
Communications Security
for the Twenty-first Century:
The Advanced Encryption
Standard
Susan Landau

450 NOTICES OF THE AMS VOLUME 47, NUMBER 4

C
ryptography was once the domain of
generals and small children, but the ad-
vent of the Information Age changed
that. In the early 1970s the National
Security Agency (NSA) and the National

Bureau of Standards (NBS) realized that noncom-
batant adults needed to protect their sensitive,
but unclassified, information. Though NSA is the
usual government agency for building cryptosys-
tems, the agency was unwilling to design a cryp-
tosystem for public consumption.

Instead, NBS issued a public solicitation for a
cryptographic algorithm. IBM responded. The com-
pany submitted a cryptosystem with a 56-bit key.
(An assumption, first codified by Kerckhoffs in
the nineteenth century, holds that security of a
cryptosystem should rest entirely in the secrecy of
the key and not in the secrecy of the algorithm. A
conventional cryptosystem is considered secure
when its work factor—the amount of time needed
to decrypt—is about 2key length.) The new algorithm
became the Data Encryption Standard (DES). In the
first article of the two-part series, I described DES
and the design principles behind “block-structured
algorithms”. The box in the present article briefly
defines some technical terms that were introduced
in my DES article; more detail about these defini-
tions may be found in that article. In the present
article I describe the mathematics and politics be-
hind DES’s successor: the Advanced Encryption
Standard.

A Twenty-Year Battle over Cryptography
Many in industry and academia were skeptical of
DES. Concern centered on whether NSA had placed
a “trapdoor” in the algorithm (a shortcut to de-
cryption). There were also objections to DES’s key
length; critics believed that the relatively short
key length had been chosen so that NSA could
read DES-encrypted traffic.

During the next two decades there were fre-
quent battles over cryptography. Using export con-
trols and threats of other legal action, the U.S.
government attempted to stop the spread of strong
cryptography.1 Seeking to build secure computer
systems, industry found export controls on cryp-
tography to be a major obstacle—though, to be
sure, not the only one.

In the late 1970s several MIT faculty were told
they would be violating laws on arms exports if they
presented their research in public-key cryptogra-
phy at a conference in Ithaca, New York. Foreign
nationals would be present, and discussion of the
cryptographic research in such a venue was viewed
as export of military arms.

Several inventors of cryptographic devices found
themselves silenced when secrecy orders, which for-
bid inventors from publicly discussing their work,
were placed on their patent applications. NSA
director Bobby Inman warned that if scientists did

Susan Landau is an associate editor of the Notices and is
senior staff engineer at Sun Microsystems Inc. Her e-mail
address is susan.landau@east.sun.com.

Editor’s Note: This article is the second in a two-part series
by the author in the Notices. The first article in the series is
“Standing the Test of Time: The Data Encryption Standard”,
which appeared in the March 2000 Notices, pages 341–349.

1“Strong cryptography” is a floating term, meaning what-
ever cryptography is invulnerable to present technology.
In the 1970s, 56-bit DES was strong. Currently, 56 bits is
viewed as insecure, and 70–90 bits is strong. For appli-
cations that will need to be secure well into the twenty-
first century, strong is a key size of 128 bits or more.

fea-landau.qxp 2/11/00 10:45 AM Page 450

APRIL 2000 NOTICES OF THE AMS 451

not exercise “prior restraint” on cryptographic pub-
lications, the NSA might seek legislation that would.

Tensions were high. Under lawyers’ advice, the
MIT professors presented their work, the now well-
known RSA algorithm. The secrecy orders on the
patent applications were lifted, and an American
Council of Education study recommended a two-
year experiment in NSA prepublication review of
research in cryptography. Although voluntary, the
reviewing experiment eased the situation, and the
informal arrangement continues to this day. Over
the years relations between the cryptographic re-
search community and the NSA have grown ami-
cable. But if cryptographic research went public,
cryptographic products did not spread widely.

Export control prevented that. Cryptographic
algorithms are intellectual ideas written on pieces of
paper and are protected in the U.S. by the First
Amendment. Cryptographic products are not; they
are part of manufactured goods. Cryptographic sys-
tems, and the products that incorporate them, are
subject to export controls. The United States is the
undisputed leader in computer hardware and soft-
ware. Cryptography is most useful when integrated
into large systems, and controls on U.S. crypto-
graphic products effectively prevent the spread
of cryptography. Because U.S. manufacturers are
reluctant to develop and maintain products with
differing grades of cryptography for domestic and
foreign consumption, export controls also effec-
tively limit domestic use of strong cryptography.
When strong encryption is available, products with
shorter keys become difficult to sell; manufacturers
are unwilling to risk overseas markets by supplying
better products domestically.

The government’s tactics sometimes led to
absurdities. In 1994 a security engineer applied
for a license to export a copy of the popular book
Applied Cryptography. Export of the book was per-
mitted under the First Amendment, of course, but
an export license for the book’s appendix, which
contains source code for cryptographic algorithms
on a floppy disk, was denied. In another case, a
mathematics professor at the University of Illinois
wanted to post cryptographic code on the Internet
and sought an opinion from the Department of
State, which said no. Both cases are wending their
way through the courts.

Industry battles centered on bits: how many
would the government allow in exported prod-
ucts? Under a 1992 agreement the magic number
was 40 bits. DES is 56 bits. With narrow exceptions,
products incorporating DES could not be exported.2

A 1996 National Research Council report on
cryptography policy recommended an immediate
loosening of export controls. No changes occurred
until 1998, when a $250,000 special-purpose ma-
chine built by the Electronic Frontier Foundation
cracked a DES-encrypted message in 56 hours. At
that point U.S. export controls were relaxed to
permit DES in exported products. In recent months
export controls have been lifted even further, with
no limit on number of bits.

