Midterm Exam

Instructions: This is a closed book, closed notes exam. Do all **4** problems. Do your best to communicate your ideas *clearly* and *succinctly*. If you don't understand what a problem means, ask. Draw a picture if it is useful to explain something. Good luck.

— Earl Barr and Phil Rogaway

Name:

Signature:

On problem	you got	out of
1		35
2		30
3		15
4		20
Σ		100

1 Short Answer

(A) Carefully define what it **means** if we say: the regular languages are closed under intersection. (Don't explain if this statement is true or false; just give a "mathematical translation" of the sentence).

(B) Carefully state the *pumping lemma* for regular languages. (Please don't use the word "pumps," at least not without defining it!) Be sure that your quantifiers are precise.

(C) Draw a DFA that accepts

 $L = \{w \in \{0,1\}^* : w \text{ is the binary representation of a number divisible by } 3\}$.

That is, $L = \{0\}^* \circ \{\varepsilon, 11, 110, 1001, \ldots\}$. Your DFA should have a minimum number of states.

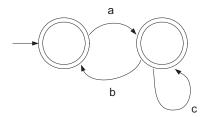
(D) Complete the definition: A context free grammar is a 4-tuple G = (, , ,), where

[35 points]

(E) Give a CFG for $L = \{w \in \{a, b\}^* : w \text{ is a palindrome}\}$. (Recall that a string w is a palindrome if $w = w^R$ — the string reads the same forwards or backwards.)

(F) Prove that the language of Part (E), $L = \{w \in \{a, b\}^* : w \text{ is a palindrome}\}$, is not regular.

(G) Using the procedure given in class and in your book, convert the following NFA into a regular expression for the same language. Do not "simplify" your work.



2 Justified True or False

Put an **X** through the **correct** box. When it says "Explain" provide a **brief** (but convincing) justification. Where appropriate, the justification should be a **counterexample**.

- 1. If F is a finite language and L is an arbitrary language then $L \cap F$ is a regular language. Explain:
- **2.** If L* is regular, then L is regular, too.
 True
 False

 Explain:
 Explain
 False
- **3.** Every regular language can be accepted by an DFA $M = (Q, \Sigma, \delta, q_0, F)$ such that $\delta^*(q_0, x) \neq q_0$ for any string $x \in \Sigma^+$. In case you've forgotten the notation, $\Sigma^+ = \Sigma\Sigma^*$ and $\delta^*(q, x)$ is the state one gets to after processing x, starting in state q. **True False Explain**:
- 4. If L_1 and L_2 are accepted by DFAs then $L_1 \oplus L_2 = (L_1 L_2) \cup (L_2 L_1)$ is accepted by a DFA. **True False**Explain:

[30 points]

5. Suppose L is a regular language with arbitrarily long "gaps" — for every n there is an interval $[a_n, b_n]$ such that $b_n - a_n \ge n$ and L has no strings of any length $\ell \in [a_n \dots b_n]$. Then L is finite. **True** False Explain:

6. If a context-free grammar G is ambiguous then it can be converted to a context-free grammar G' where L(G) = L(G') and G' is not ambiguous. **True False Explain**:

3 A Decision Procedure

[15 points]

Suppose you are given regular expressions α, β over the alphabet $\{a, b\}$. Describe a decision procedure (an algorithm) to answer the following question: is $L(\alpha) \cap L(\beta)$ infinite?

4 A Closure Property

Suppose that L is a regular language over the alphabet $\Sigma = \{0, 1\}$. Define

$$\mathcal{B}(L) = \{x : xy \in L \text{ for some } y \in \Sigma^*\}$$

}.

Part A. List the elements of $\mathcal{B}(\{101\})$: $\mathcal{B}(\{101\}) = \{$

Part B. Prove that if L is regular then $\mathcal{B}(L)$ is regular.

[20 points]