
Introduction to Modern Cryptography

Mihir Bellare1 Phillip Rogaway2

November 24, 2001

1 Department of Computer Science and Engineering, University of California at San
Diego, La Jolla, CA 92093, USA. mihir@cs.ucsd.edu, http://www-cse.ucsd.edu/users/mihir

2 Department of Computer Science, University of California at Davis, Davis, CA 95616,
USA. rogaway@cs.ucdavis.edu, http://www.cs.ucdavis.edu/∼rogaway

2

Preface

This is a set of class notes that we have been developing jointly for some years.
We use them for the graduate cryptography courses that we teach at our respective
institutions. Each time one of us teaches the class, he takes the token and updates
the notes a bit. You might think that, within a three or four years, one would have
a rather complete and refined set of notes in this way. But somehow it still hasn’t
worked out that way! You’ll find that there are still lots of gaps, as well as plenty
of “unharmonized” portions of the notes as they evolved in random ways. Well,
eventually it will all get untangled and be a picture of elegance.

The viewpoint taken throughout these notes is to emphasize the theory of cryp-
tography as it can be applied to practice. This is an approach that the two of us
have pushed in our research, and it seems to be a pedagogically desirable approach
as well.

We would like to thank the following students of past versions of our courses who
have pointed out errors and made suggestions for changes: Andre Barroso, Keith
Bell, Alexandra Boldyreva, Michael Burton, Sashka Davis, Alex Gantman, Bradley
Huffaker, Chanathip Namprempre, Adriana Palacio, Fritz Schneider. We welcome
further corrections, comments and suggestions.

Mihir Bellare San Diego, California USA
Phillip Bellare Davis, California USA

c©Mihir Bellare and Phillip Rogaway, 1997–2001.

Contents

1 Introduction 7

1.1 Some sample cryptographic problems 7
1.2 What cryptography is about . 17
1.3 Approaches to the study of cryptography 21
1.4 What background do I need? . 31
1.5 Historical notes . 31
1.6 Exercises and problems . 31

2 Block Ciphers 33

2.1 What is a block cipher? . 33
2.2 Data Encryption Standard . 34
2.3 Advanced Encryption Standard . 37
2.4 Cryptanalysis of 5-round AES . 41
2.5 Some modes of operation . 42
2.6 Key recovery attacks on block ciphers 43
2.7 Limitations of key-recovery based security 45
2.8 Exercises and Problems . 46

3 Pseudorandom Functions 49

3.1 Function families . 49
3.2 Random functions and permutations 50
3.3 Pseudorandom functions . 52
3.4 Pseudorandom permutations . 57
3.5 Usage of PRFs and PRPs . 59
3.6 Example Attacks . 62
3.7 Security against key recovery . 65
3.8 The birthday attack . 71
3.9 PRFs versus PRPs . 73
3.10 One-way functions . 74
3.11 Pseudorandom generators . 80
3.12 Historical notes . 80
3.13 Exercises and problems . 80

3

4 CONTENTS

4 Symmetric Encryption 83

4.1 A framework for both encryption and message authentication 83
4.2 Some encryption schemes . 85
4.3 Issues in security . 88
4.4 Indistinguishability under chosen-plaintext attack 90
4.5 Examples of chosen-plaintext attacks 95
4.6 Security against plaintext recovery 98
4.7 Security of CTR encryption . 102
4.8 Security of CBC encryption . 116
4.9 Other characterizations of IND-CPA security 116
4.10 Indistinguishability under chosen-ciphertext attack 117
4.11 Example chosen-ciphertext attacks 119
4.12 Historical Notes . 123
4.13 Exercises and Problems . 123

5 Hash Functions 125

5.1 Notions of security for hash-function families 125
5.2 The hash function SHA-1 . 125
5.3 The Merkle-Damg̊ard result . 125
5.4 Collision-resistant hash functions are one-way 125
5.5 UOWHFs . 125
5.6 Universal hash functions . 125
5.7 Exercises and Problems . 125

6 Message Authentication 127

6.1 The Setting . 127
6.2 Encryption does not provide authenticity 130
6.3 Syntax of message-authentication schemes 131
6.4 Example message-authentication schemes 134
6.5 Towards a Definition of Security . 135
6.6 Definition of security . 138
6.7 Example schemes . 140
6.8 The PRF-as-a-MAC Paradigm . 144
6.9 Making a PRF from a PRF and a Universal Hash Function 145
6.10 An XOR Scheme . 145
6.11 The EMAC Construction . 145
6.12 The HMAC Construction . 149
6.13 The UMAC Construction . 149
6.14 Problems . 155
6.15 References and Related Work . 156

7 Authenticated Encryption 157

CONTENTS 5

8 Number-Theoretic Background 159

8.1 The basic groups . 159
8.2 Algorithms . 161
8.3 Cyclic groups and generators . 167
8.4 Squares and non-squares . 172
8.5 Groups of prime order . 177
8.6 Historical Notes . 179
8.7 Exercises and Problems . 179

9 Asymmetric Encryption 181

10 Digital signatures 183

11 Key Distribution 185

12 The Asymptotic Approach 187

13 Interactive Proofs and Zero Knowledge 189

14 More Protocols 191

I Appendices 193

A The Birthday Problem 195

B Probability Theory 199

6 CONTENTS

Chapter 1

Introduction

Modern cryptography is a remarkable field. It deals with very human concerns—
issues of privacy, authenticity, and trust—but it does so in a way that is concrete
and scientific. Making a science out of something as fuzzy as privacy or authenticity
might seem an impossible thing to do. But believe it! This course is your invitation
to this fascinating young field.

The word “cryptography” comes from the Latin crypt, meaning secret, and
graphia, meaning writing. So “cryptography” is literally “secret writing”: the study
of how to obscure what you write so as to render it unintelligible to those who should
not read it. Nowadays cryptography entails a lot more than finding good ways for
keeping your writings secret. That problem remains one of cryptography’s central
problems, but many more problems have been added to the brew.

Despite the scope of cryptography having broadened, much of the flavor of this
field is unchanged since the very early days: it’s still a game of clever designs, sneaky
attacks, and mathematical slight of hand. The thing that has changed is that the
art of cryptography has now been supplemented with a legitimate science. In this
course we shall focus on that science.

Be forewarned: cryptography is a slippery subject. Surprisingly often that which
seems meaningful turns out to be meaningless, that which seems true turns out to
false, and that what seems impossible turns out to be doable. So have fun—but
retain a healthy skepticism, and always watch your step.

1.1 Some sample cryptographic problems

Let us begin by looking at a few of the problems that cryptographers have consid-
ered. We’ll describe these problems quite informally, but we’ll be returning to them
later in our studies, when they’ll get a much more thorough treatment.

7

8 INTRODUCTION

1.1.1 Message Privacy

Imitating the ideal channel Let’s introduce the first two members of our cast
of characters: our sender, S, and our receiver, R. The sender and receiver want to
communicate with each other, say over a network.

(Sometimes people call these characters Alice, A, and Bob, B. Alice and Bob
figure in many works on cryptography. But the authors can never remember what is
the role for Alice and what is the role for Bob, and we’re going to want the letter A
for someone else, anyway.)

What is the ideal channel over which the sender and receiver could conceivably
communicate? Imagine they are provided with a dedicated, untappable, impene-
trable lead pipe into which the sender can whisper a message and the receiver will
hear it. Nobody else can look inside the pipe or change what’s there. This lead pipe
provides the perfect medium, available only to the sender and receiver, as though
they were alone in the world. See Figure 1.1.

Figure 1.1: Several cryptographic goals aim to imitate some aspect of an ideal
channel connecting a sender S to a receiver R.

Unfortunately, in real life, there are no ideal channels connecting the pairs of
parties that might like to communicate. Usually all we have is a public network like
the Internet.

Several cryptographic goals concern themselves with imitating, in some respect,
an ideal channel between the sender and receiver. In these problems the parities are
communicating over is an insecure channel but they want to imagine that they have
a perfect lead pipe between them. Cryptography is used to create the illusion that
their channel is secure. The parties should be assured of the kinds of properties that
they would expect of a secure channel.

Protocols and adversaries What mechanisms are available to help us to imitate
the lead-pipe world? All we are allowed to do is to supply the sender and receiver
with a protocol . A protocol is just like a program, except that it is a distributed
program. It tells the sender and receiver what to do.

How do we start building protocols? We first try to isolate the the threats and the
goals. Once we have a good idea about these, we can try to find protocol solutions.

At this point we should introduce the third member of our cast. This is our

Mihir Bellare and Phillip Rogaway 9

adversary , denoted A. An adversary is the source of all possible threats. Crypto-
graphic protocols attempt to surmount the influence of the adversary.

In cryptography we must focus on the adversary. What can she do, and what
can’t she do? It is important straight away to give the adversary full membership
and respect in the cast of characters. She is in many ways the central character.

If you think about it, there are actually several different things that the adversary
might be trying to do in attacking our protocol-approximation of a lead pipe. The
first thing we are concerned with is that the adversary might want to understand
the content of the messages sent from the sender to the receiver. This is an attack
on the parties’ privacy.

Encryption In order to protect the privacy of transmissions we use a tool called
encryption . The sender encrypts his message M and sends it. The message M is
called plaintext . What the sender creates by encrypting M is called a ciphertext ,
C. The receiver, on receipt of ciphertext C, decrypts it. If all goes well, the receiver
should now have recovered the same plaintext, M , that the sender sent out.

You might hope for encryption to emulate all the properties of a lead pipe, but
this is an impossibly large task. You could try to emulate all the properties that have
to do with privacy, but even this is too much to hope for. First, we don’t normally
expect for encryption to hide the existence of a message. This is a potentially
important piece of information to the adversary, but it is too often infeasible to try
to hide this. Nor is encryption normally intended to hide the length of a message.
The length of the plaintext is another potentially interesting piece of information to
the adversary, but we won’t usually try to hide this, either. If we know a maximal
length for message we could use padding to hide the length of messages, but this
would typically entail a large loss of efficiency. Nor does encryption normally aim to
hide who is sending messages to whom, or which messages are associated to which
senders.

Keys It is not hard to convince yourself that in order to communicate securely,
there must be something that the receiver knows, or can do, that the adversary
does not know, or can not do. There has to be some “asymmetry” between the
situation the the receiver finds himself in, and the adversary finds herself in. In
practice, the simplest and also most common setting is that the sender and receiver
share a key that the adversary does not know. This is called the symmetric trust
model. Encrypting in the symmetric trust model is called symmetric encryption
or shared-key encryption .

The shared key is usually a uniformly distributed random string having some
number of bits, k. Recall that a string is just a sequence of bits. (For language-
theoretic background, see Figure 1.2.) The sender and receiver must somehow use
the key K to overcome the presence of the adversary.

Notice how randomness enters the picture. The key is random. Randomness is a
central and unavoidable element of cryptography. Everything is about probabilities.

10 INTRODUCTION

We will sometimes use words from the theory of “formal languages.” Here is the
vocabulary you should know.

An alphabet is a finite nonempty set. We usually use the Greek letter Σ to
denote an alphabet. The elements in an alphabet are called characters. So,
for example, Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is an alphabet having ten characters,
and Σ = {0, 1} is an alphabet, called the binary alphabet , which has two
characters. We’ll assume the binary alphabet. A string is finite sequence
of characters. The number of characters in a string is called its length , and
the length of a string X is denoted |X|. So X = 1011 is a string of length
four, Y = cryptography is a string of length 12. The string of length zero
is called the emptystring and is denoted ε. If X and Y are strings then the
concatenation of X and Y , denoted X‖Y , is the characters of X followed by the
characters of Y . So, for example, 1011‖0 = 10110. The i-th character of a string
X, where 1 ≤ i ≤ |X|, is denoted X[i], so that X = X[1]‖X[2]‖ · · · ‖X[|X|]. If
a is a character and i ≥ 0 is a number then ai is the string consisting of the
character a repeated i times. It is understood that a0 = ε for any character a.
So, for example, 03 = 000 and 1n is how you’d write the number n in unary
notation. We can encode almost anything into a string. Usually the details of
how one does this are irrelevant, and so we use the notation 〈something〉 for
any fixed, natural way to encode something as a string. For example, if n is
a number and X is a string then Y = 〈n,X〉 is some string which encodes n
and X. It is easy to go from n and X to Y = 〈n,X〉, and it is also easy to go
from Y = 〈n,X〉 back to n and X. A language is a set of strings, all of the
strings being drawn from the same alphabet, Σ. If Σ is an alphabet then Σ∗

denotes the set of all strings whose characters are drawn from Σ. For example,
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}.

Figure 1.2: Elementary notation from formal-language theory.

Get used to it!

The key is kept securely on the parties’ machines. It is an assumption that we
must make that the adversary cannot penetrate these machines and recover the key.

A picture for symmetric encryption can be found in Figure 1.3. The sender
sends the receiver a plaintext M by first computing C ← EK(M). The encryption
function E may be randomized, or it might keep some state around. The receiver
recovers the plaintext M from the ciphertext C by decrypting the ciphertext, setting
M ← DK(C).

We warn you that a picture like Figure 1.3 is actually a little misleading about
what the adversary can and can not do. In particular, it might seem to suggest that
the adversary is just a passive eavesdropper, quietly listening to the communications
between the sender and receiver. In fact, this might not be the case at all. We will
consider adversaries that are much more powerful than that.

Mihir Bellare and Phillip Rogaway 11

Figure 1.3: Symmetric encryption. The sender and the receiver share a secret key,
K. The adversary lacks this key. The message M is the plaintext; the message C is
the ciphertext.

Encryption with a one-time-pad Now let’s give an example of a protocol that
encrypts. Here is how the sender and receiver encrypt in any spy novel. Let K =
K[1] · · ·K[k] denote the shared key, which is a random sequence of k bits. Think
of k as some big number, like a million. Let M = M [1] · · ·M [m] denote the plaintext
message that the sender wants to send, also divided up into bits. Assume that m ≤ k
(that is, the key is at least as long as the plaintext).

What the sender does is to compute C ′[i] = K[i] ⊕M [i] for each i = 1, . . . ,m.
The symbol ⊕ denotes the exclusive-or (XOR) operation: 0 ⊕ 0 = 1 ⊕ 1 = 0, while
0 ⊕ 1 = 1 ⊕ 0 = 1. The string C ′ is the main part of the ciphertext which the
sender sends out. The receiver receives C ′ = C ′[1] · · ·C ′[m] and can recover M via
M [i] = C ′[i] ⊕ K[i] for all 1 ≤ i ≤ n. This is possible for the receiver because he
too knows the key K.

When the sender wants to encrypt another message she has to use new key bits.
That is, she keeps track of where she is in the key, via a counter, and goes on from
there. Key bits are never re-used. That’s why this is called a one-time pad : each
key bit is used at most once. You cannot encrypt more data than you have key bits.
An indication of where the sender is in the key should be included in the ciphertext.
See Figure 1.4.

What we have just done is specify a protocol. This is the sequence of instructions
for the parties to execute. In the case of symmetric encryption, a protocol needs
to specify three things: how to encrypt, how to decrypt, and how to generate the
shared key. Formally, an encryption protocol Π is a three-tuple of algorithms, Π =
(K, E ,D). Notice that the adversary is not involved in the protocol. We never try
to tell the adversary what to do. That is up to her.

We’ll be discussing the security of one-time-pad encryption later in this chapter.

Public-key encryption The shared key K between the sender and the receiver
is not the only way to create the information asymmetry that we need between
the receiver and the adversary. In asymmetric encryption , also called public-

12 INTRODUCTION

Algorithm K
K

R← {0, 1}k
return K

Algorithm EK(M)
static ctr ← 0
m← |M |
if ctr +m > k

then return error
for i← 1 to m do

C ′[i]← K[ctr + i] ⊕M [i]
ctr ← ctr +m
return 〈ctr, C ′〉

Algorithm DK(C)
〈ctr, C ′〉 ← C
m← |C ′|
if ctr +m > |K|

then return error
for i = 1 to m do

M [i] = K[ctr + i] ⊕ C[i]
return M

Figure 1.4: Encryption with a one-time pad. The first algorithm generates the
key K, the second encrypts plaintext M , and the last decrypts ciphertext C.

key encryption , the receiver R possesses a pair of keys—a public key, pkR, and
a secret key, skR. The receiver’s public key is made publicly known and bound to
his identity. For example, the receiver’s public key might be published in a phone
book. When the sender wants to send a secret message M to the receiver, she looks
up the receiver’s public key in the phone book and computes y ← EpkR(M). When
the receiver receives a ciphertext C he computes M ← DskR(C).

The trust model specifies who, initially, has what keys. We have just described
two different trust models for achieving the same basic aim: the symmetric (or
shared-key) trust model and the asymmetric (or public-key) trust model.

The idea of public-key cryptography, and the fact that we can actually realize
this goal, is a remarkable idea. Think about it! You’ve never met the receiver before.
But you can send him a secret message by looking up some information in a phone
book and then using this information to help you garble up the message you want to
send. The intended receiver will be able to understand the content of your message,
but nobody else will. The idea of public-key cryptography is due to Whitfield Diffie
and Martin Hellman. Diffie was Hellman’s graduate student at Stanford. The idea
was published in 1976.

For a picture of encryption in the public-key setting, see Figure 1.5.

1.1.2 Message Authenticity

Now we’re going to try to imitate another aspect of the lead pipe between the
sender and the receiver: it is the fact that only the sender can speak into her end
of the pipe, and what will emerge at the receiver’s end is exactly what the sender
said. That is, in the message-authentication problem the receiver gets some message
which is claimed to have originated with a particular sender. The channel on which
this message flows is insecure. Thus the receiver R wants to distinguish the case in
which the message really did originate with the claimed sender S from the case in

Mihir Bellare and Phillip Rogaway 13

Figure 1.5: Asymmetric encryption. The receiver R has a public key, pkR, which
the sender knows belongs to R. The receiver also has a corresponding secret key,
skR.

which the message originated with some imposter, A.
Once again, information asymmetry is needed. The symmetric and asymmetric

trust models described above are equally applicable here.
The usual tool for solving the message-authentication problem in the symmetric

setting is a message authentication code (MAC). Here the sender and receiver share
a secret key, K, and when the sender wants to send a message M to the receiver
she attaches to it a few bits, σ, which is called the tag for the message. The tag is
computed using M and K. The MAC computation might be probabilistic or use
state, just as with encryption. Or it may well be deterministic. Bob, on receipt of M
and σ, uses the key K to check if the tag is OK. If so, he accepts M as authentic;
otherwise, he regards M as a forgery. An appropriate reaction might range from
ignoring the bogus message to tearing down the connection to alerting a responsible
party about the possible mischief. See Figure 1.6. The picture is again slightly
misleading in terms of what the adversary A might or might not be able to do, but
it gets the point across.

The tool for solving the message-authentication problem in the asymmetric set-
ting is a digital signature . Here the sender has a public key pkS and a correspond-
ing secret key skS . Everyone (even the adversary) knows the key pkS and that it
belongs to party S. When the sender wants to send a message M she attaches to
it some extra bits, σ, which is called a signature for the message and is computed
as a function of M and skS . The receiver, on receipt of M and σ, checks if it is
OK using the public key of the sender, pkS . If it is fine, the receiver regards M as
authentic; otherwise, he regards M as an attempted forgery. A picture is given in
Figure 1.7.

One difference between a MAC and a digital signature concerns what is called
non-repudiation. With a MAC anyone who can verify a tagged message can also

14 INTRODUCTION

Figure 1.6: A message authentication code. The tag σ accompanies the message
M . The receiver R uses it to decide if the message is really did originate with the
sender S with whom he shares the key K.

Figure 1.7: A digital signature scheme. The signature σ accompanies the message
M . The receiver R uses it to decide if the message is really did originate with the
sender S with has public key pkS .

produce one, and so a tagged message would seem to be of little use in a court
of law. But with a digitally-signed message the only party who should be able to
produce a a message that verifies under public key pkS is the party S herself. Thus
if the signature scheme is good party S can not just maintain that the receiver, or
the one presenting the evidence, concocted it. If signature σ authenticates M with
respect to public key pkS , then it is only S that should have been able to devise σ.
The sender can not refute that. Probably the sender S will have to claim that the

Mihir Bellare and Phillip Rogaway 15

key skS was stolen from her. Perhaps this, if true, might still be construed as the
sender’s fault.

To summarize, there are two common aims concerned with sending a message so
as to an ideal channel: achieving message privacy and achieving message authentic-
ity. There are two main trust models in which we are interested in achieving these
goals: the symmetric trust model and the asymmetric trust model. The tools used
to achieve these four goals are named as follows:

symmetric trust
model

asymmetric trust
model

message
privacy

symmetric (private-key)
encryption

asymmetric (public-key)
encryption

message
authenticity

message authentication
code (MAC)

digital signature scheme

1.1.3 Pseudorandom Number Generation

Computers are quite deterministic. But for lots of applications, “random numbers”
are useful. These applications involve simulation, efficient algorithms, and cryptog-
raphy itself. We’ve already seen an example protocol that required random bits.

How can a completely deterministic machine generate “random” numbers? Well,
it can’t. But a machine can do the next best thing: it can stretch a little bit of
randomness into a lot of “pseudorandomness.”

Suppose we wire to our computer a Geiger counter that generates a “random” bit
every second. We run our computer for a little while and now it has 200 “random”
bits. We won’t worry about the “philosophical” question as to whether these bits
are random in any real sense. We’ll simply assume that these bits are completely
unpredictable to anything “beyond” the computer which has gathered this data—
mathematically, we’ll treat these bits as random.

A pseudorandom generator (PRG) stretches a short (eg., 200-bit) “truly random”
string into a much longer (a million bits, say) string which “looks” random. This is
another core problem of cryptography.

1.1.4 Authenticated Key Exchange

Suppose that Alice would like to remotely logon to her computer, which we’ll call
Alice’s “host” machine. Alice has a secret password, a, while the host has some
function of this password, f(a). Alice communicates with the host over the Internet.
What should Alice do in order to identify herself to the host and establish a secure
connection with it?

One possibility would be to flow a to the host. This would identify Alice to the
host, at least initially, but anyone who was listening in on the conversation would
now know Alice’s password, and thus be able to logon as though they were she.
Clearly that is not a good solution.

16 INTRODUCTION

What we would really like is to arrange that Alice and her host can have a
conversation—a secure session—such that, throughout the session, (a) The host
is convinced that it is speaking to Alice; (b) Alice herself is convinced that she
is speaking to the host; (c) Nobody else has any idea about the content of the
information that flows within this session.

The usual way to establish a secure session is with an authenticated key ex-
change . In our example, Alice and the host will engage in a conversation at the end
of which these two parties—and only these two parties—will share a secret session
key σ. With this session key distributed, Alice and the host can use it to encrypt
and to authenticate the traffic that flows between them, thus setting up a secure
session.

1.1.5 Telephone Coin Flipping

Alice and Bob want to decide which of them has to show up to their AI class. They
take turns going to this detested class, you see, but it so happens that there will be
an odd number of lectures.

Alice calls Bob on the telephone and offers a simple solution. “Bob,” she says,
“I’ve got a penny in my pocket. I’m going to toss it in the air right now. You call
heads or tails. If you get it right, I’ll go to AI class and take notes for us. If you get
it wrong, you’ll have to go.”

Bob is not as bright as Alice, but something troubles him about this arrangement.
The telephone-coin-flip problem is to come up with a protocol so that, to the

maximal extent possible, neither Alice nor Bob can cheat the other and, at the same
time, each of them learn the outcome of a fair coin toss.

Here is a solution—sort of. Alice puts a random bit α inside an envelope and
sends it to Bob. Bob announces a random bit β. Now Alice opens the envelope for
Bob to see. The shared bit is defined as α⊕ β. See Figure 1.8

Figure 1.8: Envelope solution to the telephone-coin-flipping 5problem.

To do this over the telephone we need some sort of “electronic envelope” (in
cryptography, this called a commitment scheme). Alice can put a value in the

Mihir Bellare and Phillip Rogaway 17

envelope and Bob can’t see what the envelope contains. Later, Alice can open the
envelope so that Bob can see what the envelope contains. Alice can’t change her
mind about an envelope’s contents—it can only be opened up in one way.

Here is a simple technique to implement an electronic envelope. To put a “0”
inside an envelope Alice chooses two random 500-bit primes p and q subject to the
constraints that p < q and p ≡ 1 (mod 4) and q ≡ 3 (mod 4). The product of
p and q, say N = pq, is the commitment to zero; that is what Alice would send
to commit to 0. To put a “1” inside an envelope Alice chooses too random 500-bit
primes p and q subject to the constraints that p < q and p ≡ 3 (mod 4) and q ≡ 1
(mod 4). The product of these, N = pq, is the commitment to 1. Poor Bob, seeing
N , would like to figure out if the smaller of its two prime factors is congruent to 1 or
to 3 modulo 4. We have no idea how to make that determination short of factoring
N—and we don’t know how to factor 1000 digit numbers which are the product
of random 500-digit primes. Our best algorithms would, take way too long to run.
When Alice wants to decommit (open the envelope) N she announces p and q. Bob
verifies that they are prime (this is easy to do) and multiply to N , and then he looks
to see if the smaller factor is congruent to 1 or to 3 modulo 4.

1.2 What cryptography is about

Protocols and adversaries Let us now move away from the particular examples
we have given and ask what, in general, is cryptography about? Briefly, cryptogra-
phy is about constructing and analyzing protocols which overcome the influence of
adversaries. One way to know that you’ve left the world of cryptography is that
there is no protocol or no adversary anywhere in sight. In the last section we gave
examples of several different protocol problems, and a couple of different protocols.

Suppose that you are trying to solve some cryptographic problem. The prob-
lem will usually involve some number of parties. Us cryptographers often like to
anthropomorphize our parties, giving them names like “Alice” and “Bob” and refer-
ring to them as though they are actual people. We do this because it’s convenient
and fun. But you shouldn’t think that it means that the parties are really human
beings. They might be—but they could be lots of other things, too. Like a cell
phone, a computer, a processes running on a computer, an institution, or maybe a
little gadget sitting on the top of your television set.

We usually think of the parties as the “good guys,” and we want to help them
accomplish their goal. We do this by making a protocol for the parties to use.

A protocol tells each party how to behave. A protocol is essentially a program,
but it’s a distributed program. Here are some features of protocols for you to
understand.

• A protocol instructs the parties what to do. It doesn’t tell the adversary what
to do. That is up to her.

• A protocol can be probabilistic. This means that it can make random choices.

18 INTRODUCTION

To formalize this we usually assume that the model of computation that allows
a party to specify a number n ≥ 2 and then obtain a random value i

R←
{0, 1, . . . , n − 1}. This notation means that i is a random value from the
indicated set, all values being equally likely.

• A party might run a protocol for a while, and then pause, waiting to hear
from another party. Then the party resumes, running the protocol for another
phase. This can go on and on. Whether or not this happens depends on the
protocol problem that we are trying to solve.

• A protocol can be stateful. This means that when a party finishes what he
is doing he can retain some information for the next time that he is active.
When that party runs again he will remember the state that he was last in.
So, for example, you could have a party that knows “this is the first time I’ve
been run,” “this is the second time I’ve been run,” and so on.

• Sometimes we will allow for parties to access an oracle. An oracle is a “magic
box” to which the parties can ask questions. The protocol will specify, in any
given case, how this box is supposed to answer the party’s questions. This is
just an “intermediate step” in designing protocols. In a “finished” protocol
there aren’t any oracles.

When we formalize protocols, they are usually tuples of algorithms. But the actual
formalization will vary from problem to problem. For example, a protocol for sym-
metric encryption isn’t the same “type” of thing as a protocol for a telephone coin
flip.

Another word for a protocol is a scheme . We’ll use the two words inter-
changeably. So an encryption scheme is a protocol for encryption, and a message-
authentication scheme is a protocol for message authentication. For us, a function,
computed by a deterministic, sequential algorithm, is also a protocol. It’s a partic-
ularly simple kind of protocol.

How can we devise and analyze protocols? The first step is to try to understand
the threats and the goals for our particular problem. Once we have a good idea
about these, we can try to find a protocol solution.

The adversary is the agent that embodies the “source” of the threat. Adversaries
aim to defeat our protocol’s goals. Protocols, in turn, are designed to to surmount
the behavior of adversaries. It is a game—a question of who is more clever, protocol
designer or adversary.

The adversary is usually what we focus on. In rigorous formalizations of cryp-
tographic problems, the parties may actually vanish, being “absorbed” into the
formalization. But the adversary will never vanish. She will be at center stage.

Cryptography is largely about thinking about the adversary. What can she do,
and what can’t she do? What is she trying to accomplish? We have to answer these
questions before we can get very far.

Mihir Bellare and Phillip Rogaway 19

Specify a RAM model. (Should we use fixed-width registers or arbitrary
precision?)

Figure 1.9: The RAM model, with an oracle. An adversaries is a program written
in this model of computation. Details of the model are not important, but one has
to fix some model of computation.

Just as we warned that one shouldn’t literally regard our parties as people, so
too for the adversary. The adversary might represent an actual person, but it might
just as well be an automated attack program, a competitor’s company, a criminal
organization, a government institution, one or more of the protocol’s legitimate
parties, a group of friendly hackers, or merely some unlucky circumstances conspiring
together, not controlled by any intelligence at all.

By imagining a powerful adversary we take a pessimistic view about what might
go wrong. We aim to succeed even if someone is out to get us. Maybe nobody is
out to get us. In that case, we should at least be achieving high reliability. After
all, if a powerful adversary can’t succeed in disrupting our endeavors, then neither
will noisy lines, transmission errors due to software bugs, unlucky message delivery
times, careless programmers sending improperly formatted messages, and so forth.

When we formalize adversaries they will be “random access machines (RAMs)
with access to an oracle.” See Figure 1.9 for a for a description of this model of
computation.

Cryptography and computer security Good protocols are an essential tool
for making secure computing systems. Badly designed protocols are easily exploited
to break into computer systems, to eavesdrop on phone calls, to steal services, and
so forth. Good protocol design is also hard. It is easy to under-estimate the task
and quickly come up with ad hoc protocols that later turn out to be wrong. In
industry, the necessary time and expertise for proper protocol design is typically
under-estimated, often at future cost. It takes knowledge, effort and ingenuity to

20 INTRODUCTION

do the job right.
Security has many facets. For a system to be secure, many factors must combine.

For example, it should not be possible for hackers to exploit bugs, break into your
system, and use your account. They shouldn’t be able to buy off your system
administrator. They shouldn’t be able to steal your back-up tapes. These things lie
in the realm of system security.

The cryptographic protocol is just one piece of the puzzle. If it is poorly designed,
the attacker will exploit that. For example, suppose the protocol transmits your
password in the clear (that is, in a way that anyone watching can understand what
it is). That’s a protocol problem, not a system problem. And it will certainly be
exploited.

The security of the system is only as strong as its weakest link. This is a big
part of the difficulty of building a secure system. To get security we need to address
all the problems: how do we secure our machines against intruders, how do we
administer or machines to maintain security, how do we design good protocols, and
so on. All of these problems are important, but we will not address all of these
problems here. This course is about the design of secure protocols. We usually have
to assume that the rest of the system is competent at doing its job.

The rules of the game Cryptography has rules. The first rule is that we may
only try to overcome the adversary by means of protocols. We aren’t allowed to
overcome the adversary by intimidating her, arresting her, or putting poison in her
coffee. These methods might be effective, but they are not cryptography.

(Actually, most cryptographers have quite friendly feelings towards our adver-
saries, and we’d never want to cause one harm. Without an adversary, at least
a hypothetical one, we’d have nothing left to do. We’d have to seek employment
as mathematicians, where jobs are scarce and salaries are low. No, better to have
plenty of adversaries, and to stay on good terms with them.)

Another rule that most cryptographers insist on is to make the protocols public.
That which must be secret should be embodied in keys. The keys specify data,
not algorithms. Why do we insist that our protocols be public? There are several
reasons. A resourceful adversary will likely find out what the protocol is anyway,
since it usually has to be embodied in many programs or machines; trying to hide
the protocol description is likely to be costly or infeasible. More than that, the
attempt to hide the protocol makes one wonder if you’ve achieved security or just
obfuscation. Peer review and academic work can not progress in the absence of
known mechanisms, so keeping cryptographic methods secret is often seen as anti-
intellectual and a sign that ones work will not hold up to serious scrutiny.

Government organizations which deal in cryptography often do not make their
mechanisms public. For them, learning the cryptographic mechanism is one more
hoop that that the adversary must jump through. Why give anything away? Some
organizations may have other reasons for not wanting mechanisms to be public, like
a fear of disseminating cryptographic know-how, or a fear that the organization’s

Mihir Bellare and Phillip Rogaway 21

abilities (or inabilities) will become better known.

1.3 Approaches to the study of cryptography

Phases in cryptography’s development The history of cryptography can roughly
be divided into three stages. In the first, early stage, algorithms had to be imple-
mentable with paper and ink. Julius Caesar used cryptograms. His and other early
schemes often took the form of substitution ciphers. If A = {A,B, . . . , Z} is the
alphabet (Caesar of course used the Roman one!), the simplest substitution cipher
is simply a permutation f : A → A, associating with each “plaintext” letter x its
“ciphertext” letter f(x). (Permutation means it is one-to-one and onto, that is,
bijective.) The mapping f is known to receiver and sender, but, at least a pri-
ori, not to an adversary. To send a message M , view it as a sequence of letters,
M = M [1] . . .M [m]. The sender computes C[i] = f(M [i]) for i = 1, . . . ,m and
transmits C = C[1] . . . C[m]. The receiver, knowing f , also knows f−1, and can
decode. The adversary, not knowing the association f , but seeing only C, may be
baffled at first. But once enough words have been transmitted, the code is soon
broken, because we can make guesses based on repetitions of letters and knowl-
edge of frequencies of letters in words in the English language. The system can be
strengthened in various ways, but none too effective.

The second age of cryptography was that of cryptographic engines. This is
associated to the period of the World War II, and the most famous crypto engine
was the German Enigma machine. How its codes were broken is a fascinating story.

The last stage is modern cryptography. Its central feature is the reliance on
mathematics and electronic computers. Mathematical tools are used to design pro-
tocols and computers are used implement them. It is during this most recent stage
that cryptography becomes much more a science.

We can characterize much of the work that has been going on in cryptography in a
couple of different dimensions. The first distinction is between cryptanalysis-driven
design and proof-driven design. The second distinction is between information-
theoretic cryptography and complexity-theoretic cryptography. We would like to
take up these two dimensions.

Cryptanalysis-driven design Traditionally, cryptographic mechanisms have been
designed by focusing on concrete attacks and how to defeat them. The approach
has worked something like this.
(1) A cryptographic goal is recognized.
(2) A solution is offered.
(3) One searches for an attack on the proposed solution.
(4) When one is found, if it is deemed damaging or indicative of a potential weak-

ness, you go back to Step 2 and try to come up with a better solution. The
process then continues.

22 INTRODUCTION

The third step is called cryptanalysis. In the classical approach to design, crypt-
analysis was an essential component of constructing any new design.

Sometimes one finds protocol problem in the form of subtle mathematical rela-
tionships which allow one to subvert the protocol’s aims. Sometimes, instead, one
“jumps out of the system,” showing that some essential cryptographic issue was
overlooked in the design, application, or implementation of the cryptography.

Some people like to reserve the word cryptography to refer to the making of
cryptographic mechanisms, cryptanalysis to refer to the attacking of cryptographic
mechanisms, and cryptology to refer to union. Under this usage, we’ve been saying
“cryptography” in many contexts where “cryptology” would be more accurate. Most
cryptographers don’t observe this distinction between the words “cryptography” and
“cryptology,” so neither will we.

There are some difficulties with the approach of cryptanalysis-drive design. The
obvious problem is that one never knows if things are right, nor when one is finished!
The process should iterate until one feels “confident” that the solution is adequate.
But one has to accept that design errors might come to light at any time. If one
is making a commercial product one must eventually say that enough is enough,
ship the product, and hope for the best. With luck, no damaging attacks will
subsequently emerge. But sometimes they do, and when this happens the company
that owns the product may find it difficult or impossible to effectively fix the fielded
solution. They might try to keep secret that there is an good attack, but it is not
easy to keep secret such a thing. See Figure 1.10.

Figure 1.10: The classical-cryptography approach.

Mihir Bellare and Phillip Rogaway 23

Doing cryptanalysis well takes great cleverness, and it is not clear that insightful
cryptanalysis is a skill that can be effectively taught. Sure, one can study the most
famous attacks—but will they really allow you to produce a new, equally insightful
one? Great cleverness and great mathematical prowess seem to be the requisite
skills, not any specific piece of knowledge. Maybe you have heard of Don Copper-
smith or Adi Shamir. These are two of the masters of this field.

Sadly, it is hard to base a science on an area where significant assurance is
engendered by knowing that Don thought seriously about the mechanism for some
time, and couldn’t find an attack. We need to pursue things differently.

Shannon security for symmetric encryption The “systematic” approach to
cryptography, where proofs and definitions play a visible role, begins in the work
of Claude Shannon. Shannon was not only the father of information theory, but he
might also be said to be the father of the modern-era of cryptography.

Let’s return to the problem of symmetric encryption and our particular protocol
for doing this, which was to use a one-time-pad. Security, we have said, means
defeating an adversary, so we have to specify what is the adversary wants to do.

One might think that the adversary’s goal is something like this: given a ci-
phertext C, and not knowing key K, try to figure out the plaintext M . Here is
one attempt to make precise that the adversary can’t do this if we encrypt using
a one-time pad: “It is impossible for the adversary, given C, to write down M .”
Is this statement true? No. The adversary might well guess M , by outputting a
random sequence of n bits, where n = |C|. She would be right with probability 2−n.
Not bad if, say n = 1. Does that make the scheme bad? Of course not. But it tells
us that security is a probabilistic thing.

Another issue is a priori knowledge. Even before M is transmitted the adversary
might know something about it. For example, the adversary might have reason to
believe that M is either 0n or 1n. Why? Maybe because the adversary knows what
the sender and receiver are are talking about. If we’re trying to make a general
definition, we can’t assume that the adversary doesn’t know what the parties are
talking about. If the adversary knows that the message is either 0n or 1n then the
adversary can get the message right with probability 1/2. How is this factored in?

All this tells us that we need a proper definition of security, some formal way of
saying what it means for the scheme to be secure. We present the idea of Shannon.

LetM: {0, 1}n → [0, 1] be a probability distribution on the set of n-bit messages.
That is, assume Alice chooses M with probability M(M). This distribution is
known to everyone, including the adversary. Thus, before C is transmitted, all the
adversary knows is that any particular message M has probability M(M) of being
transmitted.

We want to capture the constraint that the adversary’s information about the
message does not increase after seeing the ciphertext. We have fixed some encryption
scheme (K, E ,D) in mind. For any string C let PC(M) denote the a posteriori

24 INTRODUCTION

probability of M given ciphertext C, namely

PM(C,M) = Pr [Message was M | Ciphertext was C] .

Here the probability is over the choice of key K and the choice of M fromM. Note
it is a conditional probability, namely the probability that M was the message given
that a particular ciphertext C has been seen.

Definition 1.1 Encryption scheme (K, E ,D) is Shannon secure if for every dis-
tribution M it is the case that for every ciphertext C which occurs with nonzero
probability, and message M , we have PM(C,M) =M(M).

The way to interpret it is that after having seen C, let the adversary take her best
guess as to what M was. The probability that she is right is not more than the
probability that she would have been right had the sender simply chosen a message,
transmitted nothing at all, and asked the adversary to guess this message.

As long as you don’t end up with more information about the message after
seeing C than you had before, then the encryption is secure.

We claim one-time-pad encryption has the above property, and propose to prove
it. You might want to brush up on your probability before you tackle this: Bayes’
rule, conditioning, and so on. We will use such tools many times again.

Proposition 1.2 One-time-pad encryption is Shannon secure.

Proof: We have to show that Definition 1.1 is met. Bayes’ rule tells us that

Pr [M | C] = Pr [C |M] · Pr [M]
Pr [C]

. (1.1)

Let’s consider the terms on the right hand side one by one. If M is fixed and
known, what’s the probability that we see C? Since C = K ⊕M , it only happens if
K = C ⊕M . The probability that K is this particular string is exactly 2−n. Thus

Pr [C |M] = 2−n . (1.2)

By definition Pr [M] = M(M) is the a priori probability of M . Now for the last
term:

Pr [C] =
∑
m

Pr [m] · Pr [C | m]

=
∑
m

M(m) · 2−n

= 2−n ·
∑
m

M(m)

= 2−n · 1 .

The sum here was over all possible messages m. We used the fact that Pr [C | m] =
2−n as in Equation (1.2), and that the sum over all m of the probability of m is

Mihir Bellare and Phillip Rogaway 25

of course 1 since M is a probability distribution. Finally, plugging all this into
Equation (1.1) we get

Pr [M | C] = 2−n · M(M)
2−n

= M(M)

as desired.

A limitation on Shannon-secure encryption Recall that the key in the one-
time-pad scheme had to be at least as long as the number of bits we want to encrypt.
It turns out that this is necessary to achieve Shannon security. That is, if an
encryption scheme is to meet Definition 1.1, the number of key bits must be at least
a the total number of plaintext bits we’re going to encrypt.

This fact has some fundamental implications. If we want to do practical cryp-
tography, we must be able to use a single short key to encrypt lots of bits. This
means that we will not be able to achieve Shannon security. We must seek a different
paradigm and a different notion of security.

Complexity theory Modern cryptography introduces a new dimension: the amount
of computing power available to an adversary. It seeks to have security as long as
adversaries don’t have “too much” computing time. Schemes are breakable “in
principle,” but not in practice. Attacks are infeasible, not impossible.

This is a radical shift from many points of view. It takes cryptography from
the realm of information theory into the realm of computer science, and complexity
theory in particular, since that is where we study how hard problems are to solve
as a function of the computational resources invested. And it changes what we can
efficiently achieve.

We will want to be making statements like this:

Assuming the adversary uses no more than t computing cycles, her prob-
ability of breaking the scheme is at most t/2200.

Notice again the statement is probabilistic. Almost of our statements will be.
Notice another important thing. Nobody said anything about how the adversary

operates. What algorithm, or technique, does she use? We do not know anything
about that. The statement holds nonetheless. So it is a very strong statement.

It should be clear that, in practice, a statement like the one above would be
good enough. As the adversary works harder, her chance of breaking the scheme
increases, and if the adversary had 2200 computing cycles at her disposal, we’d have
no security left at all. But nobody has that much computing power.

Now we must ask ourselves how we can hope to get protocols with such proper-
ties. The legitimate parties must be able to efficiently execute the protocol instruc-
tions: their effort should be reasonable. But somehow, the task for the adversary
must be harder.

26 INTRODUCTION

Atomic primitives We want to make a distinction between the protocols that
that we use and those that we are designing. At the lowest level are what we call
atomic primitives. Higher level protocols are built on top of these.

Atomic Primitives

↓

Protocols

What’s the distinction? Perhaps the easiest way to think of it is that the proto-
cols we build address a cryptographic problem of interest. They say how to encrypt,
how to authenticate, how to distribute a key. We build our protocols out of atomic
primitives. Atomic primitives are protocols in their own right, but they are simpler
protocols. Atomic primitives have some sort of “hardness” or “security” properties,
but by themselves they don’t solve any problem of interest. They must be properly
used to achieve some useful end.

In the early days nobody bothered to make such a distinction between protocols
and the primitives that used them. And if you think of the one-time pad encryption
method, there is really just one object, the protocol itself.

Atomic primitives are drawn from two sources: engineered constructs and math-
ematical problems. In the first class fall standard block ciphers such as the well-
known DES algorithm. In the second class falls the RSA function. We’ll be looking
at both types of primitives later.

The computational nature of modern cryptography means that one must find,
and base cryptography on, computationally hard problems. Suitable ones are not
so commonplace. Perhaps the first thought one might have for a source of com-
putationally hard problems is NP-complete problems. Indeed, early cryptosystems
tried to use these, particularly the Knapsack problem. However, these efforts have
mostly failed. One reason is that NP-complete problems, although apparently hard
to solve in the worst-case, may be easy on the average.

An example of a more suitable primitive is a one-way function . This is a
function f : D → R mapping some domain D to some range R with two properties:
(1) f is easy to compute: there is an efficient algorithm that given x ∈ D outputs

y = f(x) ∈ R.
(2) f is hard to invert: an adversary I given a random y ∈ R has a hard time

figuring out a point x such that f(x) = y, as long as her computing time is
restricted.

The above is not a formal definition. The latter, which we will see later, will talk
about probabilities. The input x will be chosen at random, and we will then talk of
the probability an adversary can invert the function at y = f(x), as a function of
the time for which she is allowed to compute.

Can we find objects with this strange asymmetry? It is sometimes said that
one-way functions are obvious from real life: it is easier to break a glass than to

Mihir Bellare and Phillip Rogaway 27

put it together again. But we want concrete mathematical functions that we can
implement in systems.

One source of examples is number theory, and this illustrates the important
interplay between number theory and cryptography. A lot of cryptography has
been done using number theory. And there is a very simple one-way function based
on number theory—something you already know quite well. Multiplication! The
function f takes as input two numbers, a and b, and multiplies them together to
get N = ab. There is no known algorithm that given a random N = ab, always
and quickly recovers a pair of numbers (not 1 and N , of course!) that are factors
of N . This “backwards direction” is the factoring problem, and it has remained
unsolved for hundreds of years.

Here is another example. Let p be a prime. The set Z∗p = {1, . . . , p − 1} turns
out to be a group under multiplication modulo p. We fix an element g ∈ Z∗p which
generates the group (that is, {g0, g1, g2, . . . , gp−2} is all of Z∗p) and consider the
function f : {0, . . . , p− 2} → Z∗p defined by f(x) = gx mod p. This is called discrete
exponentiation, and its inverse is called discrete logarithm : logg(y) is the value
x such that y = gx. It turns out there is no known fast algorithm that computes
discrete logarithms, either. This means that for large enough p (say 1000 bits) the
task is infeasible, given current computing power, even in thousands of years. So
this is another one-way function.

It should be emphasized though that these functions have not been proven to be
hard functions to invert. Like P versus NP, whether or not there is a good one-way
function out there is an open question. We have some candidate examples, and we
work with them. Thus, cryptography is build on assumptions. If the assumptions
are wrong, a lot of protocols might fail. In the meantime we live with them.

The provable-security approach While there are several different ways in which
proofs can be effective tools in cryptography, we will generally follow the proof-using
tradition which has come to be known as “provable security.” Provable security
emerged in 1982, with the work of Shafi Goldwasser and Silvio Micali. At that time,
Goldwasser and Micali were graduate students at UC Berkeley. They, and their
advisor Manuel Blum, wanted to put public-key encryption on a scientifically firm
basis. And they did that, effectively creating a new viewpoint on what cryptography
is really about.

We have explained above that we like to start from atomic primitives and trans-
form them into protocols. Now good atomic primitives are rare, as are the people
who are good at making and attacking them. Certainly, an important effort in
cryptography is to design new atomic primitives, and to analyze the old ones. This,
however, is not the part of cryptography that this course will focus on. One reason
is that the weak link in real-world cryptography seems to be between atomic primi-
tives and protocols. It is in this transformation that the bulk of security flaws arise.
And there is a science that can do something about it, namely, provable security.

We will view a cryptographer as an engine for turning atomic primitives into

28 INTRODUCTION

protocols. That is, we focus on protocol design under the assumption that good
atomic primitives exist. Some examples of the kinds of questions we are interested in
are these. What is the best way to encrypt a large text file using DES, assuming DES
is secure? What is the best way to design a signature scheme using multiplication,
assuming that multiplication is one-way? How “secure” are known methods for
these tasks? What do such questions even mean, and can we find a good framework
in which to ask and answer them?

A poorly designed protocol can be insecure even though the underlying atomic
primitive is good. The fault is not of the underlying atomic primitive, but that
primitive was somehow misused.

Indeed, lots of protocols have been broken broken, yet the good atomic primi-
tives, like DES and multiplication and RSA, have never been convincingly broken.
We would like to build on the strength of such primitives in such a way that pro-
tocols can “inherit” this strength, not loose it. The provable-security paradigm lets
us do that.

The provable-security paradigm is as follows. Take some goal, like achieving
privacy via symmetric encryption. The first step is to make a formal adversarial
model and define what it means for an encryption scheme to be secure. The
definition explains exactly when—on which runs—the adversary is successful.

