
Chapter 1

Introduction

Welcome! This course is your invitation to the fascinating field of modern cryptog-
raphy.

The word “cryptography” comes from the Latin crypt, meaning secret, and
graphia, meaning writing. So cryptography is, literally, the science of secret writing:
the study of how to obscure what you write so as to render it selectively unintel-
ligible. Nowadays, cryptography entails much more than secret writing. Although
maintaining privacy of communications remains one of the field’s central goals, cryp-
tography has grown to encompass a host of related problems and goals.

Cryptography has intrigued people almost since writing was invented. Perhaps
this is because it deals with some very basic human concerns, such as privacy,
authenticity and trust. For the larger part of its history, cryptography remained a
game of clever designs and attacks. Although the field retains some of this flavor,
the last twenty-five years have brought in something new. The art of cryptography
has now been supplemented with a legitimate science. In this course we shall focus
on that science, which is modern cryptography.

Modern cryptography is a remarkable discipline. It is a cornerstones of computer
and communications security, with end products that are imminently practical. Yet
its study touches on branches of mathematics that may have been considered es-
oteric, and it brings together fields like number theory, computational-complexity
theory, and probabiltity theory.

Be forewarned: cryptography is a slippery subject. That which seems meaningful
can turn out to be meaningless, that which seems true can turn out to be false, and
that which seems impossible can turn out to be doable. So have fun—but retain a
healthy skepticism, and always watch your step.

7



8 INTRODUCTION

S R

A

x x

x x x x

Figure 1.1: Several cryptographic goals aim to imitate some aspect of an ideal
channel connecting a sender S to a receiver R.

1.1 Goals and settings

Modern cryptography addresses a wide range of problems. But the most basic
problem remains the classical one of ensuring security of communication across an
insecure medium.

Let’s introduce the first two members of our cast of characters: our sender, S,
and our receiver, R. The sender and receiver want to communicate with each other.
(Sometimes people call these characters Alice, A, and Bob, B. Alice and Bob figure
in many works on cryptography. But we’re going to want the letter A for someone
else, anyway.)

The ideal channel. Imagine our two parties are provided with a dedicated,
untappable, impenetrable lead pipe into which the sender can whisper a message
and the receiver will hear it. Nobody else can look inside the pipe or change what’s
there. This lead pipe provides the perfect medium, available only to the sender and
receiver, as though they were alone in the world. It is an “ideal” communication
channel from the security point of view. See Figure 1.1.

Unfortunately, in real life, there are no ideal channels connecting the pairs of
parties that might like to communicate with each otehr. Usually such parties are
communicating over some public network like the Internet.

The most basic goal of cryptography is to provide such parties with a means to
imbue their communications with security properties akin to those provided by the
ideal channel.

At this point we should introduce the third member of our cast. This is our
adversary, denoted A. An adversary models the source of all possible threats. We
imagine the adversary as having access to the network and wanting to compromise
the security of the parties communications in some way.

Not all aspects of an ideal channel can be emulated. Instead, cryptographers
distill a few central security goals and try to achieve them. The first such goal is
privacy. Providing privacy means hiding the content of a transmission from the
adversary. The second goal is authenticity or integrity. We want the receiver,
upon receiving a communication pertaining to be from the sender, to have a way of
assuring itself that it really did originate with the sender, and was not sent by the
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adversary, or modified en route from the sender to the receiver.

Protocols. In order to achieve security goals such as privacy or authenticity,
cryptography supplies the sender and receiver with a protocol. A protocol is just
a collection of programs (equivalently, algorithms, software), one for each party in-
volved. In our case, there would be some program for the sender to run, and another
for the receiver to run. The sender’s program tells her how to package, or encapsu-
late, her data for transmission. The receiver’s program tells him how to decapsulate
the received package to recover the data together possibly with associated infor-
mation telling her whether or not to regard it as authentic. Both programs are a
function of some cryptographic keys as we discuss next.

1.2 Settings and goals

It is not hard to convince yourself that in order to communicate securely, there must
be something that a party knows, or can do, that the adversary does not know, or
cannot do. There has to be some “asymmetry” between the situation in which the
parties finds themselves and situation in which the adversary finds itself.

The trust model specifies who, initially, has what keys. There are two central
trust models: the symmetric (or shared-key) trust model and the asymmetric (or
public-key) trust model. We look at them, and the cryptographic problems they
give rise to, in turn.

1.2.1 The symmetric setting

In practice, the simplest and also most common setting is that the sender and
receiver share a key that the adversary does not know. This is called the symmetric
setting or symmetric trust model. The encapsulation and decapsulation procedures
above would both depend on this same shared key. The shared key is usually a
uniformly distributed random string having some number of bits, k. Recall that a
string is just a sequence of bits. (For language-theoretic background, see Figure 1.2.)
The sender and receiver must somehow use the key K to overcome the presence of
the adversary.

One might ask how the symmetric setting is realized. Meaning, how do a sender
and receiver initially come into possession of a key unknown to the adversary? We
will discuss this later. The symmetric model is not concerned with how the parties
got the key, but with how to use it.

In cryptography we assume that the secret key is kept securely by the party
using it. If it is kept on a computer, we assume that the adversary cannot penetrate
these machines and recover the key. Ensuring that this assumption is true is the
domain of computer systems security.