A DES Replacement: The Advanced
Encryption Standard
A DES replacement was overdue. In 1997 the
National Institute of Standards and Technology
(NIST, formerly the National Bureau of Standards)
announced a competition for the algorithm’s re-
placement and held public meetings to discuss
the criteria for a proposed Advanced Encryption
Standard (AES). Key length was most important. A
1996 ad hoc committee argued 90 bits was
currently the minimum key length needed to pro-
vide data security for twenty years [1]. NIST sought
that much security and more—encrypted files
should remain confidential well after AES was

2These numbers are for private-key cryptography, in
which encryption and decryption use the same key. Pub-
lic-key cryptography typically needs significantly more bits
to achieve the same level of security as a private-key al-
gorithm. Thus, for example, the 128 bits to be used in the
Advanced Encryption Standard is viewed as providing
the same level of security as a 2,560-bit RSA key [10].

Some Terminology in the DES Article
A block cipher is a cryptosystem on a string of symbols that
sequentially repeats an internal function, called a round. DES
is a 16-round block cipher, with sixteen 48-bit subkeys that
are generated from DES’s 56-bit key. Feistel ciphers are block
ciphers in which the 2t-bit input is split in half as Li−1 and
Ri−1; in the ith round, the left half Li is the right half of the
previous round, Li := Ri−1, while the right half Ri is a function
of both previous halves, Ri := Li−1 ⊕ f (Ri−1, Ki) . Here f is an
arbitrary round function, and each round key Ki is derived from
the key K. Feistel ciphers are provably invertible. Decryption
is the algorithm in reverse, with subkeys used in the opposite
order. (In order to make decryption a genuine inverse of en-
cryption, the final round of a Feistel cipher switches the ci-
phertext to (Rr , Lr).) Variations of Feistel ciphers allow “un-
balance”; e.g., the block may be split into more than two parts,
with several of the pieces acted upon.

S-boxes are functions that map n bits to m bits; they are
look-up tables that introduce nonlinearity into block-structured
algorithms.

There are several attack models, the most popular of which
are:

• ciphertext-only: the adversary has access to the encrypted
communications;

• known-plaintext: the adversary has some plaintext and its
corresponding ciphertext;

• chosen-plaintext: the adversary chooses the plaintext to be
encrypted;

• chosen-ciphertext: the adversary picks the ciphertext to be
decrypted.

fea-landau.qxp 2/11/00 10:45 AM Page 451

452 NOTICES OF THE AMS VOLUME 47, NUMBER 4

retired. NIST settled on a minimum key length of
128 bits.

(Although triple-DES—three iterations of DES—
had become popular, several factors led NIST not
to adopt the algorithm as the successor to DES.
Triple-DES had 48 rounds where 32 would proba-
bly do. Software implementations on many ma-
chines were too slow for digital video and other
high-speed data. The 64-bit block size was found
to have intrinsic vulnerabilities when used with an-
ticipated twenty-first-century data rates. So triple-
DES was not that attractive as a Federal Informa-
tion Processing Standard. And since the American
National Standards Institute was already develop-
ing a triple-DES standard, NIST could simply en-
dorse that and spend its funding on developing a
new algorithm with higher capabilities.)

Given the government’s intransigence over ex-
porting strong cryptography, NIST’s proposal was
surprising, and initial reaction was mistrustful.
Would the process be coopted by the National
Security Agency? Opening the AES process to
non-U.S. citizens was crucial. Theorems do not
establish a cryptographic algorithm’s strength; sur-
viving cryptanalytic attacks does. And cryptanalysis
expertise is international—the most effective crypt-
analytic attacks on DES have been made by Israeli and
Japanese researchers. A review process limited to U.S.
citizens would result in an untrusted Advanced
Encryption Standard—and a potentially vulnerable
one. NIST allowed foreign submissions and foreign
viewing of the candidates. A foreign national who
wanted software implementations of the candidates
could have them. The person had to register with
NIST and promise not to pass on the algorithms
(even if obtained from another source). While within
the U.S. export-control laws, in spirit this system
formed a contrast to the export rules so recently
enforced regarding DES.

After some public input, NIST settled on straight-
forward requirements: (i) the algorithm must
implement private-key cryptography (also known
as symmetric cryptography), (ii) the algorithm must
be a block cipher, and (iii) the algorithm must
work on 128-bit blocks and with three key sizes:
128, 192, and 256 bits. If selected, candidates
would have to be available worldwide on a nonex-
clusive, royalty-free basis.

Evaluations would be on security, cost, and
implementation flexibility. Since simplicity aids in
understanding, implementing, and assessing the
security of the candidates, design simplicity would
also be a factor. The winner should work in a
variety of venues, including 8-bit processors, high-
performance data switches, high-definition
television, voice and satellite communications, and
smart cards (credit cards with a small processor).
This last requirement presents serious complica-
tions. Diverse technologies have competing techni-

cal requirements; sauce for the goose may really
cook the gander.

There would be several evaluation meetings to
discuss the submissions; after the second, design-
ers would be allowed “minor” tweaks to their
submissions. After a year NIST would determine five
finalists; after another, the winner or winners—NIST
could pick more than one. NIST could also choose
to modify the candidates in picking a winner: for
example, changing the number of rounds in an
algorithm.

The jump in key size over DES was impressive. Re-
quiring the algorithm’s worldwide availability on a
nonexclusive, royalty-free basis acknowledged the
role AES would play in international e-commerce.

NIST’s biggest challenge was evaluating the can-
didates’ strength. Cryptanalysis is a young science
that lacks an overarching theory. Certifying a 128-
bit symmetric key algorithm is a voyage into the
unknown. NIST could use mathematical arguments
and various measures (e.g., how much a candidate’s
output was indistinguishable from a random per-
mutation) to establish an algorithm’s security. But
such approaches are only as strong as the imagined
attack model. At the end one is left with statements
of the form: “We tried, and algorithm X could not be
attacked by methods D,L, or S.” Such an approach
does not inspire confidence; linear cryptanalysis
was not discovered until nearly twenty years after
DES’s unveiling. And then there is the potential of
trapdoors. For years many feared NSA had put a
trapdoor in DES. Now NIST had to ensure that an al-
gorithm whose design it did not control did not have
hidden aspects.

