
Notes on Computation Theory

Konrad Slind
slind@cs.utah.edu

September 21, 2010



To summarize, we have seen methods for translating between DFAs,
NFAs, and regular expressions:

• Every DFA is an NFA.

• Every NFA can be converted to an equivalent DFA, by the subset
construction.

• Every regular expression can be translated to an equivalent NFA, by
the method in Section 5.4.2.

• Every DFA can be translated to a regular expression by the method
in Section 7.1.3.

Notice that, in order to say that these translations work, i.e., are correct,
’ we need to use the concept of formal language.

5.5 Minimization

Now we turn to examining how to reduce the size of a DFA such that it
still recognizes the same language. This is useful because some transfor-
mations and tools will generate DFAs with a large amount of redundancy.

Example 122. Suppose we are given the following NFA:

q0 q1 q2 q3

0, 1

0 1 0

0, 1

The subset construction yields the following (equivalent) DFA:

p0 p1 p2 p3 p4 p5

1

0

0

1

1

0

0

1

0
1

1

0

184



which has 6 reachable states, out of a possible 24 = 16. But notice
that p3, p4, and p5 are all accept states, and it’s impossible to ‘escape’ from
them. So you could collapse them to one big success state. Thus the DFA
is equivalent to the following DFA with 4 states:

p0 p1 p2 p3

1

0

0

1

1

0

0, 1

There are methods for systematically reducing DFAs to equivalent ones
which are minimal in the number of states. Here’s a rough outline of a
minimization procedure:

1. Eliminate inaccessible, or unreachable, states. These are states for
which there is no string in Σ∗ that will take the machine to that state.

How is this done? We have already been doing it, somewhat infor-
mally, when performing subset constructions. The idea is to start in
q0 and mark all states accessible in one step from it. Now repeat this
from all the newly marked states until no new marked state is pro-
duced. Any unmarked states at the end of this are inaccessible and
can be deleted.

2. Collapse equivalent states. We will gradually see what this means in
the following examples.

Remark. We will only be discussing minimization of DFAs. If asked to
minimize an NFA, first convert it to a DFA.

Example 123. The 4 state automaton

q0

q1

q2

q3

a

b

a, b

a, b

a, b

185



is clearly equivalent to the following 3 state machine:

q0 q12 q2
a, b a, b

a, b

Example 124. The DFA

q0

q1

q2

q3

q4

q5

0

1

0

0

1

1

0, 1

0, 1

0, 1

recognizes the language

{0, 1} ∪ {x ∈ {0, 1}∗ | len(x) ≥ 3}

Now we observe that q3 and q4 are equivalent, since both go to q5 on any-
thing. Thus they can be collapsed to give the following equivalent DFA:

q0

q1

q2

q34 q5

0

1

0, 1

0, 1

0, 1
0, 1

By the same reasoning, q1 and q2 both go to q34 on anything, so we can
collapse them to state q12 to get the equivalent DFA

q0 q12 q34 q5
0, 1 0, 1 0, 1

0, 1

Example 125. The DFA

186



q0

q1 q2

q3

q4q5

0

0

0

0

0

0

recognizes the language

{0n | ∃k. n = 3k + 1}

This DFA minimizes to

q0

q1

q2

0 0

0

How is this done, you may ask.
The main idea is a process that takes a DFA and combines states of it in

a step-by-step fashion, where each steps yields an equivalent automaton.
There are a couple of criteria that must be observed:

• We never combine a final state and a non-final state. Otherwise the
language recognized by the automaton would change.

• If we merge states p and q, then we have to combine δ(p, a) and
δ(q, a), for each a ∈ Σ. Contrarily, if δ(p, a) and δ(q, a) are not equiv-
alent states, then p and q can not be equivalent.

Thus if there is a string x = x1 · . . . · xn such that running the automa-
ton M from state p on x leaves M in an accept state and running M from
state q on x leaves M in a non-accept state, then p and q cannot be equiva-
lent. However, if, for all strings x in Σ∗, running M on x from p yields the
same acceptance verdict (accept/reject) as M on x from q, then p and q are
equivalent. Formally we define equivalence ≈ as

187



Definition 38 (DFA state equivalence).

p ≈ q iff ∀x ∈ Σ∗. ∆(p, x) ∈ F iff ∆(q, x) ∈ F

where F is the set of final states of the automaton.

Question: What is ∆?
Answer ∆ is the extension of δ from symbols (single step) to strings

(multiple steps). Its formal definition is as follows:

∆(q, ε) = q
∆(q, a · x) = ∆(δ(q, a), x)

Thus ∆(q, x) gives the state after the machine has made a sequence of tran-
sitions while processing x. In other words, it’s the state at the end of the
computation path for x, where we treat q as the start state.