Let us now take a closer look at some specific problems in the symmetric setting.
We’ll describe these problems quite informally, but we’ll be returning to them later
in our studies, when they’ll get a much more thorough treatment.
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We will sometimes use words from the theory of “formal languages.” Here is the
vocabulary you should know.

An alphabet is a finite nonempty set. We usually use the Greek letter Σ to
denote an alphabet. The elements in an alphabet are called characters. So, for
example, Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is an alphabet having ten characters, and
Σ = {0, 1} is an alphabet, called the binary alphabet, which has two characters.
We’ll assume the binary alphabet. A string is finite sequence of characters. The
number of characters in a string is called its length, and the length of a string
X is denoted |X|. So X = 1011 is a string of length four, Y = cryptography is
a string of length 12. The string of length zero is called the emptystring and is
denoted ε. If X and Y are strings then the concatenation of X and Y , denoted
X‖Y , is the characters of X followed by the characters of Y . So, for example,
1011‖0 = 10110. The i-th character of a string X, where 1 ≤ i ≤ |X|, is denoted
X[i], so that X = X[1]‖X[2]‖ · · · ‖X[|X|]. If a is a character and i ≥ 0 is a
number then ai is the string consisting of the character a repeated i times. It
is understood that a0 = ε for any character a. So, for example, 03 = 000 and
1n is how you’d write the number n in unary notation. We can encode almost
anything into a string. Usually the details of how one does this are irrelevant,
and so we use the notation 〈something〉 for any fixed, natural way to encode
something as a string. For example, if n is a number and X is a string then
Y = 〈n,X〉 is some string which encodes n and X. It is easy to go from n and
X to Y = 〈n,X〉, and it is also easy to go from Y = 〈n,X〉 back to n and X. A
language is a set of strings, all of the strings being drawn from the same alphabet,
Σ. If Σ is an alphabet then Σ∗ denotes the set of all strings whose characters
are drawn from Σ. For example, {0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 000, . . .}.

Figure 1.2: Elementary notation from formal-language theory.

Symmetric encryption schemes. A protocol used to provide privacy in the
symmetric setting is called a symmetric encryption scheme. When we specify such
a scheme Π, we must specify three algorithms, so that the scheme is a triple of
algorithms, Π = (K, E ,D). The encapsulation algorithm we discussed above is, in
this context, called an encryption algorithm, and is the algorithm E . The message M
that the sender wishes to transmit is usually referrred to as a plaintext. The sender
encrypts the plaintext under the shared key K by applying E to K and M to obtain
a ciphertext C. The ciphertext is transmitted to the receiver. The above-mentioned
decapsulation procedure, in this context, is called a decryption algorithm, and is the
algorithm D. The receiver applies D to K and C. The decryption process might
be unsuccessful, indicated by its returning a special symbol ⊥, but, if successful, it
ought to return the message that was originally encrypted. The first algorithm in
Π is the key generation algorithm which specifies the manner in which the key is to
be chosen. In most cases this algorithm simply returns a random string of length
the key length. The encryption algorithm E may be randomized, or it might keep
some state around. A picture for symmetric encryption can be found in Figure 1.3.
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Figure 1.3: Symmetric encryption. The sender and the receiver share a secret key,
K. The adversary lacks this key. The message M is the plaintext; the message C is
the ciphertext.

The encryption scheme does not tell the adversary what to do. It does not say
how the key, once generated, winds its way into the hands of the two parties. And
it does not say how messages are transmitted. It only says how keys are generated
and how the data is processed.

What is privacy? The goal of a symmetric encryption scheme is that an adversary
who obtains the ciphertext be unable to learn anything about the plaintext. What
exactly this means, however, is not clear, and obtaining a definition of privacy will
be an important objective in later chapters.

One thing encryption does not do is hide the length of the plaintext. This is
usually recoverable from the length of the ciphertext.

As an example of the issues involved in defining privacy, let us ask ourselves
whether we could hope to say that it is impossible for the adversary to figure out
M given C. But this cannot be true, because the adversary could just guess M ,
by outputting a random sequence of |M | bits. (Encryption is not supposed to hide
the length of the plaintext, and this is usually computable from the length of the
ciphertext.) She would be right with probability 2−n. Not bad, if, say n = 1! Does
that make the scheme bad? No. But it tells us that security is a probabilistic thing.
The scheme is not secure or insecure, there is just some probability of breaking it.

Another issue is a priori knowledge. Before M is transmitted, the adversary
might know something about it. For example, that M is either 0n or 1n. Why?
Because she knows Alice and Bob are talking about buying or selling a fixed stock,
and this is just a buy or sell message. Now, she can always get the message right
with probability 1/2. How is this factored in?

So far one might imagine that an adversary attacking the privacy of an encryp-
tion scheme is passive, merely obtaining and examining ciphertexts. In fact, this
might not be the case at all. We will consider adversaries that are much more
powerful than that.