Complicating analysis is NIST’s lack of expertise.
Congress empowered NIST to develop civilian com-
puter security and cryptography standards, but
has not provided adequate funding for the job.
Concern centered on NSA. Would the agency’s eval-
uations be public? NIST would rely on a combina-
tion of public and its own studies for the first
round of evaluations, and the lab would show its
choice of candidates to NSA before making the list
public. It was assumed by many that NSA would
share serious concerns it had about an algorithm’s
security with NIST, but left unstated was what
constituted a serious concern. Suppose NSA’s analy-
sis showed that an algorithm with a 128-bit key
provided at most 120 bits of security; would that
be sufficient for the algorithm to be considered
secure? How about 110? Where would the line be
drawn? NSA was not saying.

The AES Candidates
AES candidates were due June, 15, 1998. Of the
twenty-one submitted, fifteen met NIST’s criteria:
LOKI97 (Australia); Rijndael (Belgium); CAST-256
and DEAL (Canada); FROG (Costa Rica); DFC (France);
Magenta (Germany); E2 (Japan); CRYPTON (Korea);
Hasty Pudding Cipher (HPC), MARS, RC6, SAFER+,

fea-landau.qxp 2/11/00 10:45 AM Page 452

APRIL 2000 NOTICES OF THE AMS 453

and Twofish (United States); and Serpent (United
Kingdom, Israel, Norway). Except for the Hasty
Pudding Cipher, all of the “U.S.”-candidates in-
cluded non-U.S. nationals on their design team.

In August 1999 NIST announced the five final-
ists: MARS, RC6, Rijndael, Serpent, and Twofish.
These were widely accepted—along with some sup-
port for E2—as the “best” submissions, and NSA
called these “appropriate choices,” reported NIST. But
there was also concern that the first year of public
evaluation had concentrated on picking off the easy
targets and that the remaining evaluation period
was insufficient for a full evaluation of the finalists.
The winner(s) will be determined in summer 2000.

In some cases the reasons for an algorithm’s
elimination were clear. DEAL was slow. HPC suffered
from some weak keys (1 in 256 keys has 230 equiv-
alent keys—pairs of keys that give the same
encryption). FROG was vulnerable to a variety of
differential and linear cryptanalysis attacks (an
analyst with sufficiently many targets could ex-
pect to recover the first key after 256.7 steps).
LOKI97 was similarly vulnerable to an attack using
only 256 chosen plaintexts; Magenta’s key sched-
uling (the method by which key bits are furnished
to the algorithm) made the algorithm very easy to
break; indeed, the break happened shortly after the
algorithm’s presentation.

Other eliminations were based on the competi-
tion. In terms of speed, CAST was in the middle
of the pack, but the algorithm had large ROM
requirements. SAFER+ was slow. In design and
speed, both algorithms were similar to Serpent,
but Serpent beat SAFER+ on speed and CAST on
versatility (good performance in a variety of envi-
ronments). Serpent made the next round; CAST and
SAFER+ did not. Although CRYPTON’s performance
was similar to that of Rijndael and Twofish, CRYP-
TON did less well and had a key scheduling weak-
ness.3 E2 was similar to Rijndael and Twofish but
slower and was not implementable on low-end
smart cards—E2 uses too much RAM, and it lost
out. DFC was an odd case. Its framers had given
proofs of the algorithm’s security, but their model
was sufficiently restrictive that the algorithm
lacked a convincing case of security. With some
weaknesses already apparent and too slow in cer-
tain tests, DFC was cut. The variety of systems—
and the variety of attacks upon them—demon-
strated the multidimensionality of cryptosystem
design.

Cryptographic Design
Though there are many wrong ways to build a cryp-
tosystem, there is no clear right way. To simplify
implementation and a security analysis, a system

should be easy to describe. It should run efficiently.
It must be invertible, though extremely hard to in-
vert without the key. It should have small key-size
and memory requirements. To an extent that may be
surprising to mathematicians, design decisions are
technology driven: current processors determine
which operations are fast and thus useful to incor-
porate into the algorithm. DES’s S-boxes were de-
signed to take advantage of 8-bit processors; AES’s,
32-bit ones.

One school of thought in cryptosystem design
lets the new technology strongly guide the choice
of operations, thereby obtaining algorithmic com-
plexity with high-speed performance. IDEA, an early
1990s cryptosystem, does this. IDEA’s round func-
tion uses bitwise addition modulo 2, usually written
⊕ or XOR; addition modulo 216; and modified mul-
tiplication modulo (216 + 1), all of which run quickly
on the 16-bit processors available at the time the
algorithm was proposed.

NSA takes a different tack. Realizing that any
widely deployed system will be implemented across
a variety of hardware and software systems, the
agency believes in “keep it simple” and prefers to
use elementary primitives such as XOR and table
lookup. As opposed to more complex operations
such as floating-point arithmetic, these functions
act the same way regardless of system architecture.

There are countless other tradeoffs. Perhaps
the most fundamental contrast is between those al-
gorithms that are simpler to verify but potentially
less secure and those that are more complex and
potentially more secure but more difficult to
verify. In a block-structured cryptosystem, this
particular issue plays out on the question of rounds:
should there be many simple rounds or fewer,
more complex ones? Even relatively simple cryp-
tosystems can be secure when run for 32 rounds.

System designers typically begin with a set of
capabilities; this may be the architectures or proces-
sors on which the algorithm will run and the set
of operations that are standard to this set of ma-
chines (and thus can be done efficiently), or a set
of performance constraints. The latter may include
maximizing overall speed or minimizing size of
memory or the time needed to change keys. This
is an issue in Asynchronous Transfer Mode, a high-
performance data-switching network technology.

While cryptosystem design should be a stan-
dardized procedure in much the way that bridge
building is, the fact is that bridge building is much
better understood. The purpose of a cryptosystem
is to make decryption of messages extremely dif-
ficult without the key. The design of a cryptosys-
tem has a dual objective: ensure cryptanalysis is
difficult while making the security certifiable. The
complexity of the two tasks and a lack of knowl-
edge about how to achieve the second generally re-
sult in the design of cryptosystems done with

3CRYPTON’s developers submitted a “tweak” to the key
scheduling during the first round of evaluations. But since
CRYPTON was viewed as a weak candidate on other
grounds, NIST ignored this modification.

fea-landau.qxp 2/11/00 10:45 AM Page 453

454 NOTICES OF THE AMS VOLUME 47, NUMBER 4

cryptanalysis well in mind, system certifiability
much less so.

