Quiz 1 Solutions

Questions 1-4 were graded out of 10 points; questions 5-13 were graded out of 25 points total; question 14 was graded out of 20 points. So the total possible was 85 points.

1. Complete the following, being mathematically precise and following the conventions of your text: An NFA is a five-tuple $M = (Q, \Sigma, \delta, q_0, F)$ where: Q is a finite set, Σ is an alphabet, $q_0 \in Q$, $F \subseteq Q$, and δ is a function having domain and range

$$\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$$

2. Draw a **DFA** for the language:

 $L = \{x \in \{a, b, c\}^* : x \text{ contains at least one } a \text{ and at least one } b\}$ Make your DFA use a minimal possible number of states. Don't forget the c's.

3. List the first five strings, according to the lexicographic ordering,¹ of the language $L = \{x \in \{a, b, c\}^* : x \text{ contains at least one } a \text{ and at least one } b\}.$

ab, ba, aab, aba, abb

¹Recall that in the lexicographic ordering of a language L we first list all length-0 stings in L, then all length-1 strings in L, then all length-2 strings in L, and so on. Among strings of a given length, we use a fixed ordering of the characters. You should here assume an ordering of characters a < b < c.

- 4. Write the simplest regular expression you can for the language
 L = {x ∈ {0,1,2}* : x contains exactly two '2's}
 (0 ∪ 1)*2(0 ∪ 1)*2(0 ∪ 1)*
- 5. True or **False**: If there's a 10-state DFA that accepts L_1 and there's a 10-state DFA that accepts L_2 , then there's a 20-state DFA that accepts $L_1 \cap L_2$.
- 6. **True** or False: If there's a 10-state DFA that accepts L_1 and there's a 10-state DFA that accepts L_2 , then there's a 100-state DFA that accepts $L_1 \cap L_2$.
- 7. **True** or False: If there's a 10-state DFA that accepts L_1 and there's a 10-state DFA that accepts L_2 , then there's a 200-state DFA that accepts $L_1 \cap L_2$.
- 8. True or False: Every NFA-acceptable language is DFA-acceptable.
- 9. True or **False**: If M is an NFA and $x \in L(M)$ then every x-labeled path in the diagram of M that starts at the start state of M ends in an accept state of M.
- 10. True or False: An alphabet can be infinite or finite.
- 11. True or **False**: The complement of an infinite language is finite.
- 12. True or **False**: The concatenation of an infinite language and a finite language is always infinite.
- 13. True or **False**: The Kleene-closure of a language (that is, a language L^*) is always infinite.
- 14. Carefully explain what it **means** when we say "the DFA-acceptable languages are closed under complement." Then explain **why** this statement is true.

The statement means that if L is DFA-acceptable then so is L, the complement of L with respect to the underlying alphabet. Said differently, if there exists a DFA that accepts L then there exists a DFA that accepts \overline{L} . The reason these statements are true is that, given a DFA $M = (Q, \Sigma, \delta, q_0, F)$ for L, a DFA M' for $\overline{L(M)}$ can be constructed by way of $M' = (Q, \Sigma, \delta, q_0, F')$ where $F' = Q \setminus F$. It is immediate that $x \in L(M)$ iff $x \notin L(M')$, so $L(M') = \overline{L(M)}$.