With a definition in hand, a particular protocol, based on some particular atomic
primitive, can be put forward. It is then analyzed from the point of view of meeting
the definition. The plan is now show security via a reduction . A reduction shows
that the only way to defeat the protocol is to break the underlying atomic primitive.
Thus we will also need a formal definition of what the atomic primitive is supposed
to do.

A reduction is a proof that if the atomic primitive does the job it is supposed to
do, then the protocol we have made does the job that it is supposed to do. Believing
this, there is no longer necessary to directly cryptanalyze the protocol: if you were
to find a weakness in it, you would have unearthed one in the underlying atomic
primitive. So if one is going to do cryptanalysis, one might as well focus on the
atomic primitive. And if we believe the latter is secure, then we know, without
further cryptanalysis of the protocol, that the protocol is secure, too.

A picture for the provable-security paradigm might look like Figure 1.11.
In order to do a reduction one must have a formal notion of what is meant

by the security of the underlying atomic primitive: what attacks, exactly, does it
withstand? For example, we might assume that RSA is a one-way function.

Here is another way of looking at what reductions do. When I give you a
reduction from the onewayness of RSA to the security of my protocol, I am giving
you a transformation with the following property. Suppose you claim to be able to
break my protocol P . Let A be the adversary that you have that does this. My
transformation takes A and turns it into another adversary, A′, that breaks RSA.
Conclusion: as long as we believe you can’t break RSA, there could be no such
adversary A. In other words, my protocol is secure.

Mihir Bellare and Phillip Rogaway 29

Figure 1.11: The provable-security paradigm.

We think that computational problem Ξ
can’t be solved in polynomial time.

We think that cryptographic protocol Π
can’t be effectively attacked.

We believe this because if Ξ could be
solved in polynomial time, then so could
SAT (say).

We believe this because if Π could be effec-
tively attacked, then so could RSA (say).

To show this we reduce SAT to Ξ: we
show that if somebody could solve Ξ in
polynomial time, then they could solve
SAT in polynomial time, too.

To show this we reduce RSA to Π: we
show that if somebody could break Π
by effective means, then they could break
RSA by effective means, too.

Figure 1.12: The analogy between reductionist-cryptography and NP-Completeness.

Those familiar with the theory of NP-completeness will recognize that the basic
idea of reductions is the same. When we provide a reduction from SAT to some
computational problem Ξ we are saying our Ξ is hard unless SAT is easy; when we
provide a reduction from RSA to our protocol Π, we are saying that Π is secure
unless RSA is easy. The analogy is further spelled out in Figure 1.12, for the benefit
of those of you familiar with the notion of NP-Completeness.

Experience has taught us that the particulars of reductions in cryptography are
a little harder to comprehend than they were in elementary complexity theory. Part
of the difficulty lies in the fact that every problem domain will have it’s own unique
notion of what is an “effective attack.” It’s rather like having a different “version” of
the notion of NP-Completeness as you move from one problem to another. We will
also be concerned with the quality of reductions. One could have concerned oneself
with this in complexity theory, but it’s not usually done. For doing practical work in
cryptography, however, paying attention to the quality of reductions is important.
Given these difficulties, we will proceed rather slowly through the ideas. Don’t
worry; you will get it (even if you never heard of NP-Completeness).

30 INTRODUCTION

The concept of using reductions in cryptography is a beautiful and powerful
idea. Some of us by now are so used to it that we can forget how innovative it was!
And for those not used to it, it can be hard to understand (or, perhaps, believe)
at first hearing—perhaps because it delivers so much. Protocols designed this way
truly have superior security guarantees.

In some ways the term “provable security” is misleading. As the above indicates,
what is probably the central step is providing a model and definition, which does
not involve proving anything. And then, one does not “prove a scheme secure:” one
provides a reduction of the security of the scheme to the security of some underlying
atomic primitive. For that reason, we sometimes use the term “reductionist security”
instead of “provable security” to refer to this genre of work.

Theory for practice As you have by now inferred, this course emphasizes gen-
eral principles, not specific systems. We will not be talking about the latest holes
in sendmail or Netscape, how to configure PGP, or the latest attack against the
ISO 9796 signature standard. This kind of stuff is interesting and useful, but it
is also pretty transitory. Our focus is to understand the fundamentals, so that we
know how to deal with new problems as they arise.

We want to make this clear because cryptography and security are now quite
hyped topic. There are many buzzwords floating around. Maybe someone will ask
you if, having taken a course, you know one of them, and you will not have heard
of it. Don’t be alarmed. Often these buzzwords don’t mean much.

This is a theory course. Make no mistake about that! Not in the sense that
we don’t care about practice, but in the sense that we approach practice by trying
to understand the fundamentals and how to apply them. Thus the main goal is to
understand the theory of protocol design, and how to apply it. We firmly believe it is
via an understanding of the theory that good design comes. If you know the theory
you can apply it anywhere; if you only know the latest technology your knowledge
will soon by obsolete. We will see how the theory and the practice can contribute
to each other, refining our understanding of both.

In assignments you will be asked to prove theorems. There may be a bit of math-
ematics for you to pick up. But more than that, there is “mathematical thinking.”

Don’t be alarmed if what you find in these pages contradicts “conventional wis-
dom.” Conventional wisdom is often wrong! And often the standard texts give an
impression that the field is the domain of experts, where to know whether something
works or not, you must consult an expert or the recent papers to see if an attack
has appeared. The difference in our approach is that you will be given reasoning
tools, and you can then think for yourself.

Cryptography is fun. Devising definitions, designing protocols, and proving them
correct is a highly creative endeavor. We hope you come to enjoy thinking about
this stuff, and that you come to appreciate the elegance in this domain.

Mihir Bellare and Phillip Rogaway 31

1.4 What background do I need?

Now that you have had some introduction to the material and themes of the class,
you need to decide whether you should take it. Here are some things to consider in
taking this decision.

A student taking this course is expected to be comfortable with the following
kinds of things, which are covered in various other courses.

The first is probability theory. Probability is everywhere in cryptography. You
should be comfortable with ideas like sample spaces, events, experiments, conditional
probability, random variables and their expectations. We won’t use anything deep
from probability theory, but we will draw heavily on the language and basic concepts
of this field.

You should know about alphabets, strings and formal languages, in the style of
an undergraduate course in the theory of computation.

You should know about algorithms and how to measure their complexity. In par-
ticular, you should have taken and understood at least an undergraduate algorithms
class.

Most of all you should have general mathematical maturity, meaning, especially,
you need to be able to understand what is (and what is not) a proper definition.

1.5 Historical notes

1.6 Exercises and problems

Exercise 1.1 Suppose that you want to encrypt a single message M ∈ {0, 1, 2}
using a random shared key K ∈ {0, 1, 2}. Suppose you do this by representing K
and M using two bits (00, 01, or 10), and then XORing the two representations.
Does this seem like a good protocol to you? Explain.

Exercise 1.2 Suppose that you want to encrypt a single message M ∈ {0, 1, 2}
using a random shared key K ∈ {0, 1, 2}. Explain a good way to do this.

Exercise 1.3 Besides the symmetric and the asymmetric trust models, think of a
couple more ways to “create asymmetry” between the receiver and the adversary.
Show how you would encrypt a bit in each of your model.

Exercise 1.4 In the telephone coin-flipping protocol, what should happen if Alice
refuses to send her second message? Is this potentially damaging?

Exercise 1.5 Give a clear argument why what we said about keeping the algorithm
public but the key secret is fundamentally meaningless.

Problem 1.1 A limitation on fixed-time fair-coin-flipping TMs. Consider the model
of computation in which we augment a Turing machine so that it can obtain the

32 INTRODUCTION

output of a random coin flip: by going into a distinguished state Q$, the next state
will be QH with probability 1/2, and the next state will be QT with probability
1/2. Show that, in this model of computation, there is no constant-time algorithm
to perfectly deal out five cards to each of two players.

(A deck of cards consists of 52 cards, and a perfect deal means that all hands
should be equally likely. Saying that the algorithm is constant-time means that
there is some number T such that the algorithm is guaranteed to stop within T
steps.)

Problem 1.2 Symmetric encryption with a deck of cards. Alice shuffles a deck of
cards and deals it all out to herself and Bob (each of them gets half of the 52 cards).
Alice now wishes to send a secret message M to Bob by saying something aloud.
Eavesdropper Eve is listening in: she hears everything Alice says (but Eve can’t see
the cards).

Part A. Suppose Alice’s message M is a string of 48-bits. Describe how Alice can
communicate M to Bob in such a way that Eve will have no information about what
is M .

Part B. Now suppose Alice’s message M is 49 bits. Prove that there exists no
protocol which allows Alice to communicate M to Bob in such a way that Eve will
have no information about M .

(What does it mean that Eve learns nothing about M? That for all strings κ,
the probability that Alice says κ is independent of M : for all messages M0,M1 we
have that

Pr[Alice says κ| M = M0] = Pr[Alice says κ| M = M1] .

The probability is over the the random shuffle of the cards.)

Problem 1.3 Composition of EPT Algorithms. John designs an EPT (expected
polynomial time) algorithm to solve some computational problem Π—but he as-
sumes that he has in hand a black-box (ie., a unit-time subroutine) which solves
some other computational problem, Π′. Ted soon discovers an EPT algorithm to
solve Π′. True or false: putting these two pieces together, John and Ted now have
an EPT algorithm for Π. Give a proof or counterexample.

(When we speak of the worst-case running time of machine M we are looking
at the function T (n) which gives, for each n, the maximal time which M might
spend on an input of size n: T (n) = maxx, |x|=n[#StepsM (x)]. When we speak of
the expected running time of M we are instead looking at the function T (n) which
gives, for each n, the maximal value among inputs of length n of the expected value
of the running time of M on this input—that is, T (n) = maxx, |x|=n E[#StepsM (x)],
where the expectation is over the random choices made by M .)

Chapter 2

Block Ciphers

Block ciphers are the central tool in the design of protocols for shared-key cryp-
tography. They are the main available “technology” we have at our disposal. This
chapter will take a look at these objects and describe the state of the art in their
construction.

It is important to stress that block ciphers are just tools—raw ingredients for
cooking up something more useful. Block ciphers don’t, by themselves, do something
that an end-user would care about. As with any powerful tool, one has to learn to use
this one. Even a wonderful block cipher won’t give you security if you use don’t use
it right. But used well, these are powerful tools indeed. Accordingly, an important
theme in several upcoming chapters will be on how to use block ciphers well. We
won’t be emphasizing how to design or analyze block ciphers, as this remains very
much an art. The main purpose of this chapter is just to get you acquainted with
what typical block ciphers look like. We’ll look at two examples, DES and AES.
DES is the “old standby.” It is currently (year 2001) the most widely-used block
cipher in existence, and it is of sufficient historical significance that every trained
cryptographer needs to have seen its description. AES is a modern block cipher,
and it is expected to supplant DES in the years to come.

2.1 What is a block cipher?

A block cipher is a function E: {0, 1}k×{0, 1}n → {0, 1}n that takes two inputs, a k-
bit keyK and an n-bit “plaintext”M , to return an n-bit “ciphertext” C = E(K,M).
The key-length k and the block-length n are parameters associated to the block
cipher. They vary from block cipher to block cipher, as of course does the design
of the algorithm itself. For each key K ∈ {0, 1}k we let EK : {0, 1}l → {0, 1}l be
the function defined by EK(M) = E(K,M). For any block cipher, and any key
K, it is required that the function EK be a permutation on {0, 1}n. This means
that it is a bijection (ie., a one-to-one and onto function) of {0, 1}n to {0, 1}n.

33

34 BLOCK CIPHERS

Accordingly EK has an inverse, and we can denote it E−1
K . This function also maps

{0, 1}n to {0, 1}n, and of course we have E−1
K (EK(M)) = M and EK(E−1

K (C)) = C
for all M,C ∈ {0, 1}n. We let E−1: {0, 1}k × {0, 1}n → {0, 1}n be defined by
E−1(K,C) = E−1

K (C); this is the inverse block cipher to E.
One images that the block cipher E is a public and fully specified algorithm.

Both the cipher E and its inverse E−1 should be easily computable, meaning given
K,M we can readily compute E(K,M), and given K,C we can readily compute
E−1(K,C).

In typical usage, a random key K is chosen and kept secret between a pair of
users. The function EK is then used by the two parties to process data in some way
before they send it to each other. Typically, the adversary will be able to see input-
output examples for EK , meaning pairs of the form (M,C) where C = EK(M).
But, ordinarily, the adversary will not be shown the key K. Security relies on the
secrecy of the key. So, as a first cut, you might think of the adversary’s goal as
recovering the key K given some input-output examples of EK . The block cipher
should be designed to make this task computationally difficult. Later we will refine
this (fundamentally incorrect) view.

We emphasize that we’ve said absolutely nothing about what properties a block
cipher should have. A function like EK(M) = M is a block cipher (the “identity
block cipher”), but we shall not regard it as a “good” one. Only in the next chapter
do we start to take up what “goodness” means for a block cipher.

How do real block ciphers work? Lets take a look at some of them to get a sense
of this.

2.2 Data Encryption Standard

The Data Encryption Standard (DES) is the quintessential block cipher. Even
though it is now quite old, and on the way out, no discussion of block ciphers can
really omit mention of this construction. DES is a remarkably well-engineered algo-
rithm which has had a powerful influence on cryptography. It is in very widespread
use, and probably will be for some years to come. Every time you use an ATM
machine, you are using DES.

2.2.1 A brief history

In 1972 the NBS (National Bureau of Standards, now NIST, the National Institute
of Standards and Technology) initiated a program for data protection and wanted
as part of it an encryption algorithm that could be standardized. They put out a
request for such an algorithm. In 1974, IBM responded with a design based on their
“Lucifer” algorithm. This design would eventually evolve into the DES.

DES has a key-length of k = 56 bits and a block-length of n = 64 bits. It consists
of 16 rounds of what is called a “Feistel network.” We will describe more details
shortly.

Mihir Bellare and Phillip Rogaway 35

After NBS, several other bodies adopted DES as a standard, including ANSI (the
American National Standards Institute) and the American Bankers Association.

The standard was to be reviewed every five years to see whether or not it should
be re-adopted. Although there were claims that it would not be re-certified, the
algorithm was re-certified again and again. Only recently did the work for finding
a replacement begin in earnest, in the form of the AES (Advanced Encryption
Standard) effort.

DES proved remarkably secure. There has, since the beginning, been one pri-
mary concern, and that was the threat of key-search. But for a fairly long time, the
key size of 56 bits was good enough against all but very well-funded organizations.
Interesting attacks emerged only in the nineties, and even then they don’t break
DES in a sense more significant than the threat of exhaustive key search. But with
today’s technology, 56 bits is just too small a key size for many security applications.
The problem is that, with a modest expenditure of funds, one can build a machine
that, given a plaintext-ciphertext pair, say, will search the entire space of 256 keys,
locating the correct one (or ones) in a modest amount of times. Indeed the Elec-
tronic Frontier Foundation (EFF) has, as a demonstration of DES’s vulnerability,
constructed just such a machine.

2.2.2 Construction

Revise, drawing a single picture, for the Feistel construction, instead of referring to
the FIPS.

The construction is described in FIPS 46 [7]. The following discussion is a quick
guide that you can follow if you have the FIPS document at your side.

Begin at page 87 where you see a big picture. The input is 64 bits and in addition
there is a 56 bit key K. (They say 64, but actually every eighth bit is ignored. It
is often mandated to be the xor of the previous seven bits.) Notice the algorithm is
public. You operate with a hidden key, but nothing about the algorithm is hidden.

The first thing the input is hit with is something called the initial permutation,
or IP. This just shuffles bit positions. That is, each bit is moved to some other
position. How? In a fixed and specified way: see page 88. Similarly, right at the
end, notice they apply the inverse of the same permutation. From now on, ignore
these. They do not affect security (as far as anyone knows).

The essence of DES is in the round structure. There are 16 rounds. Each round
i has an associated subkey Ki which is 48 bits long. The subkeys K1, . . . ,K16

are derived from the main key K, in a manner explained on page 95 of the FIPS
document.

In each round, the input is viewed as a pair (Li, Ri) of 32 bit blocks, and these are
transformed into the new pair (Li+1, Ri+1), via a certain function f that depends on
a subkey Ki associated to round i. The structure of this transformation is important:
it is called the Feistel transformation.

The Feistel transformation, in general, is like this. For some function g known to
the party computing the transformation, it takes input (L,R) and returns (L′, R′)

36 BLOCK CIPHERS

where L′ = R and R′ = g(R) ⊕ L. A central property of this transformation is that
it is a permutation, and moreover if you can compute g then you can also easily
invert the transformation. Indeed, given (L′, R′) we can recover (L,R) via R = L′

and L = g(R) ⊕ R′. For DES, the role of g in round i is played by f(Ki, ·), the
round function specified by the subkey Ki. Since DESK(·) is a sequence of Feistel
transforms, each of which is a permutation, the whole algorithm is a permutation,
and knowledge of the key K permits computation of DES−1

K (·).
Up to now the structure has been quite generic, and indeed many block-ciphers

use this high level design: a sequence of Feistel rounds. For a closer look we need
to see how the function f(Ki, ·) works. This function maps 32 bits to 32 bits. See
the picture on page 90 of the FIPS document. Here Ki is a 48-bit subkey, derived
from the 56-bit key (just by selecting particular bits) in a way depending on the
round number. The 32-bit Ri is first expanded into 48 bits. How? In a precise,
fixed way, indicated by the table on the same page, saying E-bit selection table. It
has 48 entries. Read it as which inputs bits are output. Namely, output bits 32, 1,
2, 3, 4, 5, then 4, 5 again, and so on. It is NOT random looking! In fact barring
that 1 and 32 have been swapped (see top left and bottom right) it looks almost
sequential. Why did they do this? Who knows. That’s the answer to most things
about DES.

Now Ki is XORed with the output of the E-box and this 48 bit input enters the
famous S-boxes. There are eight S-boxes. Each takes 8 bits to 6 bits. Thus we get
out 32 bits. Finally, there is a P-box, a permutation applied to these 32 bits to get
another 32 bits. You can see it on page 91.

What are the S-boxes? Each is a fixed, tabulated function, which the algorithm
stores as tables in the code or hardware. You can see them on page 93. How to read
them? Take the 6 bit input b1, b2, b3, b4, b5, b6. Interpret the first and last bits as a
row number (row 0, 1, 2, or 3). Interpret the rest as a column number (column 0,
1, ..., 15). Now look up what you get in the table and write down those four bits.

Well now you know how DES works. Of course, the main questions about the
design are: why, why and why? What motivated these design choices? We don’t
know too much about this, although we can guess a little. And one of the designers
of DES, Don Coppersmith, has written a short paper which gives information on
why (thought what Don wrote was information which had effectively been reverse-
engineered out of the algorithm in the previous years).

2.2.3 Speed

One of the design goals of DES was that it would have fast implementations relative
to the technology of its time. How fast can you compute DES? In roughly current
technology (well, nothing is current by the time one writes it down!) one can get well
over 1 Gbit/sec on high-end VLSI. Specifically at least 1.6 Gbits/sec, maybe more.
That’s pretty fast. Perhaps a more interesting figure is that one can implement each
DES S-boxes with at most 50?? two-input gates, where the circuit has depth of only
3??. Thus one can compute DES by a combinatorial circuit of about 8 ·16 ·50 = 640

Mihir Bellare and Phillip Rogaway 37

gates and depth of 3 · 16 = 48 gates.
In software, on a fairly modern processor, DES takes something like 80(?) cycles

per byte. This is disappointingly slow—not surprisingly, since DES was optimized
for hardware and was designed before the days in which software implementations
were considered feasible or desirable.

2.3 Advanced Encryption Standard

In 1998 the National Institute of Standards and Technology (NIST/USA) announced
a “competition” for a new block cipher. The new block cipher would, in time,
replace DES. The relatively short key length of DES was the main problem that
motivated the effort: with the advances in computing power, a key space of 256 keys
was just too small. With the development of a new algorithm one could also take
the opportunity to address the modest software speed of DES, making something
substantially faster, and to increase the block size from 64 to 128 bits (the choice
of 64 bits for the block size can lead to security difficulties, as we shall later see.
Unlike the design of DES, the new algorithm would be designed in the open and by
the public.

Fifteen algorithms were submitted to NIST. They came from around the world.
A second round narrowed the choice to five of these algorithms. In the summer of
2001 NIST announced their choice: an algorithm called Rijndael. The algorithm
should be embodied in a NIST FIPS (Federal Information Processing Standard) any
day now; right now, there is a draft FIPS. Rijndael was designed by Joan Daemen
and Vincent Rijmen (from which the algorithm gets its name), both from Belgium.
It is descendent of an algorithm called Square.

In this section we shall describe AES.
A word about notation. Purists would prefer to reserve the term “AES” to refer

to the standard, using the word “Rijndael” or the phrase “the AES algorithm” to
refer to the algorithm itself. (The same naming pundits would have us use the
acronym DEA, Data Encryption Algorithm, to refer to the algorithm of the DES,
the Data Encryption Standard.) We choose to follow common convention and refer
to both the standard and the algorithm as AES. Such an abuse of terminology never
seems to lead to any misunderstandings.

The AES has a block block length of n = 128 bits, and a key length k that is
variable: it may be 128, 192 or 256 bits. So the standard actually specifies three
different block ciphers: AES128, AES192, AES256. These three block ciphers are all
very similar, so we will stick to describing just one of them, AES128. For simplicity,
in the remainder of this section, AES means the algorithm AES128. We’ll write
C = AESK(M) where |K| = 128 and |M | = |C| = 128.

We’re going to describe AES in terms of four additional mappings: expand, S,
shift-rows, and mix-cols. The function expand takes a 128-bit string and produces
a vector of eleven keys, (K0, . . . ,K10). The remaining three functions bijectively
map 128-bits to 128-bits. Actually, we’ll be more general for S, letting git be a map

38 BLOCK CIPHERS

function AESK(M)
begin

(K0, . . . ,K10)← expand(K) s←M s← s ⊕ K0

[1] s← S(s) s← shift-rows(s) s← mix-cols(s) s← s ⊕ K1

[2] s← S(s) s← shift-rows(s) s← mix-cols(s) s← s ⊕ K2

[3] s← S(s) s← shift-rows(s) s← mix-cols(s) s← s ⊕ K3

[4] s← S(s) s← shift-rows(s) s← mix-cols(s) s← s ⊕ K4

[5] s← S(s) s← shift-rows(s) s← mix-cols(s) s← s ⊕ K5

[6] s← S(s) s← shift-rows(s) s← mix-cols(s) s← s ⊕ K6

[7] s← S(s) s← shift-rows(s) s← mix-cols(s) s← s ⊕ K7

[8] s← S(s) s← shift-rows(s) s← mix-cols(s) s← s ⊕ K8

[9] s← S(s) s← shift-rows(s) s← mix-cols(s) s← s ⊕ K9

[10] s← S(s) s← shift-rows(s) s← s ⊕ K10

return s
end

Figure 2.1: The function AES128. See the accompanying text and figures for defi-
nitions of the maps expand, S, shift-rows, mix-cols.

on (({0, 1})8)+. Let’s postpone describing all of these maps and start off with the
high-level structure of AES, which is given in Figure 2.3.

Refer to Figure 2.3. The value s is called the state. One initizlizes the state to
M and the final state is the ciphertext C on gets by enciphering M . What happens
in each of lines 1–10 is called a round. So AES (remember this means AES128 in
this section) consists of ten rounds. The rounds are identical except that each uses
a different subkey Ki and, also, round 10 omits the call to mix-cols.

To understand what goes on in S and mix-cols we will need to review a bit
of algebra. Let us make a pause to do that. We describe a way to do arithmetic
on bytes. Identify each byte a = a7a6a5a4a3a2a1a0 with the formal polynomial
a7x7 + a6x6 + a + 5x5 + a4x4 + a3x3 + a2x2 + a1x + a0. We can add two bytes by
taking their bitwise xor (which is the same as the mod-2 sum the corresponding
polynomials). We can multiply two bytes to get a degree 14 (or less) polynomial,
and then take the remainder of this polynomial by the fixed irreducible polynomial

m(x) = x8 + x4 + x3 + x + 1 .

This remainder polynomial is a polynomial of degree at most seven which, as before,
can be regarded as a byte. In this way can add and multiply any two bytes. The
resulting algebraic structure has all the properties necessary to be called a finite
field. In particular, this is one representation of the finite field known as GF(28)—
the Galois field on 28 = 256 points. As a finite field, you can find the inverse of
any nonzero field point (the zero-element is the zero byte) and you can distribute
addition over multiplication, for example.

Mihir Bellare and Phillip Rogaway 39

There are some useful tricks when you want to multiply two bytes. Since m(x)
is another name for zero, x8 = x4 + x3 + x + 1 = {1b}. (Here the curly brackets
simply indicate a hexadecimal number.) So it is easy to multiply a byte a by the
byte x = {02}: namely, shift the 8-bit byte a one position to the left, letting the
first bit “fall off” (but remember it!) and shifting a zero into the last bit position.
We write this operation a 〈〈 1. If that first bit of a was a 0, we are done. If the first
bit was a 1, we need to add in (that is, xor in) x8 = {1b}. In summary, for a a byte,
a · x = a · {02} is a 〈〈 1 if the first bit of a is 0, and it is (a 〈〈 1) ⊕ {1b} if the first
bit of a is 1.

Knowing how to multiply by x = {02} let’s you conveniently multiply by other
quantities. For example, to compute {a1} · {03} compute {a1} · ({02} ⊕ {01}) =
{a1} · {02} ⊕ {a1} · {01} = {42} ⊕ {1b} ⊕ a1 = {f8}. Try some more examples
on your own.

As we said, each nonzero byte a has a multiplicative inverse, inv(a) = a−1, The
mapping we will denote S : {0, 1}8 → {0, 1}8 is obtained from the map inv : a 7→ a−1.
First, patch this map to make it total on {0, 1}8 by setting inv({00}) = {00}.
Then, to compute S(a), first replace a by inv(a), number the bits of a by a =
a7a6a5a4a3a2a1a0, and return the value a′, where a′ = a′7a

′
6a
′
5a
′
4a
′
3a
′
2a
′
1a
′
0 where

a′7
a′6
a′5
a′4
a′3
a′2
a′1
a′0

=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

·

a7

a6

a5

a4

a3

a2

a1

a0

+

1
1
0
0
0
1
1
0

All arithmetic is in GF(2), meaning that addition of bits is their xor and multipli-
cation of bits is the conjunction (and).

All together, the map S is give by Figure 2.2, which lists the values of S(0), S(1), . . . , S(255).
In fact, one could forget how this table is produced, and just take it for granted.
But the fact is that it is made in the simple way we have said.

Now that we have the function S, let us extend it (without bothering to change
the name) to a function with domain {{0, 1}8}+. Namely, given an m-byte string
A = A[1] . . . A[m], set S(A) to be S(A[1]) . . . S(A[m]). In other words, just apply
S bytewise.

Now we’re ready to understand the first map, S(s). One takes the 16-byte state
s and applies the 8-bit lookup table to each of its bytes to get the modified state s.

Moving on, the shift-rows operation works like this. Imagine plastering the 16
bytes of s = s0s1 . . . s15 going top-to-bottom, then left-to-right, to make a 4 × 4

40 BLOCK CIPHERS

63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Figure 2.2: The AES S-box, which is a function S : {0, 1}8 → {0, 1}8 specified by the
following list. All values in hexadecimal. The meaning is: S(00) = 63, S(01) = 7c,
. . ., S(ff) = 16.

table:
s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

For the shift-rows step, left circularly shift the second row by one position; the third
row by two positions; and the the fourth row by three positions. The first row is
not shifted at all. Somewhat less colorfully, the mapping is simply

shift-rows(s0s1s2 · · · s15) = s0s5s10s15s4s9s14s3s8s13s2s7s12s1s6s11

Using the same convention as before, the mix-cols step takes each of the four
columns in the 4×4 table and applies the (same) transformation to it. Thus we define
mix-cols(s) on 4-byte words, and then extend this to a 16-byte quantity wordwise.
The value of mix-cols(a0a1a2a3) = a′0a

′
1a
′
2a
′
3 is defined by:

a′0
a′1
a′2
a′3

 =

02 03 01 01
01 02 03 01
01 02 02 03
03 01 01 02

 ·

a0

a1

a2

a3

An equivalent way to explain this step is to say that we are multiplying a(x) =
a3x3+a2x2+a1x1+a0 by the fixed polynomial c(x) = {03}x3+{01}x2+{01}x+{02}
and taking the result modulo x4 + 1.

Mihir Bellare and Phillip Rogaway 41

function expand(K)
begin

K0 ← K
for i← 1 to 10 do

Ki[0]← Ki−1[0] ⊕ S(Ki−1[3] 〈〈 8) ⊕ Ci

Ki[1]← Ki−1[1] ⊕ Ki[0]
Ki[2]← Ki−1[2] ⊕ Ki[1]
Ki[3]← Ki−1[3] ⊕ Ki[2]

od
return (K0, . . . ,K10)

end

Figure 2.3: The AES128 key-expansion algorithm maps a 128-bit key K into
eleven 128-bit subkeys, K0, . . . ,K10. Constants (C1, . . . ,C10) are ({02000000},
{04000000}, {08000000}, {10000000}, {20000000}, {40000000}, {80000000},
{1B000000}, {36000000}, {6C000000}). All other notation is described in the ac-
companying text.

At this point we have described everything but the key-expansion map, expand.
That map is given in Figure 2.3.

We have now completed the definition of AES. One key property is that AES is
a block cipher: the map is invertible. This follows because every round is invertible.
That a round is invertible follows from each of its steps being invertible, which is a
consequence of S being a permutation and the matrix used in mix-cols having an
inverse (see Exercise ??).

After seeing a definition like that of AES, one is left having essentially no idea
why it should be so. The truth is that there are no satisfying answer to this question.
The answer one hears normally amounts to: “we have been unable to find effective
attacks, and we have tried attacks along the following lines” If people with
enough smarts and experience utter this statement, then it suggests that the block
cipher is good. Beyond this, it’s hard to say much. Yet, by now, our community
has become reasonably experienced designing these things. It wouldn’t even be
that hard a game were it not for the fact we tend to be egressive in optimizing the
block-cipher’s speed. (Some may come to the opposite opinion, that it’s a very hard
game, seeing just how many reasonable-looking block ciphers have been broken.) In
the following section we give some vague sense of the sort of cleverness that people
muster against block ciphers.

2.4 Cryptanalysis of 5-round AES

Where 5 is whatever constant leads to a pedagogically interesting section. Alterna-
tively, we could introduce a “toy” cipher to illustrate clever cryptanalysis—there is a

42 BLOCK CIPHERS

very clean suggestion by Shamir and ??—but I’d rather not introduce any additional
block cipher.

Anyone interested in cryptanalysis or AES is welcome to figure out what are the
state-of-the-art attacks on reduced-round Rijndael and then, as your final project,
write a proposal for a pedagogically good attack on a reduced-round Rijndael.

2.5 Some modes of operation

Fix a block cipher E, and assume two parties share a key K for this block cipher.
This gives them the ability to compute the functions EK(·) and E−1

K (·). These
functions can be applied to an input of n-bits. An application of EK is a called
enciphering and an application of E−1

K is called deciphering.
Typically the block size n is 64 or 128. Yet, in practice, we may want to process

much larger inputs, say text files to encrypt. To do this one uses a block cipher in
some mode of operation. There are several well-known modes of operation. We will
illustrate by describing three of them, all intended for message privacy. We look at
ECB (Electronic Codebook), CBC (Cipher Block Chaining) and CTR (Counter).
In each case there is an encryption process which takes an nm-bit string M , usually
called the plaintext, and returns a string C, usually called the ciphertext. (If the
length of M is not a positive multiple of n then some appropriate padding can
be done to make it so. We’re not going to worry about that here; we’ll simply
assume that each plaintext M has a length which is some positive multiple of n.)
An associated decryption process recovers M from C.

If M is a string whose length is a multiple of n then we view it as divided into
a sequence of n-bit blocks, and let M [i] denote the i-th block, for i = 1, . . . , |M |/n.
That is, M = M [1] . . .M [m] where m = |M |/n.

2.5.1 Electronic codebook mode

Each plaintext block is individually enciphered into an associated ciphertext block.

Algorithm EK(M [1] · · ·M [m])
For i = 1, . . . ,m do

C[i]← EK(M [i])
Return C[1] . . . C[m]

Algorithm DK(C[1] . . . C[m])
For i = 1, . . . ,m do

M [i]← E−1
K (C[i])

Return M [1] · · ·M [m]

2.5.2 Cipher-block chaining mode

CBC mode processes the data based on some initialization vector IV which is an
l-bit string, as follows.

Mihir Bellare and Phillip Rogaway 43

Algorithm EK(IV, M [1] · · ·M [m])
C[0]← IV
For i = 1, . . . , n do

C[i]← EK(C[i− 1] ⊕M [i])
Return C[0]C[1] · · ·C[m]

Algorithm DK(C[0]C[1] . . . C[n])
For i = 1, . . . , n do

M [i]← E−1
K (C[i]) ⊕ C[i− 1]

Return M [1] . . .M [n]

Unlike ECB encryption, this operation is not length preserving: the output is n-bits
longer than the input. The initialization vector is used for encryption, but it is then
made part of the ciphertext, so that the receiver need not be assumed to know it a
priori.

Different specific modes result from different ways of choosing the initialization
vector. Unless otherwise stated, it is assumed that before applying the above en-
cryption operation, the encryptor chooses the initialization vector at random, anew
for each message M to be encrypted. Other choices however can also be considered,
such as letting IV be a counter that is incremented by one each time the algorithm
is applied. The security attributed of these different choices are discussed later.

CBC is the most popular mode, used pervasively in practice.

2.5.3 Counter mode

CTR mode also uses an auxiliary value, an “initial value” IV which is an integer
in the range 0, 1, . . . , 2n − 1. In the following, addition is done modulo 2n, and [j]n
denotes the binary representation of integer j as an n-bit string.

Algorithm EK(IV, M [1] · · ·M [m])
For i = 1, . . . ,m do

C[i]← EK([IV + i]n) ⊕M [i]
Return [IV]n C[1] · · ·C[n]

Algorithm DK([IV]nC[1] . . . C[m])
For i = 1, . . . ,m do

M [i]← EK([IV + i]n) ⊕ C[i]
Return M [1] . . .M [m]

Notice that in this case, decryption did not require computation of E−1
K , and in fact

did not even require that EK be a permutation. Also notice the efficiency advantage
over CBC: the encryption is parallelizable.

Again, there are several choices regarding the initial vector. It could be a counter
maintained by the sender and incremented by m = |M |/n after message M has
been encrypted. Or, it could be chosen anew at random each time the algorithm is
invoked. And there are still other possibilities.

2.6 Key recovery attacks on block ciphers

Old fragments, needs to be rewritten and harmonized with the rest of the chapter.
Historically, cryptanalysis of block ciphers E: {0, 1}k × {0, 1}n → {0, 1}n has

always focused on key-recovery. The cryptanalyst may think of the problem to be
solved as something like this. A k-bit key K is chosen at random. Let q ≥ 0 be
some integer parameter.

44 BLOCK CIPHERS

Given: The adversary has a sequence of q input-output examples of EK , say

(M1, C1), . . . , (Mq, Cq)

where Ci = EK(Mi) for i = 1, . . . , q and M1, . . . ,Mq are all distinct n-bit strings.

Find: The adversary must find the key K.

Some typical kinds of “attack” that are considered within this framework:

Known-message attack: M1, . . . ,Mq are any distinct points; the adversary has
no control over them, and must work with whatever it gets.

Chosen-message attack: M1, . . . ,Mq are chosen by the adversary, perhaps even
adaptively. That is, imagine it has access to an “oracle” for the function EK . It can
feed the oracle M1 and get back C1 = EK(M1). It can then decide on a value M2,
feed the oracle this, and get back C2, and so on.

Clearly a chosen-message attack gives the adversary much more power, but is
also less realistic in practice.

The most obvious attack is exhaustive key search.

Exhaustive key search: Go through all possible keys K ′ ∈ {0, 1}k until you find
one that explains the input/output pairs. Probably it is K. (Really?!) How do you
know when you hit K? If EK′(M1) = C1, you bet that K ′ = K. Of course, you
could be wrong. But the “chance” of being wrong is small, and gets much smaller if
you do more such tests. (Really?) For DES, two tests is quite enough. That is, the
attack in this case only needs q = 2, a very small number of input-output examples.

Let us now describe the attack in more detail. For i = 1, . . . , 2k let Ki denote
the i-th k-bit string (in lexicographic order). The following algorithm implements
the attack.

For i = 1, . . . , 2k do
If E(Ki,M1) = C1

then if E(Ki,M2) = C2 then return Ki

How long does this take? In the worst case, 2k computations of the block cipher.
For the case of DES, even if you use the above mentioned 1.6 Gbits/sec chip to do
these computations, the search takes about 6,000 years. So key search appears to
be infeasible.

Yet, this conclusion is actually too hasty. We will return to key search and see
why later.

Differential and linear cryptanalysis: For DES, the discovery of theoret-
ically superior attacks (assuming one has massive amount of plaintext/ciphertext
pairs) waited until 1990. Differential cryptanalysis is capable of finding a DES key
using about 247 input-output examples (that is, it requires q = 247). However,
differential cryptanalysis required a chosen-message attack.

Mihir Bellare and Phillip Rogaway 45

Linear cryptanalysis improved differential in two ways. The number of input-
output examples required is reduced to 243, but also only a known-message attack
is required.

These were major breakthroughs in cryptanalysis. Yet, their practical impact is
small. Why? Ordinarily it would be impossible to obtain 243 input-output examples.
Furthermore, simply storing all these examples requires about 140 terabytes.

Linear and differential cryptanalysis were however more devastating when ap-
plied to other ciphers, some of which succumbed completely to the attack.

So what’s the best possible attack against DES? The answer is exhaustive key
search. What we ignored above is parallelism.

Key search machines: A few years back it was argued that one can design a $1
million machine that does the exhaustive key search for DES in about 3.5 hours.
More recently, a DES key search machine was actually built, at a cost of $250,000.
It finds the key in 56 hours, or about 2.5 days. The builders say it will be cheaper
to build more machines now that this one is built.

Thus DES is feeling its age. Yet, it would be a mistake to take away from this
discussion the impression that DES is weak. Rather, what the above says is that it
is an impressively strong algorithm. After all these years, the best practical attack
known is still exhaustive key search. That says a lot for its design and its designers.

Later we will see that that we would like security properties from a block cipher
that go beyond resistance to key-recovery attacks. It turns out that from that point
of view, a limitation of DES is its block size. Birthday attacks “break” DES with
about q = 232 input output examples. (The meaning of “break” here is very different
from above.) Here 232 is the square root of 264, meaning to resist these attacks we
must have bigger block size. The next generation of ciphers—things like AES—took
this into account.

2.7 Limitations of key-recovery based security

As discussed above, classically, the security of a block ciphers has been looked at
with regard to key recovery. That is, analysis of a block cipher E has focused
primarily on the following question: given some number q of input-output examples
(M1, C1)), . . . , (Mq, Cq), where K is a random, unknown key and Ci = EK(Mi), how
hard is it for an attacker to find K? A block cipher is viewed as “secure” if the best
key-recovery attack is computationally infeasible, meaning requires a value of q or
a running time t that is too large to make the attack practical. In the sequel, we
refer to this as security against key-recovery

However, as a notion of security, security against key-recovery is quite limited.
A good notion should be sufficiently strong to be useful. This means that if a
block cipher is secure, then it should be possible to use the block cipher to make
worthwhile constructions and be able to have some guarantee of the security of these
constructions. But even a cursory glance at common block cipher usages shows that

46 BLOCK CIPHERS

good security in the sense of key recovery is not sufficient for security of the usages
of block ciphers.

Take for example the CTR mode of operation discussed in Section 2.5. Suppose
that the block cipher had the following weakness: Given C,FK(C + 1), FK(C + 2),
it is possible to compute FK(C + 3). Then clearly the encryption scheme is not
secure, because if an adversary happens to know the first two message blocks, it can
figure out the third message block from the ciphertext. (It is perfectly reasonable to
assume the adversary already knows the first two message blocks. These might, for
example, be public header information, or the name of some known recipient.) This
means that if CTR mode encryption is to be secure, the block cipher must have
the property that given C,FK(C+ 1), FK(C+ 2), it is computationally infeasible to
compute FK(C + 3). Let us call this property SP1, for “security property one”.

Of course, anyone who knows the key K can easily compute FK(C + 3) given
C,FK(C+1), FK(C+2). And it is hard to think how one can do it without knowing
the key. But there is no guarantee that someone cannot do this without knowing
the key. That is, confidence in the security of F against key recovery does not imply
that SP1 is true.

This phenomenon continues. As we see more usages of ciphers, we build up a
longer and longer list of security properties SP1, SP2, SP3, . . . that are necessary
for the security of some block cipher based application.

Furthermore, even if SP1 is true, CTR mode encryption may still be weak. SP1
is not sufficient to guarantee the security of CTR mode encryption. Similarly with
other security properties that one might naively come up with.

This long list of necessary but not sufficient properties is no way to treat security.
What we need is one single “MASTER” property of a block cipher which, if met,
guarantees security of lots of natural usages of the cipher.

A good example to convince oneself that security against key recovery is not
enough is to consider the block cipher E: {0, 1}k ×{0, 1}n → {0, 1}n defined for all
keys K ∈ {0, 1}k and plaintexts x ∈ {0, 1}n by F (K,x) = x. That is, each instance
FK of the block cipher is the identity function. Is this a “good” block cipher? Surely
not. Yet, it is exceedingly secure against key-recovery. Indeed, given any number of
input-output examples of FK , an adversary cannot even test whether a given key is
the one in use.

This might seem like an artificial example. Many people, on seeing this, respond
by saying: “But, clearly, DES and AES are not designed like this.” True. But that
is missing the point. The point is that security against key-recovery alone does not
make a “good” block cipher. We must seek a better notion of security. Chapter 3
on pseudorandom functions does this.

2.8 Exercises and Problems

Exercise 2.1 Show that for all K ∈ {0, 1}56 and all x ∈ {0, 1}64

DESK(x) = DESK(x) .

Mihir Bellare and Phillip Rogaway 47

This is called the key-complementation property of DES.

Exercise 2.2 Explain how to use the key-complementation property of DES to
speed up exhaustive key search by about a factor of two. Explain any assumptions
that you make.

Exercise 2.3 Find a key K such that DESK(·) = DES−1
K (·). Such a key is some-

times called a “weak” key.

Exercise 2.4 As with AES, suppose we are working in the finite field with 28

elements, representing field points using the irreducible polynomial m(x) = x8 +
x4 + x3 + x + 1. Compute the byte that is the result of multiplying bytes:

{e1} · {05}

Exercise 2.5 For AES, we have given two different descriptions of mix-cols: one
using matric multiplication (in GF(28)) and one based on multiplying by a fixed
polynomial c(x) modulo a second fixed polynomial, d(x) = x4 + 1. Show that these
two methods are equivalent.

Exercise 2.6 Verify that the matrix used for mix-cols has as its inverse the matrix
0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

Explain why all entries in this matrix begin with a zero-byte.

Exercise 2.7 How many different permutations are there from 128 bits to 128 bits?
How man different functions are then from 128 bits to 128 bits?

Exercise 2.8 Upper and lower bound, as best you can, the probability that a
random function from 128 bits to 128 bits is actually a permutation.

Problem 2.1 Without consulting any of the numerous public-domain implementa-
tions available, implement AES, on your own, from the spec or from the description
provided by this chapter. Then test your implementation according to the test
vectors provided in the AES documentation.

Problem 2.2 Justify and then refute (both) the following proposition: enciphering
under AES can be implemented faster than deciphering.

48 BLOCK CIPHERS

Chapter 3

Pseudorandom Functions

Pseudorandom functions (PRFs) and their cousins, pseudorandom permutations
(PRPs), figure as central tools in the design of protocols, especially those for shared-
key cryptography. At one level, PRFs and PRPs can be used to model block ciphers,
and they thereby enable the security analysis of protocols based on block ciphers.
But PRFs and PRPs are also a wonderful conceptual starting point in contexts
where block ciphers don’t quite fit the bill because of their fixed block-length. So in
this chapter we will introduce PRFs and PRPs and investigate their basic properties.

3.1 Function families

A function family is a map F : Keys(F) × Dom(F) → Range(F). Here Keys(F) is
the set of keys of F ; Dom(F) is the domain of F ; and Range(F) is the range of F .
The two-input function F takes a key K and input X to return a point Y we denote
by F (K,X). The domain and range of F are nonempty sets of strings. For any key
K ∈ Keys(F) we define the map FK : Dom(F) → Range(F) by FK(X) = F (K,Y).
We call the function FK an instance of function family F . Thus, F specifies a
collection of maps, one for each key. That’s why we call F a function family (or a
family of functions or just a family).

Usually Keys(F) = {0, 1}k for some integer k, the key length. Often Dom(F) =
{0, 1}` and Range(F) = {0, 1}L for some integers `, L ≥ 1.

There is some probability distribution on the set of keys Keys(F). When Keys(F)
is a finite set, this distribution will be the uniform distribution. That is, when
Keys(F) = {0, 1}k we shall draw a random k-bit string as a key. We denote by
K

R← Keys(F) the operation of selecting a random string from Keys(F) and naming
it K. We deonte by f R← F the operation: K R← Keys(F); f ← FK . In other words,
let f be the function FK where K is a randomly chosen key. We are interested in
the input-output behavior of this randomly chosen instance of the family.

49

50 PSEUDORANDOM FUNCTIONS

A permutation on strings is a map whose domain and range are the same set,
and the map is a length-preserving bijection on this set. That is, a map π: D → D
is a permutation if |π(x)| = |x| for all x ∈ D and also π is one-to-one and onto. We
say that F is a family of permutations if Dom(F) = Range(F) and each FK is a
permutation on this common set.

Example 3.1 A block cipher is a family of permutations. For example, DES is a
family of permutations with Keys(DES) = {0, 1}56 and Dom(DES) = {0, 1}64 and
Range(DES) = {0, 1}64. Here k = 56 and ` = L = 64. Similarly AES is a family of
permutations with Keys(AES) = {0, 1}128 (when “AES” refers to “AES128”) and
Dom(AES) = {0, 1}128 and Range(AES) = {0, 1}128. Here k = 128 and ` = L = 128.

3.2 Random functions and permutations

Let D,R ⊆ {0, 1}∗ be finite nonempty sets and let `, L ≥ 1 be integers. There are
two function families that we fix. One is Rand(D,R), the family of all functions of D
to R. The other is Perm(D), the family of all permutations on D. For compactness
of notation we let Rand(`,L), Rand(`), and Perm(`) denote Rand(D,R), Rand(D,D),
and Perm(D), where D = {0, 1}` and R = {0, 1}L.

What are these families? The family Rand(D,R) has domain D and range
R, while the family Perm(D) has domain and range D. The set of instances of
Rand(D,R) is the set of all functions mapping D to R, while the set of instances
of Perm(D) is the set of all permutations on D. The key describing any particular
instance function is simply a description of this instance function in some canonical
notation. For example, order the domainD lexicographically asX1, X2, . . ., and then
let the key for a function f be the list of values (f(X1), f(X2), . . .). The key-space
of Rand(D,R) is simply the set of all these keys, under the uniform distribution.

Let us illustrate in more detail for the cases in which we are most interested.
The key of a function in Rand(`,L) is simply a list of of all the output values of the
function as its input ranges over {0, 1}l. Thus

Keys(Rand(`,L)) = { (Y1, . . . , Y2`) : Y1, . . . , Y2` ∈ {0, 1}L }

is the set of all sequences of length 2` in which each entry of a sequence is an L-bit
string. For any x ∈ {0, 1}` we interpret X as an integer in the range {1, . . . , 2`} and
set

Rand(`,L)((Y1, . . . , Y2`), X) = YX .

Notice that the key space is very large; it has size 2L2` . There is a key for every
function of `-bits to L-bits, and this is the number of such functions. The key space
is equipped with the uniform distribution, so that f R← Rand(`,L) is the operation
of picking a random function of `-bits to L-bits.