Some rules of thumb are standard. No output bit
should be a linear function of the input bits; indeed,
no linear function of the output bits should be a
linear function of the input bits [3], [9]. This does
not mean that linear functions cannot be part of a
cryptosystem, but that the system must include
nonlinearity. In block-structured algorithms the
nonlinearity is frequently achieved by using look-
up tables called S-boxes.

One can define the distance of a function to the
set of linear functions, and the upper bound is
achieved by a set of functions known as “bent func-
tions”. Bent functions are as distant as one can get
from linear functions and were used in the design
of the S-boxes for the AES submission CAST, for
example.

Differential and Linear Cryptanalysis
The most serious attacks on block-structured algo-
rithms to date are differential and linear crypt-
analysis; both are described in greater detail in my
DES article. Differential cryptanalysis is a chosen-
plaintext attack that relies on the idea that a fixed
input difference may, with high probability, gener-
ate a particular output difference. Key bits can be de-
termined by encrypting pairs of plaintexts X,X′
with prescribed bitwise difference Z = X ⊕X′ and
by seeing which key bits are “suggested” by the out-
put difference.

Linear cryptanalysis is a known-plaintext attack
that works by finding linear relationships between
plaintext, ciphertext, and key bits which reveal in-
formation about the key. Let B[i] denote the ith bit
of an array B, and define

B[i1, i2, . . . , ik] = B[i1]⊕ B[i2]⊕ · · · ⊕ B[ik].

Let P,C, and K be the plaintext, ciphertext, and
key respectively. Fundamentally, one is seeking
relationships of the form:

P[i1, i2, . . . , ia]⊕C[j1, j2, . . . , jb]

=K[k1, k2, . . . , kc].

There are some interesting correlations in the
round function of DES. For example, the second
input bit of the fifth S-box agrees with the XOR of
all four output bits of that S-box with probability
12
64 = 0.19.

Let R1 be DES after the first round, let R15 be
DES after the fifteenth round, and let p be the
probability that the equation

R1[i1, i2, . . . , ia]⊕ R15[j1, j2, . . . , jb]

=K[k1, k2, . . . , kc]

holds. There is a linear relationship of this type that
holds with probability 1/2− 1.19× 2−21 for ran-
dom plaintexts and their associated ciphertexts.

This relationship depends on the fifth S-box as fol-
lows: There are twelve key bits input to the fifth
S-box in R1 and R15; guess these twelve subkey bits
in rounds 1 and 15 (6 in round 1, 6 in round 15).
If the guess is correct, the equation will be satis-
fied with probability p (if not, the probability will
be much lower). For m plaintext-ciphertext pairs,
count the number of plaintext-ciphertext pairs for
which this equation holds. If the guess on the sub-
key bits is correct, the expected value of this sum
will be pm or (1− p)m . If one performs this com-
putation for more than |p − 1/2|−2 pairs, there is
a high likelihood of success. The attack uses 243

plaintext-ciphertext pairs—fewer than exhaustive
search, but certainly not fast.

In the case of DES, both differential and linear
cryptanalysis are theoretical rather than practical
attacks. Yet these are very powerful cryptanalytic
techniques that cannot be ignored by system de-
signers. To defend against differential crypt-
analysis, one modifies the S-boxes until for every
fixed nonzero input difference to DES there is no
output difference that occurs with high probabil-
ity. For linear cryptanalysis one performs a simi-
lar calculation; one ensures that no linear rela-
tionship of the output bits occurs with probability
too far from 1/2. (The farther the probability is
from 1/2, the greater the number of rounds needed
to ensure resistance.)

What Does It Mean for an Algorithm to Be
Secure?
Even determining so fundamental a notion as what
it means for an algorithm to be secure is quite com-
plicated. Exactly what is one protecting against?
There are cryptosystems that are believed secure
but whose implementation puts them at risk. Part
of the complication with a strict mathematical
analysis is ensuring that an appropriate model of
security and certification is captured.

Cryptosystems are Boolean functions, i.e., func-
tions mapping n bits to m bits. For simplicity, I
begin with m = 1. Designers seek balance. Func-
tions should spread their output evenly; e.g., func-
tions that map to a single bit should have half the
output be 0, half 1. Let hwt(s) count the number
of nonzero components of a vector s (this is the
Hamming weight of s). One way to say f is balanced
is that hwt(f) = 2n−1 .

The product of r distinct variables is an r th
order product. Every Boolean function f (x1, . . . , xn)
can be written uniquely as a mod 2 sum of distinct
r th order products, 0 ≤ r ≤ n. The maximum order
that occurs is called the nonlinear order of f. For
example, f (x1, x2, x3) = x1 + x3 + x2x3 has nonlin-
ear order 2.

One can require that a cryptographic function
be r th-order balanced, meaning that the output is
statistically independent of any linear combination
of r input variables (this is known as being r th-
order correlation immune). Guo-Zhen Xiao and

fea-landau.qxp 2/11/00 10:45 AM Page 454

APRIL 2000 NOTICES OF THE AMS 455

James Massey showed that having f (x) be r th-order
correlation immune is equivalent to having f (x) be
statistically independent of any subset of at most
r input variables. Balance can go only so far. It
might be better if for any subset S of {0, . . . , n− 1},
f |S (f fixed on S) were balanced. But the only func-
tions that satisfy this are XOR and its comple-
ment.

Propagation of change is also presumably a
good characteristic for a cryptosystem. Arthur
Webster and Stafford Tavares defined the strict
avalanche criterion, which says that with every
change in an input bit, the output bit changes with
probability 1/2. This idea generalizes: f satisfies
the propagation criterion of degree k (PC(k)) if f (x)
changes with probability of 1/2 whenever i bits of
x are complemented, 1 ≤ i ≤ k ≤ n. An informa-
tion-theoretic interpretation of PC(k) is that if
1 ≤ hwt(s) ≤ k, then the mutual information be-
tween f (x) and f (x⊕ s) is zero [9].