Symmetric encryption with a one-time-pad. Now let’s give an example of an
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Algorithm K
K

$←{0, 1}k

return K

Algorithm EK(M)
static ctr ← 0
m ← |M |
if ctr + m > k

then return error
for i ← 1 to m do

C ′[i] ← K[ctr + i] ⊕ M [i]
ctr ← ctr + m
return 〈ctr − m,C ′〉

Algorithm DK(C)
〈ctr, C ′〉 ← C
m ← |C ′|
if ctr + m > |K|

then return error
for i = 1 to m do

M [i] = K[ctr + i] ⊕ C[i]
return M

Figure 1.4: Encryption with a one-time pad. The first algorithm generates the
key K, the second encrypts plaintext M , and the last decrypts ciphertext C.

encryption scheme, one that arises in numerous spy novels. Let K = K[1] · · ·K[k]
denote the shared key, which is a random sequence of k bits. Think of k as some
big number, like a million. Let M = M [1] · · ·M [m] denote the plaintext message
that the sender wants to send, also divided up into bits. Assume that m ≤ k (that
is, the key is at least as long as the plaintext). What the sender does is to compute
C ′[i] = K[i] ⊕ M [i] for each i = 1, . . . , m. The symbol ⊕ denotes the exclusive-or
(XOR) operation: 0 ⊕ 0 = 1 ⊕ 1 = 0, while 0 ⊕ 1 = 1 ⊕ 0 = 1. The string C ′ is
the main part of the ciphertext which the sender sends out. The receiver receives
C ′ = C ′[1] · · ·C ′[m] and can recover M via M [i] = C ′[i] ⊕ K[i] for all 1 ≤ i ≤ n.
This is possible for the receiver because he too knows the key K.

What we have just done is specify a particular encryption scheme, or protocol
Π = (K, E ,D). Its constituent algorithms, implementing the above, are depicted in
Figure 1.4. We’ll be discussing the security of one-time-pad encryption later.

In this scheme, when the sender wants to encrypt another message she has to
use new key bits. That is, she keeps track of where she is in the key, via a counter,
and goes on from there. Key bits are never re-used. That’s why this is called a
one-time pad : each key bit is used at most once. You cannot encrypt more data
than you have key bits. An indication of where the sender is in the key should be
included in the ciphertext.

Message Authenticity. In the message-authentication problem the receiver gets
some message which is claimed to have originated with a particular sender. The
channel on which this message flows is insecure. Thus the receiver R wants to
distinguish the case in which the message really did originate with the claimed
sender S from the case in which the message originated with some imposter, A. In
such a case we consider the design of an encapsulation mechanism with the property
that un-authentic transmissions lead to the decapsulation algorithm outputting the
special symbol ⊥.
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Figure 1.5: A message authentication code. The tag σ accompanies the message M .
The receiver R uses it to decide if the message really did originate with the sender
S with whom he shares the key K.

The most common tool for solving the message-authentication problem in the
symmetric setting is a message authentication scheme, also called a message au-
thentication code (MAC). Such a scheme is specified by a triple of algorithms,
Π = (K, T ,V). When the sender wants to send a message M to the receiver she
computes a “tag,” σ, by applying T to the shared key K and the message M , and
then transmits the pair (M, σ). (The encapsulation procedure referred to above
thus consists of taking M and returning this pair. The tag is also called a MAC.)
The computation of the MAC might be probabilistic or use state, just as with en-
cryption. Or it may well be deterministic. The receiver, on receipt of M and σ,
uses the key K to check if the tag is OK by applying the verification algorithm V
to K, M and σ. If this algorithms returns 1, he accepts M as authentic; otherwise,
he regards M as a forgery. An appropriate reaction might range from ignoring the
bogus message to tearing down the connection to alerting a responsible party about
the possible mischief. See Figure 1.5.

1.2.2 The asymmetric setting

A shared key K between the sender and the receiver is not the only way to create
the information asymmetry that we need between the parties and the adversary. In
the asymmetric setting, also called the public-key setting, a party possesses a pair
of keys—a public key, pk, and an associated secret key, sk. A party’s public key is
made publicly known and bound to its identity. For example, a party’s public key
might be published in a phone book.

The problems that arise are the same as before, but the difference in the setting
leads to the development of different kinds of tools.

Asymmetric encryption. The sender is assumed to be able to obtain an au-
thentic copy pkR of the receiver’s public key. When the sender wants to send a
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Figure 1.6: Asymmetric encryption. The receiver R has a public key, pkR, which
the sender knows belongs to R. The receiver also has a corresponding secret key,
skR.

secret message M to the receiver, she y ← EpkR
(M). When the receiver receives

a ciphertext C he computes M ← DskR
(C). The asymmetric encryption scheme

Π = (K, E ,D) is specified by the algorithms for key generation, encryption and
decryption. For a picture of encryption in the public-key setting, see Figure 1.6.

The idea of public-key cryptography, and the fact that we can actually realize
this goal, is remarkable. You’ve never met the receiver before. But you can send him
a secret message by looking up some information in a phone book and then using
this information to help you garble up the message you want to send. The intended
receiver will be able to understand the content of your message, but nobody else
will. The idea of public-key cryptography is due to Whitfield Diffie and Martin
Hellman and was published in 1976.

Digital signatures. The tool for solving the message-authentication problem in
the asymmetric setting is a digital signature. Here the sender has a public key pkS

and a corresponding secret key skS . The receiver is assumed to know the key pkS

and that it belongs to party S. (The adversary has pkS too.) When the sender
wants to send a message M she attaches to it some extra bits, σ, which is called a
signature for the message and is computed as a function of M and skS by applying
to them a signing algorithm. The receiver, on receipt of M and σ, checks if it is OK
using the public key of the sender, pkS , by applying a verification algorithm. If it is
fine, the receiver regards M as authentic; otherwise, he regards M as an attempted
forgery. A picture is given in Figure 1.7.

