Midterm Exam

Instructions: The exam has **six** pages, including this cover page, printed out two-sided (no more wasted paper). Please read the questions carefully, then answer carefully. Be mathematically precise, and precise and grammatical with your English, too; you *know* what an ogre that crazy professor is.

Good luck, phil rogaway

Name:

Notation:

CFG = context free grammar

CFL = context free language

CNF = Chomsky normal form

DFA = deterministic finite automaton

NFA = nondeterministic finite automaton

PDA = pushdown automaton

reasonably efficient = polynomial running time

On page	you got
2	
3	
4	
5	
6	
Σ	

1 True or False

Indicate if the following statements are **true** or **false**, by **filling in** (darkening) the correct box. Some of the questions will be familiar, but do be careful. Do **not** provide any justification. If in doubt, guess; missing answers will be treated as.

1. There is an efficient algorithm to decide if a multivariate polynomial an integer root.	over the int	egers has False
2. $L = \emptyset$ is a language.	True	False
3. All finite languages are regular.	True	False
4. An infinite language can have an infinite complement.	True	False
5. All infinite languages have infinite complements.	True	False
6. The union of infinitely many regular languages is regular.	True	False
7. If L is regular then so is $\{xx : x \in L\}$.	True	False
8. If L is regular then so is $\{xy : x, y \in L\}$.	True	False
9. Let $A = \{1^{2^p} : p \text{ is prime}\}$. Then A^* is regular.	True	False
10. The pumping lemma is a useful tool to show that a language is regu	llar. True	False
11. Language $L = \{w \in \{0, 1\}^* : w \text{ has an equal number of 01's and 10}$	s} is regular True	False
12. For every number n, the language $L_n = \{0^n 1^n\}$ is regular.	True	False
13. If there's a 10-state DFA that accepts L then there's a 20-state DFA	that accept True	ts L . False
14. Given a DFA M , there is a reasonably efficient. procedure to find $L(M)$.	d a <i>smallest</i> True	DFA for False
15. Given an NFA M , we know a reasonably efficient procedure to fin- L(M).	d a <i>smallest</i> True	NFA for False

16. If M is an NFA then $(L(M))^*$ can be accepted by an NFA.	True	False
17. If L^* is regular then L is regular.	True	False
18. If M is an NFA and there is one abb -labeled path from the start s and there is another abb -labeled path from the start state to a non-finitual invalid: it neither accepts nor rejects abb .	tate to a fin inal state, t True	$\begin{array}{c} \text{nal state,} \\ \text{hen } M \text{ is} \\ \hline \mathbf{False} \end{array}$
19. If there's a 10-state NFA that accepts L then there's a 100-state DFA	A that acception True	[False]
20. Given $h: \Sigma \to \{0, 1\}^*$, define $h(L) = \{h(a_1) \cdots h(a_n) : a_1 \cdots a_n \in L\}$. if L is regular.	Then $h(L)$: True	is regular False
21. If L^* is context free then L is context free.	True	False
22. All DFA-acceptable languages are context free.	True	False
23. You can always convert a PDA into an NFA for the same language.	True	False
24. Every subset of a context free language is regular.	True	False
25. There's a reasonably efficient procedure to decide if a string w is in the CFG G .	e language True	of a CNF False
26. If a CFG G is in CNF, then G is <i>not</i> ambiguous.	True	False
27. Some PDAs need infinite-length descriptions, as the rules (productions subset of $V \times (V \cup \Sigma)^*$.	b) can be an True	arbitrary False
28. The context-free languages are closed under union.	True	False
29. The context-free languages are closed under complement.	True	False
30. If A and B are regular then $\{xy x \in A \text{ and } y \in B \text{ and } x = y \}$ is c	ontext free.	False

2 Short Answer

1. Complete the following sentence, being mathematically precise and following the conventions of your text: A **DFA** is a five-tuple $M = (Q, \Sigma, \delta, q_0, F)$ where Q is a finite set, Σ

```
is an alphabet, q_0 \in Q, F \subseteq Q, and \delta is a function with domain and range
```

- 2. Carefully explain what it **means** if I say: "the context-free languages are closed under intersection." Don't indicate if the statement is true or false—just provide a precise mathematical translation of the meaning of the claim.
- 3. List the first five strings, in lexicographic order, of the language

 $L = \{x \neq y : x, y \in \{0, 1\}^* \text{ are unequal strings} \}$

Here " \neq " is a formal symbol, just like 0 and 1. Assume that characters are ordered $0 < 1 < \neq$.

4. Sketch, briefly and informally, how a PDA for

 $L = \{x \neq y : x, y \in \{0, 1\}^* \text{ are unequal strings}\}$

would work.

5. Give an example of a claim that we proved using the **product construction**. Don't prove the claim—just make a precise claim that was proven with the product construction.

6. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. In class and in the online notes we described an algorithm to minimize the number of states in a DFA for L(M). The algorithm worked by defining an equivalence relation \sim on pairs of states of Q. In particular, we said that

$$p \sim q$$
 if for all $x \in \Sigma^*$,

You will wish to use the notation $\delta^*(q, x)$, as we did in class, to indicate the state you are in if you start in state q and consume the string x.

- 7. You are given the regular expression $\alpha = (000)^* \cup (111)^*$. Composing the constructions given in class and in your text (do not "simplify" anything), imagine converting α into a **DFA** M for which $L(M) = L(\alpha)$. How many states will M have?
- 8. Specify a CFG for the language $L = \{a^n b^m : m > n\}$. Make your CFG as simple as possible.

- 9. Complete the definition, being precise with any quantifiers and not using any form of the word "ambiguous" in your definition:
 - A CFL L is *inherently ambiguous* if:
- 10. Carefully state the *pumping lemma* for **context free** languages. Don't use the word "pumps" and be careful with any quantifiers.

- 11. How many states are in a smallest DFA for the language $L_n = (a^n)^*$ if the underlying alphabet is $\Sigma = \{a, b\}$? (Note: $b^n \notin L_n$.)
- 12. Continuing the last problem: how would you prove that, for all n, there is no *smaller* DFA for L_n ? (You don't need to provide such a proof, but name the main "tool" and sketch the main idea.)

13. A regular grammar is a context-free grammar $G = (V, \Sigma, R, S)$ in which every rule is of the form $A \to \varepsilon$ or $A \to aB$, where a is a terminal and A and B are variables. Suppose that L is regular, say L = L(M) for a DFA $M = (Q, \Sigma, \delta, q_0, F)$. Define a CFG $G = (V, \Sigma, R, S)$ such that L = L(G) by saying:

- 14. A prefix of a string y is a string x such that y = xx' for some x'. A prefix is proper if it is not the empty string. For any language L, let $\mathcal{G}(L) = \{w \in L \mid \text{no proper prefix of } w \text{ is in } L\}$. List the elements of $\mathcal{G}(\{\varepsilon, 00, 01, 110, 0100, 0110, 1110, 1111\})$.
- 15. In a paragraph of 2–5 clear and grammatical English sentences, answer the following question: what is the *scientific value* of having multiple characterizations of a class of languages, such as the regular languages or the CFLs?