Mihir Bellare and Phillip Rogaway 51

On the other hand, for Perm(`), the key space is

Keys(Perm(`)) = {(Y1, . . . , Y2`) : Y1, . . . , Y2` ∈ {0, 1}` and

Y1, . . . , Y2` are all distinct} .

For any X ∈ {0, 1}` we interpret X as an integer in the range {1, . . . , 2`} and set

Perm(`)((Y1, . . . , Y2`), X) = YX .

The key space is again equipped with the uniform distribution, so that f R← Perm(l)
is the operation of picking a random permutation on {0, 1}`. In other words, all the
possible permutations on {0, 1}` are equally likely.

Example 3.2 We exemplify Rand(3,2), meaning ` = 3 and L = 2. The domain is
{0, 1}3 and the range is {0, 1}2. An example instance f of the family is illustrated
below via its input-output table:

x 000 001 010 011 100 101 110 111

f(x) 10 11 01 11 10 00 00 10

The key corresponding to this particular function is

(10, 11, 01, 11, 10, 00, 00, 10) .

The key-space of Rand(3,2) is the set of all such sequences, meaning the set of all
8-tuples each component of which is a two bit string. There are

22·23
= 216 = 65, 536

such tuples, so this is the size of the key-space.

We will hardly ever actually think about these families in terms of this formalism.
Indeed, it is worth pausing here to see how to think about them more intuitively,
because they are important objects.

We will consider settings in which you have black-box access to a function g.
This means that there is a box to which you can give any value X of your choice
(provided X is in the domain of g), and box gives you back g(X). But you can’t
“look inside” the box; your only interface to it is the one we have specified. A
random function g: {0, 1}` → {0, 1}L being placed in this box corresponds to the
following. Each time you give the box an input, you get back a random L-bit
string, with the sole constraint that if you twice give the box the same input X,
it will be consistent, returning both times the same output g(X). In other words,
a random function of `-bits to L-bits can be thought of as a box which given any
input X ∈ {0, 1}` returns a random number, except that if you give it an input you
already gave it before, it returns the same thing as last time. It is this “dynamic”
view that we suggest the reader have in mind in thinking about random functions.

The dynamic view can be thought of as following program. The program main-
tains the function in the form of a table T where T [X] holds the value of the function

52 PSEUDORANDOM FUNCTIONS

at X. Initially, the table is empty. The program processes an input X ∈ {0, 1}` as
follows:

If T [X] is not yet defined then
Flip coins to determine a string Y ∈ {0, 1}L and set T [X]← Y

Return T [X]

The answer on any point is random and independent of the answers on other points.
Another way to think about a random function is as a large, pre-determined

random table. The entries are of the form (X,Y). For each X someone has flipped
coins to determine Y and put it into the table.

We are more used to the idea of picking points at random. Here we are picking
a function at random.

One must remember that the term “random function” is misleading. It might
lead one to think that certain functions are “random” and others are not. (For
example, maybe the constant function which always returns 0L is not random, but
a function with many different range values is random.) This is not right. The
randomness of the function refers to the way it was chosen, not to an attribute of
the selected function itself. When you choose a function at random, the constant
function is just as likely to appear as any other function. It makes no sense to talk of
the randomness of an individual function; the term “random function” just means
a function chosen at random.

Example 3.3 Let’s do some simple probabilistic computations to understand ran-
dom functions. Fix X ∈ {0, 1}` and Y ∈ {0, 1}L. Then:

Pr
[
f

R← Rand(`,L) : f(X) = Y
]

= 2−L .

Notice that the probablity doesn’t depend on `. Nor does it depend on the values
of X,Y .

Now fix X1, X2 ∈ {0, 1}` and Y ∈ {0, 1}L. Then:

Pr
[
f

R← Rand(`,L) : f(X1) = f(X2) = Y
]

=

{
2−2L if X1 6= X2

2−L if X1 = X2

This illustrates independence. Finally fix X1, X2 ∈ {0, 1}` and Y ∈ {0, 1}L. Then:

Pr
[
f

R← Rand(`,L) : f(X1)⊕ f(X2) = Y
]

=

2−L if X1 6= X2

0 if X1 = X2 and Y 6= 0L

1 if X1 = X2 and Y = 0L

3.3 Pseudorandom functions

A pseudorandom function is a family of functions with the property that the input-
output behavior of a random instance of the family is “computationally indistin-

Mihir Bellare and Phillip Rogaway 53

guishable” from that of a random function. Someone who has only black-box access
to a function, meaning can only feed it inputs and get outputs, has a hard time
telling whether the function in question is a random instance of the family in ques-
tion or a random function. The purpose of this section is to arrive at a suitable
definition of this notion. Later we will look at motivation and applications.

We fix a family of functions F : Keys(F) × D → R. (You may want to think
Keys(F) = {0, 1}k, D = {0, 1}` and R = {0, 1}L for some integers k, `, L ≥ 1.)
Imagine that you are in a room which contains a terminal connected to a computer
outside your room. You can type something into your terminal and send it out,
and an answer will come back. The allowed questions you can type must be strings
from the domain D, and the answers you get back will be strings from the range
R. The computer outside your room implements a function g: D → R, so that
whenever you type a value X you get back g(X). However, your only access to g is
via this interface, so the only thing you can see is the input-output behavior of g.
We consider two different ways in which g will be chosen, giving rise to two different
“worlds.”

World 0: The function g is drawn at random from Rand(D,R), namely via g
R←

Rand(D,R). (So g is just a random function of D to R.)

World 1: The function g is drawn at random from F , namely g R← F . (This means
that a key is chosen via K R← Keys(F) and then g is set to FK .)

You are not told which of the two worlds was chosen. The choice of world, and of
the corresponding function g, is made before you enter the room, meaning before
you start typing questions. Once made, however, these choices are fixed until your
“session” is over. Your job is to discover which world you are in. To do this, the
only resource available to you is your link enabling you to provide values X and
get back g(X). After trying some number of values of your choice, you must make
a decision regarding which world you are in. The quality of pseudorandom family
F can be thought of as measured by the difficulty of telling, in the above game,
whether you are in World 0 or in World 1.

Intuitively, the game just models some way of “using” the function g in an appli-
cation like an encryption scheme. If it is not possible to distinguish the input-output
behavior of a random instance of F from a truly random function, the application
should behave in roughly the same way whether it uses a function from F or a
random function. Later we will see exactly how this works out; for now let us con-
tinue to develop the notion. But we warn that pseudorandom functions can’t be
substituted for random functions in all usages of random functions. To make sure
it is OK in a particular application, you have to make sure that it falls within the
realm of applications for which the formal definition below can be applied.

The act of trying to tell which world you are in is formalized via the notion of
a distinguisher. This is an algorithm which is provided oracle access to a function
g and tries to decide if g is random or pseudorandom. (Ie. whether it is in world 0
or world 1.) A distinguisher can only interact with the function by giving it inputs

54 PSEUDORANDOM FUNCTIONS

and examining the outputs for those inputs; it cannot examine the function directly
in any way. We write Ag to mean that distinguisher A is being given oracle access
to function g. Intuitively, a family is pseudorandom if the probability that the
distinguisher says 1 is roughly the same regardless of which world it is in. We
capture this mathematically below. Further explanations follow the definition.

Definition 3.4 Let F : Keys(F) × D → R be a family of functions, and let A be
an algorithm that takes an oracle for a function g: D → R, and returns a bit. We
consider two experiments:

Experiment Exmtprf-1
F (A)

K
R← Keys(F)

b← AFK

Return b

Experiment Exmtprf-0
F (A)

g
R← Rand(D,R)

b← Ag

Return b

The prf-advantage of A is defined as

Advprf
F (A) = Pr

[
Exmtprf-1

F (A) = 1
]
− Pr

[
Exmtprf-0

F (A) = 1
]
.

For any t, q, µ we define the prf-advantage of F

Advprf
F (t, q, µ) = max

A
{Advprf

F (A) }

where the maximum is over all A having time-complexity t and making at most q
oracle queries, the sum of the lengths of these queries being at must µ bits.

The algorithm A models the person we were imagining in our room, trying to de-
termine which world he or she was in by typing queries to the function g via a
computer. In the formalization, the person is an algorithm, meaning a piece of
code. We formalize the ability to query g as giving A an oracle which takes input
any string X ∈ D and returns g(X). Algorithm A can decide which queries to make,
perhaps based on answers received to previous queries. Eventually, it outputs a bit
b which is its decision as to which world it is in. Outputting the bit “1” means
that A “thinks” it is in world 1; outputting the bit “0” means that A thinks it is in
world 0.

It should be noted that the family F is public. The adversary A, and anyone else,
knows the description of the family and is capable, given values K,X, of computing
F (K,X).

The worlds are captured by what we call “experiments.” The first experiment
picks a random instance FK of family F and then runs adversary A with oracle g =
FK . Adversary A interacts with its oracle, querying it and getting back answers, and
eventually outputs a “guess” bit. The experiment returns the same bit. The second
experiment picks a random function g: D → R and runs A with this as oracle, again
returning A’s guess bit. Each experiment has a certain probability of returning 1.
The probability is taken over the random choices made in the experiment. Thus,

Mihir Bellare and Phillip Rogaway 55

for the first experiment, the probability is over the choice of K and any random
choices that A might make, for A is allowed to be a randomized algorithm. In the
second experiment, the probability is over the random choice of g and any random
choices that A makes. These two probabilities should be evaluated separately; the
two experiments are completely different.

To see how well A does at determining which world it is in, we look at the
difference in the probabilities that the two experiments return 1. If A is doing a
good job at telling which world it is in, it would return 1 more often in the first
experiment than in the second. So the difference is a measure of how well A is doing.
We call this measure the prf-advantage of A. Think of it as the probability that A
“breaks” the scheme F , with “break” interpreted in a specific, technical way based
on the definition.

Different distinguishers will have different advantages. There are two reasons
why one distinguisher may achieve a greater advantage than another. One is that
it is more “clever” in the questions it asks and the way it processes the replies to
determine its output. The other is simply that it asks more questions, or spends
more time processing the replies. Indeed, we expect that as you see more and more
input-output examples of g, or spend more computing time, your ability to tell which
world you are in should go up. The “security” of family F must thus be measured
as a function of the resources allowed to the attacker. We want to know, for any
given resource limitations, what is the prf-advantage achieved by the most “clever”
distinguisher amongst all those who are restricted to the given resource limits. We
associate to the family F a prf-advantage function which on input any values of the
resource parameters returns the maximim prf-advantage that an adversary restricted
to those resources could obtain. Think of it as the maximum possible achievable
probability of “breaking” the scheme F if an attacker is restricted to the given
resources.

The choice of resources to consider can vary. In this case we have chosen to
measure the time-complexity t of A, the number of queries q it makes, and the
total length µ of these queries. We associate to the family F an advantage func-
tion which on input a particular choice of these resource parameters returns the
maximum possible advantage that could be obtained by a distinguisher restricted in
resource usage by the given parameters. Put another way, it is the advantage of the
“cleverest” or “best” distinguisher restricted to the given resources. The advantage
function of F captures the security of F as a PRF.

Let us now explain the resources, and some important conventions underlying
their measurement, in more detail. The first resource is the time-complexity of A.
To make sense of this we first need to fix a model of computation. We fix some RAM
model. Think of it as the model used in your algorithms courses, often implicitly,
so that you could measure the running time. However, we adopt the convention
that the time-complexity of A refers not just to the running time of A, but to the
maximum of the running times of the two experiments in the definition, plus the
size of the code of A. In measuring the running time of the first experiment, we

56 PSEUDORANDOM FUNCTIONS

must count the time to choose the key K at random, and the time to compute the
value FK(x) for any query x made by A to its oracle. In measuring the running
time of the second experiment, we count the time to choose the random function g
in a dynamic way, meaning we count the cost of maintaining a table of values of the
form (X, g(X)). Entries are added to the table as g makes queries. A new entry is
made by picking the output value at random.

The number of queries made by A captures the number of input-output examples
it sees. In general, not all strings in the domain must have the same length, and
hence we also measure the sum of the lengths of all queries made.

There is one feature of the above parameterization about which everyone asks.
Suppose that F has key-length k. Obviously, the key length is a fundamental de-
terminant of security: larger key length will typically mean more security. Yet, the
key length k does not appear explicitly in the advantage function Advprf

F (t, q, µ).
Why is this? The advantage function is in fact a function of k, but without knowing
more about F it is difficult to know what kind of function. The truth is that the
key length itself does not matter: what matters is just the advantage a distinguisher
can obtain. In a well-designed block cipher, Advprf

F (t, q, µ) should be about t/2k.
But that is really an ideal; in practice we should not assume ciphers are this good.

The strength of this definition lies in the fact that it does not specify anything
about the kinds of strategies that can be used by a distinguisher; it only limits
its resources. A distinguisher can use whatever means desired to distinguish the
function as long as it stays within the specified resource bounds.

What do we mean by a “secure” PRF? Definition 3.4 does not have any explicit
condition or statement regarding when F should be considered “secure.” It only
associates to F a prf-advantage function. Intuitively, F is “secure” if the value of
the advantage function is “low” for “practical” values of the input parameters. This
is, of course, not formal. It is possible to formalize the notion of a secure PRF
using a complexity theoretic framework; one would say that the advantage of any
adversary whose resources are polynomially-bounded is negligible. This requires an
extension of the model to consider a security parameter in terms of which asymptotic
estimates can be made. We will discuss this in more depth later, but for now we
stick to a framework where the notion of what exactly is “secure” is not something
binary. One reason is that this better reflects real life. In real life, security is not
some absolute or boolean attribute; security is a function of the resources invested
by an attacker. All modern cryptographic systems are breakable in principle; it is
just a question of how long it takes.

This is our first example of a cryptographic definition, and it is worth spending
time to study and understand it. We will encounter many more as we go along.
Towards this end let us summarize the main features of the definitional framework
as we will see them arise later. First, there are experiments, involving an adversary.
Then, there is some advantage function associated to an adversary which returns the
probability that the adversary in question “breaks” the scheme. Finally, there is an
advantage function associated to the cryptographic protocol itself, taking as input

Mihir Bellare and Phillip Rogaway 57

resource parameters and returning the maximum possible probability of “breaking”
the scheme if the attacker is restricted to those resource parameters. These three
components will be present in all definitions. What varies is the experiments; this
is here that we pin down how we measure security.

3.4 Pseudorandom permutations

Recall that a block cipher F is a family of permutations: each instance FK of the
family is a permutation. With the intent of modeling block ciphers we introduce the
notion of a pseudorandom permutation. We proceed exactly as above, but replace
Rand(D,R) with Perm(D).

In this setting, there are two kinds of attacks that one can consider. One, as
before, is that the adversary gets an oracle for the function g being tested. However
when g is a permutation one can also consider the case where the adversary gets,
in addition, an oracle for g−1. We consider these settings in turn. The first is
the setting of chosen-plaintext attacks while the second is the setting of chosen-
ciphertext attacks.

3.4.1 PRP under CPA

We fix a family of functions F : Keys(F) × D → D. (You may want to think
Keys(F) = {0, 1}k and D = {0, 1}`, since this is the most common case. We do
not mandate that F be a family of permutations although again this is the most
common case.) As before, we consider an adversary A that is placed in a room
where it has oracle access to a function g chosen in one of two ways.

World 0: The function g is drawn at random from Perm(D), namely via g
R←

Perm(D). (So g is just a random permutation on D.)

World 1: The function g is drawn at random from F , namely g R← F . (This means
that a key is chosen via K R← Keys(F) and then g is set to FK .)

Notice that World 1 is the same in the PRF setting, but World 0 has changed. As
before the task facing the adversary A is to determine in which world it was placed
based on the input-output behavior of g.

Definition 3.5 Let F : Keys(F) × D → D be a family of functions, and let A be
an algorithm that takes an oracle for a function g: D → D, and returns a bit. We
consider two experiments:

Experiment Exmtprp-cpa-1
F (A)

K
R← Keys(F)

b← AFK

Return b

Experiment Exmtprp-cpa-0
F (A)

g
R← Perm(D)

b← Ag

Return b

58 PSEUDORANDOM FUNCTIONS

The prp-cpa-advantage of A is defined as

Advprp-cpa
F (A) = Pr

[
Exmtprp-cpa-1

F (A) = 1
]
− Pr

[
Exmtprp-cpa-0

F (A) = 1
]
.

For any t, q, µ we define the prp-cpa-advantage of F via

Advprp-cpa
F (t, q, µ) = max

A
{Advprp-cpa

F (A) }

where the maximum is over all A having time-complexity t and making at most q
oracle queries, the sum of the lengths of these queries being at must µ bits.

The intuition is similar to that for Definition 3.4. The difference is that here the
“ideal” object that F is being compared with is no longer the family of random
functions, but rather the family of random permutations.

Experiment Exmtprp-cpa-1
F (A) is actually identical to Exmtprf-1

F (A). The prob-
ability is over the random choice of key K and also over the coin tosses of A if
the latter happens to be randomized. The experiment returns the same bit that
A returns. In Experiment Exmtprp-cpa-0

F (A), a permutation g: {0, 1}` → {0, 1}` is
chosen at random, and the result bit of A’s computation with oracle g is returned.
The probability is over the choice of g and the coins of A if any. As before, the
measure of how well A did at telling the two worlds apart, which we call the prp-
cpa-advantage of A, is the difference between the probabilities that the experiments
return 1.

Conventions regarding resource measures also remain the same as before. Infor-
mally, a family F is a secure PRP under CPA if Advprp-cpa

F (t, q, µ) is “small” for
“practical” values of the resource parameters.

3.4.2 PRP under CCA

We fix a family of permutations F : Keys(F) × D → D. (You may want to think
Keys(F) = {0, 1}k and D = {0, 1}`, since this is the most common case. This time,
we do mandate that F be a family of permutations.) As before, we consider an
adversary A that is placed in a room, but now it has oracle access to two functions,
g and its inverse g−1. The manner in which g is chosen is the same as in the CPA
case, and once g is chosen, g−1 is automatically defined, so we do not have to say
how it is chosen.

World 0: The function g is drawn at random from Perm(D), namely via g
R←

Perm(D). (So g is just a random permutation on D.)

World 1: The function g is drawn at random from F , namely g R← F . (This means
that a key is chosen via K R← Keys(F) and then g is set to FK .)

In World 1, g−1 = F−1
K is the inverse of the chosen instance, while in World 0 it

is the inverse of the chosen random permutation. As before the task facing the
adversary A is to determine in which world it was placed based on the input-output
behavior of its oracles.

Mihir Bellare and Phillip Rogaway 59

Definition 3.6 Let F : Keys(F) ×D → D be a family of permutations, and let A
be an algorithm that takes an oracle for a function g: D → D, and also an oracle
for the function g−1: D → D, and returns a bit. We consider two experiments:

Experiment Exmtprp-cca-1
F (A)

K
R← Keys(F)

b← AFK ,F
−1
K

Return b

Experiment Exmtprp-cca-0
F (A)

g
R← Perm(D)

b← Ag,g
−1

Return b

The prp-cca-advantage of A is defined as

Advprp-cca
F (A) = Pr

[
Exmtprp-cca-1

F (A) = 1
]
− Pr

[
Exmtprp-cca-0

F (A) = 1
]
.

For any t, qe, µe, qd, µd we define the prp-cca-advantage of F via

Advprp-cca
F (t, qe, µe, qd, µd) = max

A
{Advprp-cca

F (A) }

where the maximum is over all A having time-complexity t, making at most qe
queries to the g oracle, the sum of the lengths of these queries being at must µe
bits, and also making at most qd queries to the g−1 oracle, the sum of the lengths
of these queries being at must µd bits,

The intuition is similar to that for Definition 3.4. The difference is that here the
adversary has more power: not only can it query g, but it can directly query g−1.
Conventions regarding resource measures also remain the same as before. However,
we add some resource parameters. Specifically, since there are now two oracles, we
count separately the number of queries, and total length of these queries, for each.
Informally, a family F is a secure PRP under CCA if Advprp-cca

F (t, qe, µe, qd, µd) is
“small” for “practical” values of the resource parameters.

3.4.3 Relations between the notions

If an adversary above does not query g−1, the latter oracle may as well not be there,
and the adversary is effectively mounting a chosen-plaintext attack. Thus we have
the following:

Proposition 3.7 Let F : Keys(F)×D → D be a family of permutations. Then

Advprp-cpa
F (t, q, µ) = Advprp-cca

F (t, q, µ, 0, 0)

for any t, q, µ.

3.5 Usage of PRFs and PRPs

We discuss some motivation for these notions of security.

60 PSEUDORANDOM FUNCTIONS

3.5.1 The shared-random-function model

In symmetric (ie. shared-key) cryptography, Alice and Bob share a key K which the
adversary doesn’t know. They want to use this key to achieve various things—in
particular, to encrypt and authenticate the data they send to each other. A key is
(or ought to be) a short string. Suppose however that we allow the parties a very
long shared string—one that takes the form of a random function f of ` bits to L
bits, for some pre-specified `, L. This is called the shared-random-function model.

The shared-random-function model cannot really be realized in practice because
the description of a random function is just too big to even store. It is a conceptual
model. To work in this model, we give the parties oracle access to f . They may
write down x ∈ {0, 1}` and in one step be returned f(x).

It turns out that the shared-random-function model is a very convenient one
in which to think about cryptography, formulate schemes, and analyze them. In
particular, we will see many examples where we design schemes in the shared random
function model and prove them secure. This is true for a variety of problems, but
most importantly for encryption and message authentication. The proof of security
here is absolute: we do not make any restrictions on the computational power of the
adversary, but are able to simply provide an upper bound on the success probability
of the adversary.

As an example, consider the CTR mode of operation discussed in Section 2.5.3.
Consider the version where the initial vector is a counter. Consider replaceing every
invocation of EK with an invocation of the random function f . (Assume ` = L.)
In that case, the mode of operation turns into the one-time-pad cryptosystem. The
shared random key is just the random function f . As we have discussed, this is
well known to meet a strong and well-defined notion of security. So, in the shared-
random-function model, CTR mode is is “good”. Well, it would be, if we had yet
defined what “good” means!

But now what? We have schemes which are secure but a priori can’t be efficiently
realized, since they rely on random functions. That’s where pseudorandom function
or permutation families come in. A PRF family is a family F of functions indexed
by small keys (eg. 56 or 128 bits). However, it has the property that if K is shared
between Alice and Bob, and we use FK in place of a random function f in some
scheme designed in the shared-random-function model, the resulting scheme is still
secure as long as the adversary is restricted in resource usage.

In other words, instances of PRFs can be used in place of random functions in
shared-key schemes. The definition of a PRF is crafted to make this possible for as
wide a range of applications as possible. An instance of a pseudorandom function
is specified by a short key K, and the parties need only store this key. Then, they
use this function in place of the random function in the scheme. And things should
work out, in the sense that if the scheme was secure when a random function was
used, it should still be secure.

This is a very rough idea. Technically, it is not always true: this is the intuition.
Pseudorandom functions don’t always work. That is, you can’t substitute them for

Mihir Bellare and Phillip Rogaway 61

random functions in any usage of the latter and expect things to work out. But if
used right, it works out in a large number of cases. How do we identify these cases?
We have to resort to the formal definition of a pseudorandom function family and
prove the security of our construct based on it. We will see how to do this later.

In this context we stress one important point. The security of a PRF relies on
the key K being secret. The adversary is not given K and cannot directly compute
the function. (Of course it might gain some information about values of FK on
various points via the usage of FK by the legitimate parties, but that will be OK.)
In other words, you can substitute shared, secret random functions by PRFs, but
not public ones.

Pseudorandom functions are an intriguing notion and a powerful tool that en-
able the following design paradism. When you want to design a scheme for encryp-
tion, authentication, or some other purpose, design it in the shared-random-function
model. Then simply substitute the random function with a pseudorandom one, and
your scheme should still be secure.

3.5.2 Modeling block ciphers

One of the primary motivations for the notions of pseudorandom functions (PRFs)
and pseudorandom permutations (PRPs) is to model block ciphers and thereby
enable the security analysis of protocols that use block ciphers.

As discussed in Section 2.7, classically the security of DES or other block ciphers
has been looked at only with regard to key recovery. That is, analysis of a block
cipher F has focused on the following question: Given some number of input-output
examples

(X1, FK(X1)), . . . , (Xq, FK(Xq))
where K is a random, unknown key, how hard is it to find K? The block cipher
is taken as “secure” if the resources required to recover the key are prohibitive.
Yet, as we saw, even a cursory glance at common block cipher usages shows that
hardness of key recovery is not sufficient for security. We had discussed wanting a
“MASTER” security property of block ciphers under which natural usages of block
ciphers could be proven secure. We suggest that this “MASTER” property is that
the block cipher be a secure PRP, under either CPA or CCA.

We cannot prove that specific block ciphers have this property. The best we
can do is assume they do, and then go on to use them. For quantitative security
assessements, we would make specific conjectures about the advantage functions of
various block ciphers. For example we might conjecture something like:

Advprp-cpa
DES (t, q, 64q) ≤ c1 ·

t/TDES

255
+ c2 ·

q

240

Here TDES is the time to do one DES computation on our fixed RAM model of
computation, and c1, c2 are some constants. In other words, we are conjecturing
that the best attacks are either exhaustive key search or linear cryptanalysis. We

62 PSEUDORANDOM FUNCTIONS

might be bolder with regard to AES and conjecture something like

Advprp-cpa
AES (t, q, 128q) ≤ c1 ·

t/TAES

2128
+ c2 ·

q

2128
.

We could also make similar conjectures regarding the strength of block ciphers as
PRPs under CCA rather than CPA.

More interesting is Advprf
DES(t, q). Here we cannot do better than assume that

Advprf
DES(t, q, 64q) ≤ c1 ·

t/TDES

255
+

q2

264

Advprf
AES(t, q, 128q) ≤ c1 ·

t/TAES

2128
+

q2

2128
.

This is due to the birthday attack discussed later. The second term in each formula
arises simply becuase the object under consideration is a family of permutations.

We stress that these are all conjectures. There could exist highly effective attacks
that break DES or AES as a PRF without recovering the key. So far, we do not
know of any such attacks, but the amount of cryptanalytic effort that has focused
on this goal is small. Certainly, to assume that a block cipher is a PRF is a much
stronger assumption than that it is secure against key recovery. Nonetheless, the
motivation and arguments we have outlined in favor of the PRF assumption stay,
and our view is that if a block cipher is broken as a PRF then it should be considered
insecure, and a replacement should be sought.

3.6 Example Attacks

Let us illustrate the models by providing adversaries that attack different function
families in these models.

Example 3.8 We define a family of functions F : {0, 1}k × {0, 1}` → {0, 1}L as
follows. We let k = L` and view a k-bit key K as specifying an L row by ` column
matrix of bits. (To be concrete, assume the first L bits of K specify the first column
of the matrix, the next L bits of K specify the second column of the matrix, and
so on.) The input string X = X[1] . . . X[`] is viewed as a sequence of bits, and the
value of F (K,x) is the corresponding matrix vector product. That is

FK(X) =

K[1, 1] K[1, 2] · · · K[1, `]
K[2, 1] K[2, 2] · · · K[2, `]

...
...

K[L, 1] K[L, 2] · · · K[L, `]

 ·

X[1]
X[2]

...
X[l]

 =

Y [1]
Y [2]

...
Y [L]

Mihir Bellare and Phillip Rogaway 63

where

Y [1] = K[1, 1] · x[1]⊕K[1, 2] · x[2]⊕ . . . ⊕K[1, `] · x[`]
Y [2] = K[2, 1] · x[1]⊕K[2, 2] · x[2]⊕ . . . ⊕K[2, `] · x[`]

... =
...

Y [L] = K[L, 1] · x[1]⊕K[L, 2] · x[2]⊕ . . . ⊕K[L, `] · x[`] .

Here the bits in the matrix are the bits in the key, and arithmatic is modulo two.
The question we ask is whether F is a “secure” PRF. We claim that the answer is
no. The reason is that one can design an adversary algorithm A that achieves a
high advantage (close to 1) in distinguishing between the two worlds.

We observe that for any key K we have FK(0`) = 0L. This is a weakness since
a random function of `-bits to L-bits is very unlikely to return 0L on input 0`,
and thus this fact can be the basis of a distinguishing adversary. Let us now show
how the adversary works. Remember that as per our model it is given an oracle
g: {0, 1}` → {0, 1}L and will output a bit. Our adversary D works as follows:

Adversary Dg

Let Y ← g(0`)
If Y = 0L then return 1 else return 0

This adversary queries its oracle at the point 0`, and denotes by Y the `-bit string
that is returned. If y = 0L it bets that g was an instance of the family F , and if
y 6= 0L it bets that g was a random function. Let us now see how well this adversary
does. We claim that

Pr
[
Exmtprf-1

F (D) = 1
]

= 1

Pr
[
Exmtprf-0

F (D) = 1
]

= 2−L .

Why? Look at Experiment Exmtprf-1
F (D) as defined in Definition 3.4. Here g = FK

for some K. In that case it is certainly true that g(0`) = 0L so by the code we wrote
for D the latter will return 1. On the other hand look at Experiment Exmtprf-0

F (D)
as defined in Definition 3.4. Here g is a random function. As we saw in Example 3.3,
the probability that g(0`) = 0L will be 2−L, and hence this is the probability that
D will return 1. Now as per Definition 3.4 we subtract to get

Advprf
F (D) = Pr

[
Exmtprf-1

F (D) = 1
]
− Pr

[
Exmtprf-0

F (D) = 1
]

= 1− 2−L .

Now let t be the time complexity of D. This is O(` + L) plus the time for one
computation of F , coming to O(`2L). The number of queries made by D is just one,
and the total length of all queries is l. Thus we have

Advprf
F (t, 1, `) = max

A
{Advprf

F (A) }

64 PSEUDORANDOM FUNCTIONS

≥ Advprf
F (D)

= 1− 2−L .

The first inequality is true because the adversary D is one member of the set of
adversaries A over which the maximum is taken, and hence the maximum advantage
is at least that attained by D. Our conclusion is that the advantage function of F
as a PRF is very high even for very low values of its resource parameter inputs,
meaning F is very insecure as a PRF.

Example 3.9 . Suppose we are given a secure PRF F : {0, 1}k×{0, 1}` → {0, 1}L.
We want to use F to design a PRF G: {0, 1}k × {0, 1}` → {0, 1}2L. The input
length of G is the same as that of F but the output length of G is twice that of F .
We suggest the following candidate construction: for every k-bit key K and every
`-bit input x

GK(x) = FK(x)‖FK(x) .
Here “‖” denotes concatenation of strings, and x denotes the bitwise complement
of the string x. We ask whether this is a “good” construction. “Good” means that
under the assumption that F is a secure PRF, G should be too. However, this is not
true. Regardless of the quality of F , the construct G is insecure. Let us demonstrate
this.

We want to specify an adversary attacking G. Since an instance of G maps `
bits to 2L bits, the adversary D will get an oracle for a function g that maps ` bits
to 2L bits. In World 0, g will be chosen as a random function of ` bits to 2L bits,
while in World 1, g will be set to GK where K is a random k-bit key. The adversary
must tell determine in which world it is placed. Our adversary works as follows:

Adversary Dg

Let y1 ← g(1`)
Let y2 ← g(0`)
Parse y1 as y1 = y1,1‖y1,2 with |y1,1| = |y1,2| = L
Parse y2 as y2 = y2,1‖y2,2 with |y2,1| = |y2,2| = L
If y1,1 = y2,2 then return 1 else return 0

This adversary queries its oracle at the point 1` to get back y1 and then queries its
oracle at the point 0` to get back y2. Notice that 1` is the bitwise complement of
0`. The adversary checks whether the first half of y1 equals the second half of y2,
and if so bets that it is in World 1. Let us now see how well this adversary does.
We claim that

Pr
[
Exmtprf-1

G (D) = 1
]

= 1

Pr
[
Exmtprf-0

G (D) = 1
]

= 2−L .

Mihir Bellare and Phillip Rogaway 65

Why? Look at Experiment Exmtprf-1
G (D) as defined in Definition 3.4. Here g = GK

for some K. In that case we have

GK(1`) = FK(1`)‖FK(0`)

GK(0`) = FK(0`)‖FK(1`)

by definition of the family G. Notice that the first half of GK(1`) is the same as the
second half of GK(0`). So D will return 1. On the other hand look at Experiment
Exmtprf-0

G (D) as defined in Definition 3.4. Here g is a random function. So the
values g(1`) and g(0`) are both random and independent 2L bit strings. What is
the probability that the first half of the first string equals the second half of the
second string? It is exactly the probability that two randomly chosen L-bit strings
are equal, and this is 2−L. So this is the probability that D will return 1. Now as
per Definition 3.4 we subtract to get

Advprf
G (D) = Pr

[
Exmtprf-1

G (D) = 1
]
− Pr

[
Exmtprf-0

G (D) = 1
]

= 1− 2−L .

Now let t be the time complexity of D. This is O(` + L) plus the time for two
computations of G, coming to O(` + L) plus the time for four computations of F .
The number of queries made by D is two, and the total length of all queries is 2`.
Thus we have

Advprf
G (t, 2, 2`) = max

A
{Advprf

G (A) }

≥ Advprf
G (D)

= 1− 2−L .

Our conclusion is that the advantage function of G as a PRF is very high even for
very low values of its resource parameter inputs, meaning G is very insecure as a
PRF.

3.7 Security against key recovery

We have mentioned several times that security against key recovery is not sufficient
as a notion of security for a block cipher. However it is certainly necessary: if key
recovery is easy, the block cipher should be declared insecure. We have indicated
that we want to adopt as notion of security for a block cipher the notion of a PRF
or a PRP. If this is to be viable, it should be the case that any function family that
is insecure under key recovery is also insecure as a PRF or PRP. In this section we
verify this simple fact. Doing so will enable us to exercise the method of reductions.

We begin by formalizing security against key recovery. We consider an adversary
that, based on input-output examples of an instance FK of family F , tries to find

66 PSEUDORANDOM FUNCTIONS

K. Its advantage is defined as the probability that it succeeds in finding K. The
probability is over the random choice of K, and any random choices of the adversary
itself.

We give the adversary oracle access to FK so that it can obtain input-output
examples of its choice. We do not constrain the adversary with regard to the method
it uses. This leads to the following definition.

Definition 3.10 Let F : Keys(F)×D → R be a family of functions, and let B be
an algorithm that takes an oracle for a function g: D → R, and outputs a string.
We consider the experiment:

Experiment Exmtkr
F (B)

K
R← Keys(F)

K ′ ← BFK

If K = K ′ then return 1 else return 0

The kr-advantage of B is defined as

Advkr
F (B) = Pr

[
Exmtkr

F (B) = 1
]
.

For any t, q, µ the kr-advantage of F is defined via

Advkr
F (t, q, µ) = max

B
{Advkr

F (B) }

where the maximum is over all B having time-complexity t and making at most q
oracle queries, the sum of the lengths of these queries being at must µ bits.

This definition has been made general enough to capture all types of key-recovery
attacks. Any of the classical attacks such as exhaustive key search, differential crypt-
analysis or linear cryptanalysis correspond to different, specific choices of adversary
B. They fall in this framework because all have the goal of finding the key K based
on some number of input-output examples of an instance FK of the cipher. To
illustrate let us see what are the implications of the classical key-recovery attacks
on DES for the value of the key-recovery advantage function of DES. Assuming the
exhaustive search attack is always successful based on testing two examples leads to
the fact that

Advkr
DES(t, 2, 2 · 64) = 1

for t being about 255 times the time TDES for one computation of DES. On the
other hand, linear cryptanalysis implies that

Advkr
DES(t, 243, 243 · 64) = 1

for t being about 243 · TDES. This gives us a couple of data points on the curve
Advkr

DES(t, q, ql). For a more concrete example, let us look at the key-recovery
advantage of the family of Example 3.8.

Mihir Bellare and Phillip Rogaway 67

Example 3.11 Let F : {0, 1}k × {0, 1}l → {0, 1}L be the family of functions from
Example 3.8. We saw that its prf-advantage was very high. Let us now compute is
kr-advantage. The following adversary B recovers the key. We let ej be the l-bit
binary string having a 1 in position j and zeros everywhere else. We assume that
the manner in which the key K defines the matrix is that the first L bits of K form
the first column of the matrix, the next L bits of K form the second column of the
matrix, and so on.

Adversary BFK

Let K ′ be the empty string
For j = 1, . . . , l do

yj ← FK(ej)
K ′ ← K ′‖yj

EndFor
Return K ′

The adversary B invokes its oracle to compute the output of the function on input
ej . The result, yj , is exactly the j-th column of the matrix associated to the key
K. The matrix entries are concatenated to yield K ′, which is returned as the key.
Since the adversary always finds the key we have

Advkr
F (B) = 1 .

The time-complexity of this adversary is t = O(l2L) since it makes q = l calls to its
oracle and each computation of FK takes O(lL) time. Thus

Advkr
F (t, l, l2) = 1 .

The parameters here should still be considered small: l is 64 or 128, which is small
for the number of queries. So F is insecure against key-recovery. Note however that
F is less secure as a PRF than against key-recovery: its advantage function as a
PRF had a value close to 1 for parameter values much smaller than those above.
This leads into our next claim, which says that for any given parameter values,
the kr-advantage of a family cannot be significantly more than its prf or prp-cpa
advantage.

Now we claim that if a block cipher is a secure PRF or PRP then it is also secure
against all key-recovery attacks. Put another way, the advantage of F with respect
to key recovery cannot be much larger than its advantage as a PRF.

Proposition 3.12 Let F : {0, 1}k×{0, 1}l → {0, 1}L be a family of functions. Then
for any t, q with q < 2l we have

Advkr
F (t, q, ql) ≤ Advprf

F (t′, q + 1, (q + 1)l) +
1

2L
, (3.1)

and furthermore, if L = l, then also

Advkr
F (t, q, ql) ≤ Advprp-cpa

F (t′, q + 1, (q + 1)l) +
1

2L − q
, (3.2)

68 PSEUDORANDOM FUNCTIONS

where we set t′ to be t plus the time for one computation of F .

The proof introduces the central idea of reductions. We will show a transformation
B 7→ AB of any kr-adversary B into a prf-adversary AB such that

Advkr
F (B) ≤ Advprf

F (AB) +
1

2L

and also, if the resources used by B are t, q, ql, then those used by AB are t′, q +
1, (q + 1)l. We claim that barring manipulation, this proves the first equation of
the claim. Indeed, by taking maximums on both sides, we will be able to get the
equation in question, as we will see later.

The problem that adversary AB is trying to solve is to determine whether its
given oracle g is a random instance of F or a random function of l bits to L-bits.
The idea behind a reduction is that AB will run B as a subroutine and use B’s
output to solve its own problem.

B is an algorithm that expects to be in a world where it gets an oracle FK , and
it tries to find K via queries to its oracle. For simplicity, first assume that B makes
no oracle queries. Now, when AB runs B, it produces some key K ′. AB can test K ′

by checking whether F (K ′, x) agrees with g(x) for some value x. If so, it bets that
g was an instance of F , and if not it bets that g was random.

If B does make oracle queries, we must ask how AB can run B at all. The oracle
that B wants is not available. However, B is a piece of code, communicating with its
oracle via a prescribed interface. If you start running B, at some point it will output
an oracle query, say by writing this to some prescribed memory location, and stop.
It awaits an answer, to be provided in another prescribed memory location. When
that appears, it continues its execution. When it is done making oracle queries, it
will return its output. Now when AB runs B, it will itself supply the answers to B’s
oracle queries. When B stops, having made some query, A will fill in the reply in
the prescribed memory location, and let B continue its execution. B does not know
the difference between this “simulated” oracle and the real oracle except in so far
as it can glean this from the values returned.

The value that B expects in reply to query x is FK(x). That is not what AB
gives it. Instead, it returns g(x), where g is AB’s oracle. When AB is in World 1,
g(x) = FK(x), and so B is functioning as it would in its usual environment, and
will return the key K with a probability equal to its kr-advantage. However when
AB is in World 0, g is a random function, and B is getting back values that bear
little relation to the ones it is expecting. That does not matter. B is a piece of code
that will run to completion and produce some output. When we are in World 0, we
have no idea what properties this output will have. But it is some k-bit string, and
AB will test it as indicated above. It will fail the test with high probability as long
as the test point x was not one that B queried, and AB will make sure the latter is
true via its choice of x. Let us now proceed to the actual proof.

Proof of Proposition 3.12: We prove the first equation and then briefly indicate
how to alter the proof to prove the second equation.

Mihir Bellare and Phillip Rogaway 69

We will show that given any adversary B whose resources are restricted to t, q, ql
we can construct an adversary AB, using resources t′, q + 1, (q + 1)l, such that

Advkr
F (B) ≤ Advprf

F (AB) +
1

2L
. (3.3)

If this is true then we can establish Equation (3.3) as follows:

Advkr
F (t, q, µ) = max

B
{Advkr

F (B) }

≤ max
B
{Advprf

F (AB) + 2−L }

≤ max
A
{Advprf

F (A) + 2−L }

= Advprf
F (t, q + 1, (q + 1)l) + 2−L .

The maximum, in the case of B, is taken over all adversaries whose resources are
t, q, ql. In the second line, we apply Equation (3.3). In the third line, we maximize
over all A whose resources are t, q + 1, (q + 1)l. The inequality on the third line is
true because this set includes all adversaries of the form AB. The last line is simply
by definition. So it remains to show how to design AB so that Equation (3.3) holds.
(This is the core of the argument, namely what is called the “reduction.”)

As per Definition 3.4, adversaryAB will be provided an oracle for a function g: {0, 1}l →
{0, 1}L, and will try to determine in which World it is. To do so, it will run adver-
sary B as a subroutine. We provide the description followed by an explanation and
analysis.

Adversary AgB
i← 0
Run adversary B, replying to its oracle queries as follows
When B makes an oracle query x do

i← i+ 1 ; xi ← x
yi ← g(xi)
Return yi to B as the answer

Until B stops and outputs a key K ′

Let x be an l bit string not in the set {x1, . . . , xq}
y ← g(x)
If F (K ′, x) = y then return 1 else return 0

As indicated in the discussion preceding the proof, AB is running B and itself pro-
viding answers to B’s oracle queries via the oracle g. When B has run to completion
it returns some k-bit string K ′, which AB tests by checking whether F (K ′x) agrees
with g(x). Here x is a value different from any that B queried, and it is to en-
sure that such a value can be found that we require q < 2l in the statement of the

70 PSEUDORANDOM FUNCTIONS

Proposition. Now we claim that

Pr
[
Exmtprf-1

F (AB) = 1
]
≥ Advkr

F (B)

Pr
[
Exmtprf-0

F (AB) = 1
]

= 2−L .

We will justify these claims shortly, but first let us use them to conclude. Subtract-
ing, as per Definition 3.4, we get

Advprf
F (AB) = Pr

[
Exmtprf-1

F (AB) = 1
]
− Pr

[
Exmtprf-0

F (AB) = 1
]

≥ Advkr
F (B)− 2−L .

Re-arranging terms gives us Equation (3.3). It remains to justify Equations (3.4)
and (3.4).

Equation (3.4) is true because in Exmtprf-1
F (AB) the oracle g is FK for some K,

which is the oracle that B expects, and thus B functions as it does in Exmtkr
F (B).

If B is successful, meaning the key K ′ it outputs equals K, then certainly AB
returns 1. (It is possible that AB might return 1 even though B was not successful.
This would happen if K ′ 6= K but F (K ′, x) = F (K,x). It is for this reason that
Pr
[
Exmtprf-1

F (AB) = 1
]

is greater than or equal to Advkr
F (B) rather than merely

equal to it.) Equation (3.4) is true because in Exmtprf-0
F (AB) the function g is

random, and since x was never queried by B, the value g(x) is unpredictable to B.
Imagine that g(x) is chosen only when x is queried to g. At that point, K ′, and thus
F (K ′, x), is already defined. So g(x) has a 2−L chance of hitting this fixed point.
Note this is true regardless of how hard B tries to make F (K ′, x) be the same as
g(x).

For the proof of Equation (3.2) we seek a reduction B 7→ AB with the property that

Advkr
F (B) ≤ Advprp-cpa

F (AB) +
1

2L − q
. (3.4)

The reduction is identical to the one given above, meaning the adversary AB is the
same. For the analysis we see that

Pr
[
Exmtprp-cpa-1

F (AB) = 1
]

= Advkr
F (B)

Pr
[
Exmtprp-cpa-0

F (AB) = 1
]
≤ 1

2L − q
.

Subtracting yields

Advprp-cpa
F (AB) = Pr

[
Exmtprp-cpa-1

F (AB) = 1
]
− Pr

[
Exmtprp-cpa-0

F (AB) = 1
]

≥ Advkr
F (B)− 1

2L − q

Mihir Bellare and Phillip Rogaway 71

and re-arranging terms gives us Equation (3.4). The first equation above is true for
the same reason as before. The second equation is true because in World 0 the map
g is now a random permutation of l-bits to l-bits. So g(x) assumes any random value
except the values y1, . . . , yq, meaning there are 2L−q things it could be. (Remember
L = l in this case.)

The following example illustrates that the converse of the above claim is far from
true. The kr-advantage of a family can be significantly smaller than its prf or prp-
cpa advantage, meaning that a family might be very secure against key recovery yet
very insecure as a prf or prp, and thus not useful for protocol design.

Example 3.13 Define the block cipher E: {0, 1}k×{0, 1}l → {0, 1}l by EK(x) = x
for all k-bit keys K and all l-bit inputs x. We claim that it is very secure against
key-recovery but very insecure as a PRP under CPA. More precisely, we claim that
for all values of t, q, however high,

Advkr
E (t, q, ql) = 2−k ,

and on the other hand

Advprp-cpa
E (t, 1, l) ≥ 1− 2−l

for t = O(l). In other words, given an oracle for EK , you may make as many queries
as you want, and spend as much time as you like, before outputting your guess as to
the value of K, yet your chance of getting it right is only 2−k. On the other hand,
using only a single query to a given oracle g: {0, 1}l → {0, 1}l, and very little time,
you can tell almost with certainity whether g is an instance of E or is a random
function of l bits to l bits. Why are these claims true? Since EK does not depend on
K, an adversary with oracle EK gets no information about K by querying it, and
hence its guess can as to the value of K can be correct only with probability 2−k.
On the other hand, an adversary can test whether g(0l) = 0l, and by returning 1 if
and only if this is true, attain a prp-advantage of 1− 2−l.

3.8 The birthday attack

Suppose E: {0, 1}k ×{0, 1}l → {0, 1}l is a family of permutations, meaning a block
cipher. If we are given an oracle g: {0, 1}l → {0, 1}l which is either an instance of
E or a random function, there is a simple test to determine which of these it is.
Query the oracle at distince points x1, x2, . . . , xq, and get back values y1, y2, . . . , yq.
You know that if g were a permutation, the values y1, y2, . . . , yq must be distinct. If
g was a random function, they may or may not be distinct. So, if they are distinct,
bet on a permutation.

Surprisingly, this is pretty good distinguisher, as we will argue below. Roughly,
it takes q =

√
2l queries to get an advantage that is quite close to 1. The reason is

the birthday paradox. If you are not familiar with this, you may want to look at
Appendix A, and then come back to the following.

72 PSEUDORANDOM FUNCTIONS

This tells us that an instance of a block cipher can be distinguished from a
random function based on seeing a number of input-output examples which is ap-
proximately 2l/2. This has important consequences for the security of block cipher
based protocols.

Proposition 3.14 Let E: {0, 1}k × {0, 1}l → {0, 1}l be a family of permutations.
Suppose q satisfies 2 ≤ q ≤ 2(l+1)/2. Then

Advprf
E (t, q, ql) ≥ 0.3 · q(q − 1)

2l
,

where and t is the time for q computations of E, plus O(ql).