One difference between a MAC and a digital signature concerns what is called
non-repudiation. With a MAC anyone who can verify a tagged message can also
produce one, and so a tagged message would seem to be of little use in a court
of law. But with a digitally-signed message the only party who should be able to
produce a a message that verifies under public key pkS is the party S herself. Thus
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Figure 1.7: A digital signature scheme. The signature σ accompanies the message
M . The receiver R uses it to decide if the message really did originate with the
sender S with has public key pkS .

if the signature scheme is good, party S cannot just maintain that the receiver, or
the one presenting the evidence, concocted it. If signature σ authenticates M with
respect to public key pkS , then it is only S that should have been able to devise σ.
The sender can not refute that. Probably the sender S will have to claim that the
key skS was stolen from her. Perhaps this, if true, might still be construed as the
sender’s fault.

1.2.3 Summary

To summarize, there are two common aims concerned with mimicking an ideal
channel: achieving message privacy and achieving message authenticity. There are
two main trust models in which we are interested in achieving these goals: the
symmetric trust model and the asymmetric trust model. The tools used to achieve
these four goals are named as follows:

symmetric trust
model

asymmetric trust
model

message
privacy

symmetric (private-key)
encryption

asymmetric (public-key)
encryption

message
authenticity

message authentication
code (MAC)

digital signature scheme
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1.3 Other goals

Cryptography has numerous other goals, some related to the ones above, some not.
Let us discuss a few of them.

1.3.1 Pseudorandom Number Generation

Computers are quite deterministic. But for lots of applications, “random numbers”
are useful. These applications involve simulation, efficient algorithms, and cryptog-
raphy itself. We’ve already seen an example protocol that required random bits.

How can a completely deterministic machine generate “random” numbers? Well,
it can’t. But a machine can do the next best thing: it can stretch a little bit of
randomness into a lot of “pseudorandomness.”

Suppose we wire to our computer a Geiger counter that generates a “random” bit
every second. We run our computer for a little while and now it has 200 “random”
bits. We won’t worry about the “philosophical” question as to whether these bits
are random in any real sense. We’ll simply assume that these bits are completely
unpredictable to anything “beyond” the computer which has gathered this data—
mathematically, we’ll treat these bits as random.

A pseudorandom generator (PRG) stretches a short (eg., 200-bit) “truly random”
string into a much longer (a million bits, say) string which “looks” random. This is
another core problem of cryptography.

1.3.2 Key management

Authenticated Key Exchange. Suppose that Alice would like to remotely logon
to her computer, which we’ll call Alice’s “host” machine. Alice has a secret password,
a, while the host has some function of this password, f(a). Alice communicates with
the host over the Internet. What should Alice do in order to identify herself to the
host and establish a secure connection with it?

One possibility would be to flow a to the host. This would identify Alice to the
host, at least initially, but anyone who was listening in on the conversation would
now know Alice’s password, and thus be able to logon as though they were she.
Clearly that is not a good solution.

What we would really like is to arrange that Alice and her host can have a
conversation—a secure session—such that, throughout the session, (a) The host
is convinced that it is speaking to Alice; (b) Alice herself is convinced that she
is speaking to the host; (c) Nobody else has any idea about the content of the
information that flows within this session.

The usual way to establish a secure session is with an authenticated key exchange.
In our example, Alice and the host will engage in a conversation at the end of which
these two parties—and only these two parties—will share a secret session key σ.
With this session key distributed, Alice and the host can use it to encrypt and to
authenticate the traffic that flows between them, thus setting up a secure session.
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Figure 1.8: Envelope solution to the telephone-coin-flipping 5problem.

1.3.3 Coin Flipping

Alice and Bob want to decide which of them has to show up to their AI class. They
take turns going to this detested class, you see, but it so happens that there will be
an odd number of lectures.

Alice calls Bob on the telephone and offers a simple solution. “Bob,” she says,
“I’ve got a penny in my pocket. I’m going to toss it in the air right now. You call
heads or tails. If you get it right, I’ll go to AI class and take notes for us. If you get
it wrong, you’ll have to go.”

Bob is not as bright as Alice, but something troubles him about this arrangement.
The telephone-coin-flip problem is to come up with a protocol so that, to the

maximal extent possible, neither Alice nor Bob can cheat the other and, at the same
time, each of them learn the outcome of a fair coin toss.

Here is a solution—sort of. Alice puts a random bit α inside an envelope and
sends it to Bob. Bob announces a random bit β. Now Alice opens the envelope for
Bob to see. The shared bit is defined as α ⊕ β. See Figure 1.8

To do this over the telephone we need some sort of “electronic envelope” (in
cryptography, this called a commitment scheme). Alice can put a value in the
envelope and Bob can’t see what the envelope contains. Later, Alice can open the
envelope so that Bob can see what the envelope contains. Alice can’t change her
mind about an envelope’s contents—it can only be opened up in one way.