Since cryptosystems cannot be built solely from
linear functions, a natural algebraic question to ask
is whether higher-order polynomials are correla-
tion immune. For small r there are many balanced
quadratic functions that are r th-order correlation
immune. However,

Theorem ([9], p. 248): There are no quadratic
functions of n variables that are r correlation im-
mune for b 2n

3 c ≤ r ≤ n and no balanced quadratic
functions that are r th-order correlation immune if
n− 2 ≤ r ≤ n . Here b · c denotes greatest integer.

Let us now turn to Boolean functions that map
n bits to m bits for general m. The nonlinear order
of such a function is the maximum of the nonlin-
ear orders of the m coordinate functions.

The finite field GF (2n) can be identified addi-
tively with n bits in a noncanonical way, and then
the function f (x) = x−1 with f (0) = 0 is a Boolean
function from n bits to n bits. Kaisa Nyberg [8] stud-
ied this function and other power-type functions.
She showed that this f has nonlinear order n− 1
if n > 1, the nonlinear order being independent of
the way that GF (2n) is identified with n bits. She
showed that this function has good cryptographic
properties. But it must be combined with other
cryptographic functions, since it has a compact rep-
resentation and thus is subject to an “interpola-
tion attack”. Otherwise, it might be possible to ex-
press the cryptosystem as a rational function of
low degree, and coefficients could be determined
from a small number of plaintext/ciphertext pairs.

S-boxes, which form the basis of block-struc-
tured algorithms, are considerably more complex
than the simple Boolean functions just described.
There has been progress in this direction. Nyberg
observed that a round function should have:
1. high nonlinearity, i.e., large distance from linear

functions;

2. high nonlinear order, i.e., the degrees of the
output bit functions are large;

3. resistance against differential cryptanalysis;
and

4. efficient construction and computability.
In addition, all linear combinations of the output
bits should have high nonlinearity. Combining the
specific functions Nyberg studied with various
affine transformations, one achieves these goals.

A full theory of S-box design does not exist. I sus-
pect that NSA, which has been in the cryptosystem-
design business for at least a generation longer than
the public cryptographers, did not have a theory
of S-box design twenty years ago—or DES would
have been built resistant to linear cryptanalysis.
Such a theory would also have to account for in-
teractions between the S-boxes. In their differen-
tial cryptanalysis attack on DES described in my DES
article, Eli Biham and Adi Shamir demonstrated
that S-box interaction played a role in the strength
of the algorithm; Mitsuru Matsui showed this was
true also in resistance (or lack thereof) to linear
cryptanalysis.

No mathematical theory accounts for attacks
that are “out of the box”. Paul Kocher recently suc-
cessfully broke a number of “secure” algorithms
using timing and power-analysis attacks. Using a
chosen-ciphertext attack, Kocher timed decryp-
tion to determine which operations were being
used. This revealed which decryption key bits were
a “1”. Thus Kocher found the decryption key. Using
this approach, Kocher determined the exponents
used in the Diffie-Hellman key-exchange algorithm
and factored the modulus used for the RSA algo-
rithm [6]. Power-analysis attacks rely on the re-
markably effective observation that the power con-
sumed during encryption and decryption depends
on the operation being performed and the data
being processed. Kocher has produced startling pic-
tures in which the 16 rounds of DES are clearly vis-
ible from the graph of power consumption of a
smart card during DES encryption. Kocher’s at-
tacks, which rely on the physical aspects of the im-
plementation, had not been part of any previous
model considered by cryptographers.

Different cooks add their own ingredients to a
cryptographic brew. The five NIST finalists, for ex-
ample, include an “extended” Feistel network
(MARS), two standard Feistel networks (RC6,
Twofish), one substitution-permutation network
(Serpent), and an algorithm that relies on finite-field
operations to construct the S-box (Rijndael). MARS
and RC6 use multiplication to perform diffusion,
but MARS multiplies key words by data words,
while RC6 multiplies words that are formed from
a combination of key and data. Twofish uses “key-
dependent” S-boxes that are constructed on the fly.
In any given round, Serpent implements one
S-box in parallel—32 copies of it. No other final-
ist, or candidate, does that.

fea-landau.qxp 2/11/00 10:45 AM Page 455

456 NOTICES OF THE AMS VOLUME 47, NUMBER 4

The AES Finalists
I will briefly describe each of the finalists,
explaining the design principles behind them. Full
descriptions, including implementation details,
are available through the NIST Web site.4 For this
article I will confine myself to the implementation
with a 128-bit key.
MARS
In MARS, IBM designers used the well-established
Feistel network, the reasonable idea that multi-
plication provides good diffusion properties, the
fact that all modern processors support multipli-
cation of 32-bit numbers, and their intuition that
an algorithm in which the top and bottom rounds
of a cipher employ functions different from the
middle ones is better resistant to differential and
linear cryptanalysis.

MARS breaks the 128-bit input block into four
32-bit words. MARS uses a 32-round unbalanced
Feistel network: in each round one data word and
some key words modify the remaining data words.
The algorithm begins by adding key words to the
four data words. The key is then ignored for the
next eight rounds. In each of these rounds MARS
uses two S-boxes with one distinguished word.
This word determines the indices for the S-boxes
that will modify the other three data words, called
“target words”.

MARS’s S-boxes were built using SHA-15 applied
to some fixed constants, specifically, expansions
of the fractional parts of e and π . To assure users
the algorithm has no trapdoors, algorithm design-
ers are careful to explain their choice of fixed
parameters. Input parameters were varied until the
generated S-boxes had good differential and linear
properties. This is reminiscent of the design proce-
dure for DES, though the construction procedure is
more explicit—and more public.

Denote the S-boxes by S0 and S1 and the four
bytes of the distinguished word by b0, b1, b2, and
b3. The first target word is XORed with S0[b0] and
added to S1[b1], the second is added to S0[b2],
and the third is XORed with S1[b3]. The distin-
guished word is rotated 24 bits. All the words are
then rotated before the next round. To thwart easy
differential attacks, after four of the rounds (the
first, second, fifth, and sixth) certain data words
are added to others.