Remark. ≈ is an equivalence relation, i.e., it is reflexive, symmetric, and
transitive:

• p ≈ p

• p ≈ q ⇒ q ≈ p

• p ≈ q ∧ q ≈ r ⇒ p ≈ r

An equivalence relation partitions the underlying set (for us, the set of
states Q of an automaton) into disjoint equivalence classes. This is denoted
by Q/≈. Each element of Q is in one and only one partition of Q/≈.

Example 126. Suppose we have a set of states Q = {q0, q1, q2, q3, q4, q5} and
we define qi ≈ qj iff i mod 2 = j mod 2, i.e., qi and qj are equivalent if i and
j are both even or both odd. Then Q/≈ = {{q0, q2, q4}, {q1, q3, q5}}.
The equivalence class of q ∈ Q is written [q], and defined

[q] = {p | p ≈ q} .

We have the equality

p ≈ q
︸ ︷︷ ︸

equivalence of states

iff ([p] = [q])
︸ ︷︷ ︸

equality of sets of states

The quotient construction builds equivalence classes of states and then
treats each equivalence class as a single state in the new automaton.

188



Definition 39 (Quotient automaton). Let M = (Q, Σ, δ, q0, F ) be a DFA.
The quotient automaton is M/≈ = (Q′, Σ, δ′, q′0, F

′) where

• Q′ = {[p] | p ∈ Q}, i.e., Q/≈

• Σ is unchanged

• δ′([p], a) = [δ(p, a)], i.e., transitioning from an equivalence class (where
p is an element) on a symbol a is implemented by making a transition
δ(p, a) in the original automaton and then returning the equivalence
class of the state reached.

• q′0 = [q0], i.e., the start state in the new machine is the equivalence
class of the start state in the original.

• F ′ = {[p] | p ∈ F}, i.e., the set of equivalence classes of the final states
of the original machine.

Theorem 18. If M is a DFA that recognizes L, then M/≈ is a DFA that recog-
nizes L. There is no DFA that both recognizes L and has fewer states than M/≈
.

OK, OK, enough formalism! we still haven’t addressed the crucial
question, namely how do we calculate the equivalence classes?

There are several ways; we will use a table-filling approach. The gen-
eral idea is to assume initially that all states are equivalent. But then we
use our criteria to determine when states are not equivalent. Once all the
non-equivalent states are marked as such, the remaining states must be
equivalent.

Consider all pairs of states p, q in Q. A pair p, q is marked once we know
p and q are not equivalent. This leads to the following algorithm:

1. Write down a table for the pairs of states

2. Mark (p, q) in the table if p ∈ F and q /∈ F , or if p /∈ F and q ∈ F .

3. Repeat until no change can be made to the table:

• if there exists an unmarked pair (p, q) in the table such that one
of the states in the pair (δ(p, a), δ(q, a)) is marked, for some a ∈
Σ, then mark (p, q).

189



4. Done. Read off the equivalence classes: if (p, q) is not marked, then
p ≈ q.

Remark. We may have to revisit the same (p, q) pair several times, since
combining two states can suddenly allow hitherto equivalent states to be
markable.

Example 127. Minimize the following DFA

A B C D

E F G H

0

1

1

0

0
1

0

1

1

0

1

0

0
1

0

1

We start by setting up our table. We will be able to restrict our attention
to the lower left triangle, since equivalence is symmetric. Also, each box
on the diagonal will be marked with ≈, since every state is equivalent to
itself. We also notice that state D is not reachable, so we will ignore it.

A B C D E F G H

A ≈ − − − − − − −
B ≈ − − − − − −
C ≈ − − − − −
D − − − − − − − −
E − ≈ − − −
F − ≈ − −
G − ≈ −
H − ≈

Now we split the states into final and non-final. Thus, a box indexed by
p, q will be labelled with an X if p is a final state and q is not, or vice versa.