Here is a simple technique to implement an electronic envelope. To put a “0”
inside an envelope Alice chooses two random 500-bit primes p and q subject to the
constraints that p < q and p ≡ 1 (mod 4) and q ≡ 3 (mod 4). The product of
p and q, say N = pq, is the commitment to zero; that is what Alice would send
to commit to 0. To put a “1” inside an envelope Alice chooses too random 500-bit
primes p and q subject to the constraints that p < q and p ≡ 3 (mod 4) and q ≡ 1
(mod 4). The product of these, N = pq, is the commitment to 1. Poor Bob, seeing
N , would like to figure out if the smaller of its two prime factors is congruent to 1 or
to 3 modulo 4. We have no idea how to make that determination short of factoring
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N—and we don’t know how to factor 1000 digit numbers which are the product
of random 500-digit primes. Our best algorithms would, take way too long to run.
When Alice wants to decommit (open the envelope) N she announces p and q. Bob
verifies that they are prime (this is easy to do) and multiply to N , and then he looks
to see if the smaller factor is congruent to 1 or to 3 modulo 4.

1.4 What cryptography is about

Let us now move away from the particular examples we have given and ask what,
in general, is cryptography about?

1.4.1 Protocols, parties and adversaries

Briefly, cryptography is about constructing and analyzing protocols which overcome
the influence of adversaries. In the last sections we gave examples of several different
protocol problems, and a couple of different protocols.

Suppose that you are trying to solve some cryptographic problem. The problem
will usually involve some number of parties. Us cryptographers often like to anthro-
pomorphize our parties, giving them names like “Alice” and “Bob” and referring to
them as though they are actual people. We do this because it’s convenient and fun.
But you shouldn’t think that it means that the parties are really human beings.
They might be—but they could be lots of other things, too. Like a cell phone,
a computer, a processes running on a computer, an institution, or maybe a little
gadget sitting on the top of your television set.

We usually think of the parties as the “good guys,” and we want to help them
accomplish their goal. We do this by making a protocol for the parties to use.

A protocol tells each party how to behave. A protocol is essentially a program,
but it’s a distributed program. Here are some features of protocols for you to
understand.

A protocol instructs the parties what to do. It doesn’t tell the adversary what
to do. That is up to her.

A protocol can be probabilistic. This means that it can make random choices. To
formalize this we usually assume that the model of computation that allows a party
to specify a number n ≥ 2 and then obtain a random value i $←{0, 1, . . . , n − 1}.
This notation means that i is a random value from the indicated set, all values being
equally likely.

A protocol can be stateful. This means that when a party finishes what he is
doing he can retain some information for the next time that he is active. When that
party runs again he will remember the state that he was last in. So, for example,
you could have a party that knows “this is the first time I’ve been run,” “this is the
second time I’ve been run,” and so on.

When we formalize protocols, they are usually tuples of algorithms. But the
actual formalization will vary from problem to problem. For example, a protocol for
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symmetric encryption isn’t the same “type” of thing as a protocol for a telephone
coin flip.

Another word for a protocol is a scheme. We’ll use the two words interchange-
ably. So an encryption scheme is a protocol for encryption, and a message-authentication
scheme is a protocol for message authentication. For us, a function, computed by
a deterministic, sequential algorithm, is also a protocol. It’s a particularly simple
kind of protocol.

How can we devise and analyze protocols? The first step is to try to understand
the threats and the goals for our particular problem. Once we have a good idea
about these, we can try to find a protocol solution.

The adversary is the agent that embodies the “source” of the threat. Adversaries
aim to defeat our protocol’s goals. Protocols, in turn, are designed to to surmount
the behavior of adversaries. It is a game—a question of who is more clever, protocol
designer or adversary.

The adversary is usually what we focus on. In rigorous formalizations of cryp-
tographic problems, the parties may actually vanish, being “absorbed” into the
formalization. But the adversary will never vanish. She will be at center stage.

Cryptography is largely about thinking about the adversary. What can she do,
and what can’t she do? What is she trying to accomplish? We have to answer these
questions before we can get very far.

Just as we warned that one shouldn’t literally regard our parties as people, so
too for the adversary. The adversary might represent an actual person, but it might
just as well be an automated attack program, a competitor’s company, a criminal
organization, a government institution, one or more of the protocol’s legitimate
parties, a group of friendly hackers, or merely some unlucky circumstances conspiring
together, not controlled by any intelligence at all.

By imagining a powerful adversary we take a pessimistic view about what might
go wrong. We aim to succeed even if someone is out to get us. Maybe nobody is
out to get us. In that case, we should at least be achieving high reliability. After
all, if a powerful adversary can’t succeed in disrupting our endeavors, then neither
will noisy lines, transmission errors due to software bugs, unlucky message delivery
times, careless programmers sending improperly formatted messages, and so forth.

When we formalize adversaries they will be “random access machines (RAMs)
with access to an oracle.” See Figure 1.9 for a for a description of this model of
computation.

1.4.2 Cryptography and computer security

Good protocols are an essential tool for making secure computing systems. Badly
designed protocols are easily exploited to break into computer systems, to eavesdrop
on phone calls, to steal services, and so forth. Good protocol design is also hard.
It is easy to under-estimate the task and quickly come up with ad hoc protocols
that later turn out to be wrong. In industry, the necessary time and expertise for
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Specify a RAM model. (Should we use fixed-width registers or arbitrary
precision?)