Symmetry in a cryptosystem (symmetry within
a round function, the same round functions at the
beginning and end of the algorithm) simplifies the
system’s architecture and its security analysis. But
to thwart various attacks, MARS’s first and last

eight mixing rounds differ from the sixteen core
rounds. And to thwart differential and linear crypt-
analysis attacks, MARS’s designers chose to make
the rounds at the beginning and end of their al-
gorithm asymmetric: the last eight rounds of MARS
process words in a different order from the first
eight. Similarly, to provide resistance to chosen-
ciphertext attacks, data words in the middle six-
teen rounds of the algorithm are processed in a dif-
ferent order in the first eight rounds of the core
from that in the last eight.

This core of MARS is even more complex. Again,
one data word modifies the three others, but this
time through a combination of fixed rotation, mul-
tiplications, XOR, data-dependent rotations (rota-
tions whose amount is determined by the data), and
S-box lookups. MARS uses multiplication to pre-
vent differential cryptanalysis attacks. It employs
data-dependent rotations to thwart differential
and linear attacks.

MARS’s key schedule includes a key expansion
via a linear transformation, a Feistel network to stir
key bits, a test to eliminate any strings with ten con-
secutive 1’s or 0’s, and an XOR. The key schedule
ensures the lowest two key bits in any key word
involved in a multiplication are 1’s. While not as
complicated as the encryption routine itself, the
MARS key schedule is nonetheless intricate. NIST
commented about MARS that its “complexity makes
analysis difficult in a restricted timeframe” [7].
This complexity may work against choosing MARS
as the Advanced Encryption Standard.
RC6
RC6, a 20-round Feistel cipher out of RSA Security
Inc., is much simpler. Whitfield Diffie, the co-
inventor of public-key cryptography, has remarked
that Ron Rivest, one of the principal designers of
RC6 and co-inventor of the public-key algorithm
RSA, is the “master of the too-good-to-be-true
algorithm.” This may be, but RC6’s precursor, RC5,
was introduced several years ago and has held up
well so far. The fact that RC6 is similar to RC5
means that the public vetting of RC5 is likely to
partially apply to RC6, thus simplifying certifica-
tion of this AES submission.

Since the simpler algorithm sheds light on its
descendant, I begin with RC5, which uses just three
operations: XOR, addition, and rotation. The
algorithm permits the user to set block size, w = 16,
32, or 64 bits; number of rounds, 0 ≤ r ≤ 255; and
number of key bytes, 0 ≤ b ≤ 255. Let Ki be the key
for the ith round, whose construction will not be
described (I will instead explain the RC6 schedule).
RC5 with r rounds is

A := A +K0
B := B +K1
for i := 1 to r do : {

A := ((A⊕ B) <<< B) +K2i
B := ((B ⊕A) <<< A) +K2i+1

}.

4http://aes.nist.gov/.
5The Secure Hash Algorithm, SHA-1, is the algorithm
used in the Federal Information Processing Standard SHS
(Secure Hash Standard). A cryptographic hash function
is a many-to-one mapping that provides a compact
representation of an input; it has many applications,
including providing an integrity check for a message.

fea-landau.qxp 2/11/00 10:45 AM Page 456

http://aes.nist.gov/

APRIL 2000 NOTICES OF THE AMS 457

Here a <<< bmeans rotate the w-bit word a to the
left by the amount given by the least significant
logw bits of b.

Instead of two registers of 32-bit words of RC5,
RC6 operates on four registers (A,B,C,D) of 32-
bit words. RC6 treats the four words in pairs,
(A,B), (C,D), and permutes the pairs in the last step
of each round by

(A,B,C,D) := (B,C,D,A),

thus mixing them. As in RC5, data-dependent
rotations provide much of the cryptographic
complexity of RC6:

B := B +K0
D := D +K1
for i := 1 to r do : {

t := (B × (2B + 1)) <<< 5
u := (D × (2D + 1)) <<< 5
A := ((A⊕ t) <<< u) +K2i
C := ((C ⊕ u) <<< t) +K2i+1
(A,B,C,D) := (B,C,D,A)

}.
And that, aside from “pre-whitening” and “post-
whitening” steps and some minor modifications of
the RC5 key schedule, is RC6. (Whitening is a simple
idea: XOR key material with the input (or output) to
a block algorithm. This is to prevent attackers from
acquiring plaintext-ciphertext pairs.) Although
at first RC6 does not appear to be a Feistel cipher,
observe that during a round, the only action on
blocks B and D are rotations to blocks A and C. Thus
one can model L := (B,D) , R := (A,C) , and then
indeed RC6 is a standard Feistel network.

RC6’s key schedule is simple and similar to
RC5’s. Let P = B7E15163 and Q = 9E3779B9 be the
hexadecimal representations of e− 2 and 12 (

√
5− 1)

respectively. Copy the key into an array W of w 32-
bit words, adding extra 0’s to the last word to fill it
out as needed. Then the subkeys are generated as
follows:

K0 := P
for i := 1 to 2r + 3 do

Ki := (Ki−1 +Q) mod 232

i := j := A := B := 0
v := 3×max(w,2r + 4)
for s := 1 to v do : {

A := Ki := (Ki +A + B) <<< 3
B := Wj := (Wj +A + B) <<< (A + B)
i := (i + 1) mod 2(r + 1)
j := (j + 1) mod w

}.
RC6’s strength lies in the resistance to differ-

ential and linear cryptanalysis provided by the
data-dependent rotations and in the diffusion pro-
vided by the quadratic function f (x) = x(2x + 1) .
Twofish
Twofish, proposed by Counterpane Systems, a
U.S.-based cryptographic consulting firm, is a 16-

round Feistel network with two modifications. One
is a one-bit rotation before and after the data enter
the round function proper. The other alteration
is key-based S-boxes. Twofish’s designers believe
dynamically varying S-boxes enhance security.

Key-dependent S-boxes are unusual. DES’s S-
boxes were explicitly constructed to resist differ-
ential cryptanalysis; randomly constructed S-boxes
are vulnerable to differential cryptanalysis attacks.
The vulnerability is exploited through the exami-
nation of many plaintext-ciphertext pairs (in the
case of 56-bit DES, on the order of 247 chosen
texts). While in any particular instantiation of
Twofish some key-dependent S-boxes may be weak,
the fact that the S-boxes are dynamically con-
structed complicates differential and linear crypt-
analysis attacks.

