)^{*} 2(0 \cup 1)^{*}$
5. True or False: If there's a 10-state DFA that accepts L_{1} and there's a 10-state DFA that accepts L_{2}, then there's a 20-state DFA that accepts $L_{1} \cap L_{2}$.
6. True or False: If there's a 10-state DFA that accepts L_{1} and there's a 10-state DFA that accepts L_{2}, then there's a 100-state DFA that accepts $L_{1} \cap L_{2}$.
7. True or False: If there's a 10-state DFA that accepts L_{1} and there's a 10-state DFA that accepts L_{2}, then there's a 200-state DFA that accepts $L_{1} \cap L_{2}$.
8. True or False: Every NFA-acceptable language is DFA-acceptable.
9. True or False: If M is an NFA and $x \in L(M)$ then every x-labeled path in the diagram of M that starts at the start state of M ends in an accept state of M.
10. True or False: An alphabet can be infinite or finite.
11. True or False: The complement of an infinite language is finite.
12. True or False: The concatenation of an infinite language and a finite language is always infinite.
13. True or False: The Kleene-closure of a language (that is, a language L^{*}) is always infinite.
14. Carefully explain what it means when we say"the DFA-acceptable languages are closed under complement." Then explain why this statement is true.

The statement means that if L is DFA-acceptable then so is \bar{L}, the complement of L with respect to the underlying alphabet. Said differently, if there exists a DFA that accepts L then there exists a DFA that accepts \bar{L}. The reason these statements are true is that, given a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for L, a DFA M^{\prime} for $\overline{L(M)}$ can be constructed by way of $M^{\prime}=\left(Q, \Sigma, \delta, q_{0}, F^{\prime}\right)$ where $F^{\prime}=Q \backslash F$. It is immediate that $x \in L(M)$ iff $x \notin L\left(M^{\prime}\right)$, so $L\left(M^{\prime}\right)=\overline{L(M)}$.

[^0]: ${ }^{1}$ Recall that in the lexicographic ordering of a language L we first list all length- 0 stings in L, then all length- 1 strings in L, then all length- 2 strings in L, and so on. Among strings of a given length, we use a fixed ordering of the characters. You should here assume an ordering of characters $a<b<c$.