Figure 1.9: The RAM model, with an oracle. An adversaries is a program written
in this model of computation. Details of the model are not important, but one has
to fix some model of computation.

proper protocol design is typically under-estimated, often at future cost. It takes
knowledge, effort and ingenuity to do the job right.

Security has many facets. For a system to be secure, many factors must combine.
For example, it should not be possible for hackers to exploit bugs, break into your
system, and use your account. They shouldn’t be able to buy off your system
administrator. They shouldn’t be able to steal your back-up tapes. These things lie
in the realm of system security.

The cryptographic protocol is just one piece of the puzzle. If it is poorly designed,
the attacker will exploit that. For example, suppose the protocol transmits your
password in the clear (that is, in a way that anyone watching can understand what
it is). That’s a protocol problem, not a system problem. And it will certainly be
exploited.

The security of the system is only as strong as its weakest link. This is a big
part of the difficulty of building a secure system. To get security we need to address
all the problems: how do we secure our machines against intruders, how do we
administer machines to maintain security, how do we design good protocols, and
so on. All of these problems are important, but we will not address all of these
problems here. This course is about the design of secure protocols. We usually have
to assume that the rest of the system is competent at doing its job.

We make this assumption because it provides a natural abstraction boundary in
dealing with the enormous task of providing security. Computer system security is
a domain of a different nature, requiring different tools and expertise. Security can
be best addressed by splitting it into more manageable components.



Bellare and Rogaway 21

1.4.3 The rules of the game

Cryptography has rules. The first rule is that we may only try to overcome the
adversary by means of protocols. We aren’t allowed to overcome the adversary by
intimidating her, arresting her, or putting poison in her coffee. These methods might
be effective, but they are not cryptography.

(Actually, most cryptographers have quite friendly feelings towards our adver-
saries, and we’d never want to cause one harm. Without an adversary, at least
a hypothetical one, we’d have nothing left to do. We’d have to seek employment
as mathematicians, where jobs are scarce and salaries are low. No, better to have
plenty of adversaries, and to stay on good terms with them.)

Another rule that most cryptographers insist on is to make the protocols public.
That which must be secret should be embodied in keys. The keys specify data,
not algorithms. Why do we insist that our protocols be public? There are several
reasons. A resourceful adversary will likely find out what the protocol is anyway,
since it usually has to be embodied in many programs or machines; trying to hide
the protocol description is likely to be costly or infeasible. More than that, the
attempt to hide the protocol makes one wonder if you’ve achieved security or just
obfuscation. Peer review and academic work can not progress in the absence of
known mechanisms, so keeping cryptographic methods secret is often seen as anti-
intellectual and a sign that ones work will not hold up to serious scrutiny.

Government organizations which deal in cryptography often do not make their
mechanisms public. For them, learning the cryptographic mechanism is one more
hoop that that the adversary must jump through. Why give anything away? Some
organizations may have other reasons for not wanting mechanisms to be public, like
a fear of disseminating cryptographic know-how, or a fear that the organization’s
abilities (or inabilities) will become better known.

1.5 Approaches to the study of cryptography

1.5.1 Phases in cryptography’s development

The history of cryptography can roughly be divided into three stages. In the first,
early stage, algorithms had to be implementable with paper and ink. Julius Caesar
used cryptograms. His and other early schemes often took the form of substitution
ciphers. If A = {A, B, . . . , Z} is the alphabet (Caesar of course used the Roman
one!), the simplest substitution cipher is simply a permutation f : A → A, associat-
ing with each “plaintext” letter x its “ciphertext” letter f(x). (Permutation means
it is one-to-one and onto, that is, bijective.) The mapping f is known to receiver and
sender, but, at least a priori, not to an adversary. To send a message M , view it as
a sequence of letters, M = M [1] . . . M [m]. The sender computes C[i] = f(M [i]) for
i = 1, . . . , m and transmits C = C[1] . . . C[m]. The receiver, knowing f , also knows
f−1, and can decode. The adversary, not knowing the association f , but seeing only
C, may be baffled at first. But once enough words have been transmitted, the code
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is soon broken, because we can make guesses based on repetitions of letters and
knowledge of frequencies of letters in words in the English language. The system
can be strengthened in various ways, but none too effective.

The second age of cryptography was that of cryptographic engines. This is
associated to the period of the World War II, and the most famous crypto engine
was the German Enigma machine. How its codes were broken is a fascinating story.

The last stage is modern cryptography. Its central feature is the reliance on
mathematics and electronic computers. Mathematical tools are used to design pro-
tocols and computers are used implement them. It is during this most recent stage
that cryptography becomes much more a science.

We can characterize much of the work that has been going on in cryptography in a
couple of different dimensions. The first distinction is between cryptanalysis-driven
design and proof-driven design. The second distinction is between information-
theoretic cryptography and complexity-theoretic cryptography. We would like to
take up these two dimensions.

1.5.2 Cryptanalysis-driven design

Traditionally, cryptographic mechanisms have been designed by focusing on concrete
attacks and how to defeat them. The approach has worked something like this.
(1) A cryptographic goal is recognized.
(2) A solution is offered.
(3) One searches for an attack on the proposed solution.
(4) When one is found, if it is deemed damaging or indicative of a potential weak-

ness, you go back to Step 2 and try to come up with a better solution. The
process then continues.

The third step is called cryptanalysis. In the classical approach to design, crypt-
analysis was an essential component of constructing any new design.