The round function begins with input whiten-
ing. The 128-bit input is broken into four 32-bit
words W0,W1,W2,W3 (numbering from left to
right), W1 is rotated eight bits to the left, and W0
and W1 go through the four S-boxes, S0, . . . , S3. The
four S-boxes are distinct; all are 8-bit to 8-bit bi-
jective and key dependent. They are constructed
from permutations that satisfy good differential
and linear properties. The S-box operation is fol-
lowed by matrix multiplication, addition modulo
232, and addition of key bits. W0 and W1 are XORed
to a whitened W2 and W3 respectively, then rotated
one bit (to the right for W0, to the left for W1). The
bit rotations are put in to thwart an attack that re-
lies on the byte alignment of the S-boxes and ma-
trix multiplications. These words become the two
left words for the next round, while their old
whitened selves become the two right words for
the next round.

The matrix multiplication diffuses bits; it ensures
that all single-byte input differences have unique
output differences and that any single-byte input
change produces an output Hamming difference
of at least eight bits. The addition modulo 232

combines the two words W0 and W1 for further
mixing. The operations are T := W0 +W1 mod 232,
W1 := W0 + 2W1 mod 232 , and W0 := T .

Twofish’s key schedule is relatively straight-
forward. But NIST warned that Twofish’s overall
complexity “has drawn some concern” ([7], p. 53).

Serpent
Serpent, created by three cryptographers from the
United Kingdom, Israel, and Denmark, is a con-
servative design. There are 32 rounds—a high
number—each of which consists of XORing the
key and the intermediate data, a pass through S-
boxes, and a linear function that combines fixed
rotations and XOR (in the last round, the linear
function is replaced by a key-mixing operation).
While the rules used to generate the linear trans-
formation appear ad hoc—with a <<< 7 here, a ⊕
there—they function as advertised: the linear

fea-landau.qxp 2/11/00 10:45 AM Page 457

458 NOTICES OF THE AMS VOLUME 47, NUMBER 4

transformation increases avalanche. After three
rounds, each plaintext bit affects all data bits.

Each round of Serpent has 32 identical S-boxes
(each a 4-bit to 4-bit one) applied in parallel. And
herein lies the cleverness of Serpent. The bits are
operated upon independently, and a 32-bit proces-
sor neatly works on the 128-bit data segment. The
fact that each round uses 32 identical S-boxes
means that the action of the S-boxes on bits
0,1,2,3 is identical to the action on bits 4,5,6,7;
bits 8,9,10,11; etc. So bits 0,1,2,3 are fed to the
first input of the processor and operated upon
through a series of Boolean operations, while si-
multaneously bits 4, 5, 6, 7 are fed to the second
input of the processor and operated upon by the
same set of operations, etc. The result is bits 0, 4,
…, 124 of the output.

Now the processor can compute the next set of
outputs. The inputs have already been fed in.
Again, since the S-boxes are replicated, the same
operation is done on all 32 bits of the processor.
The outputs are bits 1, 5, …, 125 of the output. This
process is repeated twice more, and thus all 128
bits of output are computed. This is followed by
the linear transformation that diffuses the results
of the bits. During these operations the processor
is used to its fullest.

Each S-box is used four times, in rounds
i, i + 8, i + 16, i + 24 of Serpent, for 0 ≤ i ≤ 7. The
S-boxes are created from DES’s via a simple pro-
gram that builds a 32× 16 matrix consisting of the
entries of the 8 DES S-boxes. (Each row of this ma-
trix can be viewed as a 4-bit to 4-bit S-box.) The pro-
gram swaps rows in this matrix around until it has
8 S-boxes that satisfy certain differential and lin-
ear characteristics.

Serpent’s key schedule is simple. The algorithm
uses 132 32-bit words of keying material. The ini-
tial key is padded to 256 bits, and an intermediate
version is rewritten as K := w−8w−7 . . . w−1 (eight
32-bit words). Then wi := (wi−8⊕wi−5⊕wi−3
⊕wi−1⊕φ⊕ i) <<< 11 and:

{k0, k1, k2, k3} := S3(w0, w1, w2, w3)

{k4, k5, k6, k7} := S2(w4, w5, w6, w7)

{k8, k9, k10, k11} := S1(w8, w9, w10, w11)

. . .
{k124, k125, k126, k127} := S4(w124, w125, w126, w127)

{k128, k129, k130, k131} := S3(w128, w129, w130, w131),

where φ = 9E3779B9 in hexadecimal is 12 (
√

5− 1),
and the ki are the keys used in the round function.

Serpent’s security is based on a high number of
rounds, which provides strong resistance to dif-
ferential and linear cryptanalysis.
Rijndael
Rijndael, developed by two Belgian cryptographers,
relies more directly on algebraic constructs than
do the other algorithms. Let GF (28) be defined by
the irreducible polynomial x8 + x4 + x3 + x + 1, and

then view the 128 bits = 16 bytes as elements of
the field. The data are placed in a 4× 4 array of
elements of GF (28).

Rijndael has ten rounds, each consisting of four
operations: ByteSub, ShiftRow, MixColumn, and
AddRoundKey (the last round skips the MixColumn
operation). Let elements in the array be indexed
beginning with 0. ByteSub has two steps: (i) each
array element is replaced by its multiplicative
inverse in GF (28) (0 is mapped to itself), and (ii) the
array undergoes a fixed affine transformation over
GF (28). Then ShiftRow cyclicly shifts the elements
of the ith row of the array i elements to the right.
In MixColumn the columns of the array are con-
sidered as polynomials over GF (28) (the column
Ai = (a0,i , a1,i , a2,i , a3,i) is viewed as the polyno-
mial a3,ix3 + a2,ix2 + a1,ix + a0,i , for example) and
multiplied modulo x4 + 1 by 03x3 + 01x2 + 01x
+ 02 to give elements of a new 4× 4 array B (thus,
b0,i is the zeroth-degree term in the product of
a3,ix3 + a2,ix2 + a1,ix + a0,i with 03x3 + 01x2 +
01x + 02 modulo x4 + 1 , b1,i is the coefficient of
the “x” term, etc.). MixColumn diffuses the bits of
each array element through its column. RoundKey
is an XOR of the key (given by the key schedule) with
the elements of the array.