190



Thus we obtain

A B C D E F G H

A ≈ − − − − − − −
B ≈ − − − − − −
C X0 X0 ≈ − − − − −
D − − − − − − − −
E X0 − ≈ − − −
F X0 − ≈ − −
G X0 − ≈ −
H X0 − ≈

State C is inequivalent to all other states. Thus the row and column la-
belled by C get filled in with X0. (We will subscript each X with the step
at which it is inserted into the table.) However, note that C, C is not filled
in, since C ≈ C. Now we have the following pairs of states to consider:

{AB, AE, AF, AG, AH, BE, BF, BG, BH, EF, EG, EH, FG, FH, GH}
Now we introduce some notation which compactly captures how the ma-
chine transitions from a pair of states to another pair of states. The notation

p1p2
0←− q1q2

1−→ r1r2

means q1
0−→ p1 and q2

0−→ p2 and q1
1−→ r1 and q2

1−→ r2. If one of p1, p2,
r1, or r2 are already marked in the table, then there is a way to distinguish
q1 and q2: they transition to inequivalent states. Therefore q1 6≈ q2 and the
box labelled by q1q2 will become marked. For example, if we take the state
pair AB, we have

BG
0←− AB

1−→ FC

and since FC is marked, AB becomes marked as well.

A B C D E F G H

A ≈ − − − − − − −
B X1 ≈ − − − − − −
C X0 X0 ≈ − − − − −
D − − − − − − − −
E X0 − ≈ − − −
F X0 − ≈ − −
G X0 − ≈ −
H X0 − ≈

191



In a similar fashion, we examine the remaining unassigned pairs:

• BH
0←− AE

1−→ FF . Unable to mark.

• BC
0←− AF

1−→ FG. Mark, since BC is marked.

• BG
0←− AG

1−→ FE. Unable to mark.

• BG
0←− AH

1−→ FC. Mark, since FC is marked.

• GH
0←− BE

1−→ CF . Mark, since CF is marked.

• GC
0←− BF

1−→ CG. Mark, since CG is marked.

• GG
0←− BG

1−→ CE. Mark, since CE is marked.

• GG
0←− BH

1−→ CC. Unable to mark.

• HC
0←− EF

1−→ FG. Mark, since CH is marked.

• HG
0←− EG

1−→ FE. Unable to mark.

• HG
0←− EH

1−→ FC. Mark, since CF is marked.

• CG
0←− FG

1−→ GE. Mark, since CG is marked.

• CG
0←− FH

1−→ GC. Mark, since CG is marked.

• GG
0←− GH

1−→ EC. Mark, since EC is marked.

The resulting table is

A B C D E F G H

A ≈ − − − − − − −
B X1 ≈ − − − − − −
C X0 X0 ≈ − − − − −
D − − − − − − − −
E X1 X0 − ≈ − − −
F X1 X1 X0 − X1 ≈ − −
G X1 X0 − X1 ≈ −
H X1 X0 − X1 X1 X1 ≈

192



Next round. The following pairs need to be considered:

{AE, AG, BH, EG}

The previously calculated transitions can be re-used; all that will have
changed is whether the ‘transitioned-to’ states have been subsequently
marked with an X1:

AE: unable to mark

AG: mark because BG is now marked.

BH: unable to mark

EG: mark because HG is now marked

The resulting table is

A B C D E F G H

A ≈ − − − − − − −
B X1 ≈ − − − − − −
C X0 X0 ≈ − − − − −
D − − − − − − − −
E X1 X0 − ≈ − − −
F X1 X1 X0 − X1 ≈ − −
G X2 X1 X0 − X2 X1 ≈ −
H X1 X0 − X1 X1 X1 ≈

Next round. The following pairs remain: {AE, BH}. However, neither
makes a transition to a marked pair, so the round adds no new markings
to the table. We are therefore done. The quotiented state set is

{{A, E}, {B, H}, {F}, {C}, {G}}

In other words, we have been able to merge states A and E, and B and H .
The final automaton is given by the following diagram.

193



AE BH

CF

G
0

1

0

1

0

1

0
1

0

1

5.6 Decision Problems for Regular Languages

Now we will discuss some questions that can be asked about automata
and regular expressions. These will tend to be from a general point of
view, i.e.., involve arbitrary automata. A question that takes any automa-
ton (or collection of automata) as input and asks for a terminating algo-
rithm yielding a boolean (true or false) answer is called a decision problem,
and a program that correctly solves such a problem is called a decision al-
gorithm. Note well that a decision problem is typically a question about
the (often infinite) set of strings that a machine must deal with; answers
that involve running the machine on every string in the set are not useful,
since they will take forever. That is not allowed: in every case, a decision
algorithm must return a correct answer in finite time.

Here is a list of decision problems for automata and regular expres-
sions:

1. Given a string x and a DFA M , x ∈ L(M)?

2. Given a string x and an NFA N , x ∈ L(N)?

3. Given a string x and a regular expression r, x ∈ L(r)?

4. Given DFA M , L(M) = ∅?

5. Given DFA M , L(M) = Σ∗?

6. Given DFAs M1 and M2, L(M1) ∩ L(M2) = ∅?

194