Sometimes one finds protocol problems in the form of subtle mathematical rela-
tionships which allow one to subvert the protocol’s aims. Sometimes, instead, one
“jumps out of the system,” showing that some essential cryptographic issue was
overlooked in the design, application, or implementation of the cryptography.

Some people like to reserve the word cryptography to refer to the making of
cryptographic mechanisms, cryptanalysis to refer to the attacking of cryptographic
mechanisms, and cryptology to refer to union. Under this usage, we’ve been saying
“cryptography” in many contexts where “cryptology” would be more accurate. Most
cryptographers don’t observe this distinction between the words “cryptography” and
“cryptology,” so neither will we.

There are some difficulties with the approach of cryptanalysis-drive design. The
obvious problem is that one never knows if things are right, nor when one is finished!
The process should iterate until one feels “confident” that the solution is adequate.
But one has to accept that design errors might come to light at any time. If one
is making a commercial product one must eventually say that enough is enough,
ship the product, and hope for the best. With luck, no damaging attacks will
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Problem

Proposed Solution

Bug!

Revised Solution

...

Implement

Bug!

...
Figure 1.10: The classical-cryptography approach.

subsequently emerge. But sometimes they do, and when this happens the company
that owns the product may find it difficult or impossible to effectively fix the fielded
solution. They might try to keep secret that there is a good attack, but it is not
easy to keep secret such a thing. See Figure 1.10.

Doing cryptanalysis well takes great cleverness, and it is not clear that insightful
cryptanalysis is a skill that can be effectively taught. Sure, one can study the most
famous attacks—but will they really allow you to produce a new, equally insightful
one? Great cleverness and great mathematical prowess seem to be the requisite
skills, not any specific piece of knowledge. Maybe you have heard of Don Copper-
smith or Adi Shamir. These are two of the masters of this field.

Sadly, it is hard to base a science on an area where significant assurance is
engendered by knowing that Don thought seriously about the mechanism for some
time, and couldn’t find an attack. We need to pursue things differently.

1.5.3 Shannon security for symmetric encryption

The “systematic” approach to cryptography, where proofs and definitions play a
visible role, begins in the work of Claude Shannon. Shannon was not only the father
of information theory, but he might also be said to be the father of the modern-era
of cryptography.

Let’s return to the problem of symmetric encryption and our particular protocol
for doing this, which was to use a one-time-pad. Security, we have said, means
defeating an adversary, so we have to specify what is it the adversary wants to do.
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As we have mentioned before, we need some formal way of saying what it means
for the scheme to be secure. We present the idea of Shannon.

Let M: {0, 1}n → [0, 1] be a probability distribution on the set of n-bit messages.
That is, assume Alice chooses M with probability M(M). This distribution is
known to everyone, including the adversary. Thus, before C is transmitted, all the
adversary knows is that any particular message M has probability M(M) of being
transmitted.

We want to capture the constraint that the adversary’s information about the
message does not increase after seeing the ciphertext. We have fixed some encryption
scheme (K, E ,D) in mind. For any string C let PM(C, M) denote the a posteriori
probability of M given ciphertext C, namely

PM(C, M) = Pr [ Message was M | Ciphertext was C ] .

Here the probability is over the choice of key K and the choice of M from M. Note
it is a conditional probability, namely the probability that M was the message given
that a particular ciphertext C has been seen.

Definition 1.1 Encryption scheme (K, E ,D) is Shannon secure if for every distri-
bution M it is the case that for every ciphertext C which occurs with nonzero
probability, and message M , we have PM(C, M) = M(M).

The way to interpret it is that after having seen C, let the adversary take her best
guess as to what M was. The probability that she is right is not more than the
probability that she would have been right had the sender simply chosen a message,
transmitted nothing at all, and asked the adversary to guess this message.

As long as you don’t end up with more information about the message after
seeing C than you had before, then the encryption is secure.

It turns out that the one-time-pad encryption has the above property. We prove
this in Chapter 4.

Shannon-security however has important limitations. Recall that the key in the
one-time-pad scheme had to be at least as long as the number of bits we want to
encrypt. It turns out that this is necessary to achieve Shannon security. That is, if
an encryption scheme is to meet Definition 1.1, the number of key bits must be at
least the total number of plaintext bits we’re going to encrypt.

This fact has some fundamental implications. If we want to do practical cryp-
tography, we must be able to use a single short key to encrypt lots of bits. This
means that we will not be able to achieve Shannon security. We must seek a different
paradigm and a different notion of security.

1.5.4 Computational-complexity theory

Modern cryptography introduces a new dimension: the amount of computing power
available to an adversary. It seeks to have security as long as adversaries don’t
have “too much” computing time. Schemes are breakable “in principle,” but not in
practice. Attacks are infeasible, not impossible.
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This is a radical shift from many points of view. It takes cryptography from
the realm of information theory into the realm of computer science, and complexity
theory in particular, since that is where we study how hard problems are to solve
as a function of the computational resources invested. And it changes what we can
efficiently achieve.

We will want to be making statements like this:

Assuming the adversary uses no more than t computing cycles, her prob-
ability of breaking the scheme is at most t/2200.

Notice again the statement is probabilistic. Almost all of our statements will be.
Notice another important thing. Nobody said anything about how the adversary

operates. What algorithm, or technique, does she use? We do not know anything
about that. The statement holds nonetheless. So it is a very strong statement.