Rijndael admits many possibilities for paral-
lelism: in the ByteSub and RoundKey operations the
bytes can be operated on independently, and in the
Shiftrow and MixColumn operations the rows and
columns respectively can be independently ma-
nipulated.

The S-box (ByteSub) was designed for resistance
to differential and linear cryptanalysis. It is in-
vertible, and as Nyberg has shown it minimizes cor-
relation between linear combinations of input bits
and linear combinations of the output bits. Mix-
Column increases diffusion. Let x be a vector, and
let A be a linear transformation. Define the branch
number of a linear transformation as:

minx6=0hwt(x) + hwt(A(x)).

Since MixColumn works on columns independently,
if a state has a single nonzero byte, the output can
have at most four nonzero bytes. Hence the max-
imum branch number is 5. The polynomial 03x3

+01x2 + 01x + 02 achieves this maximum.
The key schedule for Rijndael is a simple ex-

pansion using XOR and cyclic shift.

Choosing a Winner
The finalists have varying strengths and weak-
nesses. RC6 and Rijndael have simple definitions;
MARS and, to a lesser extent, Twofish have designs
that complicate analysis. Serpent is slow on
virtually all platforms, but its security looks good.
In particular, the algorithm has a large “security
margin”, that is, a high number of rounds relative
to differential and linear attacks that are
successful on reduced-round versions of the

fea-landau.qxp 2/11/00 10:45 AM Page 458

APRIL 2000 NOTICES OF THE AMS 459

algorithm. RC6 has a low security margin; MARS
a large one.

The successful candidates are not perfect. All
have serious problems in smart cards, where the
attacker has limited access to the card’s perfor-
mance during encryption. Because of their use of
multiplication and rotation, both MARS and RC6
are vulnerable to timing attacks. So is Twofish,
although less so. But a differential power-analysis
attack exhibited far more serious problems. Tak-
ing power samples of the whitening process from
100 independent block encryptions, a rogue smart-
card implementation leaked all 128 bits of
Twofish’s key [2]. This was not due to a peculiar-
ity of Twofish—all the other round-one AES
candidates were equally vulnerable to this attack.

There are ways around such penetrabilities, but
these come at a cost of time and space, neither of
which is in great supply in smart cards. Perhaps
smart cards are not an appropriate venue for the
same algorithm expected to secure international
e-commerce. A special-purpose algorithm might
serve better.

When NBS put forth DES in 1975, the electronic
world was in a fledgling state. Few anticipated the
phenomenal growth of the Internet and e-commerce.
AES is an ambitious undertaking. It is only two
decades since the public community in cryptography
numbered more than a handful of researchers.6

NIST’s venture is predicated on the idea that in the
twenty-odd years since the sanctification of DES and
the birth of public-key cryptography, cryptographic
expertise outside the spy agencies has grown to the
point that an algorithm to protect international com-
merce and communications can be developed by
the public sector. AES is an interesting experiment—
and a strong endorsement of the public expertise
that has developed in so brief a time.
Acknowledgments
I have greatly benefited from discussions with
Whitfield Diffie and Bart Preneel. Miles Smid,
formerly of NIST, graciously answered many
questions. The discussion of Boolean functions
relies heavily on Chapter 5 of Preneel’s thesis [9].
I also appreciate the help I received from Eli Biham,
Don Coppersmith, Lars Knudsen, Vincent Rimjen,
Bruce Schneier, and Yiqun Lisa Yin, who read and
commented on an earlier version.

References
[1] MATT BLAZE, WHITFIELD DIFFIE, RONALD RIVEST, BRUCE

SCHNEIER, TSUTOMO SHIMOMURA, ERIC THOMPSON, MICHAEL

WIENER, Minimal key lengths for symmetric ciphers
to provide adequate commercial security: A report

by an ad hoc group of cryptographers and com-
puter scientists. Available at http://www.crypto.
com/papers/keylength.txt/.

[2] SURESH CHARI, CHARANJIT JUTLA, JOSYULA RAO, and PANKAJ

ROHATGI, A cautionary note regarding evaluation of
AES candidates on smart-cards, The Second Ad-
vanced Encryption Standard Candidate Conference,
March 22–23, 1999.

[3] DON COPPERSMITH, The Data Encryption Standard (DES)
and its strength against attacks, IBM J. Res. Develop.
38 (1994), 243–250.

[4] JOAN DAEMEN, Cipher and hash function strategies
based on linear and differential cryptanalysis, Ph.D.
thesis, Katholieke Universiteit Leuven, March 1995.

[5] WHITFIELD DIFFIE and SUSAN LANDAU, Privacy on the
Line: The Politics of Wiretapping and Encryption, MIT
Press, Cambridge, MA, 1998.

[6] PAUL KOCHER, Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems, Ad-
vances in Cryptology, Proceedings Crypto ’96, LCNS,
vol. 1109 (Neal Koblitz, ed.), Springer-Verlag, Berlin,
New York, 1996, pp. 104–113.

[7] JAMES NECHVATAL, ELAINE BARKER, DONNA DODSON,
MORRIS DWORKIN, JAMES FOTI, and EDWARD ROBACK, Sta-
tus report on the first round of the development of
the Advanced Encryption Standard, Computer Se-
curity Division, Information Technology Laboratory,
National Institute of Standards and Technology (to
appear, NIST J. Res.), 1999.

[8] KAISA NYBERG, Differentially uniform mappings for
cryptography, Advances in Cryptology—EUROCRYPT
’93, Springer-Verlag, Berlin, New York, 1994.

[9] BART PRENEEL, Analysis and design of cryptographic
hash functions, Ph.D. thesis, Katholieke Universiteit
Leuven, January 1993.

[10] MICHAEL WIENER, personal communication.

6The first open meeting on cryptographic research occurred
in Santa Barbara in 1981 and was attended by fewer than
fifty people. This annual meeting, “CRYPTO”, now draws
upwards of five hundred attendees and is one of several
international meetings and numerous workshops on
cryptography.

fea-landau.qxp 2/11/00 10:45 AM Page 459

http://www.crypto.com/papers/keylength.txt/
http://www.crypto.com/papers/keylength.txt/