Proof of Proposition 3.14: The birthday attack is implemented by an adversary
D who, given an oracle g: {0, 1}l → {0, 1}l, works like this:

Adversary Dg

For i = 1, . . . , q do
Let xi be the i-th l-bit string in lexicographic order
yi ← g(xi)

End For
If y1, . . . , yq are all distinct then return 1, else return 0

We claim that

Advprf
E (D) ≥ 0.3 · q(q − 1)

2l
,

from which the Proposition follows. Let us now justify this lower bound. Letting
N = 2l, we claim that

Pr
[
Exmtprf-1

E (D) = 1
]

= 1 (3.5)

Pr
[
Exmtprf-0

E (D) = 1
]

= 1− C(N, q) . (3.6)

Here C(N, q), as defined in Appendix A, is the probability that some bin gets two
or more balls in the experiment of randomly throwing q balls into N bins. We will
justify these claims shortly, but first let us use them to conclude. Subtracting, we
get

Advprf
E (D) = Pr

[
Exmtprf-1

E (D) = 1
]
− Pr

[
Exmtprf-0

E (D) = 1
]

= 1− [1− C(N, q)]

= C(N, q)

≥ 0.3 · q(q − 1)
2l

.

Mihir Bellare and Phillip Rogaway 73

The last line is by Proposition A.1. It remains to justify Equations (3.5) and (3.6).

Equation (3.5) is clear because in World 1, g = EK , and since E is a family of
permutations, g is a permutation, and thus y1, . . . , yq are all distinct. Now, sup-
pose D is in World 0, so that g is a random function of l bits to l bits. What is
the probability that y1, . . . , yq are all distinct? Since g is a random function and
x1, . . . , xq are distinct, y1, . . . , yq are random, independently distributed values in
{0, 1}l. Thus we are looking at the birthday problem. We are throwing q balls into
N = 2l bins and asking what is the probability of there being no collisions, meaning
no bin contains two or more balls. This is 1−C(N, q), justifying Equation (3.6).

3.9 PRFs versus PRPs

When we come to analyses of block cipher based constructions, we will find a curious
dichotomy. Analyses are considerably simpler and more natural assuming the block
cipher is a PRF. Yet, PRPs are what most naturally model block ciphers. To bridge
the gap, we relate the prf and prp-cpa advantage functions of a given block cipher.
The following says, roughly, that the birthday attack is the best possible one. A
particular family of permutations E may have prf-advantage that is greater than
its prp-advantage, but only by an amount of q(q− 1)/2l+1, the collision probability
term in the birthday attack.

Proposition 3.15 Suppose E: {0, 1}k × {0, 1}l → {0, 1}l is a family of permuta-
tions. Then

Advprf
E (t, q, ql) ≤ q(q − 1)

2l+1
+ Advprp-cpa

E (t, q, ql)

for any t, q.

The proof is again by reduction, but a very simple one. A given prf-adversary A is
mapped to prp-adversary A, meaning the adversary is unchanged. Accordingly, the
following does not explicitly talk of reductions.

Proof: Let A be an adversary that takes an oracle for a function g: {0, 1}l → {0, 1}l.
Then we claim that

Advprf
E (A) ≤ Advprp-cpa

E (A) +
q(q − 1)

2l+1
, (3.7)

where q is the number of oracle queries made by A. The Proposition follows by
taking maximums, so it remains to prove Equation (3.7).

Let B denote the adversary that first runs A to obtain an output bit b and then
returns b̄, the complement of b. Then

Advprf
E (A) = Pr

[
Exmtprf-1

E (A) = 1
]
− Pr

[
Exmtprf-0

E (A) = 1
]

74 PSEUDORANDOM FUNCTIONS

=
(
1− Pr

[
Exmtprf-1

E (B) = 1
])
−
(
1− Pr

[
Exmtprf-0

E (B) = 1
])

= Pr
[
Exmtprf-0

E (B) = 1
]
− Pr

[
Exmtprf-1

E (B) = 1
]

= Pr
[
Exmtprf-0

E (B) = 1
]
− Pr

[
Exmtprp-cpa-1

E (B) = 1
]

= Pr
[
Exmtprf-0

E (B) = 1
]
− Pr

[
Exmtprp-cpa-0

E (B) = 1
]

+ Pr
[
Exmtprp-cpa-0

E (B) = 1
]
− Pr

[
Exmtprp-cpa-1

E (B) = 1
]

= Pr
[
Exmtprf-0

E (B) = 1
]
− Pr

[
Exmtprp-cpa-0

E (B) = 1
]

+ Advprp-cpa
E (A) .

So it suffices to show that

Pr
[
Exmtprf-0

E (B) = 1
]
− Pr

[
Exmtprp-cpa-0

E (B) = 1
]
≤ q(q − 1)

2l+1
. (3.8)

Let Pr [·] denote the probability in Experiment Exmtprf-0
E (B), and let g denote the

oracle in that experiment. Assume without loss of generality that all oracle queries
of A —they are the same as those of B— are distinct. Let D denote the event that
all the answers are distinct, and let D denote the complement of event D. Then

Pr
[
Exmtprf-0

E (B) = 1
]

= Pr [Bg = 1]

= Pr [Bg = 1 | D] · Pr [D] + Pr
[
Bg = 1 | D

]
· Pr

[
D
]

≤ Pr [Bg = 1 | D] + Pr
[
D
]

= Pr
[
Exmtprp-cpa-0

E (B) = 1
]

+ Pr
[
D
]

≤ Pr
[
Exmtprp-cpa-0

E (B) = 1
]

+
q(q − 1)

2l+1
.

In the last step we used Proposition A.1. Re-arranging terms gives us Equation (3.8)
and concludes the proof.

3.10 One-way functions

The framework for the Unix password-hashing scheme is this. We fix some function
h: {0, 1}k → {0, 1}L, which we call the password hashing function. A user U chooses
a k-bit password K, and the system stores in the password file the value y = h(K)
together with the user’s name U . When the user logs in he or she is prompted for
a user name U and a password K. The system uses the user U to retrieve y, and
then the system computes h(K) and declares the user to be authentic if and only
if this value equals y. The idea of this system—instead of storing (U,K) itself—is
that a party who obtains (U, y) still can not gain trivial entry into the system: they
must still find a K such that h(K) = y.

Mihir Bellare and Phillip Rogaway 75

Assume the attacker gets access to the password file and hence to y. The at-
tacker’s task is thus to find K given y. (The attacker knows the function h, since this
is public code. However we assume the attacker does not have any further powers,
such as the use of trojan horses.) Security in this model would require that it be
computationally infeasible to recover K from y. Thus h must be chosen to make
this true.

A simple example choice of h is h(K) = DESK(064). (The actual choice made
by Unix is somewhat more complex, involving something called a “salt,” which
customizes the function h to each user U . It also involves iterating the block cipher
a number of times. However this does not change the heart of the analysis, so let
us stick with the fiction we have described.) In this example, k = 56 and L = 64.

We ask ourselves how secure is this scheme. The question boils down to asking
how hard it would to recover K given y = DESK(064).

Obviously, the security of this scheme depends on the security of DES. If we
want to prove anything meaningful about the security of the simplified password
scheme, we must make some assumption about DES. We have suggested above that
the appropriate assumption to make about a block cipher like DES is that it is a
secure PRP. So we make this assumption and now ask what we can prove about the
security of the simplified password scheme.

We know what we want to assume about DES, but we don’t yet know exactly
what security property we would like to target the password scheme as meeting.
We need some model and definition for this. We target the requirement that the
password-hashing function be one-way, meaning it is computationally infeasible to
recover the pre-image of a range point. The formalization is more specific. Function
h: {0, 1}k → {0, 1}L is one-way if it is hard, given y, to compute a point x′ such
that h(x′) = y, when y was chosen by drawing x at random from {0, 1}k and setting
y = h(x). A definition to capture this notion of one-wayness appears below.

Definition 3.16 Let h: {0, 1}k → {0, 1}L be a function, and let I be an algorithm
that on input an L-bit string returns a k-bit string. We consider the experiment:

Experiment Exmtowf
h

K
R← {0, 1}k ; y ← h(K)

x← I(y)
If h(x) = y then return 1 else return 0

The owf-advantage of I is defined as

Advowf
h (I) = Pr

[
Exmtowf

h = 1
]
.

For any t the owf-advantage of I is defined via

Advowf
h (t) = max

I
{Advowf

h (I) }

where the maximum is over all I having time-complexity t.

76 PSEUDORANDOM FUNCTIONS

As usual, a one-way function is understood to be one for which Advowf
h (t) is “small”

for practical values of t. We want to show that if h is defined via h(K) = FK(0l)
for a secure PRF F : {0, 1}k × {0, 1}l → {0, 1}L then h is one-way.

We remark that one must look carefully at the models to know how to interpret
the impact of such a result on the actual password scheme. Showing that h is a one-
way function amounts to saying that the password scheme is secure if passwords are
randomly chosen k-bit keys where k is the block length of the block cipher. In real
life, passwords are often not random, and in that case this result does not apply.
However, our intent here is to illustrate an application of PRFs, not to explain the
true security of the Unix password scheme.

Theorem 3.17 Let F : {0, 1}k × {0, 1}l → {0, 1}L be a family of functions, and
define h: {0, 1}k → {0, 1}L via h(K) = F (K, 0l) for all K ∈ {0, 1}k. Then we have

Advowf
h (t) ≤ 1

1− 2k−L
·Advprf

F (t, 1, l) , (3.9)

under the assumption that k ≤ L− 1.

As per the theorem, Advowf
h (t) can only be marginally more than Advprf

F (t′, 1, l).
Specifically, Advowf

h (t) can be at most twice Advprf
F (t, 1, l), because k ≤ L − 1

implies 1− 2k−L ≤ 2. So if F is secure, meaning Advprf
F (t′, 1, l), is low, Advowf

h (t)
is also low, and hence h is secure. It is thus a proof of security, showing that h is
one-way if F is a secure PRF.

It is an open question what happens when k ≥ L. We do not know whether, in
this case, h is still one-way, and, if it is, whether this can be proved based solely on
the assumption that F is a secure PRF. For DES we do have k ≤ L − 1, but for
AES we do not, so it is a relevant question. Answering these questions is a research
problem and shows how quickly one reaches the research boundaries in this area.

Proof of Theorem 3.17: We associate to any adversary I attempting to invert
h an adversary DI attacking F such that

Advowf
F (I) ≤ 1

1− 2k−L
·Advprf

F (DI) . (3.10)

Furthermore, DI makes only one oracle query, this of length l bits, and has time-
complexity t where t is the time-complexity of I. Taking maximums in the usual
way yields Equation (3.9), so it remains to provide DI such that Equation (3.10) is
true. This adversary takes an oracle for a function g: {0, 1}l → {0, 1}L and works
as follows:

Adversary Dg
I

y ← g(0l)
x← I(y)
If F (x, 0l) = y then return 1 else return 0

Mihir Bellare and Phillip Rogaway 77

The adversary queries its oracle g at 0l to get back a value it calls y, and then applies
the inverting algorithm I to y to get back a value x. If I successfully inverted h at
y our adversary bets that g is an instance of F , and otherwise it bets that g is an
instance of Rand(l,L). To compute the advantage of this adversary it is convenient
to set

ε = Advowf
F (I) .

Now we claim that

Pr
[
Exmtprf-1

F (DI) = 1
]

= ε (3.11)

Pr
[
Exmtprf-0

F (DI) = 1
]
≤ 2k

2L
· ε . (3.12)

We will justify these claims shortly, but first let us use them to conclude. Subtract-
ing, we have

Advprf
F (DI) = Pr

[
Exmtprf-1

F (DI) = 1
]
− Pr

[
Exmtprf-0

F (DI) = 1
]

≥ ε− 2k

2L
· ε

=
(
1− 2k−L

)
· ε .

Now, we divide both sides by 1− 2k−L to get

ε ≤ 1
1− 2k−L

·Advprf
F (DI) ,

which is exactly Equation (3.10). However, there is a subtle point here that should
be noted. This step is only correct if the quantity 1−2k−L by which we are dividing
is non-zero (otherwise we can’t divide by it) and in fact positive (if it was negative,
we would have to reverse the inequality). The fact that 1− 2k−L is positive is true
by our assumption that k ≤ L − 1. This is the only place we make use of this
assumption, but it is crucial. It remains to justify Equations (3.11) and (3.12).

We claim that Experiment Exmtprf-1
F (DI) ends up faithfully mimicking Experiment

Exmtowf
h,I . Indeed, Experiment Exmtprf-1

F (DI) begins by selecting a random k-bit
key K, so that y = F (K, 0l). By definition of h this means that y = h(K), so y is
distributed the same way in the two experiments. Then, both experiments run I
and return 1 if and only if I is successful, so the probability that they return 1 is
the same. This justifies Equation (3.10).

Now suppose DI is in World 0, meaning g: {0, 1}l → {0, 1}L is a random function.
We want to upper bound the probability that Exmtprf-0

F (DI) returns 1. Since g is
random, y will be uniformly distributed over {0, 1}L. Thus we want to upper bound

δ
def= Pr

[
y

R← {0, 1}L ; x← I(y) : F (x, 0l) = y
]
. (3.13)

78 PSEUDORANDOM FUNCTIONS

The notation here means that we first pick y at random from {0, 1}L, then set x to
I(y), and then ask what is the probability that F (x, 0l) equals y. Since the algorithm
I might be randomized, the probability is not only over the choice of y, but also
over the random coins tossed by I itself.

For simplicity we first prove Equation (3.12) in the case where I is deterministic,
so that the probability in the computation of δ is only over the choice of y. In this
case it is convenient to define the sets

X = { x ∈ {0, 1}k : h(I(h(x))) = h(x) }

Y = { y ∈ {0, 1}L : h(I(y)) = y } .

We show the sequence of steps via which Equation (3.12) can be obtained, and then
justify them:

δ =
|Y |
2L
≤ |X|

2L
=

2k · ε
2L

.

The fact that δ = |Y |/2L follows from Equation (3.13) and the definition of Y . The
last equality uses the analogous fact that ε = |X|/2k, and this can be justified by
looking at Experiment Exmtowf

h,I and the definition of set X above. The main claim
used above is that |Y | ≤ |X|. To see why this is true, let

h(X) = { h(x) : x ∈ {0, 1}k } = { y ∈ {0, 1}L : ∃x ∈ X such that h(x) = y } .
This is called the image of X under h. Then observe two things, from which |Y | ≤
|X| follows:

|h(X)| ≤ |X| and h(X) = Y .

The first of these is true simply because h is a function. (One x value yields exactly
one y value under h. Some of these y values might be the same as x ranges over
X, but certainly you can’t get more y values than you have x values.) The second,
that h(X) = Y , can be justified by looking at the definitions of the sets X and Y
and observing two things: If x ∈ X then h(x) ∈ Y and if y ∈ Y then there is some
x ∈ X such that h(x) = y.

That completes the proof for the case where I is deterministic. Let us now briefly
indicate why Equation (3.12) remains true when I is a randomized algorithm.

In this case, when I is run on input y, it tosses coins to get a random string R,
and bases its computation on both y and R, returning a value x that is a function
of both of y and R. Thus, there are many different possible x values that it might
return on input y. We have no idea exactly how I uses R or how it performs its
computation, but we can still assess the probabilities we need to assess. For any
y ∈ {0, 1}L and any x ∈ {0, 1}k we let

Py(x) = Pr [R← {0, 1}r : I(y;R) = x] .

In other words, having fixed x, y, we ask what is the probability that I, on input
y, would output x. The probability is over the coin toss sequence R of I, and this
has been made explicity. We are letting r be the number of coins that I tosses and

Mihir Bellare and Phillip Rogaway 79

letting I(y;R) denote the output of I on input y and coins R. Note that this output
is a single x value. (Towards understanding this it may be helpful to note that the
case of I being deterministic corresponds to the following: for every y there is a
unique x such that Py(x) = 1, and for all other values of x we have Py(x) = 0.)

Now for any y ∈ {0, 1}L we let

h−1(y) = { x ∈ {0, 1}k : h(x) = y }

Y ∗ = { y ∈ {0, 1}L : h−1(y) 6= ∅ } .

Thus h−1(y) is the set of all pre-images of y under h, while Y ∗ is the image of {0, 1}k
under h, meaning the set of all range points that possess some pre-image under h.
Notice that for any y ∈ Y ∗ we have |h−1(y)| ≥ 1. Thus for any y ∈ Y ∗ we have

1
2L
≤ |h

−1(y)|
2L

=
2k

2L
· |h
−1(y)|
2k

. (3.14)

We show the sequence of steps via which Equation (3.12) can be obtained, and then
justify them:

δ =
∑

y∈{0,1}L

 ∑
x∈h−1(y)

Py(x)

 · 1
2L

=
∑
y∈Y ∗

 ∑
x∈h−1(y)

Py(x)

 · 1
2L

≤
∑
y∈Y ∗

 ∑
x∈h−1(y)

Py(x)

 · 2k

2L
· |h
−1(y)|
2k

=
2k

2L
·
∑
y∈Y ∗

 ∑
x∈h−1(y)

Py(x)

 · |h−1(y)|
2k

=
2k

2L
·
∑

y∈{0,1}L

 ∑
x∈h−1(y)

Py(x)

 · |h−1(y)|
2k

=
2k

2L
· ε .

The equation for δ used in the first line comes about by looking at the the probability
that I succeeds for a given value of y, and then summing this over all y-values,
weighted by the probability 2−L of that y value being chosen. We then restrict the
sum to values y ∈ Y ∗ based on the fact that the terms correspinding to values y 6∈ Y ∗
in the previous sum are just zero. Once this is done we can apply Equation (3.14)
to obtain the inequality. We then factor 2k/2L out of the sum. We extend the sum
to cover values y 6∈ Y ∗ based again on the fact that the corresponding new terms are
simply zero. In the last sum, we are summing the probability that I succeeds for a

80 PSEUDORANDOM FUNCTIONS

given value of y, weighted by the probability that y would be produced under the
experiment of choosing x at random and setting y = h(x), namely as in Experiment
Exmtowf

h,I , and thus recover ε.

3.11 Pseudorandom generators

3.12 Historical notes

The basic notion of pseudorandom functions is due to Goldreich, Goldwasser and
Micali [16]. In particular these authors introduced the important notion of distin-
guishers. The notion of a pseudorandom permutation is due to Luby and Rackoff
[22]. These works are in the complexity-theoretic or “asymptotic” setting, where one
considers an infinite sequence of families rather than just one family, and defines
security by saying that polynomial-time adversaries have “negligible” advantage.
The approach used here, motivated by the desire to model block ciphers, is called
“concrete security,” and originates with [2]. Definitions 3.4 and 3.5 are from [2], as
are Propositions 3.14 and 3.15. The materiel of Section 3.10 is a concrete securtity
adaptation of results from [23].

3.13 Exercises and problems

Exercise 3.1 Let E: {0, 1}k × {0, 1}n → {0, 1}n be a secure PRP. Consider the
PRP E′: {0, 1}k × {0, 1}2n → {0, 1}2n defined by

E′K(xx′) = EK(x) EK(x ⊕ x′)

where |x| = |x′| = n. Show that E′ is not a secure PRP

Exercise 3.2 Consider the following block cipher E : {0, 1}3 × {0, 1}2 → {0, 1}2:

key 0 1 2 3

0 0 1 2 3
1 3 0 1 2
2 2 3 0 1
3 1 2 3 0
4 0 3 2 1
5 1 0 3 2
6 2 1 0 3
7 3 2 1 0

(The eight possible keys are the eight rows, and each row shows where the points to
which 0, 1, 2, and 3 map.) Compute the maximal advantage an adversary can get
(a) with one query, (b) with four queries, and (c) with two queries.

Mihir Bellare and Phillip Rogaway 81

Exercise 3.3 Let D,R ⊆ {0, 1}∗ with D finite. Let f : D → R. Consider the
following definition for the success of an adversary I in breaking f as a one-way
function:

Advowf′

f (I) = Pr[X R← D : I(f(X)) = X]

Is this a good definition for the security of a one-way function? Why or why not.

Problem 3.1 Suppose you are given a PRF F : {0, 1}k×{0, 1}n → {0, 1}n. Design
a PRF G: {0, 1}2k × {0, 1}n → {0, 1}2n which is secure as long as F is secure.
Analyze the security of G in terms of the security of F .

Problem 3.2 Present a secure construction for the problem of Example 3.9. That
is, given a PRF F : {0, 1}k × {0, 1}n → {0, 1}n, construct a PRF G: {0, 1}k ×
{0, 1}n → {0, 1}2n which is a secure PRF as long as F is secure.

Problem 3.3 Design a block cipher E : K × {0, 1}128 → {0, 1}128 that is secure
(up to a large number of queries) against non-adaptive adversaries, but is com-
pletely insecure (even for two queries) against an adaptive adversary. (A non-
adaptive adversary readies all her questions M1, . . . ,Mq, in advance, getting back
EK(M1), ..., EK(Mq). An adaptive adversary is the sort we have dealt with throughtout:
each query may depend on prior answers.)

Problem 3.4 Let a[i] denote the i-th bit of a binary string i, where 1 ≤ i ≤ |a|.
The inner product of n-bit binary strings a, b is

〈 a, b 〉 = a[1]b[1] ⊕ a[2]b[2] ⊕ · · · ⊕ a[n]b[n] .

A family of functions F : {0, 1}k × {0, 1}l → {0, 1}L is said to be inner-product
preserving if for every K ∈ {0, 1}k and every distinct x1, x2 ∈ {0, 1}l−{0l} we have

〈 F (K,x1), F (K,x2) 〉 = 〈 x1, x2 〉 .
Prove that if F is inner-product preserving then

Advprf
F (t, 2, 2l) ≥ 1

2
·
(

1 +
1

2L

)
for t = q · TF +O(µ), where TF denotes the time to perform one computation of F .
Explain in a sentence why this shows that if F is inner-product preserving then F
is not a secure PRF.

Problem 3.5 Let E: {0, 1}k × {0, 1}l → {0, 1}l be a block cipher. The two-fold
cascade of E is the block cipher E(2): {0, 1}2k × {0, 1}l → {0, 1}l defined by

E(2)(K1‖K2, x) = E(K1, E(K2, x))

82 PSEUDORANDOM FUNCTIONS

for all K1,K2 ∈ {0, 1}k and all x ∈ {0, 1}l. (Here “‖” stands for concatenation of
strings.) Prove that

Advprp-cpa

E(2) (t, q, lq) ≤ Advprp-cpa
E (t, q, lq)

for all t, q. Explain in a sentence why this shows that if E is a secure PRP then so
is E(2).

Problem 3.6 Give a construction to show that F : {0, 1}2n×{0, 1}n → {0, 1}n can
be a good PRF (secure in the sense of Advprf

F) and yet the function f(X) = FX(0)
is not a secure one-way function.

Problem 3.7 Let D,R ⊆ {0, 1}∗ with D finite. Let f : D → R be a function.
Suppose there is a probabilistic adversary I that, in time t, obtains advantage ε =
Advowf

f (I). Show that there is a deterministic adversary I ′ with essentially the
same running time as I such that ε = Advowf

f (I ′).

Problem 3.8 Let A be a adversary that makes at most q total queries to its two
oracles, f and g, where f, g : {0, 1}n → {0, 1}n. Assume that A never asks the same
query X to both of its oracles. Define

Adv(A) = Pr[π ← Perm(n) : Aπ(·),π(·) = 1]− Pr[π, π′ ← Perm(n) : Aπ(·),π′(·) = 1].

Prove a good upper bound for Adv(A), say Adv(A) ≤ q2/2n.

Chapter 4

Symmetric Encryption

A symmetric encryption scheme (also called a shared-key encryption scheme) enables
parties in possession of a shared secret key to achieve the goal of data privacy. This
is the canonical goal of cryptography.

4.1 A framework for both encryption and message au-
thentication

The symmetric setting considers two parties who share a key and will use this key to
imbue communicated data with various security attributes. The main security goals
are privacy and authenticity of the communicated data. Chapter 4 looks at privacy,
Chapter 6 looks at authenticity, and Chapter 7 looks at providing both together.
Chapters 2 and 5 describe primitives we shall use.

The type of object we will consider we call an encapsulation scheme. An
encapsulation scheme specifies an encapsulation algorithm, which tells the sender
how to process her data as a function of the key to produce the object that is actually
transmitted. It also specifies a decapsulation algorithm which tells the receiver how
to retrieve the original data from the transmission while possibly also performing
some verification. Finally, there is a key generation algorithm, which produces a
key that the parties need to share. The formal description follows.

Definition 4.1 A symmetric encapsulation scheme SE = (K, E ,D) consists of three
algorithms, as follows:

• The key generation algorithm K is a randomized algorithm that returns a
string K. We let Keys(SE) denote the set of all strings that have non-zero
probability of being output by K. The members of this set are called keys. We
write K R← K for the operation of executing K and letting K denote the key
returned.

83

84 SYMMETRIC ENCRYPTION

• The encapsulation algorithm E takes a key K ∈ Keys(SE) and a plaintext
M ∈ {0, 1}∗ to return a ciphertext C ∈ {0, 1}∗ ∪ {⊥}. This algorithm might
be randomized or stateful. We write C R← EK(M).

• The deterministic decapsulation algorithm D takes a key K ∈ Keys(SE) and
a ciphertext C ∈ {0, 1}∗ to return some M ∈ {0, 1}∗ ∪ {⊥}. We write M ←
DK(C).

We require that for any key K ∈ Keys(SE) and any message M ∈ {0, 1}∗, if EK(M)
returns a ciphertext C 6= ⊥ then DK(C) = M .

When discussing privacy, it is conventional to call an encapsulation scheme an
encryption scheme. The encapsulation algorithm is called the encryption algorithm,
and the decapsulation algorithm is called the decryption algorithm.

The key generation algorithm, as the definition indicates, is randomized. It takes
no inputs. When it is run, it flips coins internally and uses these to select a key K.
Typically, the key is just a random string of some length, in which case this length
is called the key length of the scheme. When two parties want to use the scheme, it
is assumed they are in possession of K generated via K. How they came into joint
possession of this key K in such a way that the adversary did not get to know K is
not our concern here; it is an assumption we make.

Once in possession of a shared key, the parties can encapsulate data for trans-
mission. To encapsulate plaintext M , the sender (or encapsulator) runs the en-
capsulation algorithm with key K and input M to get back a string we call the
ciphertext.

The encapsulation algorithm may be either randomized or stateful. If random-
ized, it flips coins and uses those to compute its output on a given input K,M .
Each time the algorithm is invoked, it flips coins anew, and in particular invoking
it twice on the same inputs may not yield the same response both times. If the
encapsulation algorithm is stateful, its operation depends on a global variable such
as a counter, which is updated upon each invocation of the encapsulation algorithm.
Thus, the encapsulator maintains state that is initialized in some pre-specified way.
When the encapsulation algorithm is invoked on inputs K,M , it computes a ci-
phertext based on K,M and the current state. It then updates the state, and the
new state value is stored. (The receiver does not maintain matching state and, in
particular, decapsulation does not require access to any global variable or call for
any synchronization between parties.)

When there is no such counter or global variable, the scheme is stateless. In
stateful schemes the encapsulation algorithm typically does not flip coins internally.
(It is still OK to call it a randomized algorithm. It just happens to not make use
of its source of random bits.) In stateless schemes, randomization is essential to
security, as we will see.

Once a ciphertext C is computed, it is transmitted to the receiver. The latter can
recover the message by running the decapsulation algorithm with the same key used
to create the ciphertext, namely via M ← DK(C). The decapsulation algorithm is

Mihir Bellare and Phillip Rogaway 85

neither randomized nor stateful.
Many encapsulation schemes restrict the set of strings that they are willing to

encapsulate. (For example, perhaps the algorithm can only encapsulate plaintexts
of length a positive multiple of some block length n, and can only encapsulate
plaintexts of length up to so maximum length.) These kinds of restrictions are
captured by having the encapsulation algorithm return the special symbol ⊥ when
fed a message not meeting the required restriction. In a stateless scheme, there is
typically a set of strings, called the plaintext space, such that EK(M) 6= ⊥ for all
K and all M in the plaintext space. In a stateful scheme, whether or not EK(M)
returns ⊥ depends not only on M but also possibly on the value of the state variable.
For example, when a counter is being used, it is typical that there is a limit to the
number of encapsulations performed, and when the counter reaches a certain value
the encapsulation algorithm returns ⊥ no matter what message it is fed.

4.2 Some encryption schemes

In the remainder of this chapter, we refer to an encapsulation scheme as an encryp-
tion scheme. The encapsulation algorithm is called the encryption algorithm, and
the decapsulation algorithm is called the decryption algorithm. Let us begin with a
few examples.

Scheme 4.2 [One-time-pad encryption] The one-time-pad encryption scheme
SE = (K, E ,D) is stateful and deterministic. The key generation algorithm simply
returns a random k-bit string K, where the key-length k is a parameter of the
scheme, so that the key space is Keys(SE) = K. The encryptor maintains a counter
ctr which is initially zero. The encryption and decryption algorithms operate as
follows:

Algorithm EK(M)
Let static ctr ← 0
Let m← |M |
If ctr +m > k then return ⊥
C ←M ⊕ K[ctr .. ctr +m− 1]1
ctr ← ctr +m
Return 〈ctr, C〉

Algorithm DK(〈ctr, C〉)
Let m← |M |
If ctr +m > k then return ⊥
M ← C ⊕ K[ctr .. ctr +m− 1]1
Return M

Here X[i .. j]1 denotes the i-th through j-th bit of the binary string X. By 〈ctr, C〉
we mean a string that encodes the number ctr and the string C. As the number
ctr is in [0..2n − 1] the most natural encoding is to write ctr using n bits and then
prefix this to C. Conventions are established so that every string y is regarded
as encoding some ctr, C. The encryption algorithm XORs the message bits with
key bits, starting with the key bit indicated by the current counter value. The
counter is then incremented by the length of the message. Key bits are not reused,
and thus if not enough key bits are available to encrypt a message, the encryption

86 SYMMETRIC ENCRYPTION

algorithm returns ⊥. Note that the ciphertext returned includes the value of the
counter. This is to enable decryption. (Recall that the decryption algorithm, as per
Definition 4.1, must be stateless and deterministic, so we do not want it to have to
maintain a counter as well.)

The following schemes rely either on a family of permutations (ie. a block cipher)
or a family of functions. It is convenient if the length of the message to be encrypted
is a positive multiple of a block length associated to the family. Accordingly, the
encryption algorithm returns ⊥ if this is not the case. In practice, however, one
would first pad the message appropriately so that the padded message always had
length a positive multiple of the block length, and apply the encryption algorithm to
the padded message. The padding function should be injective and easily invertible.

Scheme 4.3 [ECB mode] Let E: K × {0, 1}n → {0, 1}n be a block cipher. Op-
erating it in ECB (Electronic Code Book) mode yields a stateless symmetric en-
cryption scheme, SE = (K, E ,D). The key generation algorithm simply returns a
random key for the block cipher, meaning it picks a random string K

R← K and
returns it. The encryption and decryption algorithms are as follows:

Algorithm EK(M)
If |M | 6∈ {n, 2n, 3n, . . .} then return ⊥
Parse M as n-bit M [1] · · ·M [m]
For i← 1 to m do

C[i]← EK(M [i])
EndFor
C ← C[1] · · ·C[m]
Return C

Algorithm DK(C)
If |C| 6∈ {n, 2n, 3n, . . .} then return ⊥
Parse C as n-bit C[1] · · ·C[m]
For i← 1 to m do

M [i]← E−1
K (C[i])

EndFor
M ←M [1] · · ·M [m]
Return M

Parse M as n-bit M [1] · · ·M [m] means to set m = |M |/n and, in ∈ [1..m], to set
M [i] = M [i]n, where M [i]n means the i-th n-bit block of M . Similarly for parsing C
into C[1] · · ·C[m]. Notice that that time the encryption algorithm did not make any
random choices. (That does not mean we are not allowed to call it a randomized
algorithm; it is simply a randomized algorithm that happened to choose to not make
random choices.)

The next scheme, cipher-block chaining (CBC), is the most popular mode, used
pervasively in practice.

Scheme 4.4 [CBC$ mode] Let E: K × {0, 1}n → {0, 1}n be a block cipher.
Operating it in CBC mode with random IV yields a stateless symmetric encryption
scheme, SE = (K, E ,D). The key generation algorithm simply returns a random
key for the block cipher, K R← K. The encryption and decryption algorithms are as
follows:

Mihir Bellare and Phillip Rogaway 87

Algorithm EK(M)
If |M | 6∈ {n, 2n, 3n, } then return ⊥
Parse M as n-bit M [1] · · ·M [m]
C[0]← IV R← {0, 1}n
For i← 1 to m do

C[i]← EK(C[i− 1] ⊕M [i])
EndFor
C ← C[1] · · ·C[m]
Return 〈IV, C〉

Algorithm DK(〈IV, C〉)
If |C| 6∈ {n, 2n, 3n, . . . , } then return ⊥
Parse C as n-bit C[1] · · ·C[m]
C[0]← IV
For i← 1 to m do

M [i]← E−1
K (C[i]) ⊕ C[i− 1])

EndFor
M ←M [1] · · ·M [m]
Return M

Parsing C as C[0] · · ·C[m] means that we divide it into n-bit blocks and number
them starting at 0. The IV (“initialization vector”) is C[0], which is chosen at
random by the encryption algorithm. This choice is made independently each time
the algorithm is invoked.

For the following schemes it is useful to introduce some notation. If n ≥ 1 and i ≥ 0
are integers then we let [i]n (read “number to an n-bit string”) denote the n-bit
string which is the binary representation of integer i mod 2n. If we use a number
i ≥ 0 in a context for which a string I ∈ {0, 1}n is required, it is understood that
we mean to replace i by I = [i]n.

The CTR (counter) modes that follow are not much used, to the best of our
knowledge, but perhaps wrongly so. We will see later that they have good security
properties. In contrast to CBC, the encryption and decryption procedures are par-
allelizable, which can be exploited to speed up these processes in the presence of
hardware support. There are two variants of the mode, one random and the other
stateful, and, as we will see later, their security properties are different.

Scheme 4.5 [CTR$ mode] Let F : K×{0, 1}n → {0, 1}` be a family of functions
(not necessarily a family of permutations). Operating it in CTR mode with random
starting point is a stateless symmetric encryption scheme, SE = (K, E ,D), which we
call CTR$ mode. The key generation algorithm simply returns a random key for F ,
meaning that the key-generation algorithm for the encryption scheme is just the
key generation algorithm for the function family F . The encryption and decryption
algorithms are as follows:

Algorithm EK(M)
If |M | 6∈ {`, 2`, . . . , `2n} then return ⊥
m← |M |/`
r

R← [0..2n − 1]
P ← FK(r + 1)FK(r + 2) · · ·FK(r +m)
C ←M ⊕ P
Return 〈r, C〉

Algorithm DK(〈r, C〉)
If |C| 6∈ {`, 2`, . . . , `2n} then return ⊥
m← |C|/`
P ← FK(r + 1)FK(r + 2) · · ·FK(r +m)
M ← C ⊕ P
Return M

88 SYMMETRIC ENCRYPTION

In this mode the random value r chosen by the encryption algorithm is an integer
in the range 0, . . . , 2n − 1. It is used to define a sequence of values on which FK
is applied to produce a “pseudo one-time pad” to which the data is XORed. The
random value is included in the ciphertext in order to enable decryption. The
natural way to encode r and C is to write the former number as an n-bit string and
then prepend this to C.

We now give the counter-based version of CTR mode.

Scheme 4.6 [CTRC mode] Let F : K × {0, 1}n → {0, 1}` be a family of func-
tions. Operating it in CTR mode with counter starting point is a stateful symmetric
encryption scheme, SE = (K, E ,D), which we call CTRC. The key generation algo-
rithm simply returns a random key for F , meaning that the key generation algorithm
for the encryption scheme is also K. The encryptor maintains a counter ctr which
is initially zero. The encryption and decryption algorithms are as follows:

Algorithm EK(M)
static ctr ← 0
If |M | 6∈ {`, 2`, 3`, . . .} then return ⊥
m← |M |/`
If ctr +m > 2n then return ⊥
P ← FK(ctr)FK(ctr + 1) · · ·FK(ctr +m− 1)
C ←M ⊕ P
ctr ← ctr +m
Return 〈ctr −m,C〉

Algorithm DK(〈i, C〉)
If |C| 6∈ {`, 2`, 3`, . . .} then return ⊥
m← |C|/`
If ctr +m > 2n then return ⊥
P ← FK(ctr)FK(ctr + 1) · · ·FK(ctr +m− 1)
M ← P ⊕ C
Return M

Position index ctr is not allowed to wrap around: the encryption algorithm returns
⊥ if this would happen. The position index is included in the ciphertext in order to
enable decryption. The encryption algorithm updates the position index upon each
invocation, and begins with this updated value the next time it is invoked.

We will return to the security of these schemes after we have developed the appro-
priate notions.

4.3 Issues in security

Let us fix a symmetric encryption scheme SE = (K, E ,D). Two parties share a key
K for this scheme, this key having being generated as K R← K. The adversary does
not a priori know K. We now want to explore the issue of what security (in this
case, privacy) of the scheme might mean.

The adversary is assumed able to capture any ciphertext that flows on the chan-
nel between the two parties. It can thus collect ciphertexts, and try to glean some-
thing from them. Our first question is: what exactly does “glean” mean? What

Mihir Bellare and Phillip Rogaway 89

tasks, were the adversary to accomplish them, would make us declare the scheme in-
secure? And, correspondingly, what tasks, were the adversary unable to accomplish
them, would make us declare the scheme secure?

It is easier to think about insecurity than security, because we can certainly
identify adversary actions that indubitably imply the scheme is insecure. For ex-
ample, if the adversary can, from a few ciphertexts, derive the underlying key K, it
can later decrypt anything it sees, so if the scheme allowed easy key recovery from a
few ciphertexts it is definitely insecure. Yet, an absence of easy key recovery is not
enough for the scheme to be secure; maybe the adversary can do something else.

One might want to say something like: given C, the adversary has no idea what
M is. This however cannot be true, because of what is called a priori information.
Often, something about the message is known. For example, it might be a packet
with known headers. Or, it might be an English word. So the adversary, and
everyone else, has some information about the message even before it is encrypted.

One might also try to say that what we want is: given ciphertext C, the adversary
can’t easily recover the plaintext M . But actually, this isn’t good enough. The
reason is that the adversary might be able to figure out partial information about
M . For example, even though she might not be able to recover M , the adversary
might, given C, be able to recover the first bit of M , or the sum of all the bits of
M . This is not good, because these bits might carry valuable information.

For a concrete example, say I am communicating to my broker a message which
is a sequence of “buy” or “sell” decisions for a pre-specified sequence of stocks. That
is, we have certain stocks, numbered 1 through m, and bit i of the message is 1 if
I want to buy stock i and 0 otherwise. The message is sent encrypted. But if the
first bit leaks, the adversary knows whether I want to buy or sell stock 1, which
may be something I definitely don’t want to reveal. If the sum of the bits leaks, the
adversary knows how many stocks I am buying.

Granted, this might not be a problem at all if the data were in a different
format. However, making assumptions, or requirements, on how users format data,
or how they use it, is a bad and dangerous approach to secure protocol design. It
is an important principle of our approach that the encryption scheme should yield
security no matter what is the format of the data. That is, we don’t want people to
have to worry about how they format their data: it should be secure regardless.

In other words, as designers of security protocols, we cannot make assumptions
about data content or formats. Our protocols must protect any data, no matter
how formatted. We view it as the job of the protocol designer to ensure this is true.
And we want schemes that are secure in the strongest possible natural sense.

So what is the best we could hope for? It is useful to make a thought experiment.
What would an “ideal” encryption be like? Well, it would be as though some angel
took the message M from the sender and delivered it to the receiver, in some magic
way. The adversary would see nothing at all. Intuitively, our goal is to approximate
this as best as possible. We would like encryption to have the properties of ideal
encryption. In particular, no partial information would leak.

90 SYMMETRIC ENCRYPTION

As an example, consider the ECB encryption scheme of Example 4.3. Given the
ciphertext, can an eavesdropping adversary figure out the message? Hard to see
how, since it does not know K, and if F is a “good” block cipher, then it ought to
have a hard time inverting FK without knowledge of the underlying key. Nonetheless
this is not a good scheme. Consider just the case n = 1 of a single block message.
Suppose I have just two messages, 0n for “buy” and 1n for “sell.” I keep sending
data, but always one of these two. What happens? The adversary sees which are
the same. That is, it might see that the first two are the same and equal to the
third, etc.

In a secure encryption scheme, it should not be possible to relate ciphertexts of
different messages in such a way that information is leaked.

This has a somewhat dramatic implication. Namely, encryption must be prob-
abilistic or depend on state information. If not, you can always tell if the same
message was sent twice. Each encryption must use fresh coin tosses, or, say, a
counter, and an encryption of a particular message may be different each time. In
terms of our setup it means E is a probabilistic or stateful algorithm. That’s why we
defined symmetric encryption schemes, above, to allow these types of algorithms.

The reason this is dramatic is that it goes in many ways against the historical
or popular notion of encryption. Encryption was once thought of as a code, a fixed
mapping of plaintexts to ciphertexts. But this is not the contemporary viewpoint.
A single plaintext should have many possible ciphertexts (depending on the random
choices or the state of the encryption algorithm). Yet it must be possible to decrypt.
How is this possible? We have seen several examples above.

Let us now start looking at privacy more formally. We will begin with the
information-theoretic notion of perfect privacy introduced by Shannon, and analyze
the one-time pad scheme in this light. Perfect security, however, requires a key
as long as the total amount of data encrypted, and this is not usually practical.
So we then look at a notion of “computational security.” The security will only
hold with respect to adversaries of limited computing power. If the adversary works
harder, she can figure out more, but a “feasible” amount of effort yields no noticeable
information. This is the important notion for us and will be used to analyze the
security of schemes such as those presented above.

4.4 Indistinguishability under chosen-plaintext attack

We have already discussed the issues in Section 4.3 above and will now distill a
formal definition of security.

4.4.1 Definition

Consider an adversary (not in possession of the secret key) who chooses two messages
of the same length, M0 and M1. Then, one is encrypted and the ciphertext is given
to the adversary. As a first cut, the scheme is to be considered secure if the adversary

Mihir Bellare and Phillip Rogaway 91

has a hard time telling which message was encrypted.
We will give the adversary a little more power, letting her choose a whole se-

quence of messages. First, a “challenge” bit b is chosen at random. Now the ad-
versary chooses a sequence of pairs of messages, (M0

1 ,M
1
1), . . . , (M0

q ,M
1
q), where,

in each pair, the two messages have the same length. We give to the adversary a
sequence of ciphertexts C1, . . . , Cq, where Ci ← EK(M b

i). Note that in these encryp-
tions, the encryption algorithm uses fresh coins, or an updated state, each time. The
adversary gets the sequence of ciphertexts and must guess the bit b to win. In other
words, the adversary is trying to determine whether the sender sent M0

1 , . . . ,M
0
q or

M1
1 , . . . ,M

1
q .

To further empower the adversary, we let it choose the sequence of message pairs
via a chosen plaintext attack. This means that the adversary chooses the first pair,
then receives C1, then chooses the second pair, receives C2, and so on.

Let us now formalize this. We fix some encryption scheme SE = (K, E ,D). It
could be either stateless or stateful. We consider an adversary A. It is a program
which has access to an oracle to which it can provide as input any pair (M0,M1)
of equal-length messages. The oracle will return a ciphertext. We will consider two
possible ways in which this ciphertext is computed by the oracle, corresponding to
two possible “worlds” in which the adversary “lives”. To do this, first define the
left-or-right encryption oracle EK(LR(·, ·, b)), as follows:

Oracle EK(LR(M0,M1, b)) // b ∈ {0, 1} and M0,M1 ∈ {0, 1}∗

C ← EK(Mb)
Return C

The oracle encrypts one of the messages, the choice of which being made according
to the bit b. Now the two worlds are as follows:

world 0: The oracle provided to the adversary is EK(LR(·, ·, 0)). So, whenever the
adversary makes a query (M0,M1) to its oracle, the oracle computes C R← EK(M0),
and returns C as the answer.

world 1: The oracle provided to the adversary is EK(LR(·, ·, 1)). So, whenever the
adversary makes a query (M0,M1) to its oracle, the oracle computes C R← EK(M1),
and returns C as the answer.

We call the first world (or oracle) the “left” world (or oracle), and we call the second
world (or oracle) the “right” world (or oracle). The problem for the adversary is,
after talking to its oracle for some time, to tell which of the two oracles it was given.
Before we pin this down, let us further clarify exactly how the oracles operate.

Think of an oracle as a subroutine to which A has access. Adversary A can
make an oracle query (M0,M1) by calling the subroutine with arguments (M0,M1).
In one step, the answer is then returned. Adversary A has no control on how the
answer is computed, nor can A see the inner workings of the subroutine, which will
typically depend on secret information that A is not provided. Adversary A has

92 SYMMETRIC ENCRYPTION

only an interface to the subroutine— the ability to call it as a black-box, and get
back an answer.

First assume the given symmetric encryption scheme SE is stateless. The oracle,
in either world, is probabilistic, because it calls the encryption algorithm. Recall
that this algorithm is probabilistic. Above, when we say C R← EK(Mb), it is implicit
that the oracle picks its own random coins implicitly and uses them to compute
ciphertext C.

The random choices of the encryption function are somewhat “under the rug”
here, not being explicitly represented in the notation. But these random bits should
not be forgotten. They are central to the meaningfulness of the notion, as also the
security of the schemes.

If the given symmetric encryption scheme SE was stateful, the oracles, in ei-
ther world, become stateful, too. (Think of a subroutine that maintains a “static”
variable across successive calls.) In oracle (either one) begins with a state value
initialized to a value specified by the encryption scheme. For example, in CTRC
mode, the state is an integer ctr that is initialized to 0. Now, each time the oracle
is invoked, it computes EK(Mb) according to the specification of algorithm E . The
algorithm may, as a side-effect, update the state, and upon the next invocation of
the oracle, the new state value will be used.

We clarify that the choice of which world we are in is made once, at the before
the adversary starts to interact with the oracle. In world 0, all message pairs sent
to the oracle are answered by the oracle encrypting the left message in the pair,
while in world 1, all message pairs are answered by the oracle encrypting the right
message in the pair. The choice of which does not flip-flop from oracle query to
oracle query.

We consider an encryption scheme to be “secure against chosen-plaintext attack”
if a “reasonable” adversary cannot obtain “significant” advantage in distinguishing
the cases b = 0 and b = 1 given access to the oracle, where reasonable reflects its
resource usage. The technical notion is called indistinguishability under chosen-
plaintext attack, denoted IND-CPA.

Before presenting it we need to discuss a subtle point. There are certain queries
that an adversary can make to its lr-encryption oracle which will definitely enable
it to learn the value of the hidden bit b (meaning figure out in which world it is) but
which we consider illegitimate. One is to query the oracle with messages M0,M1 of
different lengths. We do not ask that encryption hide the length of the plaintext, and
indeed common schemes reveal this because the length of the ciphertext depends
on the length of the plaintext, so an adversary making such a query could easily
win. Another, less obvious attack is for the adversary to make a query M0,M1 of
equal-length messages such that EK(M0) 6= ⊥ and EK(M1) = ⊥. (If the scheme is
stateless, this means M0 is in the plaintext space and M1 is not.) For some schemes,
it is easy for the adversary to find such messages. However, the response of the
lr-encryption oracle then gives away the bit b. We have chosen to deal with these
issues by simply disallowing the adversary from making such queries. That is, let us

Mihir Bellare and Phillip Rogaway 93

say that an adversary is illegitimate if (for some coins it might be provided and for
some sequence of oracle responses it might be given) it either makes an lr-encryption
query consisting of two messages of different lengths or it makes an lr-encryption
query M0,M1 for which EK(M0) = ⊥ or EK(M1) = ⊥. The adversary is legitimate
if it is not illegitimate.

The issue of legitimacy can, once discussed, be forgotten, since in all our reduc-
tions and results we will have only legitimate adversaries. But we do have to deal
with this issue in the definition.

Definition 4.7 Let SE = (K, E ,D) be a symmetric encryption scheme, let b ∈
{0, 1}, and let A be an algorithm that has access to an oracle that takes input a
pair of strings and returns a string. We consider the following experiment:

Experiment Exmtind-cpa-b
SE (A)

K
R← K

b′ ← AEK(LR(·,·,b))

Return b′

The IND-CPA advantage of A is defined as

Advind-cpa
SE (A) = Pr

[
Exmtind-cpa-1

SE (A) = 1
]
− Pr

[
Exmtind-cpa-0

SE (A) = 1
]

if A is legitimate, and 0 otherwise. For any t, q, µ we define the IND-CPA advantage
of SE via

Advpr-cpa
SE (t, q, µ) = max

A
{Advind-cpa

SE (A)}

where the maximum is over all legitimate A having time-complexity t, making to
the oracle at most q queries the sum of whose lengths is at most µ bits.

