

1) Move the coins out of \mathcal{E}-make it deterministic [Rввко1]

To improve resistance to random-number generation problems

To architect to existing abstraction boundaries

2) Add in "associated data" (AD) [R02]

To authenticate headers

Syntax: An AEAD scheme is a 3 -tuple $\Pi=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ where

- \mathcal{K} is a probabilistic algorithm that returns a string;
- \mathcal{E} is a deterministic algorithm that maps a tuple ($\mathrm{K}, \mathrm{N}, \mathrm{A}, \mathrm{M}$) to a ciphertext $\mathrm{C}=\mathcal{E}(\mathrm{K}, \mathrm{N}, \mathrm{A}, \mathrm{M})$ of length $|\mathrm{M}|+\tau$; and
- \mathcal{D} is a deterministic algorithm that maps a tuple ($\mathrm{K}, \mathrm{N}, \mathrm{A}, \mathrm{C}$) to a plaintext M or the symbol \perp
If $\mathrm{C}=\mathcal{E}(\mathrm{K}, \mathrm{N}, \mathrm{A}, \mathrm{M}) \neq \perp$ then $\mathcal{D}(\mathrm{K}, \mathrm{N}, \mathrm{A}, \mathrm{C})=\mathrm{M}$

$\operatorname{Adv}_{\mathcal{E}}{ }^{\text {aead }}(\mathbb{A})=\operatorname{Pr}\left[\mathbb{A}^{\mathcal{E}_{\mathrm{K}}, \mathcal{D}_{\mathrm{K}}} \rightarrow 1\right]-\operatorname{Pr}\left[\mathbb{A}^{\$, \perp} \rightarrow 1\right]$
\mathbb{A} may not:
- Repeat an N in an enc query
- Ask a dec query ($\mathrm{N}, \mathrm{A}, \mathrm{C}$) after C is returned by an ($\mathrm{N}, \mathrm{A}, \cdot$) enc query

$\mathbf{A d v}_{\mathcal{E}}^{\text {priv }}(\mathbb{A})=\operatorname{Pr}\left[\mathbb{A}^{\mathcal{E}_{\mathrm{K}}} \rightarrow 1\right]-\operatorname{Pr}\left[\mathbb{A}^{\$} \rightarrow 1\right]$
\mathbb{A} may not:
- Ask a dec query ($\mathrm{N}, \mathrm{A}, \mathrm{C}$) after C is returned by an ($\mathrm{N}, \mathrm{A}, \cdot$) enc query

$\operatorname{Adv}_{\mathcal{E}}^{\text {auth }}(\mathbb{A})=\operatorname{Pr}\left[\mathbb{A}^{\mathcal{E}_{\mathrm{K}}}\right.$ forges $]$

It outputs an $\left(\mathrm{N}^{*}, \mathrm{~A}^{*}, \mathrm{C}^{*}\right)$ where $\mathcal{D}\left(\mathrm{K}, \mathrm{N}^{*}, \mathrm{~A}^{*}, \mathrm{C}^{*}\right) \neq \perp$ and no prior oracle query of ($\left.\mathrm{N}^{*}, \mathrm{~A}^{*}, \mathrm{M}\right)$ returned C^{*}

All-in-one definition

$$
\begin{aligned}
& \mathbf{A d v}_{\Pi}^{\text {aead }}(\mathrm{A})= \operatorname{Pr}\left[\mathrm{A}^{\mathcal{E}(\mathrm{K}, \cdots), \mathcal{D}(\mathrm{K}, \cdots)} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathrm{A}^{\$(\cdots), \perp(\cdots)} \Rightarrow 1\right] \\
& \text { A may not repeat any N query to its Enc oracle. } \\
& \text { It may not ask } \operatorname{Dec}(\mathrm{N}, \mathrm{~A}, \mathrm{C}) \text { after an Enc(N, A, M) returned C. }
\end{aligned}
$$

Two-part definition

$$
\begin{aligned}
\operatorname{Adv}_{\Pi}^{\text {priv }}(\mathrm{A})= & \operatorname{Pr}\left[\mathrm{A}^{\varepsilon(\mathrm{K}, \ldots)} \Rightarrow 1\right]- \\
& \operatorname{Pr}\left[\mathrm{A}^{\$(\cdots)} \Rightarrow 1\right] \\
& \text { may not repeat any } \mathrm{N} \text { query } .
\end{aligned}
$$

```
\(\operatorname{Adv}_{\Pi}^{\text {auth }}(\mathrm{A})=\operatorname{Pr}\left[\mathrm{A}^{\varepsilon(\mathrm{K}, \ldots)}\right.\) forges \(]\)
```

It outputs an $(\mathrm{N}, \mathrm{A}, \mathrm{C})$ where $\mathcal{D}(\mathrm{K}, \mathrm{N}, \mathrm{A}, \mathrm{C}) \neq \perp$ and no prior oracle query of $(\mathrm{N}, \mathrm{A}, \mathrm{M})$ returned C

Generic composition

SIV mode

[Rogaway, Shrimpton 2006]

PRF operating on a
vector of strings

AES-GCM-SIV

[Gueron, Langley, Lindell 2017] [Bose, Hoang, Tessaro 2018]

Thm [J onsson 2002] CCM is provably secure if E is a good PRP.

GCM

[McGrew, Viega 2004] (Follows CWC
[Kohno, Viega, Whiting 2004])
NIST SP 800-38D:2007
RFC 4106, 5084, 5116, 5288, 5647
ISO 19772:2009

Thm [Iwata, Ohashi , and Minematsu 2012] (correcting [McGrew, Viega 2004])
GCM is provably secure (not great bounds) if E is a good PRP.

OCB (v3)

[Krovetz Rogaway 2011] , following [RBBK01,LRW02,R04] RFC 7253

Thm [Krovetz, Rogaway 2011]
OCB is provably secure (OK bounds) if E is a strong PRP .

Tweakable Blockcipher (TBC)

$$
\begin{aligned}
\widetilde{\mathrm{E}}: \mathcal{K} \times \mathcal{T} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}} & \text { A } \mathcal{T} \text {-indexed family of } \\
\text { each } \widetilde{\mathrm{E}_{\mathrm{K}}}(\cdot)=\widetilde{\mathrm{E}}(\mathrm{~K}, T, \cdot) \text { a permutation } & \begin{array}{l}
\text { random permutations } \\
\end{array}
\end{aligned}
$$

$$
\operatorname{Add}_{\mathbb{E}}^{\operatorname{prp}}(\mathbb{A})=\operatorname{Pr}\left[\mathbb{A}^{\mathrm{E}_{\mathrm{K}}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathbb{A}^{\pi} \Rightarrow 1\right]
$$

This is the official public announcement of the portfolio, bringing the CAESAR competition to a close. ... [H]ere is the final portfolio:

Use case 1: Ascon first choice, ACORN second choice. Use case 2: AEGIS-128 and OCB, without a preference. Use case 3: Deoxys-II first choice, COLM second choice.

57 round-1 (Mar 2014) 29 (Mar 2014)
$\mathbf{1 6}$ round-3
(Aug 2016)
7 finalists
(Mar 2018)
6 winners (Feb 209)

Deoxys-II
J ean, Nikolić,
Peyrin, Seurin

AEGIS
0.43 cpb (Skylake)
(0.25 cpb for AEGIS-128L
on 16K messages)

The fastest
CAESAR finalist on recent Intel processors
K, N, A dependent initialization