We discuss some important conventions. The time-complexity mentioned above is
the worst case total execution time of A, regardless of A’s coins or the answers
returned by A’s oracle queries, plus the size of the code of the adversary A, in some
fixed RAM model of computation. This convention for measuring time complexity is
the same as used in other parts of these notes. Another convention we make is that
the length of a query M0,M1 to a left-or-right encryption oracle is defined as |M0|.
(We can assume this equals |M1| since the adversary is assumed to be legitimate.)
This convention is used in measuring the parameter µ.

If Advind-cpa
SE (A) is small (meaning close to zero), it means that A is outputting

1 about as often in world 0 as in world 1, meaning it is not doing a good job of
telling which world it is in. If this quantity is large (meaning close to one) then the
adversary A is doing well, meaning our scheme SE is not secure.

Informally, for symmetric encryption scheme SE to be secure against chosen
plaintext attack, the IND-CPA advantage of an adversary must be small, no matter
what strategy the adversary tries. However, we expect that the advantage grows as

94 SYMMETRIC ENCRYPTION

the adversary invests more effort in the process. To capture this we have defined the
advantage function Advpr-cpa

SE (·, ·, ·) as above. This is a function associated to any
symmetric encryption scheme SE . This function is fixed once we fix the encryption
scheme. The resources of the adversary we have chosen to use in the parameteri-
zation are three. First, its time-complexity, measured according to the convention
above. Second, the number of oracle queries, or the number of message pairs the
adversary asks of its oracle. These messages may have different lengths, and our
third parameter is the sum of all these lengths, denoted µ, again measured according
to the convention above. The IND-CPA advantage function of the scheme measures
the maximum probability that the security of the scheme SE can be compromised
by an adversary using the indicated resources.

4.4.2 Alternative interpretation of lr-advantage

Why is the Advind-cpa
SE (A) called the “advantage” of the adversary? We can view

the task of the adversary as trying to guess which world it is in. A trivial guess is for
the adversary to return a random bit. In that case, it has probability 1/2 of being
right. Clearly, it has not done anything damaging in this case. The advantage of the
adversary measures how much better than this it does at guessing which world it is
in, namely the excess over 1/2 of the adversary’s probability of guessing correctly. In
this subsection we will see how the above definition corresponds to this alternative
view, a view that lends some extra intuition to the definition and is also useful in
later usages of the definition.

As usual we fix a symmetric encryption scheme SE = (K, E ,D). We now consider
the following game, or experiment.

Experiment Exmtind-cpa′

SE (A)
Pick a bit b at random
Let K R← K
b′ ← AEK(LR(·,·,b))

If b = b′ return 1 else return 0

Here, A is run with an oracle for world b, where the bit b is chosen at random. A
eventually outputs a bit b′, its guess as to the value of b. The experiment returns 1
if A’s guess is correct. Thus

Pr
[
Exmtind-cpa′

SE (A) = 1
]

is the probability that A correctly guesses which world it is in. (The probability is
over the initial choice of world as given by the bit b, the choice of K, the random
choices of EK(·) if any, and the coins of A if any.) This value is 1/2 when the
adversary does deserves no advantage, since one can guess b correctly by a strategy
as simple as “always answer zero” or “answer with a random bit.” So we re-scale
the value and define

Advind-cpa′

SE (A) = 2Pr
[
Exmtind-cpa′

SE (A) = 1
]
− 1

Mihir Bellare and Phillip Rogaway 95

The following proposition says that this rescaled advantage is exactly the same
measure as before.

Proposition 4.8 Let SE be a symmetric encryption scheme and let A be an ad-
versary. Then

Advind-cpa′

SE (A) = Advind-cpa
SE (A) .

Proof of Proposition 4.8: We let Pr [·] be the probability of event “·” in the
experiment Exmtind-cpa′

SE (A), and refer below to quantities in this experiment. The
claim of the Proposition follows by a straightforward calculation:

Pr
[
Exmtind-cpa′

SE (A) = 1
]

= Pr [b = g]

= Pr
[
b = b′ | b = 1

]
· Pr [b = 1] + Pr

[
b = b′ | b = 0

]
· Pr [b = 0]

= Pr
[
b = b′ | b = 1

]
· 1

2
+ Pr

[
b = b′ | b = 0

]
· 1

2

= Pr
[
b′ = 1 | b = 1

]
· 1

2
+ Pr

[
b′ = 0 | b = 0

]
· 1

2

= Pr
[
b′ = 1 | b = 1

]
· 1

2
+
(
1− Pr

[
b′ = 1 | b = 0

])
· 1

2

=
1
2

+
1
2
·
(
Pr
[
b′ = 1 | b = 1

]
− Pr

[
b′ = 1 | b = 0

])
=

1
2

+
1
2
·
(
Pr
[
Exmtind-cpa-1

SE (A) = 1
]
− Pr

[
Exmtind-cpa-0

SE (A) = 1
])

=
1
2

+
1
2
·Advind-cpa

SE (A) .

We began by expanding the quantity of interest via standard conditioning. The
term of 1/2 in the third line emerged because the choice of b is made at random.
In the fourth line we noted that if we are asking whether b = b′ given that we
know b = 1, it is the same as asking whether b′ = 1 given b = 1, and analogously
for b = 0. In the fifth line and sixth lines we just manipulated the probabilities
and simplified. The next line is important; here we observed that the conditional
probabilities in question are exactly the success probabilities in the real and random
games respectively. That meant we had recovered the advantage, as desired.

4.5 Examples of chosen-plaintext attacks

We illustrate the use of the model in finding attacks by providing an attack on ECB
mode, and also a general attack on deterministic, stateless schemes.

96 SYMMETRIC ENCRYPTION

4.5.1 Attack on ECB

Let us fix a block cipher E: K×{0, 1}n → {0, 1}n. The ECB symmetric encryption
scheme SE = (K, E ,D) was described as Scheme 4.3. Suppose an adversary sees a
ciphertext C = EK(M) corresponding to some unknown plaintext text M , encrypted
under the key K also unknown to the adversary. Can the adversary recover M?
Not easily, if E is a “good” block cipher. For example if E is AES, it seems quite
infeasible. Yet, we have already discussed how infeasibility of recovering plaintext
from ciphertext is not an indication of security. ECB has other weaknesses. Notice
that if two plaintexts M and M ′ agree in the first block, then so do the corresponding
ciphertexts. So an adversary, given the ciphertexts, can tell whether or not the
first blocks of the corresponding plaintexts are the same. This is loss of partial
information about the plaintexts, and is not permissible in a secure encryption
scheme.

It is a test of our definition to see that the definition captures these weaknesses
and also finds the scheme insecure. It does. To show this, we want to show that there
is an adversary that has a high IND-CPA advantage while using a small amount of
resources. This is what the following proposition says.

Proposition 4.9 Let E: K × {0, 1}n → {0, 1}n be a block cipher, and SE =
(K, E ,D) the corresponding ECB symmetric encryption scheme as described in
Scheme 4.3. Then

Advpr-cpa
SE (t, 1, 2n) = 1

for t = O(n) plus the time for two applications of the block cipher.

The advantage of this adversary is 1 even though it uses hardly any resources: just
one query, and not a long one at that. That is clearly an indication that the scheme
is insecure.

Proof of Proposition 4.9: We will present an adversary algorithm A, having
time-complexity t, making 1 query to its oracle, this query being of length 2n, and
having

Advind-cpa
SE (A) = 1 .

The Proposition follows.

Remember the adversary A is given a lr-encryption oracle EK(LR(·, ·, b)) which takes
input a pair of messages, and returns an encryption of either the left or the right
message in the pair, depending on the value of b. The goal of A is to determine the
value of b. Our adversary works like this:

Adversary AEK(LR(·,·,b))

M1 ← 02n ; M0 ← 0n‖1n
C[1]C[2]← EK(LR(M0,M1, b))
If C[1] = C[2] then return 1 else return 0

Mihir Bellare and Phillip Rogaway 97

The adversary’s single oracle query is the pair of messages M0,M1. Since each of
them is two blocks long, so is the ciphertext computed according to the ECB scheme.
Now, we claim that

Pr
[
Exmtind-cpa-1

SE (A) = 1
]

= 1 and

Pr
[
Exmtind-cpa-0

SE (A) = 1
]

= 0 .

Hence Advind-cpa
SE (A) = 1 − 0 = 1. And A achieved this advantage by making just

one oracle query, whose length, which as per our conventions is just the length of
M0, is 2n bits. So Advpr-cpa

SE (t, 1, 2n) = 1.

Why are the two equations claimed above true? You have to return to the definitions
of the quantities in question, and trace through the experiments defined there. In
world 1, meaning b = 1, the oracle returns C[1]C[2] = EK(0n)‖EK(0n), so C[1] =
C[2] and A returns 1. In world 0, meaning b = 0, the oracle returns C[1]C[2] =
EK(0n)EK(1n). Since EK is a permutation, C[1] 6= C[2]. So A returns 0 in this
case.

As an exercise, try to analyze the same adversary as an adversary against CBC or
CTR modes, and convince yourself that the adversary will not get a high advantage.

There is an important feature of this attack that must be emphasized. Namely,
ECB is an insecure encryption scheme even if the underlying block cipher E is
highly secure. The weakness is not in the tool being used, the block cipher, but in
the manner we are using it. It is the ECB mechanism that is at fault. Even a good
tool is useless if you don’t use it well.

This is the kind of design flaw that we want to be able to spot and eradicate.
Our goal is to find symmetric encryption schemes that are secure as long as the
underlying block cipher is secure. In other words, the scheme has no inherent flaw.
As long as you use good ingredients, the recipe produces a good meal. If you don’t
use good ingredients? Well, that is your problem.

4.5.2 Deterministic, stateless schemes are insecure

ECB mode is deterministic and stateless, so that if the same message is encrypted
twice, the same ciphertext is returned. It turns out that this property, in general,
results in an insecure scheme, and provides perhaps a better understanding of why
ECB fails. Let us state the general fact more precisely.

Proposition 4.10 Let SE = (K, E ,D) be a deterministic, stateless symmetric en-
cryption scheme. Assume there is an integer m such that the plaintext space of the
scheme contains two distinct strings of length m. Then

Advpr-cpa
SE (t, 2, 2m) = 1

for t = O(m) plus the time for two encryptions.

98 SYMMETRIC ENCRYPTION

The requirement being made on the message space is minimal; typical schemes
have messages spaces containing all strings of lengths between some minimum and
maximum length, possibly restricted to strings of some given multiples. Note that
this Proposition applies to ECB and is enough to show the latter is insecure (but
Proposition 4.9 shows something a little stronger because there there is only one
query rather than two).

Proof of Proposition 4.10: We will present an adversary algorithm A, having
time-complexity t, making 2 queries to its oracle, each query being of length m, and
having

Advind-cpa
SE (A) = 1 .

The Proposition follows.

Remember the adversary A is given a lr-encryption oracle EK(LR(·, ·, b)) which takes
input a pair of messages, and returns an encryption of either the left or the right
message in the pair, depending on the value of b. The goal of A is to determine the
value of b. Our adversary works like this:

Adversary Af

Let X,Y be distinct, m-bit strings in the plaintext space
C1 ← f(X,Y)
C2 ← F (Y, Y)
If C1 = C2 then return 1 else return 0

Now, we claim that

Pr
[
Exmtind-cpa-1

SE (A) = 1
]

= 1

Pr
[
Exmtind-cpa-0

SE (A) = 1
]

= 0 .

Hence Advind-cpa
SE (A) = 1 − 0 = 1. And A achieved this advantage by making two

oracle query, each of whose length, which as per our conventions is just the length
of the first message, is m bits. So Advpr-cpa

SE (t, 2, 2m) = 1.

Why are the two equations claimed above true? In world 1, meaning b = 1, the
oracle returns C1 = EK(Y) and C2 = EK(Y), and since the encryption function is
deterministic and stateless, C1 = C2, so A returns 1. In world 0, meaning b = 0, the
oracle returns C1 = EK(X) and C2 = EK(Y), and since it is required that decryption
be able to recover the message, it must be that C1 6= C2. So A returns 0.

4.5.3 Attack on CBC encryption with a counter IV

4.6 Security against plaintext recovery

In Section 4.3 we noted a number of security properties that are necessary but not
sufficient for security. For example, it should be computationally infeasible for an

Mihir Bellare and Phillip Rogaway 99

adversary to recover the key from a few plaintext-ciphertext pairs, or to recover a
plaintext from a ciphertext. A test of our definition is that it implies these properties,
in the sense that a scheme that is secure in the sense of our definition is also secure
against key-recovery or plaintext-recovery.

The situation is analogous to what we saw in the case of PRFs. There we showed
that a secure PRF is secure against key-recovery. In order to have some variation,
this time we choose a different property, namely plaintext recovery. We formalize
this, and then show if there was an adversary B capable of recovering the plaintext
from a given ciphertext, then this would enable us to construct an adversary A
that broke the scheme in the IND-CPA sense, meaning figured out which of the
two worlds it is in. But if the scheme is secure in the IND-CPA sense, that latter
adversary could not exist. Hence, neither could the former.

The idea of this argument illustrates how we convince ourselves that the above
definition is good, and captures all the properties we might want for security against
chosen plaintext attack. Take some other property that you feel a secure scheme
should have: infeasibility of key recovery from a few plaintext-ciphertext pairs;
infeasibility of predicting the XOR of the plaintext bits; etc. Imagine there was
an adversary B that was successful at this task. We claim this would enable us to
construct an adversary A that broke the scheme in the left-or-right sense, and hence
B does not exist if the scheme is secure in the left-or-right sense. More precisely,
we would use the advantage function of the scheme to bound the probability that
adversary B succeeds. Assuming the advantage function is small at the specified
parameter values, so is the chance that adversary B succeeds.

Let us now go through the plaintext recovery example in detail. The task facing
the adversary will be to decrypt a ciphertext which was formed by encrypting a
randomly chosen challenge message of some length m. In the process we want to
give the adversary the ability to see plaintext-ciphertext pairs, and capture this
by giving it access to an encryption oracle. This encryption oracle is not the lr-
encryption oracle we saw above: instead, it simply takes input a single message
M and returns a ciphertext C R← EK(M) computed by encrypting M . To capture
providing the adversary with a challenge ciphertext, we choose a random m-bit
plaintext M , compute C R← EK(M), and give C to the adversary. The adversary
wins if it can output the plaintext M corresponding to the ciphertext C.

For simplicity we assume the encryption scheme is stateless, and that {0, 1}m is
a subset of the plaintext space associated to the scheme. As usual, when either the
encryption or the challenge oracle invoke the encryption function, it is implicit that
they respect the randomized nature of the encryption function, meaning the latter
tosses coins anew upon each invocation of the oracle.

Definition 4.11 Let SE = (K, E ,D) be a stateless symmetric encryption scheme
whose plaintext space includes {0, 1}m, and let B be an algorithm that has access
to an oracle. We consider the following experiment:

100 SYMMETRIC ENCRYPTION

Experiment Exmtpr-cpa
SE (B)

K
R← K

M ′
R← {0, 1}m

C
R← EK(M ′)

M ← BEK(·)(C)
If M = M ′ then return 1 else return 0

The pr-advantage of B is defined as

Advpr-cpa
SE (B) = Pr

[
Exmtpr-cpa

SE (B) = 1
]
.

For any t, q, µ we define the pr-advantage of SE via

Advpr-cpa
SE (t, q, µ) = max

B
{Advpr-cpa

SE (B)}

where the maximum is over all B having time-complexity t, making to the encryption
oracle at most q queries the sum of whose lengths is at most µ bits.

In the experiment above, B is executed with its oracle and challenge ciphertext C.
The adversary B wins if it can correctly decrypt C, and in that case the experiment
returns 1. In the process, the adversary can make encryption oracle queries as it
pleases.

The following Proposition says that the probability that an adversary success-
fully recovers a plaintext from a challenge ciphertext cannot exceed the IND-CPA
advantage of the scheme (with resource parameters those of the plaintext recovery
adversary) plus the chance of simply guessing the plaintext. In other words, security
in the IND-CPA sense implies security against plaintext recovery.

Proposition 4.12 Let SE = (K, E ,D) be a stateless symmetric encryption scheme
whose plaintext space includes {0, 1}m. Then

Advpr-cpa
SE (t, q, µ) ≤ Advpr-cpa

SE (t, q + 1, µ+m) +
1

2m

for any t, q, µ.

The reason this is true is quite simple. If an adversary B were capable of decrypting
the challenge ciphertext we could easily build an adversary AB that, using B as a
subroutine, would be able to tell whether it is in world 0 or world 1. In other words,
it is a reduction.

Proof of Proposition 4.12: We will show that given any adversary B whose
resources are restricted to t, q, µ we can construct an adversary AB, using resources
t, q + 1, µ+m, such that

Advpr-cpa
SE (B) ≤ Advind-cpa

SE (AB) +
1

2m
. (4.1)

Mihir Bellare and Phillip Rogaway 101

The Proposition follows by the usual maximization process.

As per Definition 4.1, adversary AB will be provided a lr-encryption oracle, and
will try to determine in which world it is. To do so, it will run adversary B as a
subroutine. We provide the description followed by an explanation and analysis.

Adversary Af(·,·)
B

M0
R← {0, 1}m ; M1

R← {0, 1}m
C ← f(M0,M1)
Run adversary B(C), replying to its oracle queries as follows
When B makes an oracle query X do

Y ← f(X,X)
Return Y to B as the answer

Until B stops and outputs a plaintext M
If M = M1 then return 1 else return 0

Here AB is running B and itself providing answers to B’s oracle queries. To make
the challenge ciphertext C for B, adversary AB chooses random messages M0 and
M1 and uses its lr-oracle to get the encryption C of one of them. When B makes
an encryption oracle query X, adversary AB needs to return EK(X). It does this
by invoking its lr-encryption oracle, setting both messages in the pair to X, so that
regardless of the value of the bit b, the ciphertext returned is an encryption of X, just
as B wants. When B outputs a plaintext M , adversary AB tests whether M = M1

and if so bets that it is in world 1. Else it bets that it is in world 0. Now we claim
that

Pr
[
Exmtind-cpa-1

SE (AB) = 1
]
≥ Advpr-cpa

SE (B)

Pr
[
Exmtind-cpa-0

SE (AB) = 1
]
≤ 2−m .

We will justify these claims shortly, but first let us use them to conclude. Subtract-
ing, as per Definition 4.1, we get

Advind-cpa
SE (AB) = Pr

[
Exmtind-cpa-1

SE (AB) = 1
]
− Pr

[
Exmtind-cpa-0

SE (AB) = 1
]

≥ Advpr-cpa
SE (B)− 2−m .

Re-arranging terms gives us Equation (4.1). It remains to justify Equations (4.2)
and (4.2).

Adversary B will return the M = DK(C) with probability at least Advpr-cpa
SE (B).

In world 1, ciphertext C is an encryption of M1, so this means that M = M1 with
probability at least Advpr-cpa

SE (B), and thus Equation (4.2) is true. Now assume AB
is in world 0. In that case, AB will return 1 only if B returns M = M1. But B is
given no information about M1, since C is an encryption of M0 and M1 is chosen

102 SYMMETRIC ENCRYPTION

randomly and independently of M0. It is simply impossible for B to output M1

with probability greater than 2−m. Thus Equation (4.2) is true.

Similar arguments can be made to show that other desired security properties of a
symmetric encryption scheme follow from this definition. For example, is it possible
that some adversary B, given some plaintext-ciphertext pairs and then a challenge
ciphertext C, can compute the XOR of the bits of M = DK(C)? Or the sum of
these bits? Or the last bit of M? Its probability of doing any of these cannot be
more than marginally above 1/2 because were it so, we could design an adversary A
that won the left-or-right game using resources comparable to those used by B. We
leave as an exercise the formulation and working out of other such examples along
the lines of Proposition 4.12.

Of course one cannot exhaustively enumerate all desirable security properties.
But you should be moving towards being convinced that our notion of left-or-right
security covers all the natural desirable properties of security under chosen plaintext
attack. Indeed, we err, if anything, on the conservative side. There are some attacks
that might in real life be viewed as hardly damaging, yet our definition declares the
scheme insecure if it succumbs to one of these. That is all right; there is no harm in
making our definition a little demanding. What is more important is that if there
is any attack that in real life would be viewed as damaging, then the scheme will
fail the left-or-right test, so that our formal notion too declares it insecure.

4.7 Security of CTR encryption

Let F : K×{0, 1}n → {0, 1}` be a family of functions. The CTR symmetric encryp-
tion scheme comes in two variants: the randomized (stateless) one of Scheme 4.5
and the counter-based (stateful) one of Scheme 4.6. Both are secure against chosen-
plaintext attack, but, interestingly, the counter version is more secure than the ran-
domized version. We will first state the main theorems about the schemes, discuss
them, and then prove them. For the counter version we have:

Theorem 4.13 Let F : K×{0, 1}n → {0, 1}` be a family of functions and let SE =
(K, E ,D) be the corresponding CTRC symmetric encryption scheme as described in
Scheme 4.6. Then for any t, q, µ with µ < `2n we have

Advpr-cpa
SE (t, q, µ) ≤ 2 ·Advprf

F (t, q′, nq′) ,

where q′ = µ/`.

And for the randomized version:

Theorem 4.14 Let F : K×{0, 1}n → {0, 1}` be a family of functions and let SE =
(K, E ,D) be the corresponding CTR$ symmetric encryption scheme as described in
Scheme 4.5. Then for any t, q, µ with µ < `2n we have

Advpr-cpa
SE (t, q, µ) ≤ 2 ·Advprf

F (t, q′, nq′) +
µ(q − 1)
`2n

,

Mihir Bellare and Phillip Rogaway 103

where q′ = µ/`.

This kind of result is what this whole approach is about. Namely, we are able to
provide provable guarantees of security of some higher level cryptographic construct
(in this case, a symmetric encryption scheme) based on the assumption that some
building block (in this case an underlying block cipher treated as a PRF) is secure.
They are the first example of the “punch-line” we have been building towards. So
it is worth pausing at this point and trying to make sure we really understand what
these theorems are saying and what are their implications.

If we want to entrust our data to some encryption mechanism, we want to know
that this encryption mechanism really provides privacy. If it is ill-designed, it may
not. We saw this happen with ECB. Even if we used a secure block cipher, the
design flaws of ECB mode made it an insecure encryption scheme.

Flaws are not apparent in CTR at first glance. But maybe they exist. It is very
hard to see how one can be convinced they do not exist, when one cannot possible
exhaust the space of all possible attacks that could be tried. Yet this is exactly the
difficulty that the above theorems circumvent. They are saying that CTR mode
does not have design flaws. They are saying that as long as you use a good block
cipher, you are assured that nobody will break your encryption scheme. One cannot
ask for more, since if one does not use a good block cipher, there is no reason to
expect security anyway. We are thus getting a conviction that all attacks fail even
though we do not even know exactly how these attacks operate. That is the power
of the approach.

Now, one might appreciate that the ability to make such a powerful statement
takes work. It is for this that we have put so much work and time into developing
the definitions: the formal notions of security that make such results meaningful.
For readers who have less experience with definitions, it is worth knowing, at least,
that the effort is worth it. It takes time and work to understand the notions, but
the payoffs are big: you actually have the ability to get guarantees of security.

How, exactly, are the theorems saying this? The above discussion has pushed
under the rug the quantitative aspect that is an important part of the results. It
may help to look at a concrete example.

Example 4.15 Let us suppose that F is AES. So the key size is k = 128 and the
block size is n = ` = 128. Suppose I want to encrypt q = 240 messages, each 128∗23

bits long, so that I am encrypting a total of µ = 250 bits of data. Can I do this
securely using counter-mode CTR? What is the chance that an adversary figures
out something about my data? Well, if the adversary has t = 260 computing cycles,
then by definition its chance is not more than Advpr-cpa

SE (t, q, µ). That has nothing
to do with the theorem: it is just our definitions, which say that this is the maximum
probability of being able to break the encryption scheme in these given resources. So
the question of whether the scheme is secure for my chosen parameters boils down to
asking what is the value of Advpr-cpa

SE (t, q, µ). A priori, we have no idea. But now, we
appeal to Theorem 4.13, which says that this chance is at most 2·Advprf

F (t, q′, 128q′),

104 SYMMETRIC ENCRYPTION

where q′ is as given in the theorem. Namely q′ = µ/L = 250/128 = 243. So the
question is, what is the value of Advprf

F (t, q′, 128q′) with these values of t′, q′?
Thus, what the theorem has done is reduce the question of estimating the prob-

ability of loss of privacy from the encryption scheme to the question of estimating
the pseudorandomness of AES. As per Section 3.5.2, one might conjecture that

Advprf
AES(t, q′, 128q′) = c1 ·

t/TAES

2128
+

(q′)2

2128
,

where TAES is the time to do one AES computation on our fixed RAM model of
computation. Now plug in t = 260 and q′ = 243 and take into account what we
computed above. We get

Advpr-cpa
SE (t, q, µ) ≤ 2 ·Advprf

AES(t, q′, 128q′)

≤ 2c1 ·
t/TAES

2128
+

2(q′)2

2128

=
261

2128
· c1

TAES
+

243∗2+1

2128

=
1

267
· c1

TAES
+

1
241

≤ 1
241

.

In the last step, we made the (very reasonable) assumption that c1/TAES is at most
226. Thus, the chance the adversary gets any information about our encrypted data
is about 2−41, even though we allow this adversary computing time up to 260, and
are encrypting 250 bits of data. This is a very small chance, and we can certainly
live with it. It is in this sense that we say the scheme is secure.

Example 4.16 You are encouraged to work out another example along the follow-
ing lines. Don’t assume F is AES, but rather assume it is an even better PRF. It
still has k = n = ` = 128, but assume it is not a permutation, so that there are no
birthday attacks; specifically, assume

Advprf
F (t, q′, 128q′) = c1 ·

t/TAES

2128
+ c1 ·

q

2128
.

Now, consider both the counter-based CTR scheme and the randomized one. In the
theorems, the difference is the µ(q−1)/L2l term. Try to see what kind of difference
this makes. For each scheme, consider how high you can push q, µ, t and still have
some security left. For which scheme can you push them higher? Which scheme is
thus “more secure”?

These examples illustrate how to use the theorems to figure out how much security
you will get from the CTR encryption scheme in some application.

Mihir Bellare and Phillip Rogaway 105

Algorithm Eg(M)
static ctr ← 0
If |M | 6∈ {`, 2`, 3`} then return ⊥
Parse M as `-bit M [1] · · ·M [m]
If ctr +m > 2n then return ⊥
For i← 1 to m do

C[i]← g(ctr + i− 1) ⊕M [i]
EndFor
C ← C[1] . . . C[m]
ctr ← ctr +m
Return 〈ctr −m,C〉

Algorithm Df (〈ctr, C〉)
If |C| 6∈ {L, 2L, 3L, . . .} then return ⊥
Parse C as `-bit C[1] . . . C[m]
For i = 1 to m do

M [i]← g(ctr + i− 1) ⊕ C[i]
EndFor
M ←M [1] · · ·M [m]
Return M

Figure 4.1: Version SE [G] = (K, E ,D) of the CTRC scheme parameterized by a
family of functions G.

4.7.1 Proof of Theorem 4.13

The paradigm used is quite general in many of its aspects, and we will use it again,
not only for encryption schemes, but for other kinds of schemes that are based on
pseudorandom functions.

An important observation regarding the CTR scheme is that the encryption and
decryption operations do not need direct access to the key K, but only access to a
subroutine, or oracle, that implements the function FK . This is important because
one can consider what happens when FK is replaced by some other function. To
consider such replacements, we reformulate the scheme. We introduce a scheme that
takes as a parameter any given family of functions G having domain {0, 1}n and
range {0, 1}`. As we will see later the cases of interest are G = F and G = Rand(n,`).
Let us first however describe this parameterized scheme. In the rest of this proof,
SE [G] = (K, E ,D) denotes the symmetric encryption scheme defined as follows.
The key generation algorithm simply returns a random instance of G, meaning
that it picks a function g

R← G from family G at random, and views g as the key.
The encryptor maintains a counter ctr which is initially zero. The encryption and
decryption algorithms are shown in Figure 4.1. In the figure, parsing M means that
we divide it into `-bit (not n-bit!) blocks and let M [i] denote the i-th such block.
The encryption algorithm updates the counter upon each invocation, and begins
with this updated value the next time it is invoked. As the description indicates,
the scheme is exactly CTRC, except that function g is used in place of FK . This
seemingly cosmetic change of viewpoint is quite useful, as we will see.

We observe that the scheme in which we are interested, and which the theorem is
about, is simply SE [F] where F is our given family of functions as per the theorem.
Now, the proof breaks into two parts. The first step removes F from the picture,
and looks instead at an “idealized” version of the scheme. Namely we consider the

106 SYMMETRIC ENCRYPTION

scheme SE [Rand(n,`)]. Here, a random function g of n-bits to `-bits is being used
where the original scheme would use FK . We then assess an adversary’s chance of
breaking this idealized scheme. We argue that this chance is actually zero. This is
the main lemma in the analysis.

This step is definitely a thought experiment. No real implementation can use
a random function in place of FK because even storing such a function takes an
exorbitant amount of memory. But this analysis of the idealized scheme enables
us to focus on any possible weaknesses of the CTR mode itself, as opposed to
weaknesses arising from properties of the underlying block cipher. We can show
that this idealized scheme is secure, and that means that the mode itself is good.

It then remains to see how this “lifts” to a real world, in which we have no
ideal random functions, but rather want to assess the security of the scheme SE [F]
that uses the given family F . Here we exploit the notion of pseudorandomness to
say that the chance of an adversary breaking the SE [F] can differ from its chance
of breaking the ideal-world scheme SE [Rand(n,`)] by an amount not exceeding the
probability of breaking the pseudorandomness of F .

Lemma 4.17 Let A be any IND-CPA adversary attacking SE [Rand(n,`)]. Then

Advind-cpa
SE[Rand(n,`)](A) = 0 .

The lemma considers an arbitrary adversary. Let us say this adversary has time-
complexity t, makes q queries to its lr-encryption oracle, these totaling µ bits. The
lemma does not care about the values of t, q, an µ. (Recall, however, that µ ≤ `2n;
after that maximal number of bits, the encryption mechanism will “shut up” and
be of no use.) It says that adversary has zero advantage, meaning no chance at all
of breaking the scheme. The fact that no restriction is made on t indicates that the
result is information-theoretic: it holds regardless of how much computing time the
adversary invests.

Of course, this lemma refers to the idealized scheme, namely the one where
the function g being used by the encryption algorithm is random. But remember
that ECB was insecure even in this setting. (The attacks we provided for ECB
work even if the underlying cipher E is Perm(n), the family of all permutations on
n-bit strings.) So the statement is not content-free; it is saying something quite
meaningful and important about the CTR mode. It is not true of all modes.

We postpone the proof of the lemma. Instead we will first see how to use it to
conclude the proof of the theorem. The argument here is quite simple and generic.

The lemma tells us that the CTRC encryption scheme is (very!) secure when g
is a random function. But we are interested in the case where g is is an instance of
our given family F . So our worry is that the actual scheme SE [F] is insecure even
though the idealized scheme SE [Rand(n,`)] is secure. In other words, we worry that
there might be an adversary having large IND-CPA advantage in attacking SE [F],

Mihir Bellare and Phillip Rogaway 107

even though we know that its advantage in attacking SE [Rand(n,`)] is zero. But
we claim that this is not possible if F is a secure PRF. Intuitively, the existence
of such an adversary indicates that F is not approximating Rand(n,`) since there
is some detectable event, namely the success probability of some adversary in a
certain experiment, that happens with high probability when F is used and with
low probability when Rand(n,`) is used. To concretize this intuition, let A be a
IND-CPA adversary attacking SE [F]. We associate to A a distinguisher DA that
is given oracle access to a function g: {0, 1}n → {0, 1}` and is trying to determine
which world it is in, where in world 0 g is a random instance of Rand(n,`) and
in world 1 g is a random instance of F . We suggest the following strategy to the
distinguisher. It runs A, and replies to A’s oracle queries in such a way that A is
attacking SE [Rand(n,`)] in DA’s world 0, and A is attacking SE [F] in DA’s world 1.
The reason it is possible for DA to do this is that it can execute the encryption
algorithm Eg(·) of Figure 4.1, which simply requires access to the function g. If the
adversary A wins, meaning it correctly identifies the encryption oracle, DA bets that
g is an instance of F ; otherwise, DA bets that g is an instance of Rand(n,`).

We stress the key point that makes this argument work. It is that the encryption
function of the CTRC scheme invokes the function FK purely as an oracle. If it had,
instead, made direct some direct use of the key K, the paradigm above would not
work. The full proof follows.

Proof of Theorem 4.13: Let A be any IND-CPA adversary attacking SE =
(K, E ,D). Assume A makes q oracle queries totaling µ bits, and has time-complexity
t. We will design a distinguisher DA such that

Advind-cpa
SE (A) ≤ 2 ·Advprf

F (DA) . (4.2)

Furthermore, DA will make µ/` oracle queries and have time-complexity t. Now, the
statement of Theorem 4.13 follows as usual, by taking maximums. So the main thing
is to provide the distinguisher for which Equation (4.2) is true. This distinguisher
uses A as a subroutine.

Remember that DA takes an oracle g: {0, 1}n → {0, 1}`. This oracle is either drawn
at random from F or from Rand(n,`) and DA does not know which. To find out,
DA will use A. But remember that A too gets an oracle, namely an lr-encryption
oracle. From A’s point of view, this oracle is simply a subroutine: A can write,
at some location, a pair of messages, and is returned a response by some entity it
calls its oracle. When DA runs A as a subroutine, it is DA that will “simulate”
the lr-encryption oracle for A, meaning DA will provide the responses to any oracle
queries that A makes. Here is the description of DA:

Distinguisher Dg
A

b
R← {0, 1}

Run adversary A, replying to its oracle queries as follows
When A makes an oracle query (M0,M1) do

108 SYMMETRIC ENCRYPTION

C
R← Eg(Mb)

Return C to A as the answer
Until A stops and outputs a bit b′

If b′ = b then return 1 else return 0

Here Eg(·) denotes the encryption function of the generalized CTRC scheme that we
defined in Figure 4.1. The crucial fact we are exploiting here is that this function can
be implemented given an oracle for g. Distinguisher DA itself picks the challenge bit
b representing the choice of worlds for A, and then sees whether or not A succeeds
in guessing the value of this bit. If it does, it bets that g is an instance of F , and
otherwise it bets that g is an instance of Rand(n,`). For the analysis, we claim that

Pr
[
Exmtprf-1

F (DA) = 1
]

=
1
2

+
1
2
·Advind-cpa

SE[F] (A) (4.3)

Pr
[
Exmtprf-0

F (DA) = 1
]

=
1
2

+
1
2
·Advind-cpa

SE[Rand(n,`)](A) . (4.4)

We will justify these claims shortly, but first let us use them to conclude. Subtract-
ing, as per Definition 3.4, we get

Advprf
F (DA) = Pr

[
Exmtprf-1

F (DA) = 1
]
− Pr

[
Exmtprf-0

F (DA) = 1
]

=
1
2
·Advind-cpa

SE[F] (A)− 1
2
·Advind-cpa

SE[Rand(n,`)](A) (4.5)

=
1
2
·Advind-cpa

SE[F] (A) .

The last inequality was obtained by applying Lemma 4.17, which told us that the
term Advind-cpa

SE[Rand(n,`)](A) was simply zero. Re-arranging terms gives us Equation (4.2).
Now let us check the resource usage. Each computation Eg(Mb) requires |Mb|/` ap-
plications of g, and hence the total number of queries made by DA to its oracle g is
µ/`. The time-complexity of DA equals that of A once one takes into account the
convention that time-complexity refers to the time of the entire underlying experi-
ment. It remains to justify Equations (4.3) and (4.4).

Distinguisher DA returns 1 when b = b′, meaning that IND-CPA adversary A
correctly identified the world b in which it was placed, or, in the language of
Section 4.4.2, made the “correct guess.” The role played by DA’s world is sim-
ply to alter the encryption scheme for which this is true. When DA is in world 1,
the encryption scheme, from the point of view of A, is SE [F], and when DA is in
world 0, the encryption scheme, from the point of view of A, is SE [Rand(n,`)]. Thus,
using the notation from Section 4.4.2, we have

Pr
[
Exmtprf-1

F (DA) = 1
]

= Pr
[
Exmtind-cpa′

SE[F] (A) = 1
]

Pr
[
Exmtprf-0

F (DA) = 1
]

= Pr
[
Exmtind-cpa′

SE[Rand(n,`)](A) = 1
]
.

Mihir Bellare and Phillip Rogaway 109

To obtain Equations (4.3) and (4.4) we can now apply Proposition 4.8.

For someone unused to PRF-based proofs of security the above may seem complex,
but the underlying idea is actually very simple, and will be seen over and over again.
It is simply that one can view the experiment of the IND-CPA adversary attacking
the encryption scheme as information about the underlying function g being used,
and if the adversary has more success in the case that g is an instance of F than
that g is an instance of Rand(n,`), then we have a distinguishing test between F and
Rand(n,`). Let us now prove the lemma about the security of the idealized CTRC
scheme.

Proof of Lemma 4.17: The intuition is simple. When g is a random function,
its value on successive counter values yields a one-time pad, a truly random and
unpredictable sequence of bits. As long as the number of data bits encrypted does
not exceed `2n, we invoke g only on distinct values in the entire encryption process.
And if an encryption would result in more queries than this, the algorithm simply
shuts up, so we can ignore this. The outputs of g are thus random. Since the data
is XORed to this sequence, the adversary gets no information whatsoever about it.

Now, we must make sure that this intuition carries through in our setting. Our
lemma statement makes reference to our notions of security, so we must use the
setup in Section 4.4.1. The adversary A has access to an lr-encryption oracle. Since
the scheme we are considering is SE [Rand(n,`)], the oracle is Eg(LR(·, ·, b)), where
the function Eg was defined in Figure 4.1, and g is a random instance of Rand(n,`),
meaning a random function.

The adversary makes some number q of oracle queries. Let (Mi,0,Mi,1) be the i-
th query, and let mi be the number of blocks in Mi,0. (This is the same as the
number of blocks in Mi,1.) Let Mi,c[j] be the value of the j-th `-bit block of Mi,b

for b ∈ {0, 1}. Let C ′i be the response returned by the oracle to query (Mi,0,Mi,1).
It consists of a value that encodes the counter value, together with mi blocks of `
bits each, Ci[1] . . . Ci[mi]. Pictorially:

M1,b = M1,b[1]M1,b[1] . . .M1,b[m1]
C1 = 〈0, C1[1] · · ·C1[m1]〉

M2,b = M2,b[1]M2,b[2] . . .M2,b[m2]
C2 = 〈m1, C2[1] · · ·C2[m2]〉

...
...

Mq,b = Mq,b[1]Mq,b[2] . . .Mq,b[mq]
Cq = 〈m1 + · · ·+mq−1, Cq[1] · · ·Cq[mq]〉

What kind of distribution do the outputs received by A have? We claim that the
m1 + · · · + mq values Ci[j] (i = 1, . . . , q and j = 1, . . . ,mi) are randomly and
independently distributed, not only of each other, but of the queried messages and

110 SYMMETRIC ENCRYPTION

Algorithm Eg(M)
If |M | 6∈ {`, 2`, . . . , `2n} then return ⊥
Parse M as `-bit M [1] · · ·M [m]
r

R← [0..2n − 1]
For i← 1 to m do

C[i]← g(r + i− 1) ⊕M [i]
EndFor
C ← C[1] · · ·C[n]
Return 〈r, C〉

Algorithm Df (〈r, C〉)
If |C| 6∈ {`, 2`, . . . , `2n} then return ⊥
Parse C as `-bit C[1] · · ·C[m]
For i← 1 to m do

M [i]← g(r + i− 1) ⊕ C[i]
EndFor
M ←M [1] · · ·M [m]
Return M

Figure 4.2: Version SE [G] = (K, E ,D) of the CTR$ scheme parameterized by a
family of functions G.

the bit b, and moreover this is true in both worlds. Why? Here is where we use a
crucial property of the CTR mode, namely that it XORs data with the value of g
on a counter. We observe that according to the scheme

Ci[j] = g([m1 + · · ·+mi−1 + j]l) ⊕
{
Mi,1[j] if we are in world 1
Mi,0[j] if we are in world 0.

Now, we can finally see that the idea we started with is really the heart of it. The
values on which g is being applied above are all distinct. So the outputs of g are all
random and independent. It matters not, then, what we XOR these outputs with;
what comes back is just random.

This tells us that any given output sequence from the oracle is equally likely in both
worlds. Since the adversary determines its output bit based on this output sequence,
its probability of its returning 1 must be the same in both worlds,

Pr
[
Exmtind-cpa-1

SE[Rand(n,`)](A) = 1
]

= Pr
[
Exmtind-cpa-0

SE[Rand(n,`)](A) = 1
]
.

Hence A’s IND-CPA advantage is zero.

4.7.2 Proof of Theorem 4.14

The proof of Theorem 4.14 re-uses a lot of what we did for the proof of Theorem 4.13
above. We first look at the scheme when g is a random function, and then use the
pseudorandomness of the given family F to deduce the theorem. As before we
associate to a family of functions G having domain {0, 1}n and range {0, 1}` a
parameterized version of the CTR$ scheme, SE [G] = (K, E ,D). The key generation
algorithm simply returns a random instance of G, meaning picks a function g

R← G
from family G at random, and views g as the key, and the encryption and decryption
algorithms are shown in Figure 4.2. Here is the main lemma.

Mihir Bellare and Phillip Rogaway 111

Lemma 4.18 Let A be any IND-CPA adversary attacking SE [Rand(n,`)]. Then

Advind-cpa
SE[Rand(n,`)](A) ≤ µ(q − 1)

`2n
,

where q is the number of oracle queries made by A and µ is the total length of these
queries.

The proof of Theorem 4.14 given this lemma is easy at this point because it is almost
identical to the above proof of Theorem 4.13. So let us finish that first, and then go
on to prove Lemma 4.18.

Proof of Theorem 4.14: Let A be any IND-CPA adversary attacking SE =
(K, E ,D). Assume A makes q oracle queries totaling µ bits, and has time-complexity
t. We will design a distinguisher DA such that

Advind-cpa
SE (A) ≤ 2 ·Advprf

F (DA) +
µ(q − 1)
`2n

.

Furthermore, DA will make µ/` oracle queries and have time-complexity t. Now,
the statement of Theorem 4.14 follows as usual, by taking maximums.

The code for DA is the same as in the proof of Theorem 4.13. However note that
the underlying algorithm Eg(·) has changed, now being the one of Figure 4.2 rather
than that of Figure 4.1. For the analysis, the only change is that the term

Advind-cpa
SE[Rand(n,`)](A)

in Equation (4.5), rather than being zero, is upper bounded as per Lemma 4.18,
and thus

Advprf
F (DA) ≥ 1

2
·Advind-cpa

SE[F] (A)− 1
2
· µ(q − 1)

`2n
. (4.6)

The rest is as before.

The above illustrates how general and generic was the “simulation” argument of the
proof of Theorem 4.13. Indeed it adapts easily not only to the randomized version
of the scheme but also to the use of pseudorandom functions in many other schemes,
even for different tasks like message authentication. The key point that makes it
work is that the scheme itself invokes g as an oracle.

Before we prove Lemma 4.18, we will analyze a certain probabilistic game. The
problem we isolate here is purely probabilistic; it has nothing to do with encryption
or even cryptography.

Lemma 4.19 Let n, q, ` be positive integers, and let m1, . . . ,mq < 2n also be pos-
itive integers. Suppose we pick q integers r1, . . . , rq from [0..2n − 1] uniformly and

112 SYMMETRIC ENCRYPTION

independently at random. We consider the following m1 + · · ·+mq numbers:

r1 + 1, r1 + 2, · · · , r1 +m1

r2 + 1, r2 + 2, · · · , r2 +m2

...
...

rq + 1, rq + 2, · · · , rq +mq ,

where the addition is performed modulo 2n. We say that a collision occurs if some
two (or more) numbers in the above table are equal. Then

Pr [Col] ≤ (q − 1)(m1 + · · ·+mq)
2n

,

where Col denotes the event that a collision occurs.

Proof of Lemma 4.19: As with many of the probabilistic settings that arise
in this area, this is a question about some kind of “balls thrown in bins” setting,
related to the birthday problem studied in Appendix A. Indeed a reader may find
it helpful to study that appendix first.

Think of having 2n bins, numbered 0, 1, . . . , 2n − 1. We have q balls, numbered
1, . . . , q. For each ball we choose a random bin which we call ri. We choose the bins
one by one, so that we first choose r1, then r2, and so on. When we have thrown
in the first ball, we have defined the first row of the above table, namely the values
r1 + 1, . . . , r1 +m1. Then we pick the assignment r2 of the bin for the second ball.
This defines the second row of the table, namely the values r2 + 1, . . . , r2 + m2. A
collision occurs if any value in the second row equals some value in the first row. We
continue, up to the q-th ball, each time defining a row of the table, and are finally
interested in the probability that a collision occurred somewhere in the process. To
upper bound this, we want to write this probability in such a way that we can do the
analysis step by step, meaning view it in terms of having thrown, and fixed, some
number of balls, and seeing whether there is a collision when we throw in one more
ball. To this end let Coli denote the event that there is a collision somewhere in the
first i rows of the table, for i = 1, . . . , q. Let NoColi denote the event that there is
no collision in the first i rows of the table, for i = 1, . . . , q. Then by conditioning we
have

Pr [Col] = Pr [Colq]

= Pr [Colq−1] + Pr [Colq | NoColq−1] · Pr [NoColq−1]

≤ Pr [Colq−1] + Pr [Colq | NoColq−1]

≤
...

≤ Pr [Col1] +
q∑
i=2

Pr [Coli | NoColi−1]

Mihir Bellare and Phillip Rogaway 113

=
q∑
i=2

Pr [Coli | NoColi−1] .

Thus we need to upper bound the chance of a collision upon throwing the i-th ball,
given that there was no collision created by the first i− 1 balls. Then we can sum
up the quantities obtained and obtain our bound.

We claim that for any i = 2, . . . , q we have

Pr [Coli | NoColi−1] ≤ (i− 1)mi +mi−1 + · · ·+m1

2n
. (4.7)

Let us first see why this proves the lemma and then return to justify it. From the
above and Equation (4.7) we have

Pr [Col] ≤
q∑
i=2

Pr [Coli | NoColi−1]

≤
q∑
i=2

(i− 1)mi +mi−1 + · · ·+m1

2n

=
(q − 1)(m1 + · · ·+mq)

2n
.

How did we do the last sum? The term mi occurs with weight i− 1 in the i-th term
of the sum, and then with weight 1 in the j-th term of the sum for j = i+ 1, . . . , q.
So its total weight is (i− 1) + (q − i) = q − 1.

It remains to prove Equation (4.7). To get some intuition about it, begin with the
cases i = 1, 2. When we throw in the first ball, the chance of a collision is zero,
since there is no previous row with which to collide, so that is simple. When we
throw in the second, what is the chance of a collision? The question is, what is the
probability that one of the numbers r2 + 1, . . . , r2 + m2 defined by the second ball
is equal to one of the numbers r1 + 1, . . . , r1 +m1 already in the table? View r1 as
fixed. Observe that a collision occurs if and only if r1 −m2 + 1 ≤ r2 ≤ r1 +m1 − 1.
So there are (r1 + m1 − 1) − (r1 −m2 + 1) + 1 = m1 + m2 − 1 choices of r2 that
could yield a collision. This means that Pr [Col2 | NoCol1] ≤ (m2 +m1 − 1)/2n.

We need to extend this argument as we throw in more balls. So now suppose i− 1
balls have been thrown in, where 2 ≤ i ≤ q, and suppose there is no collision in the
first i−1 rows of the table. We throw in the i-th ball, and want to know what is the
probability that a collision occurs. We are viewing the first i−1 rows of the table as
fixed, so the question is just what is the probability that one of the numbers defined
by ri equals one of the numbers in the first i− 1 rows of the table. A little thought
shows that the worst case (meaning the case where the probability is the largest) is
when the existing i− 1 rows are well spread-out. We can upper bound the collision
probability by reasoning just as above, except that there are i− 1 different intervals

114 SYMMETRIC ENCRYPTION

to worry about rather than just one. The i-th row can intersect with the first row,
or the second row, or the third, and so on, up to the (i− 1)-th row. So we get

Pr [Coli | NoColi−1] ≤ (mi +m1 − 1) + (mi +m2 − 1) + · · ·+ (mi +mi−1 − 1)
2n

=
(i− 1)mi +mi−1 + · · ·+m1 − (i− 1)

2n
,

and Equation (4.7) follows by just dropping the negative term in the above.

Let us now extend the proof of Lemma 4.17 to prove Lemma 4.18.

Proof of Lemma 4.18: Recall that the idea of the proof of Lemma 4.17 was that
when g is a random function, its value on successive counter values yields a one-time
pad. This holds whenever g is applied on some set of distinct values. In the counter
case, the inputs to g are always distinct. In the randomized case they may not be
distinct. The approach is to consider the event that they are distinct, and say that
in that case the adversary has no advantage; and on the other hand, while it may
have a large advantage in the other case, that case does not happen often. We now
flush all this out in more detail.

The adversary makes some number q of oracle queries. Let (Mi,0,Mi,1) be the i-
th query, and let mi be the number of blocks in Mi,0. (This is the same as the
number of blocks in Mi,1.) Let Mi,b[j] be the value of the j-th `-bit block of Mi,b

for b ∈ {0, 1}. Let C ′i be the response returned by the oracle to query (Mi,0,Mi,1).
It consists of the encoding of a number ri ∈ [0..2n − 1] and a mi-block message
Ci = Ci[1] · · ·Ci[mi]. Pictorially:

M1,b = M1,b[1]M1,b[1] . . .M1,b[m1]
C1 = 〈r1, C1[1] · · ·C1[m1]〉

M2,b = M2,b[1]M2,b[2] · · ·M2,b[m2]
C2 = 〈r2, C2[1] . . . C2[m2]〉

...
...

Mq,b = Mq,b[1]Mq,b[2] · · ·Mq,b[mq]
Cq = 〈rq, Cq[1] . . . Cq[mq]〉

Mihir Bellare and Phillip Rogaway 115

Let NoCol be the event that the following m1 + · · ·+mq values are all distinct:

r1 + 1, r1 + 2, · · · , r1 +m1

r2 + 1, r2 + 2, · · · , r2 +m2

...
...

rq + 1, rq + 2, · · · , rq +mq

Let Col be the complement of the event NoCol, meaning the event that the above
table contains at least two values that are the same. It is useful for the analysis to
introduce the following shorthand:

Pr0 [·] = The probability of event “·” in world 0

Pr0 [·] = The probability of event “·” in world 1 .

We will use the following three claims, which are proved later. The first claim says
that the probability of a collision in the above table does not depend on which world
we are in.

Claim 1: Pr1 [Col] = Pr0 [Col]. 2

The second claim says that A has zero advantage in winning the left-or-right game in
the case that no collisions occur in the table. Namely, its probability of outputting
one is identical in these two worlds under the assumption that no collisions have
occurred in the values in the table.

Claim 2: Pr0 [A = 1 | NoCol] = Pr1 [A = 1 | NoCol]. 2

We can say nothing about the advantage of A if a collision does occur in the table.
It might be big. However, it will suffice to know that the probability of a collision
is small. Since we already know that this probability is the same in both worlds
(Claim 1) we bound it just in world 0:

Claim 3: Pr0 [Col] ≤ µ(q − 1)
`2n

. 2

Let us see how these put together complete the proof of the lemma, and then go
back and prove them.

Proof of Lemma given Claims: It is a simple conditioning argument:

Advind-cpa
SE[Rand(n,`)](A)

= Pr1 [A = 1]− Pr0 [A = 1]

= Pr1 [A = 1 | Col] · Pr1 [Col] + Pr1 [A = 1 | NoCol] · Pr1 [NoCol]

− Pr0 [A = 1 | Col] · Pr0 [Col]− Pr0 [A = 1 | NoCol] · Pr0 [NoCol]

Using Claim 1 and Claim 2, the above equals

= (Pr1 [A = 1 | Col]− Pr0 [A = 1 | Col]) · Pr0 [Col]

≤ Pr0 [Col] .

116 SYMMETRIC ENCRYPTION

In the last step we simply bounded the parenthesized expression by 1. Now apply
Claim 3, and we are done. 2

It remains to prove the three claims.

Proof of Claim 1: The event NoCol depends only on the random values r1, . . . , rq
chosen by the encryption algorithm Eg(·). These choices, however, are made in
exactly the same way in both worlds. The difference in the two worlds is what
message is encrypted, not how the random values are chosen. 2

Proof of Claim 2: Given the event NoCol, we have that, in either game, the function
g is evaluated at a new point each time it is invoked. (Here we use the assumption
that µ < `2n, since otherwise there may be wraparound in even a single query.)
Thus the output is randomly and uniformly distributed over {0, 1}`, independently
of anything else. That means the reasoning from the counter-based scheme as given
in Lemma 4.17 applies. Namely we observe that according to the scheme

Ci[j] = g(ri + j) ⊕
{
Mi,1[j] if we are in world 1
Mi,0[j] if we are in world 0.

Thus each cipher block is a message block XORed with a random value. A conse-
quence of this is that each cipher block has a distribution that is independent of any
previous cipher blocks and of the messages. 2

Proof of Claim 3: This follows from Lemma 4.19. We simply note that m1 + · · ·+
mq = µ/`. 2

This concludes the proof.

4.8 Security of CBC encryption

Define indistinguishability from random bits, IND$-CPA, and show that it implies
IND-CPA. Then show the security of CBC using the game approach. That is, con-
struct games 1 and 2 where game 1 returns random bits in response to each query and
game 2 returns CBC-encrypted text, under a random permutation, and where these
two games are identical until some flag bad gets set to true. Bound the probability
that this happens.

4.9 Other characterizations of IND-CPA security

To be written—define (1) real-or-random notion; (2) find-then-guess notion; (3)
semantic security. Then prove equivalences.

Mihir Bellare and Phillip Rogaway 117

4.10 Indistinguishability under chosen-ciphertext attack

So far we have considered privacy under chosen-plaintext attack. Sometimes we
want to consider privacy when the adversary is capable of mounting a stronger type
of attack, namely a chosen-ciphertext attack. In this type of attack, an adversary
has access to a decryption oracle. It can feed this oracle a ciphertext and get back
the corresponding plaintext.

How might such a situation arise? One situation one could imagine is that
an adversary at some point gains temporary access to the equipment performing
decryption. It can feed the equipment ciphertexts and see what plaintexts emerge.
(We assume it cannot directly extract the key from the equipment, however.)

If an adversary has access to a decryption oracle, security at first seems moot,
since after all it can decrypt anything it wants. To create a meaningful notion of
security, we put a restriction on the use of the decryption oracle. To see what this
is, let us look closer at the formalization. As in the case of chosen-plaintext attacks,
we consider two worlds:

world 0: The adversary is provided the oracle EK(LR(·, ·, 0)) as well as the oracle
DK(·).

world 1: The adversary is provided the oracle EK(LR(·, ·, 1)) as well as the oracle
DK(·).

The adversary’s goal is the same as in the case of chosen-plaintext attacks: it wants
to figure out which world it is in. There is one easy way to do this. Namely,
query the lr-encryption oracle on two distinct, equal length messages M0,M1 to
get back a ciphertext C, and now call the decryption oracle on C. If the message
returned by the decryption oracle is M0 then the adversary is in world 0, and if the
message returned by the decryption oracle is M1 then the adversary is in world 1.
The restriction we impose is simply that this call to the decryption oracle is not
allowed. More generally, call a query C to the decryption oracle illegitimate if C
was previously returned by the lr-encryption oracle; otherwise a query is legitimate.
We insist that only legitimate queries are allowed. In the formalization below, the
experiment simply returns 0 if the adversary makes an illegitimate query. (We clarify
that a query C is legitimate if C is returned by the lr-encryption oracle after C was
queried to the decryption oracle.)

This restriction still leaves the adversary with a lot of power. Typically, a suc-
cessful chosen-ciphertext attack proceeds by taking a ciphertext C returned by the
lr-encryption oracle, modifying it into a related ciphertext C ′, and querying the
decryption oracle with C ′. The attacker seeks to create C ′ in such a way that its
decryption tells the attacker what was the message underlying M . We will see this
illustrated in Section 4.11 below.

The model we are considering here might seem quite artificial. If an adversary
has access to a decryption oracle, how can we prevent it from calling the decryp-
tion oracle on certain messages? The restriction might arise due to the adversary’s

118 SYMMETRIC ENCRYPTION

having access to the decryption equipment for a limited period of time. We imagine
that after it has lost access to the decryption equipment, it sees some ciphertexts,
and we are capturing the security of these ciphertexts in the face of previous access
to the decryption oracle. Further motivation for the model will emerge when we see
how encryption schemes are used in protocols. We will see that when an encryp-
tion scheme is used in many authenticated key-exchange protocols the adversary
effectively has the ability to mount chosen-ciphertext attacks of the type we are
discussing. For now let us just provide the definition and exercise it.

Definition 4.20 Let SE = (K, E ,D) be a symmetric encryption scheme, let b ∈
{0, 1}, and let A be an algorithm that has access to two oracles and returns a bit.
We consider the following experiment:

Experiment Exmtind-cca-b
SE (A)

K
R← K

b← AEK(LR(·,·,b)) ,DK(·)

If A queried DK(·) on a ciphertext previously returned by EK(LR(·, ·, b))
then return 0
else return b

The ind-cca advantage of A is defined as

Advind-cca
SE (A) = Pr

[
Exmtind-cca-1

SE (A) = 1
]
− Pr

[
Exmtind-cca-0

SE (A) = 1
]
.

For any t, qe, µe, qd, µd we define the ind-cca advantage of SE via

Advind-cca
SE (t, qe, µe, qd, µd) = max

A
{Advind-cca

SE (A)}

where the maximum is over all A having time-complexity t, making to the lr-
encryption oracle at most qe queries the sum of whose lengths is at most µe bits,
and making to the decryption oracle at most qd queries the sum of whose lengths is
at most µd bits.

The conventions with regard to resource measures are the same as those used in
the case of chosen-plaintext attacks. In particular, the length of a query M0,M1

to the lr-encryption oracle is the length is defined as the length of M0, and the
time-complexity is the execution time of the entire experiment plus the size of the
code of the adversary.

We consider an encryption scheme to be “secure against chosen-ciphertext at-
tack” if a “reasonable” adversary cannot obtain “significant” advantage in distin-
guishing the cases b = 0 and b = 1 given access to the oracles, where reasonable
reflects its resource usage. The technical notion is called indistinguishability under
chosen-ciphertext attack, denoted IND-CCA.

Mihir Bellare and Phillip Rogaway 119

4.11 Example chosen-ciphertext attacks

Chosen-ciphertext attacks are powerful enough to break all the standard modes of
operation, even those like CTR and CBC that are secure against chosen-plaintext
attack. The one-time pad scheme is also vulnerable to a chosen-ciphertext attack:
our notion of perfect security only took into account chosen-plaintext attacks. Let
us now illustrate a few chosen-ciphertext attacks.

4.11.1 Attack on CTR$

Let F : K × {0, 1}n → {0, 1}` be a family of functions and let SE = (K, E ,D) be
the associated CTR$ symmetric encryption scheme as described in Scheme 4.5. The
weakness of the scheme that makes it susceptible to a chosen-ciphertext attack is
the following. Say 〈r, C[1]〉 is a ciphertext of some `-bit message M , and we flip bit i
of C[1], resulting in a new ciphertext 〈r, C ′[1]〉. Let M ′ be the message obtained by
decrypting the new ciphertext. Then M ′ equals M with the i-th bit flipped. (You
should check that you understand why.) Thus, by making a decryption oracle query
of 〈r, C ′[1]〉 one can learn M ′ and thus M . In the following, we show how this idea
can be applied to break the scheme in our model by figuring out in which world an
adversary has been placed.

Proposition 4.21 Let F : K × {0, 1}n → {0, 1}` be a family of functions and let
SE = (K, E ,D) be the corresponding CTR$ symmetric encryption scheme as de-
scribed in Scheme 4.5. Then

Advind-cca
SE (t, 1, `, 1, n+ `) = 1

for t = O(n+ `) plus the time for one application of F .

The advantage of this adversary is 1 even though it uses hardly any resources: just
one query to each oracle. That is clearly an indication that the scheme is insecure.

Proof of Proposition 4.21: We will present an adversary algorithm A, having
time-complexity t, making 1 query to its lr-encryption oracle, this query being of
length `, making 1 query to its decryption oracle, this query being of length n+ `,
and having

Advind-cca
SE (A) = 1 .

The Proposition follows.

Remember the the lr-encryption oracle EK(LR(·, ·, b)) takes input a pair of messages,
and returns an encryption of either the left or the right message in the pair, depend-
ing on the value of b. The goal of A is to determine the value of b. Our adversary
works like this:

120 SYMMETRIC ENCRYPTION

Adversary Aen(·,·) , de(·)

M0 ← 0` ; M1 ← 1`

〈r, C[1]〉 ← en(M0,M1)
C ′[1]← C[1] ⊕ 1`

C ′ ← 〈r, C ′[1]〉
M ← de(C ′)
If M = M0 then return 1 else return 0

The adversary’s single lr-encryption oracle query is the pair of distinct messages
M0,M1, each one block long. It is returned a ciphertext 〈r, C[1]〉. It flips the
bits of C[1] to get C ′[1] and then feeds the ciphertext 〈r, C ′[1]〉 to the decryption
oracle. It bets on world 1 if it gets back M0, and otherwise on world 0. Notice that
〈r, C ′[1]〉 6= 〈r, C[1]〉, so the decryption query is legitimate. Now, we claim that

Pr
[
Exmtind-cca-1

SE (A) = 1
]

= 1

Pr
[
Exmtind-cca-0

SE (A) = 1
]

= 0 .

Hence Advind-cpa
SE (A) = 1 − 0 = 1. And A achieved this advantage by making just

one lr-encryption oracle query, whose length, which as per our conventions is just the
length of M0, is ` bits, and just one decryption oracle query, whose length is n+` bits
(assuming an encoding of 〈r,X〉 as n+ |X|-bits). So Advpr-cpa

SE (t, 1, `, 1, n+ `) = 1.

Why are the two equations claimed above true? You have to return to the definitions
of the quantities in question, as well as the description of the scheme itself, and walk
it through. In world 1, meaning b = 1, let 〈r, C[1]〉 denote the ciphertext returned
by the lr-encryption oracle. Then

C[1] = FK(r + 1) ⊕M1 = FK(r + 1) ⊕ 1` .

Now notice that

M = DK(C[0]C ′[1])

= FK(r + 1) ⊕ C ′[1]

= FK(r + 1) ⊕ C[1] ⊕ 1`

= FK(r + 1) ⊕ (FK(R+ 1) ⊕ 1`) ⊕ 1`

= 0`

= M0 .

Thus, the decryption oracle will return M0, and thus A will return 1. In world 0,
meaning b = 0, let 〈r, C[1]〉 denote the ciphertext returned by the lr-encryption
oracle. Then

C[1] = FK(r + 1) ⊕M0 = FK(r + 1) ⊕ 0` .

Mihir Bellare and Phillip Rogaway 121

Now notice that

M = DK(〈r, C ′[1]〉)

= FK(r + 1) ⊕ C ′[1]

= FK(r + 1) ⊕ C[1] ⊕ 1`

= FK(r + 1) ⊕ (FK(r + 1) ⊕ 0`) ⊕ 1`

= 1`

= M1 .

Thus, the decryption oracle will return M1, and thus A will return 0, meaning will
return 1 with probability zero.

An attack on CTRC (cf. Scheme 4.6) is similar, and is left to the reader.

4.11.2 Attack on CBC

Let E: K × {0, 1}n → {0, 1}n be a block cipher and let SE = (K, E ,D) be the
associated CBC symmetric encryption scheme as described in Scheme 4.4. The
weakness of the scheme that makes it susceptible to a chosen-ciphertext attack is
the following. Say 〈IV, C[1]〉 is a ciphertext of some n-bit message M , and we flip
bit i of the IV, resulting in a new ciphertext 〈IV′, C[1]〉. Let M ′ be the message
obtained by decrypting the new ciphertext. Then M ′ equals M with the i-th bit
flipped. (You should check that you understand why by looking at Scheme 4.4.)
Thus, by making a decryption oracle query of 〈IV′, C[1]〉 one can learn M ′ and thus
M . In the following, we show how this idea can be applied to break the scheme in
our model by figuring out in which world an adversary has been placed.

Proposition 4.22 Let E: K × {0, 1}n → {0, 1}n be a block cipher and let SE =
(K, E ,D) be the corresponding CBC$ encryption scheme as described in Scheme 4.4.
Then

Advind-cca
SE (t, 1, n, 1, 2n) = 1

for t = O(n) plus the time for one application of F .

The advantage of this adversary is 1 even though it uses hardly any resources: just
one query to each oracle. That is clearly an indication that the scheme is insecure.

Proof of Proposition 4.22: We will present an adversary A, having time-
complexity t, making 1 query to its lr-encryption oracle, this query being of length
n, making 1 query to its decryption oracle, this query being of length 2n, and having

Advind-cca
SE (A) = 1 .

The Proposition follows.

122 SYMMETRIC ENCRYPTION

Remember the the lr-encryption oracle EK(LR(·, ·, b)) takes input a pair of messages,
and returns an encryption of either the left or the right message in the pair, depend-
ing on the value of b. The goal of A is to determine the value of b. Our adversary
works like this:

Adversary Aen(·,·) , de(·)

M0 ← 0l ; M1 ← 1n

〈IV, C[1]〉 ← en(M0,M1)
IV′ ← IV ⊕ 1n ; C ′ ← 〈IV′, C[1]〉
M ← de(C ′)
If M = M0 then return 1 else return 0

The adversary’s single lr-encryption oracle query is the pair of distinct messages
M0,M1, each one block long. It is returned a ciphertext 〈IV, C[1]〉. It flips the
bits of the IV to get a new IV, IV′ and then feeds the ciphertext 〈IV′, C[1]〉 to
the decryption oracle. It bets on world 1 if it gets back M0, and otherwise on
world 0. It is important that 〈IV′, C[1]〉 6= 〈IV, C[1]〉 so the decryption oracle query
is legitimate. Now, we claim that

Pr
[
Exmtind-cca-1

SE (A) = 1
]

= 1

Pr
[
Exmtind-cca-0

SE (A) = 1
]

= 0 .

Hence Advind-cca
SE (A) = 1 − 0 = 1. And A achieved this advantage by making just

one lr-encryption oracle query, whose length, which as per our conventions is just
the length of M0, is n bits, and just one decryption oracle query, whose length is 2n
bits. So Advind-cca

SE (t, 1, n, 1, 2n) = 1.

Why are the two equations claimed above true? You have to return to the definitions
of the quantities in question, as well as the description of the scheme itself, and walk
it through. In world 1, meaning b = 1, the lr-encryption oracle returns 〈IV, C[1]〉
with

C[1] = EK(IV ⊕M1) = EK(IV ⊕ 1n) .
Now notice that

M = DK(〈IV′, C[1]〉)

= E−1
K (C[1]) ⊕ IV′]

= E−1
K (EK(IV ⊕ 1n)) ⊕ IV′

= (IV ⊕ 1n) ⊕ IV′[0]

= (IV ⊕ 1n) ⊕ (IV ⊕ 1n)

= 0n

= M0 .

Mihir Bellare and Phillip Rogaway 123

Thus, the decryption oracle will return M0, and thus A will return 1. In world 0,
meaning b = 0, the lr-encryption oracle returns 〈IV, C[1]〉 with

C[1] = EK(IV ⊕M0) = EK(IV ⊕ 0l) .

Now notice that

M = DK(C ′[0]C[1])

= E−1
K (C[1]) ⊕ IV′

= E−1
K (EK(IV ⊕ 0n)) ⊕ IV′

= (IV ⊕ 0n) ⊕ IV′[0]

= (IV ⊕ 0n) ⊕ (IV ⊕ 1n)

= 1n

= M1 .

Thus, the decryption oracle will return M1, and thus A will return 0, meaning will
return 1 with probability zero.

4.12 Historical Notes

The pioneering work on the theory of encryption is that of Goldwasser and Micali
[17], with refinements by [25, 12]. This body of work is however in the asymmet-
ric (ie. public key) setting, and uses the asymptotic framework of polynomial-time
adversaries and negligible success probabilities. The treatment of symmetric encryp-
tion we are using is from [3]. In particular Definition 4.1 and the concrete security
framework are from [3]. The analysis of the CTR mode encryption schemes, as given
in Theorems 4.13 and 4.14, is also from [3]. The approach taken to the analysis of
CBC mode is new.

4.13 Exercises and Problems

Exercise 4.1 Revise the definition of CTRC mode so as to not make the assump-
tion that plaintexts are a positive multiple of ` bits.

Problem 4.1 Formalize a notion of security against key-recovery for symmetric
encryption schemes, and prove an analogue of Proposition 4.12.

Problem 4.2 Let l ≥ 1 and m ≥ 2 be integers, and let SE = (K, E ,D) be a given
symmetric encryption scheme whose associated plaintext space is {0, 1}n, meaning
one can only encrypt messages of length n. In order to be able to encrypt longer
messages, says ones of mn bits for m ≥ 1, we define a new symmetric encryption
scheme SE(m) = (K, E(m),D(m)) having the same key generation algorithm as that of
SE , plaintext space {0, 1}mn, and encryption and decryption algorithms as follows:

124 SYMMETRIC ENCRYPTION

Algorithm E(m)
K (M)

Parse M as n-bit 〈M [1], . . . ,M [m]〉
For i← 1 to m do

C[i]← EK(M [i])
EndFor
C ← C[1] · · ·C[m]
Return C

Algorithm D(m)
K (C)

Parse C as n-bit C[1] · · ·C[m]
For i← 1 to m do

M [i]← DK(C[i])
If M [i] = ⊥ then return ⊥

EndFor
M ←M [1] · · ·M [m]
Return M

Here M is mn bits long. For encryption, M is broken into a sequence of blocks
M = M [1] . . .M [m], each block being n-bits long, and each block is then separately
encrypted. For decryption, C is parsed as a sequence of m strings, each n bits, and
each is separately decrypted. If any component ciphertexts C[i] is invalid (meaning
DK returns ⊥ for it) then the entire ciphertext is declared invalid.

(a) Show that

Advind-cca
SE(m) (t, 1,mn, 1,mn) = 1

for some small t.

(b) Show that

Advind-cpa

SE(m) (t, q,mnq) ≤ Advind-cpa
SE (t,mq,mnq)

for any t, q.

Part (a) says that SE(m) is insecure against chosen-ciphertext attack. Note this is
true regardless of the security properties of SE , which may itself be secure against
chosen-ciphertext attack. Part (b) says that if SE is secure against chosen-plaintext
attack, then so is SE(m).

Problem 4.3 Consider the problem of trying to define the strongest notion of en-
cryption that is achievable by a stateless, deterministic scheme. Syntactically, an
encryption scheme is a triple of algorithms SE = (K, E ,D), as before, but now E is a
deterministic function taking a key K and a message M and producing a ciphertext
C.
(a) Define an appropriate measure of advantage Advcipher

SE (A).
(b) Describe some contexts in which a deterministic scheme is and is not appro-

priate.

Chapter 5

Hash Functions

5.1 Notions of security for hash-function families

Under a unifed framework, define: universal hash functions, UOWHFs, collision-
resistant hash functions.

5.2 The hash function SHA-1

5.3 The Merkle-Damg̊ard result

5.4 Collision-resistant hash functions are one-way

5.5 UOWHFs

Give the BR and the Shoup constructions

5.6 Universal hash functions

5.7 Exercises and Problems

Exercise 5.1 Let H : K × {0, 1}a → {0, 1}n be an ε-AU hash-function family.
Construct from H an ε-AU hash-function family H ′ : K × {0, 1}2a → {0, 1}2n.

Exercise 5.2 Let H : K × {0, 1}a → {0, 1}n be an ε-AU hash-function family.
Construct from H an ε2-AU hash-function family H ′ : K2 × {0, 1}a → {0, 1}2n.

125

126 HASH FUNCTIONS

Chapter 6

Message Authentication

In this chapter we address message authentication, the second major goal in cryp-
tography. In most people’s minds, privacy is the goal most strongly associated to
cryptography. But message authentication is arguably even more important. Indeed
you may may or may not care if some particular message you send out stays private,
but you almost certainly do want to be sure of the originator of each message that
you act on. Message authentication is what buys you that guarantee.

Message authentication allows one party—the Sender—to send a message to
another party—the Receiver—in such a way that if the message is modified en
route, then the Receiver will almost certainly detect this. Message authentication is
also called “data-origin authentication,” since it authenticates the point-of-origin for
each message. Message authentication is said to protect the “integrity” of messages,
ensuring that each that is received and deemed acceptable is arriving in the same
condition that it was sent out—with no bits inserted, missing, or modified.

Here we’ll be looking at the shared-key setting for message authentication (re-
member that the public-key setting is the problem addressed by digital signature).
In this case the Sender and the Receiver share a secret key, K, which they’ll use to
authenticate their transmissions. We’ll define the message authentication goal and
we’ll describe some different ways to achieve it. As usual, we’ll be careful to pin
down the problem we’re working to solve.

6.1 The Setting

It is often crucial for an agent who receives a message to be sure who sent it out. If
a hacker can call into his bank’s central computer and produce deposit transactions
that appear to be coming from a branch office, easy wealth is just around the corner.
If an unprivilaged user can interact over the network with his company’s mainframe
in such a way that the machine thinks that the packets it is receiving are coming
from the system administrator, then all the machine’s access control mechanisms

127

128 MESSAGE AUTHENTICATION

Figure 6.1: A message-authentication scheme. Sender S wants to send a message
M to receiver R in such a way that R will be sure that M came from S. They
share key K. Adversary A controls the communication channel. Sender S sends an
authenticated version of M , M ′, which adversary A may or may not pass on. On
receipt of a message M , receiver R either recovers a message that S really sent, or
else R gets an indication that M is inauthentic.

are for naught. If an Internet interlouper can provide bogus financial data to on-line
investors, he can make data seem to have come from a reputable source when it does
not, perhaps inducing an enemy to make a disasterous investment.

In all of these cases the risk is that an adversary A—the Forger—will create mes-
sages that look like them come from some other party, S, the (legidimate) Sender.
The attacker will send a message M to R—the Receiver—under S’s identity. The
Receiver R will be tricked into believing that M origiates with S. Because of this
wrong belief, R may act on M in a way that is somehow inappropriate.

The rightful Sender S could be one of many different kinds of entities, like
a person, a corporation, a network address, or a particular process running on a
particular machine. As the receiver R, you might know that it is S that supposedly
sent you the message M for a variety of reasons. For example, the message M might
be tagged by an identifier which somehow names S. Or it might be that the manner
in which M arrives is a route currently dedicated to servicing traffic from S.

Here we’re going to be looking at the case when S and R already share some
secret key, K. How S and R came to get this shared secret key is a separate question,
one that we deal with it in Chapter ??.

Authenticating messages may be something done for the benefit of the Receiver
R, but the Sender S will certainly need to help out—he’ll have to authenticate each
of his messages. See Figure 6.1. To authenticate a message M using the key K
the legidimate Sender will apply some “message-authenticating function” S to K
and M , giving rise an “authenticated message” M ′. The sender S will transmit the
authenticated message M ′ to the receiver R. Maybe the Receiver will get R—and
then again, maybe not. The problem is that an adversary A controls the channel
on which messages are being sent. Let’s let M be the message that the Receiver
actually gets. The receiver R, on receipt of M , will apply some “message-recovery
function” to K and M . We want that this should yield one of two things: (1) the
original message M , or else (2) an indication that M should not be regarded as

Mihir Bellare and Phillip Rogaway 129

Figure 6.2: A message authentication code (MAC). A MAC is a special-case of
a message-authentication scheme, where the authenticated message is the original
message M together with a tag Tag . The adversary controls the channel, so we
can not be sure that M and Tag reach their intended destination. Instead, the
Receiver gets M, T . The Receiver will apply a verification function to K, M and
T to decide if M should be regarded as the transmitted message, M , or as the
adversary’s creation.

authentic.
Usually the authenticated message M ′ is just the original message M together

with a fixed-length “tag.” The tag serves to validate the authenticity of the message
M . In this case we call the message-authentication scheme a message authentication
code, or MAC. See Figure 6.2

When the Receiver decides that a message he has received is inauthentic what
should he do? The Receiver might want to just ignore the bogus message: perhaps
it was just noise on the channel. Or perhaps taking action will do more harm than
good, opening up new possiblities for denial-of-service attacks. Or the Receiver
want to take more decisive actions, like tearing down the channel on which the
message was received and informing some human being of apparent mischief. The
proper course of action is dictated by the circumstances and the security policy of
the Receiver.

Unlike encryption, adversarial success in violating the authenticity of messages
demands an active attack: to succeed, the adversary has to get some bogus data to
the receiver R. If the attacker just watches S and R commuicate she hasn’t won
this game.

In some communication scenerios it may be difficult for the adversary to get her
own messages to the receiver R—she might not really control the communication
channel. For example, it may be difficult for an adversary to drop her own messages
onto a dedicated phone line or network link. In other environments it may be trivial,
no harder than dropping a packet onto the Internet. Since we don’t know what are
the characteristics of the Sender—Receiver channel it is best to assume the worst
and think that the adversary has plenty of power over the communications media
(and even some power over influencing what messages are legidimately sent out).

We wish to emphasize that the authentication problem is very different from

130 MESSAGE AUTHENTICATION

the encryption problem. We are not worried about secrecy of the message M . Our
concern is in whether the adversary can profit by injecting new messages into the
communications stream, not whether she undersands the contents of the communi-
cation. Indeed, as we shall see, encryption provides no ready solution for message
authentication.

6.2 Encryption does not provide authenticity

We know how to encrypt data so as to provide privacy, and something often suggested—
and even done—is to encrypt as a way to provide data authenticity, too. Fix a sym-
metric encryption scheme SE = (K, E ,D), and let parties S and R share a key K for
this scheme. When S wants to send a message M to R, she encrypts it, transferring
a ciphertext M ′ = C generated via C R← EK(M). The receiver B decrypts it and, if
it makes sense, he regards the recovered message M = DK(C) as authentic.

The argument that this works is as follows. Suppose, for example, that S trans-
mits an ASCII message M100 which indicates that R should please transfer $100
from the checking account of S to the checking account of some other party, A.
The adversary A wants to change the amount from the $100 to $900. Now if M100

had been sent in the clear, A can easily modify it. But if M100 is encrypted so
that ciphertext C100 is sent, how is A to modify C100 so as to make S recover the
different message M900? The adversary A does not know the key K, so she cannot
just encrypt M900 on her own. The privacy of C100 already rules out that C100 can
be profitably tampered with.

The above argument is completely wrong. To see the flaws let’s first look at a
counter-example. If we encrypt M100 using a one time pad, then all the adversary
has to do is to XOR the byte of the ciphertext C100 which encodes the character
“1” with the XOR of the bytes which encode “1” and “9”. That is, when we one-
time pad encrypt, the privacy of the transmission does not make it difficult for the
adversary to tamper with ciphertext so as to produce related ciphertexts.

There are many possible reactions to this counter-example. Let’s look at some.
What you should not conclude is that one-time pad encryption is unsound. The

goal of encryption was to provide privacy, and nothing we have said has suggested
that one-time pad encryption does not. Faulting an encryption scheme for not
providing authenticity is like faulting a screwdriver because you can not use it to
cut vegetables. There is no reason to expect a tool designed to solve one problem
to be effective at solving another.

You should not conclude that the example is contrived, and that you’d fare
far better with any other encryption method. One-time-pad encryption is not at
all contrived. And other methods of encryption, like CBC encryption, are only
marginally better at protecting message integrity. This will be explored in the
exercises.

You should not conclude that the failure stemmed from a failure to add “re-
dundancy” before the message was encrypted. Adding redundancy is something

Mihir Bellare and Phillip Rogaway 131

like this: before the Sender S encypts his data he pads it with some known, fixed
string, like 128 bits of zeros. When the receiver decrypts the ciphertext he checks
whether the decrypted string ends in 128 zeros. He rejects the transmission if it
does not. Such an approach can, and almost always will, fail. For example, the
added redundancy does absolutely nothing in our one-time pad example.

What you should conclude is that encrypting a message was never an appropriate
approach for protecting its authenticity. With hindsight, this is pretty clear. The
fact that data is encrypted need not prevent an adversary from being able to make
the receiver recover data different from that which the sender had intended. Indeed
with most encryption schemes any ciphertext will decrypt to something, so even
a random transmission will cause the receiver to receive something different from
what the Sender intended, which was not to send any message at all. Now perhaps
the random ciphertext will look like garbage to the receiver, or perhaps not. Since
we do not know what the the Receiver intends to do with his data it is impossible
to say.

Since encryption was not designed for authenticating messages, it very rarely
does. We emphasize this because the belief that good encryption, perahaps af-
ter adding redundancy, already provides authenticity, is not only voiced, but even
printed in books or embedded into security systems. These authors or programmers
do not understand how the cryptographic community has separated out our various
goals, with encrpytion being the tool for achieving privacy, and for achieving that
goal alone. Hapilly, we have other tools for achieving message authenticity.

Good cryptographic design is goal-oriented. One must understand and formalize
our goal. Only then do we have the basis on which to design and evaluate potential
solutions. Accordingly, our next step is to come up with a definition for a message-
authentication scheme and its security.

6.3 Syntax of message-authentication schemes

A message authentication schemeMA has three components. The first is the func-
tion K which generates the shared keys for the Sender and the Receiver. The second
is the function S that takes a key K and a message M and produces an authen-
ticated message M ′. The third is the function R that takes a key K and what
is supposed to be an authenticated message M ′, and returns either an underlying
message M or else an indication that the message M ′ should not be rejected.

There are some details to take care of. We pin these down in the following
definition.

Definition 6.1 A message-authentication scheme MA consists of three func-
tions, MA = (K,S,R), and associated sets Key(MA), Msgs(MA) ⊆ {0, 1}∗, and
Auth(MA) ⊆ {0, 1}∗, as follows:

• The key-generation function K is a probablistic function which takes no
inputs and returns a value K ∈ Key(MA), called a key. We write K R← K to

132 MESSAGE AUTHENTICATION

denote the chosing of K by computing K.

• The message-authenticating function S is a deterministic, probablistic,
or stateful function which takes a key K ∈ Key(MA) and a string M ∈ {0, 1}∗
and ruturns a value M ′, where M ′ ∈ Auth(MA) if M ∈ Msgs(MA) and
M ′ = error if M 6∈ Msgs(MA). We write M ′

R← SK(M) to denote the
choosing of M ′ by computing S on K and M .

• The message-recovery function R is a deterministic function which takes
a key K ∈ Key(MA) and a string M ′ ∈ {0, 1}∗ and returns a value M , where
M ∈ Msgs(MA) or M = reject. We write M ← RK(M ′) to denote the
choosing of M by computing S on K and M ′.

We require that if K ∈ Key(MA) and M ′
R← RK(M) and M ′ 6= error, then

SK(M ′) = M .

As we indicated already, a message-authentication code (MAC) is the special case of
a message-authentication scheme in which the authenticated message M ′ consists of
M together with a fixed-length string, Tag . Usually the length of the tag is between
32 and 128 bits. MACs of 32 bits, 64 bits, 96 bits, and 128 bits are common.

It could be confusing, but it is very common practice to call the tag itself a
MAC. That is, the scheme itself is called MAC, but so too it the computed tag. It’s
not really a problem, you’ll be able to keep them straight.

Since MACs are so important let us take the time to specialize Definition 6.1 for
MACs.

Definition 6.2 [MAC] A message-authentication code Π consists of three
functions, Π = (K,MAC,VF), and associated sets Key(Π), Msgs(Π) ⊆ {0, 1}∗, and
Tags(Π) = {0, 1}τ(Π), for some number τ(Π) ≥ 1, as follows:

• The key-generation function K is a probablistic function which takes no
inputs and returns a value K ∈ Key(Π), called a key. We write K R← K to
denote the chosing of K by computing K.

• The MAC-generation function MAC is a deterministic, probablistic, or
stateful function which takes a key K ∈ Key(Π) and a string M ∈ {0, 1}∗
and returns a value Tag , called the “MAC” or “tag,” where Tag ∈ Tags(Π) if
M ∈ Msgs(Π) and Tag = error otherwise. We write Tag

R← MACK(M) to
denote the choosing of Tag by computing MAC on K and M .

• The MAC-verification function VF is a deterministic function which takes
a key K ∈ Key(Π), a string M ∈ {0, 1}∗, and a string Tag ∈ {0, 1}∗, and
returns a value of accept or reject. We write b← VFK(M,Tag) to denote
the choosing of b by computing VF on K, M , and Tag .

We require that if K ∈ Key(Π) and M ∈ Msgs and Tag
R← MACK(M) then

VFK(M,Tag) = accept. If M 6∈ Msgs or Tag 6∈ Tags then VFK(M,Tag) =
reject.

Mihir Bellare and Phillip Rogaway 133

Let us pause and make a few comments about Definitions 6.1 and 6.2. First, we em-
phasize that, so far, we have only defined MAC and message-authentication scheme
“syntax”—we haven’t yet said anything formal about security. Of course any viable
message-authentication scheme will require some security properties. We’ll get there
in a moment. But first we needed to pin down exactly what exactly is the type of
objects we’re talking about.

Next the reader should notice that we said that, in both definitions, Key was a
set—we didn’t say it was a set of strings. The added generality lets us say things like
“the key is a pair of functions, h and f ,” or “the key contains an infinite sequence
of numbers, each between 0 and 232 − 1.” Now since K might not be a string we
can’t very well speak of (K,S,R), or (K,MAC,VF), as algorithms: algorithms map
strings to strings. So we called these things functions. Recall that we made the same
definitional choice when we defined encryption schemes, and for the same reason—
it’s just too convenient to sometimes speak of message-authentication schemes which
depend on infinite objects. Now in any “practical” message-authentication scheme
the set of keys Key(MA) will need to be a finite set, and the functions K, MAC and
VF will all be given by algorithms—-hopefully, quite efficient ones! But allowing
greater generality is a useful intermediate step. Not to worrry, we’ll have only strings
and algorithms before we’re through.

Note that our definitions we didn’t permit stateful message recovery or MAC-
verfication. Stateful functions for he Receiver can be problematic because of the
possiblity of messages not reaching their destiation—it is too easy for the Receiver
to be in a state different from the one that we’d like. All the same, stateful MAC
verification functions are essiential for detecting “replay attacks,” and are therefore
important tools. We will eventually allow stateful verification. We take up this issue
in Section ??.

When we defined encryption, it was essential for security that the encryption
functionj be probabilistic or stateful—you couldn’t do well at achieving our strong
notion of security with a determinisitic encryption function. But this isn’t true for
message authentication: it is no problem for the the message-authenticating function
(or MAC-generation function) to be deterministic. In fact, most MACs do use
deterministic MAC-generation functions. In this case, MAC verification is invariably
accomplished by having the Verifier compute the correct tag for the received message
M (using the MAC-generation function) and checking that it matches the received
tag. That is, the MAC-verification function is simply the following:

Function VFK(M,Tag)
Tag ′ ← MACK(M)
If Tag = Tag ′ then return accept else return reject.

For a deterministic MAC we’ll only specify the key-generation function and the
MAC-generatio function: the MAC-verification function is then understood to be
the one just described. That is, a deterministic MAC is specified with a pair of
functions, Π = (K,MAC), and not a triple of functions, Π = (K,MAC,VF).

134 MESSAGE AUTHENTICATION

Figure 6.3: The CBC MAC, here illustrated with a message M of four blocks,
M = M1M2M3M4.

6.4 Example message-authentication schemes

Before getting to the business of defining security for message-authentication schemes
let us look at some important examples of message authentication schemes. We will
be concrete, to give you a feel for the type of message-authentication codes which
people use.

Example 6.3 [CBC MAC] Let E: {0, 1}k × {0, 1}n → {0, 1}n be a block cipher,
such RC6, and let m ≥ 1 be a number. The CBC MAC uses the block cipher E to
generate an n-bit MAC for messages whose lengths are some multiple of n. More
eplicitly, the m-fold CBC MAC over E is the deterministic message authentication
code CBCm(E) in which the tag of an m-block message is the last block of ciphertext
obtained by processing the message in CBC mode with zero IV. In more detail, the
scheme CBCm(E) = (K,MAC) is defined as follows. The key space is Key = {0, 1}k.
The message space is Msgs = {0, 1}nm. The tag space is Tags = {0, 1}n. The
key-generation algorithm is the algorithm which picks a random k-bit string K
and outputs it. The MAC-generation algorithm takes a message M and does the
following:

Algorithm MACK(M)
Divide M into n-bit blocks, M = M1 · · ·Mm

C0 ← 0n

For i = 1, . . . ,m do Ci ← EK(Ci−1 ⊕Mi)
Return Cm

See Figure 6.2.
Since the MAC is deterministic, the MAC-verification algorithm is understood.

It just checks, on input (K,M,Tag), if Tag = MACK(M).
As we will see later, the choice of message space is important for the security of

the CBC MAC. If we had taken the message space to be Msgs = ∪m≥1{0, 1}mn, as

Mihir Bellare and Phillip Rogaway 135

may seem natural, this MAC will be insecure. But if the length of the messages is
restricted to some single fixed value, as above, the scheme is secure. We will address
security in Section ??.

Example 6.4 [HMAC] Describe HMAC.

Example 6.5 [Encrypting a MAC’ed Message] Both of the examples given
above were MACs. Here is an example of a message-authentication scheme which
is not a MAC. ...

6.5 Towards a Definition of Security

Rather than put down a definition for security as though it fell from the sky, let
us spend some time to build up our intuition about what properties a message-
authentication code should have to deserve to be called “secure”. Let’s concentrate
on MACs, as it will be easy to lift our definition to general message-authentication
schemes.

The goal that we seek to achieve with a MAC is to be able to detect any attempt
by the adversary to modify the transmitted data. We don’t want the adversary to
be able to produce messages that the Receiver will deem authentic—only the Sender
should be able to do this. That is, we don’t want that the adversary A to be able to
create a pair (M,Tag) such that VFK(M,Tag) = 1, but M did not originate with
the Sender S. Such a pair (M,Tag) is called a forgery. If the adversary can make
such a pair, she is said to have forged.

In some discussions of security people assume that the adversary’s goal is to
recover the secret key K. Certainly if she could do this, it would be a disaster,
since she could then forge anything. It is important to understand, however, that
an adversary might be able to forge without being able to recover the key, and if all
we asked was for the adversary to be unable to recover the key, we’d be asking too
little. Forgery is what counts, not key recovery.

Now it should be admitted right away that some forgeries might be useless
to the adversary. For example, maybe the adversary can forge, but she can only
forge strings that look random; meanwhile, suppose that all “good” messages are
supposed to have a certain format. Should this really be viewed as a forgery?
The answer is yes. If checking that the message of a certain format was really a
part of validitating the message, then that should have been considered as part
of the message-authentication scheme. In the absence of this, it is not for us to
make assumptions about how the messages are formatted or interpreted. We really
have no idea. Good protocol design means the security is guaranteed no matter
what is the application. Asking that the adversary be unable to forge “meaningful”
messages, whatever that might mean, would again be asking too little.

In our adversary’s attempt to forge a message we could consider various attacks.
The simplest setting is that the adversary wants to forge a message even though she
has never seen any transmission sent by the Sender. In this case the adversary must

136 MESSAGE AUTHENTICATION

concoct a pair (M,Tag) which passes the verification test, even though she hasn’t
obtained any information to help. This is called a no-message attack. It often falls
short of capturing the capabilities of realistic adversaries, since an adversary who
can inject bogus messages onto the communications media can probably see valid
messages as well. We should let the adversary use this information.

Suppose the Sender sends the transmission (M,Tag) consisting of some message
M and its legitimate tag Tag . The Receiver will certainly accept this—we demanded
that. Now at once a simple attack comes to mind: the adversary can just repeat
this transmission, (M,Tag), and get the Receiver to accept it once again. This
attack is unavoidable, so far, in that we required in the syntax of a MAC for the
MAC-verification functions to be stateless. If the Verifier accepted (M,Tag) once,
he’s bound to do it again.

What we have just described is called a replay attack. The adversary sees a valid
(M,Tag) from the Sender, and at some later point in time she re-transmits it. Since
the Receiver accepted it the first time, he’ll do so again.

Should a replay attack count as a valid forgery? In real life it usually should. Say
the first message was “Transfer $1000 from my account to the account of party A.”
Then party A may have a simple way to enriching herself: she just keeps replaying
this same MAC’ed message, hapilly watching her bank balance grow.

It is important to protect against replay attacks. But for the moment we will
not try to do this. We will say that a replay is not a valid forgery; to be valid a
forgery must be of a message M which was not already produced by the Sender. We
will see later that we can always achieve security against replay attacks by simple
means; that is, we can take any MAC which is not secure against replay attacks
and modify it—after making the Verifier stateful—so that it will be secure against
replay attacks. At this point, not worrying about replay attacks results in a cleaner
problem definition. And it leads us to a more modular protocol-design approach—
that is, we cut up the problem into sensible parts (“basic security” and then “replay
security”) solving them one by one.

If the adversary wants to be successful she can take a valid pair (M,Tag) and
use it to concoct pair valid pair (M ′,Tag ′) such that M 6= M ′. If she can do this, she
has won. This is sometimes called a subsitution attack. In a substitution attack the
adversary takes a single message and tag, (M,Tag), and uses them in her attempt
to forge.

Of course there is no reason to think that the adversary will be limited to seeing
only one example message. Realistic adversaries may see millions of authenticated
messages, and still it should be hard for them to forge.

For some MACs the adversary’s ability to forge will grow with qs—that is, her
forgery probablity can be expected to grow with the number of examples of legiti-
mately authenticated messages. Likewise, in some sucurity systems the number of
valid (M,Tag) pairs that the adversary can obtain may be architecturally limited.
(For example, a stateful Signer may be unwilling to MAC more than a certain num-
ber of messages.) So when we give our quantitative treatment of security we will

Mihir Bellare and Phillip Rogaway 137

treat qs as an important adversarial resource.
How exactly do all these tagged messages arise? We could think of there being

some distribution on messages that the Sender will authenticate, but in some set-
tings it is even possible for the adversary to influence which messages are tagged.
In the worst case, imagine that the adversary herself chooses which messages get
authenticated. That is, the adversary chooses a message, gets its MAC, chooses an-
other message, gets its MAC, and so forth. Then she tries to forge. This is called an
adaptive chosen-message attack. It is the same type of attack that we concentrated
on in defining secure encryption.

At first glance it may seem like an adaptive chosen-message attack is unrealisticly
generous to our adversary; after all, if an adversary could really obtain a valid
MAC for any message she wanted, wouldn’t that make moot the whole point of
authenticting messages be useless? In fact, there are several good arguments for
allowing the adversary such a strong capability. First, we will see examples—higher-
level protocols that use MACs—where adaptive chosen-message attacks are quite
realistic. Second, recall our general principles. We want to design schemes which
are secure in any usage. This requires that we make worst-case notions of security,
so that when we err in realistically modelling adversarial capabilities, we err on the
side of caution, allowing the adversary more power than she might really have. Since
eventually we will design schemes that meet our stringent notions of security, we
only gain when we assume our adversary to be strong.

As an example of a simple scenerio in which an adaptive chosen-message attack
is realistic, imagine that the Sender S is forwarding messages to a Receiver R.
The Sender receives messages from any number of third parties, A1, . . . , An. The
Sender gets a piece of data M from party Ai along a secure channel, and then the
Sender transmits to the Receiver 〈i〉‖M‖MACK(〈i〉‖M). This is the Sender’s way
of attesting to the fact that he has received message M from party Ai. Now if one
of these third parties, say A1, wants to play an adversarial role, she will ask the
Sender to forward her adaptively-chosen messages M1,M2, . . . to the Reciever. If,
based on what she sees, she can learn the key K, or even if she can learn to forge
message of the form 〈2〉‖M , so as to produce a valid 〈2〉‖M‖MACK(〈2〉‖M), then
the intent of the protocol will have been defeated, even though most it has correctly
used a MAC.

So far we have said that we want to give our adversary the ability to obtain
MACs for messages of her choosing, and then we want to look at whether or not she
can forge: produce a valid (M,Tag) where she never asked the adversary to MAC
M . But we should recognize that a realistic adversary might be able to produce
lots of candidate forgeries, and she may be content if any of these turn out to be
valid. We can model this possiblity by giving the adversary the capability to tell if
a prospective (M,Tag) pair is valid, and saying that the adversary forges if she ever
finds an (M,Tag) pair that is. We’ll rule out messages that the adversry already
knows a tag for.

Whether or not a real adversary can try lots of possible forgeries depends on

138 MESSAGE AUTHENTICATION

Figure 6.4: The model for a message authentication code. Adversary A has access
to a MAC-generation oracle and a MAC-verification oracle. The adversary wants
to get the MAC-verification oracle to accept some (M,Tag) for which she didn’t
earlier ask the MAC-generation oracle for M .

the context. Suppose the Verifier is going to tear down a connection the moment
he detects an invalid tag. Then it is unrealistic to try to use this Verifier to help
you determine if a candidate pair (M,Tag) is valid—one mistake, and you’re done
for. In this case, thinking of there being a single attempt to forge a message is quite
adequtate.

On the other hand, suppose that a Verifier just ignores any improperly tagged
message, while she responds in some noticably different way if she receives a properly
authenticated message. In this case a quite reasonable adversarial strategy may be
ask the Verifier about the validity of a large number of candidate (M,Tag) pairs.
The adversary hopes to find at least one that is valid. When the adversary finds
such an (M,Tag) pair, we’ll say that she has won.

Let us summarize. To be fully general, we will give our adversary two different
capabities. The first adversarial capaiblity is to obtain a MAC M for any message
that she chooses. We will call this a signing query. The adversary will make some
number of them, qs. The second adversarial capability is to find out if a particular
pair (M,Tag) is valid. We will call this a verification query. The adversary will
make some number of them, qv. Our adversary is said to succeed—to forge—if she
ever makes a verification query (M,Tag) and gets a return value of accept even
though the message M is not a message that the adversary already knew a tag for
by viture of an earlier signing query. Let us now proceed more formally.

6.6 Definition of security

Let MA = (K,MAC,VF) be an arbitrary message authentication scheme. We will
formalize a quantitative notion of security against adpative chosen-message attack.
We begin by describing the model.

Mihir Bellare and Phillip Rogaway 139

We begin by distilling out the model from the intuition we have described. There
is no need, in the model, to think of the Sender and the Verifier as animate entities.
The purpose of the Sender, from the adversary’s point of view, is to authenticate
messages. So we will embody the Sender as an oracle that the adversray can use to
authenticate any message M . This “signing oracle,” as we will call it, is our way
to provide the adversary black-box access to the function MACK(·). Likewise, the
purpose of the Verifier, from the adversary’s point of view, is to have something to
whom to send attempted forgeries. So we will embody the Verifier as an oracle that
the adversray can use to see if a candidate pair (M,Tag) is valid. This “verification
oracle,” as we will call it, is our way to provide the adversary black-box access to
the function VFK(·). Thus, when we become formal, the cast of characters—the
Sender, Verifier, and Adversary—gets reduced to just he adversry, running with her
oracles. The Sender and Verifier have vanished—reduced to oracles, poor things.

Here, in detail, is how the game is run—the the experiment which defines whether
or not the adversary wins when she attacks the message-authentication codeMA =
(K,MAC,VF).

Definition 6.6 [MAC Security] LetMA = (K,MAC,VF) be a message authen-
tication code, and let A be an adversary. Let Advmac

Π (A) denote the probability
that A succeeds in the following experiment:

Let K R← K
Run AMACK(·),VFK(·,·)

If A ever asksed a MAC-verification query VFK(M,Tag),
getting a return value of accept, and A did not earlier ask
MAC-generation query MACK(M), then A succeeds;
else A fails.

Let qs, qv,m, t ≥ 0 be numbers. Then we let

Advmac
Π (qs, qv,m, t) = max

A
{Advmac

Π (A) }

where the maximum is over all adversaries A that make at most qs signing queries,
at most qv verification queries, each signing and verification query is of length at
most m, and the adversary’s total running time is t.

Let us discuss the above definition. Fix a MAC scheme Π. Then we associate to
any adversary A is its “advantage,” or “success probability.” We denote this value
as Advmac

Π (A). It’s just the chance that A manages to forge. The probability is
over the choice of key K, any probabilistic choices that MAC might make, and the
probabilistic choices, if any, that the adversary A makes. The insecurity of the MAC
itself, which we also denote with Adv, is the success probability of the “cleverest”
possible adversary, amongst all adversaries restricted to specified computational
resources.

140 MESSAGE AUTHENTICATION

As usual, there is a certain amount of arbitrariness as to which resources we
measure. Certainly it is important to separate the oracle queries (qs and qv) from
the time. In practice, signing queries correspond to messages sent by the legitimate
sender, and obtaining these is probably more difficult than just computing on one’s
own. Verification queries correspond to messages the adversary hopes the Verifier
will accept, so finding out if she does accept these queries again requires interaction.
Some system architectures may effectively limit qs and qv. No system architecture
can limit t—that is limited primarilly by the adversary’s budget.

We emphaisize that there are contexts in which you are happy with a MAC that
makes forgery impracitical when qv = 1 and qs = 0 (an “impersonation attack”) and
there are contexts in which you are happy when forgery is imporactical when qv = 1
and qs = 1 (a “subsitution attack”). But it is perhaps more common that you’d like
for forgery to be impractical even when qs is large, like 250, and maybewhen qv is
large, too.

The maximal length of each message provided to an oracle, m, is a resource that
could well be parameterized in different ways. For example, we could, alternatively,
have looked at the total length of all queries, m. Or we could look at the (qs + qv)-
vector which specifies the length of each of the oracle queries. The point is simply
that getting lots of bits of MACed message may be more difficult that getting a
few bits. Perhaps the Signer won’t MAC messages that a gigabytes long—and no
doubt sending such long messages takes longer than sending short ones. We choose
to parameterize by maximal message length simply because it is convenient for the
results we will show.

In some MAC schemes security does not depend on the adversary’s running time,
t, being bounded. In this case the scheme is said to be “information-theoretically
secure.” Likewise, in some MAC schemes security does not degrade with m or qs.

Naturally the key K is not directly given to the adversary, and neither are any
random choices or counter used by the MAC-generation algorithm. The adversary
sees these things only to the extent that they are reflected in the answers to her
oracle queries.

6.7 Example schemes

Mihir, I’m unconvinced that this is really needed, but maybe examples
never hurt....

Let us examine some example message authentication schemes and use the defi-
nition to assess their strengths and weaknesses. We fix a PRF F : {0, 1}k×{0, 1}l →
{0, 1}L. Our first scheme MA1 = (K,MAC,V) works like this–

Mihir Bellare and Phillip Rogaway 141

Algorithm MACK(M)
Divide M into l bit blocks, M = x1 . . . xn
For i = 1, . . . , n do yi ← FK(xi)
σ ← y1 ⊕ · · · ⊕ yn
Return σ

Algorithm VK(M,σ)
Divide M into l bit blocks, M = x1 . . . xn
For i = 1, . . . , n do yi ← FK(xi)
σ′ ← y1 ⊕ · · · ⊕ yn
If σ = σ′ then return 1 else return 0

Now let us try to assess the security of this message authentication scheme.
Suppose the adversary wants to forge the tag of a certain given message M .

A priori it is unclear this can be done. The adversary is not in possession of the
secret key K, so cannot compute FK and hence will have a hard time computing
σ. However, remember that the notion of security we have defined says that the
adversary is successful as long as it can produce a correct tag for some message, not
necessarily a given one. We now note that even without a chosen-message attack
(in fact without seeing any examples of correctly tagged data) the adversary can do
this. It can choose a message M consisting of two equal blocks, say M = x‖x where
x is some l-bit string, set σ ← 0l, and output M,σ. Notice that VK(M,σ) = 1
because FK(x) ⊕ FK(x) = 0l = σ. So the adversary is successful. In more detail,
the adversary is:

Adversary AMACK(·)
1

Let x be some l-bit string
Let M ← x‖x
Let σ ← 0l

Return (M,σ)

Then Advma(MA1, A1) = 1. Furthermore A1 makes no oracle queries, uses
t = O(l) time, and outputs an l-bit message in its forgery, so we have shown that

Advmac-frg
(MA1; t, 0, l) = 1 .

That is, the scheme MA1 is totally insecure.
There are many other attacks. For example we note that if σ = FK(M1) ⊕ FK(M2)

is the tag of M1M2 then σ is also the correct tag of M2M1. So it is possible, given
the tag of a message, to forge the tag of a new message formed by permuting the
blocks of the old message. We leave it to the reader to specify the corresponding
adversary and compute its advantage.

Let us now try to strengthen the scheme to avoid these attacks. Instead of
applying FK to a data block, we will first prefix the data block with its index. To
do this we pick some parameter m with 1 ≤ m ≤ l − 1, and write the index as an
m-bit string. The message authentication scheme MA1 = (K,MAC,V) looks like
this:

142 MESSAGE AUTHENTICATION

Algorithm MACK(M)
Divide M into l −m bit blocks, M = x1 . . . xn
For i = 1, . . . , n do yi ← FK(〈i〉‖xi)
σ ← y1 ⊕ · · · ⊕ yn
Return σ

Algorithm VK(M,σ)
Divide M into l −m bit blocks, M = x1 . . . xn
For i = 1, . . . , n do yi ← FK(〈i〉‖xi)
σ′ ← y1 ⊕ · · · ⊕ yn
If σ = σ′ then return 1 else return 0

As the code indicates, we divide M into smaller blocks: not of size l, but of size
l−m. Then we prefix the i-th message block with the value i itself, the block index,
written in binary. Above 〈i〉 denotes the integer i written as a binary string of m
bits. It is to this padded block that we apply FK before taking the XOR.

Note that encoding of the block index i as an m-bit string is only possible if
i < 2m. This means that we cannot authenticate a message M having more than
2m blocks. That is, the message space is confined to strings of length at most
(l−m)(2m− 1), and, for simplicity, of length a multiple of l−m bits. However this
is hardly a restriction in practice since a reasonable value of m, like m = 32, is large
enough that typical messages fall in the message space, and since l is typically at
least 64, we have at least 32 bits left for the data itself.

Anyway, the question we are really concerned with is the security. Has this
improved with respect to MA1? Begin by noticing that the attacks we found on
MA1 no longer work. For example take the adversary A1 above. (It needs a minor
modification to make sense in the new setting, namely the chosen block x should
not be of length l but of length l −m. Consider this modification made.) What is
its success probability when viewed as an adversary attacking MA2? The question
amounts to asking what is the chance that VK(M,σ) = 1 where V is the verification
algorithm of our amended scheme and M,σ is the output of A1. The verification
algorithm will compute σ′ = FK(〈1〉‖x) ⊕ FK(〈2〉‖x) and test whether this equals
0l, the value of σ output by A. This happens only when

FK(〈1〉‖x) = FK(〈2〉‖x) ,

and this is rather unlikely. For example if we are using a block cipher it never
happens because FK is a permutation. Even when F is not a block cipher, this event
has very low probability as long as F is a good PRF; specifically, Advma(MA2, A1)
is at most Advprf

F (t, 2) where t = O(l). (A reader might make sure they see why
this bound is true.) So the attack has very low success probability.

Similar arguments show that the second attack discussed above, namely that
based on permuting of message blocks, also has low success against the new scheme.
Why? In the new scheme

MACK(M1M2) = FK(〈1〉‖M1) ⊕ FK(〈2〉‖M2)

MACK(M2M1) = FK(〈1〉‖M2) ⊕ FK(〈2〉‖M1) .

These are unlikely to be equal for the same reasons discussed above. As an exercise,
a reader might upper bound the probability that these values are equal in terms of
the value of the insecurity of F at appropriate parameter values.

Mihir Bellare and Phillip Rogaway 143

However, MA2 is still insecure. The attacks however require a more non-trivial
usage of the chosen-message attacking ability. The adversary will query the tagging
oracle at several related points and combine the responses into the tag of a new
message. We call it A2–

Adversary AMACK(·)
2

Let x1, x
′
1 be distinct, l −m bit strings, and let x2, x

′
2 be distinct l −m bit strings

σ1 ← MACK(x1x2) ; σ2 ← MACK(x1x
′
2) ; σ3 ← MACK(x′1x2)

σ ← σ1 ⊕ σ2 ⊕ σ3

Return (x′1x
′
2, σ)

We claim that Advma(MA2, A2) = 1. Why? This requires two things. First
that VK(x′1x

′
2, σ) = 1, and second that x′1x

′
2 was never a query to MACK(·) in the

above code. The latter is true because we insisted above that x1 6= x′1 and x2 6= x′2,
which together mean that x′1x

′
2 6∈ {x1x2, x1x2, x

′
1x2}. So now let us check the first

claim. We use the definition of the tagging algorithm to see that

σ1 = FK(〈1〉‖x1) ⊕ FK(〈2〉‖x2)

σ2 = FK(〈1〉‖x1) ⊕ FK(〈2〉‖x′2)

σ3 = FK(〈1〉‖x′1) ⊕ FK(〈2〉‖x2) .

Now look how A2 defined σ and do the computation; due to cancellations we get

σ = σ1 ⊕ σ2 ⊕ σ3

= FK(〈1〉‖x′1) ⊕ FK(〈2〉‖x′2) .

This is indeed the correct tag of x′1x
′
2, meaning the value σ′ that VK(x′1x

′
2, σ) would

compute, so the latter algorithm returns 1, as claimed. In summary we have shown
that

Advmac-frg
(MA2; t, 3, 4(l −m)) = 1 ,

where t = O(l). So the scheme MA2 is also totally insecure.
Later we will see how a slight modification of the above actually yields a secure

scheme. For the moment however we want to stress a feature of the above attacks.
Namely that these attacks did not cryptanalyze the PRF F . The cryptanalysis of
the message authentication schemes did not care anything about the structure of
F ; whether it was DES, RC6, or anything else. They found weaknesses in the
message authentication schemes themselves. In particular, the attacks work just as
well when FK is a random function, or a “perfect” cipher. This illustrates again the
point we have been making, about the distinction between a tool (here the PRF)
and its usage. We need to make better usage of the tool, and in fact to tie the
security of the scheme to that of the underlying tool in such a way that attacks like
those illustrated here are provably impossible under the assumption that the tool is
secure.

144 MESSAGE AUTHENTICATION

6.8 The PRF-as-a-MAC Paradigm

Pseudorandom functions make good MACs, and constructing a MAC in this way
is an excellent approach. Here we show why PRFs are good MACs, and determine
the concrete security of the underlying reduction. The following shows that the
reduction is almost tight—security hardly degrades at all.

Note that when we think of a PRF as a MAC it is important that the domain of
the PRF be whatever one wants as the domain of the MAC. So such a PRF probably
can’t be realized as a block cipher. It may have to be realized by a PRF that allows
for inputs of many different lengths, since you might want to MAC messages of
many different lenghts. As yet we haven’t demonstrated that we can make such
PRFs. But we will.

Let us restate the definition of a PRF, to make sure that the variable domain is
clear.

Definition 6.7 A pseudorandom frunction (PRF) is a function F : Key ×
Message→ {0, 1}n where Key is a finite set (or else it comes endowed with a prob-
ablity measure), and Message is a nonempty set of strings.

To make a MAC from a PRF F we are simply setting the key generator to be
the algorithm that samples from Key, and we set MACa(M) = Fa(M). The MAC
is deterministic, so we don’t have to separately specify a MAC-verification function.
For notational convenience, we will not distinguish between F as a PRF and the
F -induced MAC scheme.

Proposition 6.8 Let F : Key ×Message → {0, 1}n be a PRF. Suppose that there
exists an adversry Amac that, running in time tmac, asking qmac queries, these to-
talling µmac bits, forges with probablity εmac = Advmac

F (Amac). Then there exists
an adversary Aprf that, running in time tprf , asking qprf queries, these totalling µprf

bits, distinguishes a random instance of F from a random function with advantage
εprf = Advprf

F (Aprf) where

tprf = Õ(tmac), qprf = qmac + 1, µprf = µmac, and εprf = εmac − 2−n.

Proof: Adversary Aprf has an oracle f . Let Aprf work as follows

Run Amac.
When Amac makes a query, x, to its (MAC) oracle g, return f(x).
Finally Amac halts, outputting a pair (x∗, σ∗).
If x∗ was not already asked of f , and f(x∗) = σ∗,
then output 1, otherwise output 0.

With the obvious shorthand,

Advprf
F (Aprf) = Pr[AFa(·)

prf = 1]− Pr[Aρ· = 1]

Mihir Bellare and Phillip Rogaway 145

≤ Pr[AFa(·)
mac forges]− 2−n

= εmac − 2−n

The running time and query complexity of Aprf are clearly as claimed: the Õ over-
head is for checkig if x∗ is a new query, while the +1 in the query complexity
accounts for asking f(x∗). Recall that, by our convention, µmac already includes the
length of x∗.

6.9 Making a PRF from a PRF and a Universal Hash
Function

We have shown that one paradigm for making a good MAC is to make some-
thing stronger: a good PRF. Unfortunately, out-of-the-box PRFs usually operate on
strings of some fixed length, like 128 bits. That’s almost certainly not the domain
that we want for our MAC’s message space. In this section we describe a simple
paradigm for extending the domain of a PRF by using a universal hash-function
family. Several MACs can be seen as instances of this approach.

Theorem 6.9 Let H : Key(H)×Message→ {0, 1}n be a δ-AU hash-function family.
Let F : Key(F) × {0, 1}n → {0, 1}s be εF (t, q)-secure, as a PRF; that is, εF (t, q) =
Advprf

F (t, q). Define the PRF FH : (Key(F) × Key(H)) × Message → {0, 1}s by
FH (a,k)(x) = Fa(Hk(x)). Then FH is (t′, q′, µ, ε′)-secure, as a PRF, where · · ·.

To be completed.
Let us given a concrete example of this approach. We saw in Chapter 5 that

one could hash a sequence of words Mm−1 . . .M0 using a key k ∈ {0, 289 − 1} by
computing Hk(M) = (km + Mm−1k

m−1 + . . . + M1k + M0) mod (289 − 1). If the
message is limited to 232− 1 words, say, then this hash function family has collision
probability bounded by 232−1

289−1
> 2−57. So to MAC a message M , compute Hk(M),

encode this into a 128-bit string, and apply AESa, yielding the desired authentication
tag.

6.10 An XOR Scheme

Eliminated. Plan to completely revise, directly proving the Bernstein
Bernstein-variant of our XOR MAC (that’s the version where you en-
cipher the XOR of the PRF outputs), which has a trivial proof in the
above framework.

6.11 The EMAC Construction

We wish to show that ifM,M ′ ∈ ({0, 1}n)+ are distinct strings then Prπ[CBCπ(M) =
CBCπ(M ′)] is small. By “small” we mean a slowly growing function of m = |M |/n

146 MESSAGE AUTHENTICATION

Figure 6.5: A fragment of the CBC construction showing the labeling convention
used in the proof of Lemma ??.

and m′ = |M ′|/n. Formally, for n,m,m′ ≥ 1, define the collision probability of the
CBC MAC to be

Vn(m,m′) def= max
M∈{0,1}nm, M ′∈{0,1}nm′ , M 6=M ′

{ Pr[π R← Perm(n) : CBCπ(M) = CBCπ(M ′)] } .

(The character “V ” is meant to suggest collisions.)

Lemma 6.10 [CBC MAC Collision Bound] Let n,m,m′ ≥ 1. Then

Vn(m,m′) ≤ 2.5 (m+m′)2

2n
.

Proof: Although M and M ′ are distinct, they may share some common prefix. Let
k be the index of the last block in which M and M ′ agree. (If M and M ′ have
unequal first blocks then k = 0.)

Each particular permutation π is equally likely among all permutations from {0, 1}n
to {0, 1}n. In our analysis, we will view the selection of π as an incremental proce-
dure. This will be equivalent to selecting π uniformly at random. In particular, we
view the computation of CBCπ(M) and CBCπ(M ′) as playing the game given in
Figure 6.6. Here the notation Mi indicates the ith block of M . We initially set each
range point of π as undefined; the notation Domain(π) represents the set of points
x where π(x) is no longer undefined. We use Range(π) to denote the set of points
π(x) which are no longer undefined; we use Range(π) to denote {0, 1}n−Range(π).

During the game, the Xi are those values produced after XORing with the current
message block, Mi, and the Yi values are π(Xi). See Figure 6.5.

We are concerned with the probability that π will cause CBCπ(M) = CBCπ(M ′),
which will occur in our game iff Ym = Y ′m′ . Since π is invertible, this occurs iff
Xm = X ′m′ . As we shall see, this condition will cause bad = true in our game.
However, we actually set bad to true in many other cases in order to simplify the
analysis.

Mihir Bellare and Phillip Rogaway 147

1: bad ← false; for all x ∈ {0, 1}n do π(x)← undefined; X1 ←M1; X ′1 ←M ′1; BAD ← {X1, X
′
1}

2: for i← 1 to k do
3: if Xi ∈ Domain(π) then Yi ← Y ′i ← π(Xi)
4: else Yi ← Y ′i

R← Range(π); π(Xi)← Yi
5: if i < m then Xi+1 ← Yi ⊕Mi+1

6: if Xi+1 ∈ BAD then bad ← true else BAD ← BAD ∪ {Xi+1}
7: if i < m′ then X ′i+1 ← Y ′i ⊕M ′i+1

8: if X ′i+1 ∈ BAD then bad ← true else BAD ← BAD ∪ {X ′i+1}

9: for i← k + 1 to m do
10: if Xi ∈ Domain(π) then Yi ← π(Xi)
11: else Yi

R← Range(π); π(Xi)← Yi
12: if i < m then Xi+1 ← Yi ⊕Mi+1

13: if Xi+1 ∈ BAD then bad ← true else BAD ← BAD ∪ {Xi+1}

14: for i← k + 1 to m′ do
15: if X ′i ∈ Domain(π) then Y ′i ← π(X ′i)
16: else Y ′i

R← Range(π); π(X ′i)← Y ′i
17: if i < m then X ′i+1 ← Y ′i ⊕M ′i+1

18: if X ′i+1 ∈ BAD then bad ← true else BAD ← BAD ∪ {X ′i+1}

Figure 6.6: Game used in the proof of Lemma ??. The algorithm gives one way to
compute the CBC MAC of distinct messages M = M1 · · ·Mm and M ′ = M ′1 · · ·M ′m′ .
These messages are identical up to block k, but different afterwards. The computed
MACs are Ym and Ym′ , respectively.

148 MESSAGE AUTHENTICATION

The idea behind the variable bad is as follows: throughout the program (lines 4, 11,
and 16) we randomly choose a range value for π at some undefined domain point.
Since π has not yet been determined at this point, the selection of our range value
will be an independent uniform selection: there is no dependence on any prior choice.
If the range value for π were already determined by some earlier choice, the analysis
would become more involved. We avoid the latter condition by setting bad to true
whenever such interdependencies are detected. The detection mechanism works as
follows: throughout the processing of M and M ′ we will require π be evaluated at
m + m′ domain points X1, · · · , Xm and X ′1, · · · , X ′m′ . If all of these domain points
are distinct (ignoring duplications due to any common prefix of M and M ′), we
can rest assured that we are free to assign their corresponding range points without
constraint. We maintain a set BAD to track which domain points have already been
determined; initially X1 and X ′1 are the only such points, since future values will
depend on random choices not yet made. Of course if k > 0 then X1 = X ′1 and
BAD contains only one value. Next we begin randomly choosing range points; if
ever any such choice leads to a value already contained in the BAD set, we set the
flag bad to true.

We now bound the probability of the event that bad = true by analyzing our game.
The variable bad can be set true in lines 6, 8, 13, and 18. In each case it is required
that some Yi was selected such that Yi ⊕Mi+1 ∈ BAD (or possibly that some Y ′i was
selected such that Y ′i ⊕M ′i+1 ∈ BAD). The set BAD begins with at most 2 elements
and then grows by 1 with each random choice of Yi or Y ′i . We know that on the ith
random choice in the game the BAD set will contain at most i + 1 elements. And
so each random choice of Yi (resp. Y ′i) from the co-range of π will cause Yi ⊕Mi+1

(resp. Y ′i ⊕M ′i+1) to be in BAD with probability at most (i+ 1)/(N − i+ 1). We
have already argued that in the absence of bad = true each of the random choices
we make are independent. We make m− 1 choices of Yi to produce X2 through Xm

and m′ − 1 choices of Y ′i to determine X ′2 through X ′m′ and so we can compute

Pr[bad = true] ≤
m−1+m′−1∑

i=1

i+ 1
N − i+ 1

.

Using the fact that m,m′ ≤ N/4, we can bound the above by

m+m′−2∑
i=1

i+ 1
N − i

≤ 2
N

m+m′−2∑
i=1

i+ 1 ≤ (m+m′)2

N
.

This completes the proof.

Mihir Bellare and Phillip Rogaway 149

6.12 The HMAC Construction

6.13 The UMAC Construction

Sketch UMAC, particularly improving security with the use of counters
(the “standard” Wegman-Carter method), and the hash function NH).
Old material follows.

Today the most effective paradigm for fast message authentication is based on
the use of “almost xor universal hash functions”. The design of these hash functions
receives much attention and has resulted in some very fast ones, so that universal
hash based MACs are the fastest MACs around. Let us begin by describing the
tool, and then seeing how it can be used for message authentication.

6.13.1 Almost xor universal hash functions

Let H: Keys(H)×Dom(H)→ {0, 1}L be a family of functions. We think of them as
hash functions because the domain Dom(H) of any individual function HK is typi-
cally large, being the message space of the desired message authentication scheme.

Fix any two points a1, a2 in the domain Dom(H) of the family, the only restriction
on them being that they are not allowed to be equal. Also fix a point b in the
range {0, 1}L of the family. With H fixed, we can associate to these three points a
probability

UHColPrH(a1, a2, b) = Pr
[
K

R← Keys(H) : HK(a1) ⊕ HK(a2) = b
]

= Pr
[
h

R← H : h(a1) ⊕ h(a2) = b
]
,

the two expressions above being equal by definition. We are interested in keeping
this probability low for all choices of a1, a2, b. The quality of H as an almost xor
universal family, which we call the insecurity of H, is accordingly measured by the
maximum value of this probability, the maximum being over the choices of a1, a2, b.

Definition 6.11 Let H: Keys(H) × Dom(H) → {0, 1}L be a family of functions.
Let

Advuh(H) = max
a1,a2,b

{
Pr
[
K

R← Keys(H) : HK(a1) ⊕ HK(a2) = b
] }

,

the maximum being over all distinct points a1, a2 ∈ Dom(H) and all strings b ∈
{0, 1}L.

The smaller the value of Advuh(H), the better the quality of H as an almost
xor-universal function. We say that H is a xor-universal hash function if Adv(H) =
2−L. (We will see later that this is the lowest possible value of the insecurity.)

The simplest example is the family of all functions.

150 MESSAGE AUTHENTICATION

Proposition 6.12 The familyRl,L of all functions of l-bits to L-bits is xor-universal,
meaning Advuh(Rl,L) = 2−L.

Proof: With distinct a1, a2 ∈ {0, 1}l, and b ∈ {0, 1}L fixed, we clearly have

Pr
[
h

R← Rl,L : h(a1) ⊕ h(a2) = b
]

= 2−L

because h is a random function.

Another source of examples is polynomials over finite fields.

Example 6.13 Identify {0, 1}l with GF(2l), the finite field of 2l elements. We fix
an irreducible, degree l polynomial over GF(2) so as to be able to do arithmatic
over the field. The hash function H we define takes as key a pair α, β of points in
{0, 1}l such that α 6= 0. The domain is {0, 1}l and the range is {0, 1}L where L ≤ l.
We define the function by

Hα,β(x) = [αx+ β]1...L .

That is, with key α, β and input x ∈ {0, 1}l, first compute, in the finite field, the
value αx+ β. View this as an l-bit string, and output the first L bits of it.

Proposition 6.14 The familyH: Keys(H)×{0, 1}l → {0, 1}L defined above, where
L ≤ l and Keys(H) is the set of all pairs (a, b) of l-bit strings such that a 6= 0, is a
xor-universal hash function.

Proof: We need to show that Adv(H) = 2−L. Accordingly fix a1, a2 ∈ {0, 1}l such
that a1 6= a2, and fix b ∈ {0, 1}L. Fix any key for the function, meaning any α 6= 0
and any β. Notice that y = αx+ β iff x = α−1(y− β). (The arithmatic here is over
the finite field, and we are using the assumption that α 6= 0.) This means that the
map of GF(2l) to GF(2l) given by x 7→ αx + β is a permutation. The proposition
follows from this.

It is useful to interpret the almost xor-universal measure in another, more dy-
namic way. Imagine that the choice of the points a1, a2, b is made by an adversary.
This adversary C knows that H is the target family. It clunks along for a while and
then outputs some distinct values a1, a2 ∈ Dom(H), and a value b ∈ {0, 1}L. Now a
key K is chosen at random, defining the function HK : Dom(H)→ {0, 1}L, and we
test whether or not HK(a1) ⊕ HK(a2) = b. If so, the adversary C wins. We denote
the probability that the adversary wins by Advuh(H,C). We then claim that this
probability is at most Advuh(H).

The reason is that there is a single best strategy for the adversary, namely to
choose points a1, a2, b which maximize the probability UHColPrH(a1, a2, b) defined
above. This should be relatively clear, at least for the case when the adversary
is deterministic. But the claim is true even when the adversary is probabilistic,

Mihir Bellare and Phillip Rogaway 151

meaning that the triple of points it outputs can be different depending on its own
coin tosses. (In such a case, the probability defining Advuh(C) is taken over the
choice of K and also the coin tosses of C.) We justify this claim in Proposition 6.15
below. We thus have two, equivalent ways of thinking about Advuh(H), one more
“static” and the other more “dynamic”. Depending on the setting, we may benefit
more from one view than another.

Before stating and proving Proposition 6.15, however, let us emphasize some
features of this notion. A key feature of the game is that the steps must follow a
particular order: first the adversary chooses points a1, a2, b, then K is chosen at
random and the function HK is defined. The adversary is not allowed to choose
a1, a2, b as a function of K; it must first commit to them, and then there is some
probability of its winning the game.

This notion differs from others we have considered in that there is no compu-
tational restriction on the adversary. Namely, it can run for as long as it likes
in deciding how to choose a1, a2, b, and the security condition is true nonetheless.
Thus, it is a purely information theoretic notion.

Here now is the promised bound.

Proposition 6.15 Let HKeys(H) × Dom(H) → {0, 1}L be a family of functions
and C a (possibly probabilistic) algorithm that outputs a triple a1, a2, b such that
a1, a2 are distinct points in Dom(H) and b ∈ {0, 1}L. Then

Advuh(H,C) ≤ Advuh(H) .

Proof: Remember that to say C is probabilistic means that it has as an auxiliary
input a sequence ρ of random bits of some length r, and uses them in its computation.
Depending on the value of r, the output triple of C will change. We can denote by
a1(ρ), a2(ρ), b(ρ) the triple that C outputs when its coins are ρ. For any particular
value of ρ it is clear from Definition 6.11 that

Pr
[
K

R← Keys(H) : HK(a1(ρ)) ⊕ HK(a2(ρ)) = b(ρ)
]

≤ max
a1,a2,b

{ Pr
[
K

R← Keys(H) : HK(a1) ⊕ HK(a2) = b
]
}

= Advuh(H) .

Using this we get

Advuh(H,C) = Pr
[
ρ

R← {0, 1}r ; K R← Keys(H) : HK(a1(ρ)) ⊕ HK(a2(ρ)) = b(ρ)
]

=
∑

ρ∈{0,1}r
Pr
[
K

R← Keys(H) : HK(a1(ρ)) ⊕ HK(a2(ρ)) = b(ρ)
]
· 2−r

≤
∑

ρ∈{0,1}r
Advuh(H) · 2−r

= Advuh(H) .

152 MESSAGE AUTHENTICATION

The first equality is by definition of Advuh(H,C). In the second line we used the
fact that the coins of C are chosen at random from the set of all strings of length r.
In the third line, we used the above observation.

How low can Advuh(H) go? We claim that the lowest possible value is 2−L, the
value achieved by a xor-universal family. The following justifies this claim.

Proposition 6.16 Let HKeys(H) × Dom(H) → {0, 1}L be a family of functions.
Then

Advuh(H) ≥ 2−L .

Proof: Fix two distinct points a1, a2 ∈ Dom(H), and for any fixed key K ∈ Keys(H)
let

c(K) = Pr
[
b

R← {0, 1}L : HK(a1) ⊕ HK(a2) = b
]
.

Then c(K) = 2−L. Why? With K, a1, a2 all fixed, HK(a1) ⊕ HK(a2) is some fixed
value, call it b′. The above is then just asking what is the probability that b = b′ if
we pick b at random, and this of course is 2−L.

Now consider the adversary C that picks b at random from {0, 1}L and outputs the
triple a1, a2, b. (Note this adversary is probabilistic, because of its random choice of
b.) Then

Advuh(H,C) = Pr
[
b

R← {0, 1}L ; K R← Keys(H) : HK(a1) ⊕ HK(a2) = b
]

=
∑

K∈Keys(H)

c(K) · Pr
[
K ′ ← Keys(H) : K ′ = K

]
=

∑
K∈Keys(H)

2−L · Pr
[
K ′ ← Keys(H) : K ′ = K

]
= 2−L · 1 .

Thus we have been able to present an adversary C such that Advuh(H,C) = 2−L.
From Proposition 6.15 it follows that Advuh(H) ≥ 2−L.

6.13.2 The corresponding MACs

Let H: Keys(H) × Plaintexts → {0, 1}L be a family of hash functions, and let
F : {0, 1}k × {0, 1}l → {0, 1}L be a PRF. We associate to them the xor-universal
hash based MACs. There are two such MACs; one stateful (using counters) and
deterministic, the other stateless and randomized. The key will be a pair of strings,
K1,K2, where the first subkey is for H and the second is for F . (We call them
the hashing and masking keys respectively.) In both cases, the basic paradigm is

Mihir Bellare and Phillip Rogaway 153

the same. The message is first hashed to a string x using HK1 , and this value is
then “encrypted” by XORing with FK2(s) to yield a value τ , where s is some point
chosen by the sender. The tag contains τ , but also s so as to permit verification.
The difference in the two version is in how s is selected. In the counter version it is
a counter, and in the randomized version a random number chosen anew with each
application of the tagging algorithm.

Here now is the full description of the counter-based version of the scheme,
C-UHMH,F = (K,MAC,V)–

Algorithm MACK1,K2(M)
x← HK1(M)
τ ← FK2(ctr) ⊕ x
σ ← (ctr, τ)
ctr ← ctr + 1
Return σ

Algorithm VK1,K2(M,σ)
Parse σ as (s, τ)
x′ ← FK2(s) ⊕ τ
x← HK1(M)
If x = x′ then return 1 else return 0

The randomized version R-UHMH,F = (K,MAC,V) is like this–

Algorithm MACK1,K2(M)
x← HK1(M)
r

R← {0, 1}l
τ ← FK2(r) ⊕ x
σ ← (r, τ)
Return σ

Algorithm VK1,K2(M,σ)
Parse σ as (s, τ)
x′ ← FK2(s) ⊕ τ
x← HK1(M)
If x = x′ then return 1 else return 0

Lemma 6.17 Let H: Keys(H)×Plaintexts→ {0, 1}L be a family of functions, and
A an adversary attacking the message authentication scheme C-UHMH,Rl,L . Then
for any q, µ with q < 2l we have

Advma(C-UHMH,Rl,L , A) ≤ Advuh(H) .

Proof of Lemma 6.17: The adversary A makes a sequence M1, . . . ,Mq of queries
to its MACK1,K2(·) oracle, and these are answered according to the above scheme.
Pictorially:

M1 =⇒ σ1 = (s1, τ1)
M2 =⇒ σ2 = (s2, τ2)

...
...

...
Mq =⇒ σq = (sq, τq)

Here si = 〈i− 1〉 is simply the (binary representation of the) counter value, and
τi = f(si) ⊕ h(Mi), where h = HK1 is the hash function instance in use, and
f = Rl,LK2

is the random function specified by the second key. Following this chosen-
message attack, A outputs a pair M,σ where σ = (s, τ). We may assume wlog that

154 MESSAGE AUTHENTICATION

M 6∈ {M1, . . . ,Mq}. We know that A will be considered successful if VK1,K2(M,σ) =
1. We wish to upper bound the probability of this event.

Let New be the event that s 6∈ {s1, . . . , sq}, and Old the complement event, namely
that s = si for some value of i ∈ {1, . . . , q}. Let Pr [·] denote the probability of event
“·” in the experiment ForgeExp(C-UHMH,Rl,L , A). We consider

p1 = Pr [VK1,K2(M,σ) = 1 | Old]

p2 = Pr [VK1,K2(M,σ) = 1 | New]

q = Pr [New] .

We will use the following two claims.

Claim 1: p1 ≤ Advuh(H).

Claim 2: p2 ≤ 2−L.

We will prove these claims later. Let us first check that they yield the desired result:

Advma(C-UHMH,Rl,L , A) = Pr [VK1,K2(M,σ) = 1]

= p1q + p2(1− q)

≤ Advuh(H) · q + 2−L · (1− q)

≤ Advuh(H) · q + Advuh(H) · (1− q)

≤ Advuh(H) .

The first line is simply by definition of the success probability. The second line is
obtained by conditioning. In the third line we used the claims. In the fourth line
we used Proposition 6.16.

It remains to prove the claims. We begin with the second.

Proof of Claim 2: Since the queries of the adversary did not result in the function f
being evaluted on the point s, the value f(s) is uniformly distributed from the point
of view of A. Or, remember the dynamic view of random functions; we can imagine
that f gets specified only as it is queried. Since the tagging oracle (as invoked by A)
has not applied f at s, we can imagine that the coins to determine f(s) are tossed
after the forgery is created. With that view it is clear that

p2 = Pr [f(s) ⊕ h(M) = τ] = 2−L .

Note that here we did not use anything about the hash function; the claim is true
due only to the randomness of f . 2

Proof of Claim 2:

Adversary C

Mihir Bellare and Phillip Rogaway 155

Initialize counter ctr to 0
For i = 1, . . . , q do

A→Mi

τi
R← {0, 1}L ; si ← 〈ctr〉 ; σi ← (si, τi)

A← σi ; ctr ← ctr + 1
A→M,σ
Parse σ as (s, τ)
If s 6∈ {s1, . . . , sq} then FAIL
Else let i be such that s = si
Let b← τi ⊕ τ and return M,Mi, b

We claim that Advuh(H,C) = p1.

Theorem 6.18 Let H: Keys(H) × Plaintexts → {0, 1}L be a family of functions,
and let F : {0, 1}k × {0, 1}l → {0, 1}L be a PRF. Then for any t, q, µ we have

Advmac-frg
(C-UHMH,F ; t, q, µ) ≤ Advuh(H) + Advprf

F (t′, q + 1)

where t′ = t+O(µ).

6.14 Problems

Problem 6.1 Consider the following variant of the CBC MAC, intended to allow
one to MAC messages of arbitrary length. The construction uses a block cipher
E : {0, 1}k ×{0, 1}n → {0, 1}n, which you should assume to be secure. The domain
for the MAC is ({0, 1}n)+. To MAC M under key K compute CBCK(M‖|M |),
where |M | is the length of M , written in n bits. Of course K has k bits. Show that
this MAC is completely insecure: break it with a constant number of queries.

Problem 6.2 Consider the following variant of the CBC MAC, intended to allow
one to MAC messages of arbitrary length. The construction uses a block cipher
E : {0, 1}k ×{0, 1}n → {0, 1}n, which you should assume to be secure. The domain
for the MAC is ({0, 1}n)+. To MACM under key (K,K ′) compute CBCK(M) ⊕ K ′.
Of course K has k bits and K ′ has n bits. Show that this MAC is completely
insecure: break it with a constant number of queries.

Problem 6.3 Let SE = (K, E ,D) be a symmetric encryption scheme and let MA =
(K′,MAC,VF) be a message authentication code. Alice (A) and Bob (B) share
a secret key K = (K1,K2) where K1 ← K and K2 ← K′. Alice wants to send
messages to Bob in a private and authenticated way. Consider her sending each of
the following as a means to this end. For each, say whether it is a secure way or
not, and briefly justify your answer. (In the cases where the method is good, you
don’t have to give a proof, just the intuition.)

156 MESSAGE AUTHENTICATION

(a) M,MACK2(EK1(M))

(b) EK1(M,MACK2(M))

(c) MACK2(EK1(M))

(d) EK1(M),MACK2(M)

(e) EK1(M), EK1(MACK2(M))

(f) C,MACK2(C) where C = EK1(M)

(g) EK1(M,A) where A encodes the identity of Alice; B decrypts the received
ciphertext C and checks that the second half of the plaintext is “A”.

In analyzing these schemes, you should assume that the primitives have the
properties guaranteed by their definitions, but no more; for an option to be good
it must work for any choice of a secure encryption scheme and a secure message
authentication scheme.

Now, out of all the ways you deemed secure, suppose you had to choose one
to implement for a network security application. Taking performance issues into
account, do all the schemes look pretty much the same, or is there one you would
prefer?

Problem 6.4 Refer to problem 4.3. Given a block cipher E : K×{0, 1}n → {0, 1}n,
construct a cipher (a “deterministic encryption scheme”) with message space {0, 1}∗
that is secure in the sense that you defined. (Hint: you now know how to construct
from E a pseudorandom function with domain {0, 1}∗.)

6.15 References and Related Work

Chapter 7

Authenticated Encryption

157

158 AUTHENTICATED ENCRYPTION

Chapter 8

Number-Theoretic Background

8.1 The basic groups

We let Z = {. . . ,−2,−1, 0, 1, 2, . . .} denote the set of integers. We let Z+ =
{1, 2, . . .} denote the set of positive integers and N = {0, 1, 2, . . .} the set of non-
negative integers.

8.1.1 Integers mod N

If a, b are integers, not both zero, then their greatest common divisor, denoted
gcd(a, b), is the largest integer d such that d divides a and d divides b. If gcd(a, b) = 1
then we say that a and b are relatively prime. If a,N are integers with N > 0 then
there are unique integers r, q such that a = Nq + r and 0 ≤ r < N . We call r
the remainder upon division of a by N , and denote it by a mod N . We note that
the operation a mod N is defined for both negative and non-negative values of a,
but only for positive values of N . (When a is negative, the quotient q will also be
negative, but the remainder r must always be in the indicated range 0 ≤ r < N .)
If a, b are any integers and N is a positive integer, we write a ≡ b (mod N) if
a mod N = b mod N . We associate to any positive integer N the following two sets:

ZN = {0, 1, . . . , N − 1}

Z∗N = { i ∈ Z : 1 ≤ i ≤ N − 1 and gcd(i,N) = 1 }

The first set is called the set of integers mod N . Its size is N , and it contains exactly
the integers that are possible values of a mod N as a ranges over Z. We define the
Euler Phi (or totient) function ϕ: Z+ → N by ϕ(N) = |Z∗N | for all N ∈ Z+. That
is, ϕ(N) is the size of the set Z∗N .

159

160 NUMBER-THEORETIC BACKGROUND

8.1.2 Groups

Let G be a non-empty set, and let · be a binary operation on G. This means that
for every two points a, b ∈ G, a value a · b is defined.

Definition 8.1 Let G be a non-empty set and let · denote a binary operation on
G. We say that G is a group if it has the following properties:

1. Closure: For every a, b ∈ G it is the case that a · b is also in G.

2. Associativity: For every a, b, c ∈ G it is the case that (a · b) · c = a · (b · c).
3. Identity: There exists an element 1 ∈ G such that a · 1 = 1 · a = a for all

a ∈ G.

4. Invertibility: For every a ∈ G there exists a unique b ∈ G such that a · b =
b · a = 1.

The element b in the invertibility condition is referred to as the inverse of the element
a, and is denoted a−1.

In any group, we can define an exponentiation operation which associates to any
a ∈ G and any integer i a group element we denote ai, defined as follows. If i = 0
then ai is defined to be 1, the identity element of the group. If i > 0 then

ai = a · a · · · a︸ ︷︷ ︸
i

.

If i is negative, then we define ai = (a−1)−i. Put another way, let j = −i, which is
positive, and set

ai = a−1 · a−1 · · · a−1︸ ︷︷ ︸
j

.

With these definitions in place, we can manipulate exponents in the way in which
we are accustomed with ordinary numbers. Namely, identities such as the following
hold for all a ∈ G and all i, j ∈ Z:

ai+j = ai · aj

(ai)j = aij

a−i = (ai)−1

a−i = (a−1)i .

We will use this type of manipulation frequently without explicit explanation.
It is customary in group theory to call the size of a group G its order. That is,

the order of a group G is |G|, the number of elements in it. We will often make use
of the following basic fact. It says that if any group element is raised to the power
the order of the group, the result is the identity element of the group.

Fact 8.2 Let G be a group and let m = |G| be its order. Then am = 1 for all
a ∈ G.

Mihir Bellare and Phillip Rogaway 161

This means that computation in the group indices can be done modulo m. That
is, for all a ∈ G and all i ∈ Z we have

ai = ai mod m

where m = |G| and the mod operation is defined for all i ∈ Z as above. (A reader
may want to make sure they see why Fact 8.2 implies this.)

If G is a group, a set S ⊆ G is called a subgroup if it is a group in its own right,
under the same operation as that under which G is a group. If we already know
that G is a group, there is a simple way to test whether S is a subgroup: it is one
if and only if x · y−1 ∈ S for all x, y ∈ S. Here y−1 is the inverse of y in G.

Fact 8.3 Let G be a group and let S be a subgroup of G. Then the order of S
divides the order of G.

We now return to the sets we defined above and remark on their group structure.
Let N be a positive intger. The operation of addition modulo N takes input any
two integers a, b and returns (a+b) mod N . The operation of multiplication modulo
N takes input any two integers a, b and returns ab mod N .

Fact 8.4 Let N be a positive intger. Then ZN is a group under addition modulo
N , and Z∗N is a group under multiplication modulo N .

In ZN , the identity element is 0 and the inverse of a is −a mod N = N − a. In
Z∗N , the identity element is 1 and the inverse of a is a b ∈ Z∗N such that ab ≡ 1
(mod N). In may not be obvious why such a b even exists, but it does. We do not
prove the above fact here.

8.2 Algorithms

Figure 8.1 summarizes some basic algorithms involving numbers. These algorithms
are used to implement public-key cryptosystems, and thus their running time is an
important concern. We begin with a discussion about the manner in which running
time is measured, and then go on to discuss the algorithms, some very briefly, some
in more depth.

8.2.1 Bit operations and binary length

In a course or text on algorithms, we learn to analyze the running time of an
algorithm as a function of the size of its input. The inputs are typically things like
graphs, or arrays, and the measure of input size might be the number of nodes in
the graph or the length of the array. Within the algorithm we often need to perform
arithmatic operations, like addition or multiplication of array indices. We typically
assume these have O(1) cost. The reason this assumption is reasonable is that
the numbers in question are small and the cost of manipulating them is negligible

162 NUMBER-THEORETIC BACKGROUND

Algorithm Input Output Running Time

INT-DIV a,N (N > 0) (q, r) with a = Nq + r and 0 ≤ r < N O(|a| · |N |)

MOD a,N (N > 0) a mod N O(|a| · |N |)

EXT-GCD a, b ((a, b) 6= (0, 0)) (d, a, b) with d = gcd(a, b) = aa+ bb O(|a| · |b|)

MOD-ADD a, b,N (a, b ∈ ZN) (a+ b) mod N O(|N |)

MOD-MULT a, b,N (a, b ∈ ZN) ab mod N O(|N |2)

MOD-INV a,N (a ∈ Z∗N) b ∈ Z∗N with ab ≡ 1 (mod N) O(|N |2)

MOD-EXP a, n,N (a ∈ ZN) an mod N O(|n| · |N |2)

EXPG a, n (a ∈ G) an ∈ G 2|n| G-operations

Figure 8.1: Some basic algorithms and their running time. Unless otherwise
indicated, an input value is an integer and the running time is the number of bit
operations. G denotes a group.

Mihir Bellare and Phillip Rogaway 163

compared to costs proportional to the size of the array or graph on which we are
working.

In contrast, the numbers arising in cryptographic algorithms are large, having
magnitudes like 2512 or 21024. The arithmatic operations on these numbers are the
main cost of the algorithm, and the costs grow as the numbers get bigger.

The numbers are provided to the algorithm in binary, and the size of the input
number is thus the number of bits in its binary representation. We call this the
length, or binary length, of the number, and we measure the running time of the
algorithm as a function of the binary lengths of its input numbers. In computing
the running time, we count the number of bit operations performed.

Let bk−1 . . . b1b0 be the binary representation of a positive integer a, meaning
b0, . . . , bk−1 are bits such that bk−1 = 1 and a = 2k−1bk−1+2k−2bk−2+· · ·+21b1+20b0.
Then the binary length of a is k, and is denoted |a|. Notice that |a| = k if and only
if 2k−1 ≤ a < 2k. If a is negative, we let |a| = | − a|, and assume that an additional
bit or two is used to indicate to the algorithm that the input is negative.

8.2.2 Integer division and mod algorithms

We define the integer division function as taking input two integers a,N , withN > 0,
and returning the quotient and remainder obtained by dividing a by N . That is, the
function returns (q, r) such that a = qN+r with 0 ≤ r < N . We denote by INT-DIV
an algorithm implementing this function. The algorithm uses the standard division
method we learned way back in school, which turns out to run in time proportional
to the product of the binary lengths of a and N .

We also want an algorithm that implements the mod function, taking integer
inputs a,N with N > 0 and returning a mod N . This algorithm, denoted MOD, can
be implemented simply by calling INT-DIV(a,N) to get (q, r), and then returning
just the remainder r.

8.2.3 Extended GCD algorithm

Suppose a, b are integers, not both 0. A basic fact about the greatest common
divisor of a and b is that it is the smallest positive element of the set

{ aa+ bb : a, b ∈ Z }
of all integer linear combinations of a and b. In particular, if d = gcd(a, b) then
there exist integers a, b such that d = aa + bb. (Note that either a or b could be
negative.)

Example 8.5 The gcd of 20 and 12 is d = gcd(20, 12) = 4. We note that 4 =
20(2) + (12)(−3), so in this case a = 2 and b = −3.

Besides the gcd itself, we will find it useful to be able to compute these weights
a, b. This is what the extended-gcd algorithm EXT-GCD does: given a, b as input, it
returns (d, a, b) such that d = gcd(a, b) = aa+bb. The algorithm itself is an extension

164 NUMBER-THEORETIC BACKGROUND

of Euclid’s classic algorithm for computing the gcd, and the simplest description is
a recursive one. We now provide it, and then discuss the correctness and running
time. The algorithm takes input any integers a, b, not both zero.

Algorithm EXT-GCD(a, b)
If b = 0 then return (a, 1, 0)
Else

(q, r)← INT-DIV(a, b)
(d, x, y)← EXT-GCD(b, r)
a← y
b← x− qy
Return (d, a, b)

EndIf

The base case is when either b = 0. If b = 0 then we know by assumption that
a 6= 0, so gcd(a, b) = a, and since a = a(1) + b(0), the weights are 1 and 0. If b 6= 0
then we can divide by it, and we divide a by it to get a quotient q and remainder r.
For the recursion, we use the fact that gcd(a, b) = gcd(b, r). The recursive call thus
yields d = gcd(a, b) together with weights x, y such that d = bx + ry. Noting that
a = bq + r we have

d = bx+ ry = bx+ (a− bq)y = ay + b(x− qy) = aa+ bb ,

confirming that the values assigned to a, b are correct.
The running time of this algorithm is O(|a| · |b|), or, put a little more simply,

the running time is quadratic in the length of the longer number. This is not so
obvious, and proving it takes some work. We do not provide this proof here.

8.2.4 Algorithms for modular addition and multiplication

The next two algorithms in Figure 8.1 are the ones for modular addition and mul-
tiplication. To compute (a+ b) mod N , we first compute c = a+ b using the usual
algorithm we learned way back in school, which runs in time linear in the binary
representations of the numbers. We might imagine that it now takes quadratic time
to do the mod operation, but in fact if c > N , the mod operation can be simply
executed by subtracting N from c, which takes only linear time, which is why the
algorithm as a whole takes linear time. For multiplication mod N , the process is
much the same. First compute c = ab using the usual algorithm, which is quadratic
time. This time we do the mod by invoking MOD(c,N). (The length of c is the
sum of the lengths of a and b, and so c is not small as in the addition case, so a
shortcut to the mod as we saw there does not seem possible.)

8.2.5 Algorithm for modular inverse

The next algorithm in Figure 8.1 is for computation of the multiplicative inverse of
a in the group Z∗N . Namely, on input N > 0 and a ∈ Z∗N , algorithm MOD-INV

Mihir Bellare and Phillip Rogaway 165

returns b such that ab ≡ 1 (mod N). The method is quite simple:

Algorithm MOD-INV(a,N)
(d, a,N)← EXT-GCD(a,N)
b← a mod N
Return b

The cost is O(|a| · |N |) because this is the cost of the invoked algorithms. Now let
us see why the algorithm is correct. Since a ∈ Z∗N we know that gcd(a,N) = 1.
The EXT-GCD algorithm thus guarantees that d = 1 and 1 = aa + NN . Since
N mod N = 0, we have 1 ≡ aa (mod N), and thus b = a mod N is the right value
to return.

8.2.6 Exponentiation algorithm

We will be using exponentiation in various different groups, so it is useful to look
at it at the group level. Let G be a group and let a ∈ G. Given an integer n ∈ Z
we want to compute the group element an as defined in Section 8.1.2. The naive
method, assuming for simplicity n ≥ 0, is to execute

y ← 1
For i = 1, . . . , n do y ← y · a EndFor
Return y

This might at first seem like a satisfactory algorithm, but actually it is very slow.
The number of group operations required is n, and the latter can be as large as the
order of the group. Since we are often looking at groups containing about 2512 ele-
ments, exponentiation by this method is not feasible. In the language of complexity
theory, the problem is that we are looking at an exponential time algorithm. This
is because the running time is exponential in the binary length |n| of the input n.
So we seek a better algorithm. We illustrate the idea of fast exponentiation with an
example.

Example 8.6 Suppose the binary length of n is 5, meaning the binary representa-
tion of n has the form b4b3b2b1b0. Then

n = 24b4 + 23b3 + 22b2 + 21b1 + 20b0

= 16b4 + 8b3 + 4b2 + 2b1 + b0 .

Our exponentiation algorithm will proceed to compute the values y5, y4, y3, y2, y1, y0

166 NUMBER-THEORETIC BACKGROUND

in turn, as follows:

y5 = 1

y4 = y2
5 · ab4 = ab4

y3 = y2
4 · ab3 = a2b4+b3

y2 = y2
3 · ab2 = a4b4+2b3+b2

y1 = y2
2 · ab1 = a8b4+4b3+2b2+b1

y0 = y2
1 · ab0 = a16b4+8b3+4b2+2b1+b0 .

Two group operations are required to compute yi from yi+1, and the number of
steps equals the binary length of n, so the algorithm is fast.

In general, we let bk−1 . . . b1b0 be the binary representation of n, meaning b0, . . . , bk−1

are bits such that n = 2k−1bk−1+2k−2bk−2+· · ·+21b1+20b0. The algorithm proceeds
as follows given any input a ∈ G and n ∈ Z:

Algorithm EXPG(a, n)
If n < 0 then a← a−1 and n← −n EndIf
Let bk−1 . . . b1b0 be the binary representation of n
y ← 1
For i = k − 1 downto 0 do

y ← y2 · abi
End For
Output y

The algorithm uses two group operations per iteration of the loop: one to mul-
tiply y by itself, another to multiply the result by abi . (The computation of abi
is without cost, since this is just a if bi = 1 and 1 if bi = 0.) So its total cost is
2k = 2|n| group operations. (We are ignoring the cost of the one possible inversion
in the case n < 0.) (This is the worst case cost. We observe that it actually takes
|n| + WH(n) group operations, where WH(n) is the number of ones in the binary
representation of n.)

We will typically use this algorithm when the group G is Z∗N and the group
operation is multiplication modulo N , for some positive integer N . We have denoted
this algorithm by MOD-EXP in Figure 8.1. (The input a is not required to be
relatively prime to N even though it usually will be, so is listed as coming from
ZN .) In that case, each group operation is implemented via MOD-MULT and takes
O(|N |2) time, so the running time of the algorithm is O(|n| · |N |2). Since n is
usually in ZN , this comes to O(|N |3). The salient fact to remember is that modular
exponentiation is a cubic time algorithm.

Mihir Bellare and Phillip Rogaway 167

8.3 Cyclic groups and generators

Let G be a group, let 1 denote its identity element, and let m = |G| be the order
of G. If g ∈ G is any member of the group, the order of g is defined to be the least
positive integer n such that gn = 1. We let

〈g〉 = { gi : i ∈ Zn } = {g0, g1, . . . , gn−1}
denote the set of group elements generated by g. A fact we do not prove, but is easy
to verify, is that this set is a subgroup of G. The order of this subgroup (which, by
definition, is its size) is just the order of g. Fact 8.3 tells us that the order n of g
divides the order m of the group. An element g of the group is called a generator
of G if 〈g〉 = G, or, equivalently, if its order is m. If g is a generator of G then for
every a ∈ G there is a unique integer i ∈ Zm such that gi = a. This i is called the
discrete logarithm of a to base g, and we denote it by DLogG,g(a). Thus, DLogG,g(·)
is a function that maps G to Zm, and moreover this function is a bijection, meaning
one-to-one and onto. The function of Zm to G defined by i 7→ gi is called the discrete
exponentiation function, and the discrete logarithm function is the inverse of the
discrete exponentiation function.

Example 8.7 Let p = 11, which is prime. Then Z∗11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
has order p− 1 = 10. Let us find the subgroups generated by group elements 2 and
5. We raise them to the powers i = 0, . . . , 9. We get:

i 0 1 2 3 4 5 6 7 8 9

2i mod 11 1 2 4 8 5 10 9 7 3 6

5i mod 11 1 5 3 4 9 1 5 3 4 9

Looking at which elements appear in the row corresponding to 2 and 5, respectively,
we can determine the subgroups these group elements generate:

〈2〉 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

〈5〉 = {1, 3, 4, 5, 9} .

Since 〈2〉 equals Z∗11, the element 2 is a generator. Since a generator exists, Z∗11

is cyclic. On the other hand, 〈5〉 6= Z∗11, so 5 is not a generator. The order of 2
is 10, while the order of 5 is 5. Note that these orders divide the order 10 of the
group. The table also enables us to determine the discrete logarithms to base 2 of
the different group elements:

a 1 2 3 4 5 6 7 8 9 10

DLogZ∗11,2
(a) 0 1 8 2 4 9 7 3 6 5

Later we will see a way of identifying all the generators given that we know one of
them.

168 NUMBER-THEORETIC BACKGROUND

The discrete exponentiation function is conjectured to be one-way (meaning the
discrete logarithm function is hard to compute) for some cyclic groups G. Due to
this fact we often seek cyclic groups for cryptographic usage. Here are three sources
of such groups. We will not prove any of the facts below; their proofs can be found
in books on algebra.

Fact 8.8 Let p be a prime. Then the group Z∗p is cyclic.

The operation here is multiplication modulo p, and the size of this group is ϕ(p) =
p− 1. This is the most common choice of group in cryptography.

Fact 8.9 Let G be a group and let m = |G| be its order. If m is a prime number,
then G is cyclic.

In other words, any group having a prime number of elements is cyclic. Note that it
is not for this reason that Fact 8.8 is true, since the order of Z∗p (where p is prime)
is p− 1, which is even if p ≥ 3 and 1 if p = 2, and is thus never a prime number.

The following is worth knowing if you have some acquaintance with finite fields.
Recall that a such a field is a set F equipped with two operations, an addition and
a multiplication. The identity element of the addition is denoted 0. When this is
removed from the field, what remains is a group under multiplication. This group
is always cyclic.

Fact 8.10 Let F be a finite field, and let F ∗ = F −{0}. Then F ∗ is a cyclic group
under the multiplication operation of F .

A finite field of order m exists if and only if m = pn for some prime p and integer
n ≥ 1. The finite field of order p is exactly Zp, so the case n = 1 of Fact 8.10 implies
Fact 8.8. Another interesting special case of Fact 8.10 is when the order of the field
is 2n, meaning p = 2, yielding a cyclic group of order 2n − 1.

When we want to use a cyclic group G in cryptography, we will often want to find
a generator for it. The process used is to pick group elements in some appropriate
way, and then test each chosen element to see whether it is a generator. One thus
has to solve two problems. One is how to test whether a given group element is a
generator, and the other is what process to use to choose the candidate generators
to be tested.

Let m = |G| and let 1 be the identity element of G. The obvious way to test
whether a given g ∈ G is a generator is to compute the values g1, g2, g3, . . . , stopping
at the first j such that gj = 1. If j = m then g is a generator. This test however
can require up to m group operations, which is not efficient, given that the groups
of interest are large, so we need better tests.

The obvious way to choose candidate generators is to cycle through the entire
group in some way, testing each element in turn. Even with a fast test, this can take
a long time, since the group is large. So we would also like better ways of picking
candidates.

Mihir Bellare and Phillip Rogaway 169

We address these problems in turn. Let us first look at testing whether a
given g ∈ G is a generator. One sees quickly that computing all powers of g as
in g1, g2, g3, . . . is not necessary. For example if we computed g8 and found that
this is not 1, then we know that g4 6= 1 and g2 6= 1 and g 6= 1. More generally, if
we know that gj 6= 1 then we know that gi 6= 1 for all i dividing j. This tells us
that it is better to first compute high powers of g, and use that to cut down the
space of exponents that need further testing. The following Proposition pinpoints
the optimal way to do this. It identifies a set of exponents m1, . . . ,mn such that
one need only test whether gmi 6= 1 for i = 1, . . . , n. As we will argue later, this set
is quite small.

Proposition 8.11 Let G be a cyclic group and let m = |G| be the size of G. Let
pα1

1 · · · pαnn be the prime factorization of m and let mi = m/pi for i = 1, . . . , n. Let
g ∈ G. Then g is a generator of G if and only if

For all i = 1, . . . , n: gmi 6= 1 , (8.1)

where 1 is the identity element of G.

Proof of Proposition 8.11: First suppose that g is a generator of g. Then
we know that the smallest positive integer j such that gj = 1 is j = m. Since
0 < mi < m, it must be that gmi 6= 1 for all i = 1, . . . ,m.

Conversely, suppose g satisfies the condition of Equation (8.1). We want to show
that g is a generator. Let j be the order of g, meaning the smallest positive integer
such that gj = 1. Then we know that j must divide the order m of the group,
meaning m = dj for some integer d ≥ 1. This implies that j = pβ1

1 · · · pβnn for
some integers β1, . . . , βn satisfying 0 ≤ βi ≤ αi for all i = 1, . . . , n. If j < m then
there must be some i such that βi < αi, and in that case j divides mi, which in
turn implies gmi = 1 (because gj = 1). So the assumption that Equation (8.1) is
true implies that j cannot be strictly less than m, so the only possibility is j = m,
meaning g is a generator.

The number n of terms in the prime factorization of m cannot be more than
lg(m), the binary logarithm of m. (This is because pi ≥ 2 and αi ≥ 1 for all
i = 1, . . . , n.) So, for example, if the group has size about 2512, then at most 512
tests are needed. So testing is quite efficient. One should note however that it
requires knowing the prime factorization of m.

Let us now consider the second problem we discussed above, namely how to
choose candidate group elements for testing. There seems little reason to think
that trying all group elements in turn will yield a generator in a reasonable amount
of time. Instead, we consider picking group elements at random, and then testing
them. The probability of success in any trial is |Gen(G)|/|G|. So the expected
number of trials before we find a generator is |G|/|Gen(G)|. To estimate the efficacy
of this method, we thus need to know the number of generators in the group. The

170 NUMBER-THEORETIC BACKGROUND

following Proposition gives a characterization of the generator set which in turn tells
us its size.

Proposition 8.12 Let G be a cyclic group and let g be a generator of G. Then

Gen(G) = { gi ∈ G : i ∈ Z∗m } ,
and the number of generators of G is

|Gen(G)| = ϕ(m) ,

where m = |G| is the size of G.

Proof of Proposition 8.12: The second equation follows immediately from the
first:

|Gen(G)| =
∣∣∣{ gi ∈ G : i ∈ Z∗m }

∣∣∣ = |Z∗m| = ϕ(m) .

We now prove the first equation. First, we show that if i ∈ Z∗m then gi ∈ Gen(G).
Second, we show that if i ∈ Zm − Z∗m then gi 6∈ Gen(G).

So first suppose i ∈ Z∗m, and let h = gi. We want to show that h is a generator of
G. It suffices to show that the only possible value of j ∈ Zm such that hj = 1 is
j = 0, so let us now show this. Let j ∈ Zm be such that hj = 1. Since h = gi we
have

1 = hj = gij mod m .

Since g is a generator, it must be that ij ≡ 0 (mod m), meaning m divides ij. But
i ∈ Z∗m so gcd(i,m) = 1. So it must be that m divides j. But j ∈ Zm and the only
member of this set divisible by m is 0, so j = 0 as desired.

Next, suppose i ∈ Zm − Z∗m and let h = gi. To show that h is not a generator
it suffices to show that there is some non-zero j ∈ Zm such that hj = 1. Let
d = gcd(i,m). Our assumption i ∈ Zm − Z∗m implies that d > 1. Let j = m/d,
which is a non-zero integer in Zm because d > 1. Then the following shows that
hj = 1, completing the proof:

hj = gij = gi·m/d = gm·i/d = (gm)i/d = 1i/d = 1.

We used here the fact that d divides i and that gm = 1.

Example 8.13 Let us determine all the generators of the group Z∗11. Let us first
use Proposition 8.11. The size of Z∗11 is m = ϕ(11) = 10, and the prime factorization
of 10 is 21 ·51. Thus, the test for whether a given a ∈ Z∗11 is a generator is that a2 6≡ 1
(mod 11) and a5 6≡ 1 (mod 11). Let us compute a2 mod 11 and a5 mod 11 for all
group elements a. We get:

a 1 2 3 4 5 6 7 8 9 10

a2 mod 11 1 4 9 5 3 3 5 9 4 1

a5 mod 11 1 10 1 1 1 10 10 10 1 10

Mihir Bellare and Phillip Rogaway 171

The generators are those a for which the corresponding column has a no entry equal
to 1, meaning in both rows, the entry for this column is different from 1. So

Gen(Z∗11) = {2, 6, 7, 8} .
Now, let us use Proposition 8.12 and double-check that we get the same thing. We
saw in Example 8.7 that 2 was a generator of Z∗11. As per Proposition 8.12, the set
of generators is

Gen(Z∗11) = { 2i mod 11 : i ∈ Z∗10 } .
This is because the size of the group is m = 10. Now, Z∗10 = {1, 3, 7, 9}. The values
of 2i mod 11 as i ranges over this set can be obtained from the table in Example 8.7
where we computed all the powers of 2. So

{ 2i mod 11 : i ∈ Z∗10 } = {21 mod 11, 23 mod 11, 27 mod 11, 29 mod 11}

= {2, 6, 7, 8} .

This is the same set we obtained above via Proposition 8.11.
If we try to find a generator by picking group elements at random and then

testing using Proposition 8.11, each trial has probability of success ϕ(10)/10 = 4/10,
so we would expect to find a generator in 10/4 trials. We can optimize slightly by
noting that 1 and −1 can never be generators, and thus we only need pick candidates
randomly from Z∗11 − {1, 10}. In that case, each trial has probability of success
ϕ(10)/8 = 4/8 = 1/2, so we would expect to find a generator in 2 trials.

When we want to work in a cyclic group in cryptography, the most common
choice is to work over Z∗p for a suitable prime p. The algorithm for finding a generator
would be to repeat the process of picking a random group element and testing it,
halting when a generator is found. In order to make this possible we choose p in
such a way that the prime factorization of the order p−1 of Z∗p is known. In order to
make the testing fast, we choose p so that p− 1 has few prime factors. Accordingly,
it is common to choose p to equal 2q + 1 for some prime q. In this case, the prime
factorization of p − 1 is 21q1, so we need raise a candidate to only two powers to
test whether or not it is a generator. In choosing candidates, we optimize slighly
by noting that 1 and −1 are never generators, and accordingly pick the candidates
from Z∗p − {1, p− 1} rather than from Z∗p. So the algorithm is as follows:

Algorithm FIND-GEN(p)
q ← (p− 1)/2
found← 0
While (found 6= 1) do

g
R← Z∗p − {1, p− 1}

If (g2 mod p 6= 1) and (gq mod p 6= 1) then found← 1
EndWhile
Return g

172 NUMBER-THEORETIC BACKGROUND

Proposition 8.11 tells us that the group element g returned by this algorithm is
always a generator of Z∗p. By Proposition 8.12, the probability that an iteration of
the algorithm is successful in finding a generator is

|Gen(Z∗p)|
|G| − 2

=
ϕ(p− 1)
p− 3

=
ϕ(2q)
2q − 2

=
q − 1
2q − 2

=
1
2
.

Thus the expected number of iterations of the while loop is 2.

8.4 Squares and non-squares

An element a of a group G is called a square, or quadratic residue if it has a square
root, meaning there is some b ∈ G such that b2 = a in G. We let

QR(G) = { g ∈ G : g is quadratic residue in G }
denote the set of all squares in the group G. We leave to the reader to check that
this set is a subgroup of G.

We are mostly interested in the case where the group G is Z∗N for some integer
N . An integer a is called a square mod N or quadratic residue mod N if a mod N is
a member of QR(Z∗N). If b2 ≡ a (mod N) then b is called a square-root of a mod
N . An integer a is called a non-square mod N or quadratic non-residue mod N if
a mod N is a member of Z∗p −QR(Z∗N). We will begin by looking at the case where
N = p is a prime. In this case we define a function Jp: Z∗p → {−1, 1} by

Jp(a) =

 1 if a is a square mod p

−1 otherwise.

for all a ∈ Z∗p. We call Jp(a) the Legendre symbol of a. Thus, the Legendre symbol
is simply a compact notation for telling us whether or not its argument is a square
modulo p.

Before we move to developing the theory, it may be useful to look at an example.

Example 8.14 Let p = 11, which is prime. Then Z∗11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
has order p− 1 = 10. A simple way to determine QR(Z∗11) is to square all the group
elements in turn:

a 1 2 3 4 5 6 7 8 9 10

a2 mod 11 1 4 9 5 3 3 5 9 4 1

The squares are exactly those elements that appear in the second row, so

QR(Z∗11) = {1, 3, 4, 5, 9} .
The number of squares is 5, which we notice equals (p− 1)/2. This is not a coinci-
dence, as we will see. Also notice that each square has exactly two different square
roots. (The square roots of 1 are 1 and 10; the square roots of 3 are 5 and 6; the
square roots of 4 are 2 and 9; the square roots of 5 are 4 and 7; the square roots of
9 are 3 and 8.)

Mihir Bellare and Phillip Rogaway 173

Since 11 is prime, we know that Z∗11 is cyclic, and as we saw in Example 8.7, 2
is a generator. (As a side remark, we note that a generator must be a non-square.
Indeed, if a = b2 is a square, then a5 = b10 = 1 modulo 11 because 10 is the order
of the group. So aj = 1 modulo 11 for some positive j < 10, which means a is not a
generator. However, not all non-squares need be generators.) Below, we reproduce
from that example the table of discrete logarithms of the group elements. We also
add below it a row providing the Legendre symbols, which we know because, above,
we identified the squares. We get:

a 1 2 3 4 5 6 7 8 9 10

DLogZ∗11,2
(a) 0 1 8 2 4 9 7 3 6 5

J11(a) 1 −1 1 1 1 −1 −1 −1 1 −1

We observe that the Legendre symbol of a is 1 if its discrete logarithm is even,
and −1 if the discrete logarithm is odd, meaning the squares are exactly those
group elements whose discrete logarithm is even. It turns out that this fact is true
regardless of the choice of generator.

As we saw in the above example, the fact that Z∗p is cyclic is useful in under-
standing the structure of the subgroup of quadratic residues QR(Z∗p). The following
Proposition summarizes some important elements of this connection.

Proposition 8.15 Let p ≥ 3 be a prime and let g be a generator of Z∗p. Then

QR(Z∗p) = { gi : i ∈ Zp−1 and i is even } , (8.2)

and the number of squares mod p is∣∣∣QR(Z∗p)
∣∣∣ =

p− 1
2

.

Furthermore, every square mod p has exactly two different square roots mod p.

Proof of Proposition 8.15: Let

E = { gi : i ∈ Zp−1 and i is even } .
We will prove that E = QR(Z∗p) by showing first that E ⊆ QR(Z∗p) and second that
QR(Z∗p) ⊆ E.

To show that E ⊆ QR(Z∗p), let a ∈ E. We will show that a ∈ QR(Z∗p). Let
i = DLogZ∗p,g

(a). Since a ∈ E we know that i is even. Let j = i/2 and note that
j ∈ Zp−1. Clearly

(gj)2 ≡ g2j mod p−1 ≡ g2j ≡ gi (mod p) ,

so gj is a square root of a = gi. So a is a square.

To show that QR(Z∗p) ⊆ E, let b be any element of Z∗p. We will show that b2 ∈ E.

174 NUMBER-THEORETIC BACKGROUND

Let j = DLogZ∗p,g
(b). Then

b2 ≡ (gj)2 ≡ g2j mod p−1 ≡ g2j (mod p) ,

the last equivalence being true because p− 1 is even. This shows that b2 ∈ E.

The number of even integers in Zp−1 is exactly (p − 1)/2 since p − 1 is even. The
claim about the size of QR(Z∗p) thus follows from Equation (8.2). It remains to
justify the claim that every square mod p has exactly two square roots mod p. This
can be seen by a counting argument, as follows.

Suppose a is a square mod p. Let i = DLogZ∗p,g
(a). We know from the above that

i is even. Let x = i/2 and let y = x + (p − 1)/2 mod (p − 1). Then gx is a square
root of a. Furthermore

(gy)2 ≡ g2y ≡ g2x+(p−1) ≡ g2xgp−1 ≡ a · 1 ≡ a (mod p) ,

so gy is also a square root of a. Since i is an even number in Zp−1 and p− 1 is even,
it must be that 0 ≤ x < (p − 1)/2. It follows that (p − 1)/2 ≤ y < p − 1. Thus
x 6= y. This means that a has as least two square roots. This is true for each of the
(p − 1)/2 squares mod p. So the only possibility is that each of these squares has
exactly two square roots.

Suppose we are interested in knowing whether or not a given a ∈ Z∗p is a square mod
p, meaning we want to know the value of the Legendre symbol Jp(a). Proposition 8.15
tells us that

Jp(a) = (−1)DLogZ∗p,g
(a)

,

where g is any generator of Z∗p. This however is not very useful in computing Jp(a),
because it requires knowing the discrete logarithm of a, which is hard to compute.
The following Proposition says that the Legendre symbols of a modulo an odd prime
p can be obtained by raising a to the power (p − 1)/2, and helps us compute the
Legendre symbol.

Proposition 8.16 Let p ≥ 3 be a prime. Then

Jp(a) ≡ a
p−1

2 (mod p)

for any a ∈ Z∗p.

Now one can determine whether or not a is a square mod p by running the algorithm
MOD-EXP on inputs a, (p − 1)/2, p. If the algorithm returns 1 then a is a square
mod p, and if it returns p−1 (which is the same as −1 mod p) then a is a non-square
mod p. Thus, the Legendre symbol can be computed in time cubic in the length
of p.

Towards the proof of Proposition 8.16, we begin with the following lemma which
is often useful in its own right.

Lemma 8.17 Let p ≥ 3 be a prime. Then

g
p−1

2 ≡ −1 (mod p)

Mihir Bellare and Phillip Rogaway 175

for any generator g of Z∗p.

Proof of Lemma 8.17: We begin by observing that 1 and −1 are both square
roots of 1 mod p, and are distinct. (It is clear that squaring either of these yields
1, so they are square roots of 1. They are distinct because −1 equals p− 1 mod p,
and p− 1 6= 1 because p ≥ 3.) By Proposition 8.15, these are the only square roots
of 1. Now let

b = g
p−1

2 mod p .
Then b2 ≡ 1 (mod p), so b is a square root of 1. By the above b can only be 1 or
−1. However, since g is a generator, b cannot be 1. (The smallest positive value of
i such that gi is 1 mod p is i = p− 1.) So the only choice is that b ≡ −1 (mod p),
as claimed.

Proof of Proposition 8.16: By definition of the Legendre symbol, we need to
show that

a
p−1

2 ≡

 1 (mod p) if a is a square mod p

−1 (mod p) otherwise.

Let g be a generator of Z∗p and let i = DLogZ∗p,g
(a). We consider separately the

cases of a being a square and a being a non-square.

Suppose a is a square mod p. Then Proposition 8.15 tells us that i is even. In that
case

a
p−1

2 ≡ (gi)
p−1

2 ≡ gi·
p−1

2 ≡ (gp−1)i/2 ≡ 1 (mod p) ,
as desired.

Now suppose a is a non-square mod p. Then Proposition 8.15 tells us that i is odd.
In that case

a
p−1

2 ≡ (gi)
p−1

2 ≡ gi·
p−1

2 ≡ g(i−1)· p−1
2

+ p−1
2 ≡ (gp−1)(i−1)/2 · g

p−1
2 ≡ g

p−1
2 (mod p) .

However Lemma 8.17 tells us that the last quantity is −1 modulo p, as desired.

The following Proposition says that ab mod p is a square if and only if either
both a and b are squares, or if both are non-squares. But if one is a square and
the other is not, then ab mod p is a non-square. This can be proved by using either
Proposition 8.15 or Proposition 8.16. We use the latter in the proof. You might try,
as an exercise, to reprove the result using Proposition 8.15 instead.

Proposition 8.18 Let p ≥ 3 be prime. Then

Jp(ab mod p) = Jp(a) · Jp(b)
for all a, b ∈ Z∗p.

Proof of Proposition 8.18: Using Proposition 8.16 we get

Jp(ab mod p) ≡ (ab)
p−1

2 ≡ a
p−1

2 b
p−1

2 ≡ Jp(a) · Jp(b) (mod p) .

176 NUMBER-THEORETIC BACKGROUND

The two quantities we are considering both being either 1 or −1, and equal modulo
p, must then be actually equal.

A quantity of cryptographic interest is the Diffie-Hellman (DH) key. Having
fixed a cyclic group G and generator g for it, the DH key associated to elements
X = gx and Y = gy of the group is the group element gxy. The following Proposition
tells us that the DH key is a square if either X or Y is a square, and otherwise is a
non-square.

Proposition 8.19 Let p ≥ 3 be a prime and let g be a generator of Z∗p. Then

Jp(gxy mod p) = 1 if and only if Jp(gx mod p) = 1 or Jp(gy mod p) = 1 ,

for all x, y ∈ Zp−1

Proof of Proposition 8.19: By Proposition 8.15, it suffices to show that

xy mod (p− 1) is even if and only if x is even or y is even .

But since p− 1 is even, xy mod (p− 1) is even exactly when xy is even, and clearly
xy is even exactly if either x or y is even.

With a cyclic group G and generator g of G fixed, we will be interested in the
distribution of the DH key gxy in G, under random choices of x, y from Zm, where
m = |G|. One might at first think that in this case the DH key is a random group
element. The following proposition tells us that in the group Z∗p of integers modulo
a prime, this is certainly not true. The DH key is significantly more likely to be
a square than a non-square, and in particular is thus not even almost uniformly
distributed over the group.

Proposition 8.20 Let p ≥ 3 be a prime and let g be a generator of Z∗p. Then

Pr
[
x

R← Zp−1 ; y R← Zp−1 : Jp(gxy) = 1
]

equals 3/4.

Proof of Proposition 8.20: By Proposition 8.20 we need only show that

Pr
[
x

R← Zp−1 ; y R← Zp−1 : Jp(gx) = 1 or Jp(gy) = 1
]

equals 3/4. The probability in question is 1− α where

α = Pr
[
x

R← Zp−1 ; y R← Zp−1 : Jp(gx) = −1 and Jp(gy) = −1
]

= Pr
[
x

R← Zp−1 : Jp(gx) = −1
]
· Pr

[
y

R← Zp−1 : Jp(gy) = −1
]

=
|QR(Z∗p)|
|Z∗p|

·
|QR(Z∗p)|
|Z∗p|

=
(p− 1)/2
p− 1

· (p− 1)/2
p− 1

Mihir Bellare and Phillip Rogaway 177

=
1
2
· 1

2

=
1
4
.

Thus 1 − α = 3/4 as desired. Here we used Proposition 8.15 which told us that
|QR(Z∗p)| = (p− 1)/2.

The above Propositions, combined with Proposition 8.16 (which tells us that
quadratic residuosity modulo a prime can be efficiently tested), will later lead us to
pinpoint weaknesses in certain cryptographic schemes in Z∗p.

8.5 Groups of prime order

A group of prime order is a group G whose order m = |G| is a prime number. Such
a group is always cyclic. These groups turn out to be quite useful in cryptography,
so let us take a brief look at them and some of their properties.

An element h of a group G is called non-trivial if it is not equal to the identity
element of the group.

Proposition 8.21 Suppose G is a group of order q where q is a prime, and h is
any non-trivial member of G. Then h is a generator of G.

Proof of Proposition 8.21: It suffices to show that the order of h is q. We know
that the order of any group element must divide the order of the group. Since the
group has prime order q, the only possible values for the order of h are 1 and q. But
h does not have order 1 since it is non-trivial, so it must have order q.

A common way to obtain a group of prime order for cryptographic schemes is
as a subgroup of a group of integers modulo a prime. We pick a prime p having
the property that q = (p − 1)/2 is also prime. It turns out that the subgroup of
quadratic residues modulo p then has order q, and hence is a group of prime order.
The following proposition summarizes the facts for future reference.

Proposition 8.22 Let q ≥ 3 be a prime such that p = 2q + 1 is also prime. Then
QR(Z∗p) is a group of prime order q. Furthermore, if g is any generator of Z∗p, then
g2 mod p is a generator of QR(Z∗p).

Note that the operation under which QR(Z∗p) is a group is multiplication modulo p,
the same operation under which Z∗p is a group.

Proof of Proposition 8.22: We know that QR(Z∗p) is a subgroup, hence a group
in its own right. Proposition 8.15 tells us that |QR(Z∗p)| is (p− 1)/2, which equals q
in this case. Now let g be a generator of Z∗p and let h = g2 mod p. We want to show
that h is a generator of QR(Z∗p). As per Proposition 8.21, we need only show that

178 NUMBER-THEORETIC BACKGROUND

h is non-trivial, meaning h 6= 1. Indeed, we know that g2 6≡ 1 (mod p), because g,
being a generator, has order p and our assumptions imply p > 2.

Example 8.23 Let q = 5 and p = 2q+ 1 = 11. Both p and q are primes. We know
from Example 8.14 that

QR(Z∗11) = {1, 3, 4, 5, 9} .
This is a group of prime order 5. We know from Example 8.7 that 2 is a generator
of Z∗p. Proposition 8.22 tells us that 4 = 22 is a generator of QR(Z∗11). We can verify
this by raising 4 to the powers i = 0, . . . , 4:

i 0 1 2 3 4

4i mod 11 1 4 5 9 3

We see that the elements of the last row are exactly those of the set QR(Z∗11).

Let us now explain what we perceive to be the advantage conferred by working
in a group of prime order. Let G be a cyclic group, and g a generator. We know that
the discrete logarithms to base g range in the set Zm where m = |G| is the order
of G. This means that arithmatic in these exponents is modulo m. If G has prime
order, then m is prime. This means that any non-zero exponent has an inverse
modulo m. In other words, in working in the exponents, we can divide. It is this
that turns out to be useful.

As an example illustrating how we use this, let us return to the problem of the
distribution of the DH key that we looked at in Section 8.4. Recall the question
is that we draw x, y independently at random from Zm and then ask how gxy is
distributed over G. We saw that when G = Z∗p for a prime p ≥ 3, this distribution
was noticably different from uniform. In a group of prime order, the distribution of
the DH key, in contrast, is very close to uniform over G. It is not quite uniform,
because the identity element of the group has a slightly higher probability of being
the DH key than other group elements, but the deviation is small enough to be
negligible for groups of reasonably large size. The following proposition summarizes
the result.

Proposition 8.24 Suppose G is a group of order q where q is a prime, and let g
be a generator of G. Then for any Z ∈ G we have

Pr
[
x

R← Zq ; y R← Zq : gxy = Z
]

=

1
q

(
1− 1

q

)
if Z 6= 1

1
q

(
2− 1

q

)
if Z = 1,

where 1 denotes the identity element of G.

Mihir Bellare and Phillip Rogaway 179

Proof of Proposition 8.24: First suppose Z = 1. The DH key gxy is 1 if and only
if either x or y is 0 modulo q. Each is 0 with probability 1/q and these probabilities
are independent, so the probability that either x or y is 0 is 2/q− 1/q2, as claimed.

Now suppose Z 6= 1. Let z = DLogG,g(Z), meaning z ∈ Z∗q and gz = Z. We will
have gxy ≡ Z (mod p) if and only if xy ≡ z (mod q), by the uniqueness of the
discrete logarithm. For any fixed x ∈ Z∗q , there is exactly one y ∈ Zq for which
xy ≡ z (mod q), namely y = x−1 mod q, the multiplicative inverse of x in the
group Z∗q . (Here we are making use of the fact that q is prime, since otherwise the
inverse of x modulo q may not exist.) Now, suppose we choose x at random from
Zq. If x = 0 then, regardless of the choice of y ∈ Zq, we will not have xy ≡ z
(mod q), because z 6≡ 0 (mod q). On the other hand, if x 6= 0 then there is exactly
1/q probability that the randomly chosen y is such that xy ≡ z (mod q). So the
probability that xy ≡ z (mod q) when both x and y are chosen at random in Zq is

q − 1
q
· 1
q

=
1
q

(
1− 1

q

)
as desired. Here, the first term is because when we choose x at random from Zq, it
has probability (q − 1)/q of landing in Z∗q .

8.6 Historical Notes

8.7 Exercises and Problems

180 NUMBER-THEORETIC BACKGROUND

Chapter 9

Asymmetric Encryption

181

182 ASYMMETRIC ENCRYPTION

Chapter 10

Digital signatures

183

184 DIGITAL SIGNATURES

Chapter 11

Key Distribution

185

186 KEY DISTRIBUTION

Chapter 12

The Asymptotic Approach

187

188 THE ASYMPTOTIC APPROACH

Chapter 13

Interactive Proofs and Zero Knowledge

189

190 INTERACTIVE PROOFS AND ZERO KNOWLEDGE

Chapter 14

More Protocols

191

192 MORE PROTOCOLS

Part I

Appendices

193

Appendix A

The Birthday Problem

The setting is that we have q balls. View them as numbered, 1, . . . , q. We also have
N bins, where N ≥ q. We throw the balls at random into the bins, one by one,
beginning with ball 1. At random means that each ball is equally likely to land in
any of the N bins, and the probabilities for all the balls are independent. A collision
is said to occur if some bin ends up containing at least two balls. We are interested
in C(N, q), the probability of a collision.

The birthday paradox is the case where N = 365. We are asking what is the
chance that, in a group of q people, there are two people with the same birthday,
assuming birthdays are randomly and independently distributed over the days of
the year. It turns out that when q hits

√
365 the chance of a birthday collision is

already quite high, around 1/2.
This fact can seem surprising when first heard. The reason it is true is that the

collision probability C(N, q) grows roughly proportional to q2/N . This is the fact to
remember. The following gives a more exact rendering, providing both upper and
lower bounds on this probability.

Proposition A.1 Let C(N, q) denote the probability of at least one collision when
we throw q ≥ 1 balls at random into N ≥ q buckets. Then

C(N, q) ≤ q(q − 1)
2N

.

Also

C(N, q) ≥ 1− e−q(q−1)/2N ,

and

C(N, q) ≥ 0.3 · q(q − 1)
N

for 1 ≤ q ≤
√

2N .

195

196 THE BIRTHDAY PROBLEM

In the proof we will find the following inequalities useful to make estimates.

Proposition A.2 The inequality(
1− 1

e

)
· x ≤ 1− e−x ≤ x .

is true for any real number x with 0 ≤ x ≤ 1.

Proof of Proposition A.1: Let Ci be the event that the i-th ball collides with
one of the previous ones. Then Pr [Ci] is at most (i − 1)/N , since when the i-th
ball is thrown in, there are at most i− 1 different occupied slots and the i-th ball is
equally likely to land in any of them. Now

C(N, q) = Pr [C1 ∨ C2 ∨ · · · ∨ Cq]

≤ Pr [C1] + Pr [C2] + · · ·+ Pr [Cq]

≤ 0
N

+
1
N

+ · · ·+ q − 1
N

=
q(q − 1)

2N
.

This proves the upper bound. For the lower bound we let Di be the event that
there is no collision after having thrown in the i-th ball. If there is no collision after
throwing in i balls then they must all be occupying different slots, so the probability
of no collision upon throwing in the (i+ 1)-st ball is exactly (N − i)/N . That is,

Pr [Di+1 | Di] =
N − i
N

= 1− i

N
.

Also note Pr [D1] = 1. The probability of no collision at the end of the game can
now be computed via

1− C(N, q) = Pr [Dq]

= Pr [Dq | Dq−1] · Pr [Dq−1]

...
...

=
q−1∏
i=1

Pr [Di+1 | Di]

=
q−1∏
i=1

(
1− i

N

)
.

Note that i/N ≤ 1. So we can use the inequality 1 − x ≤ e−x for each term of the
above expression. This means the above is not more than

q−1∏
i=1

e−i/N = e−1/N−2/N−···−(q−1)/N = e−q(q−1)/2N .

197

Putting all this together we get

C(N, q) ≥ 1− e−q(q−1)/2N ,

which is the second inequality in Proposition A.1. To get the last one, we need to
make some more estimates. We know q(q−1)/2N ≤ 1 because q ≤

√
2N , so we can

use the inequality 1− e−x ≥ (1− e−1)x to get

C(N, q) ≥
(

1− 1
e

)
· q(q − 1)

2N
.

A computation of the constant here completes the proof.

198 THE BIRTHDAY PROBLEM

Appendix B

Probability Theory

199

200 PROBABILITY THEORY

Bibliography

[1] Mihir Bellare. Practice-oriented provable security. Available via http://
www-cse.ucsd.edu/users/mihir/crypto-papers.html.

[2] M. Bellare, J. Kilian and P. Rogaway. The security of the cipher
block chaining message authentication code. Journal of Computer and System
Sciences , Vol. 61, No. 3, Dec 2000, pp. 362–399.

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A Concrete Se-
curity Treatment of Symmetric Encryption: Analysis of the DES Modes of
Operation. Proceedings of the 38th Symposium on Foundations of Computer
Science, IEEE, 1997.

[4] M. Bellare and O. Goldreich. On defining proofs of knowledge. Ad-
vances in Cryptology – CRYPTO ’92, Lecture Notes in Computer Science
Vol. 740, E. Brickell ed., Springer-Verlag, 1992.

[5] M. Bellare, R. Impagliazzo and M. Naor. Does parallel repetition
lower the error in computationally sound protocols? Proceedings of the 38th
Symposium on Foundations of Computer Science, IEEE, 1997.

[6] G. Brassard, D. Chaum, and C. Crépean. Minimum Disclosure Proofs
of knowledge. Journal of Computer and System Sciences, Vol. 37, No. 2, 1988,
pp. 156–189.

[7] Data Encryption Standard. FIPS PUB 46, Appendix A, Federal Information
Processing Standards Publication, January 15, 1977, US Dept. of Commerce,
National Bureau of Standards.

[8] J. Daemen and V. Rijmen. AES proposal: Rijndael. http://csrc.nist.
gov/encryption/aes/rijndael/Rijndael.pdf.

[9] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans.
Info. Theory, Vol. IT-22, No. 6, November 1976, pp. 644–654.

[10] U. Feige, A. Fiat, and A. Shamir. Zero-Knowledge Proofs of Identity.
Journal of Cryptology, Vol. 1, 1988, pp. 77–94.

201

202 BIBLIOGRAPHY

[11] U. Feige, and A. Shamir. Witness Indistinguishability and Witness Hiding
Protocols. Proceedings of the 22nd Annual Symposium on the Theory of
Computing, ACM, 1990.

[12] O. Goldreich. A uniform complexity treatment of encryption and zero-
knowledge. Journal of Cryptology, Vol. 6, 1993, pp. 21-53.

[13] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge
Proof Systems. SIAM Journal on Computing, Vol. 25, No. 1, 1996, pp. 169–
192.

[14] O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yields Noth-
ing but Their Validity, or All Languages in NP Have Zero-Knowledge Proof
Systems. Journal of the ACM, Vol. 38, No. 1, July 1991, pp. 691–729.

[15] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge
Proof Systems. Journal of Cryptology, Vol. 7, No. 1, 1994, pp. 1–32.

[16] O. Goldreich, S. Goldwasser and S. Micali. How to construct random
functions. Journal of the ACM, Vol. 33, No. 4, 1986, pp. 210–217.

[17] S. Goldwasser and S. Micali. Probabilistic encryption. J. of Computer
and System Sciences, Vol. 28, April 1984, pp. 270–299.

[18] S. Goldwasser, S. Micali and C. Rackoff. The knowledge complexity
of interactive proof systems. SIAM J. of Comp., Vol. 18, No. 1, pp. 186–208,
February 1989.

[19] S. Goldwasser, S. Micali and R. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal of Computing,
Vol. 17, No. 2, pp. 281–308, April 1988.

[20] A. Joux and R. Lercier. Computing a discrete logarithm in GF(p),
p a 120 digits prime, http://www.medicis.polytechnique.fr/˜lercier/
english/dlog.html.

[21] D. Kahn. The Codebreakers; The Comprehensive History of Secret Com-
munication from Ancient Times to the Internet. Scribner, Revised edition,
December 1996.

[22] M. Luby and C. Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput, Vol. 17, No. 2, April 1988.

[23] M. Luby and C. Rackoff. A study of password security. Advances in
Cryptology – CRYPTO ’87, Lecture Notes in Computer Science Vol. 293,
C. Pomerance ed., Springer-Verlag, 1987.

BIBLIOGRAPHY 203

[24] C. Lund, L. Fortnow, H. Karloff and N. Nisan. Algebraic Methods
for Interactive Proof Systems. Journal of the ACM, Vol. 39, No. 4, 1992,
pp. 859–868.

[25] S. Micali, C. Rackoff and R. Sloan. The notion of security for proba-
bilistic cryptosystems. SIAM J. of Computing, April 1988.

[26] M. Naor and M. Yung, Public-key cryptosystems provably secure against
chosen ciphertext attacks. Proceedings of the 22nd Annual Symposium on
the Theory of Computing, ACM, 1990.

[27] A. Odlyzko. The rise and fall of knapsack cryptosystems. Available via
http://www.research.att.com/˜amo/doc/cnt.html.

[28] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. Advances in Cryptology – CRYPTO ’91,
Lecture Notes in Computer Science Vol. 576, J. Feigenbaum ed., Springer-
Verlag, 1991.

[29] Ronald Rivest, Matt Robshaw, Ray Sidney, and Yiquin Yin. The
RC6 Block Cipher. Available via http://theory.lcs.mit.edu/˜rivest/
publications.html.

[30] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM,
Vol. 21, No. 2, February 1978, pp. 120–126.

[31] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, 1992,
pp. 869–877.

[32] D. Weber and T. Denny. The solution of Mccurley’s discrete log challenge.
Advances in Cryptology – CRYPTO ’98, Lecture Notes in Computer Science
Vol. 1462, H. Krawczyk ed., Springer-Verlag, 1998.