It should be clear that, in practice, a statement like the one above would be
good enough. As the adversary works harder, her chance of breaking the scheme
increases, and if the adversary had 2200 computing cycles at her disposal, we’d have
no security left at all. But nobody has that much computing power.

Now we must ask ourselves how we can hope to get protocols with such proper-
ties. The legitimate parties must be able to efficiently execute the protocol instruc-
tions: their effort should be reasonable. But somehow, the task for the adversary
must be harder.

1.5.5 Atomic primitives

We want to make a distinction between the protocols that that we use and those
that we are designing. At the lowest level are what we call atomic primitives. Higher
level protocols are built on top of these.

Atomic Primitives

↓
Protocols

What’s the distinction? Perhaps the easiest way to think of it is that the proto-
cols we build address a cryptographic problem of interest. They say how to encrypt,
how to authenticate, how to distribute a key. We build our protocols out of atomic
primitives. Atomic primitives are protocols in their own right, but they are simpler
protocols. Atomic primitives have some sort of “hardness” or “security” properties,
but by themselves they don’t solve any problem of interest. They must be properly
used to achieve some useful end.

In the early days nobody bothered to make such a distinction between protocols
and the primitives that used them. And if you think of the one-time pad encryption
method, there is really just one object, the protocol itself.
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Atomic primitives are drawn from two sources: engineered constructs and math-
ematical problems. In the first class fall standard block ciphers such as the well-
known DES algorithm. In the second class falls the RSA function. We’ll be looking
at both types of primitives later.

The computational nature of modern cryptography means that one must find,
and base cryptography on, computationally hard problems. Suitable ones are not
so commonplace. Perhaps the first thought one might have for a source of com-
putationally hard problems is NP-complete problems. Indeed, early cryptosystems
tried to use these, particularly the Knapsack problem. However, these efforts have
mostly failed. One reason is that NP-complete problems, although apparently hard
to solve in the worst-case, may be easy on the average.

An example of a more suitable primitive is a one-way function. This is a function
f : D → R mapping some domain D to some range R with two properties:
(1) f is easy to compute: there is an efficient algorithm that given x ∈ D outputs

y = f(x) ∈ R.
(2) f is hard to invert: an adversary I given a random y ∈ R has a hard time

figuring out a point x such that f(x) = y, as long as her computing time is
restricted.

The above is not a formal definition. The latter, which we will see later, will talk
about probabilities. The input x will be chosen at random, and we will then talk of
the probability an adversary can invert the function at y = f(x), as a function of
the time for which she is allowed to compute.

Can we find objects with this strange asymmetry? It is sometimes said that
one-way functions are obvious from real life: it is easier to break a glass than to
put it together again. But we want concrete mathematical functions that we can
implement in systems.

One source of examples is number theory, and this illustrates the important
interplay between number theory and cryptography. A lot of cryptography has
been done using number theory. And there is a very simple one-way function based
on number theory—something you already know quite well. Multiplication! The
function f takes as input two numbers, a and b, and multiplies them together to
get N = ab. There is no known algorithm that given a random N = ab, always and
quickly recovers a pair of numbers (not 1 and N , of course!) that are factors of N .
This “backwards direction” is the factoring problem, and it has remained unsolved
for hundreds of years.

Here is another example. Let p be a prime. The set Z∗
p = {1, . . . , p − 1} turns

out to be a group under multiplication modulo p. We fix an element g ∈ Z∗
p which

generates the group (that is, {g0, g1, g2, . . . , gp−2} is all of Z∗
p) and consider the

function f : {0, . . . , p− 2} → Z∗
p defined by f(x) = gx mod p. This is called discrete

exponentiation, and its inverse is called discrete logarithm: logg(y) is the value x
such that y = gx. It turns out there is no known fast algorithm that computes
discrete logarithms, either. This means that for large enough p (say 1000 bits) the
task is infeasible, given current computing power, even in thousands of years. So
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this is another one-way function.
It should be emphasized though that these functions have not been proven to be

hard functions to invert. Like P versus NP, whether or not there is a good one-way
function out there is an open question. We have some candidate examples, and we
work with them. Thus, cryptography is build on assumptions. If the assumptions
are wrong, a lot of protocols might fail. In the meantime we live with them.

1.5.6 The provable-security approach

While there are several different ways in which proofs can be effective tools in
cryptography, we will generally follow the proof-using tradition which has come to
be known as “provable security.” Provable security emerged in 1982, with the work
of Shafi Goldwasser and Silvio Micali. At that time, Goldwasser and Micali were
graduate students at UC Berkeley. They, and their advisor Manuel Blum, wanted to
put public-key encryption on a scientifically firm basis. And they did that, effectively
creating a new viewpoint on what cryptography is really about.

We have explained above that we like to start from atomic primitives and trans-
form them into protocols. Now good atomic primitives are rare, as are the people
who are good at making and attacking them. Certainly, an important effort in
cryptography is to design new atomic primitives, and to analyze the old ones. This,
however, is not the part of cryptography that this course will focus on. One reason
is that the weak link in real-world cryptography seems to be between atomic primi-
tives and protocols. It is in this transformation that the bulk of security flaws arise.
And there is a science that can do something about it, namely, provable security.

We will view a cryptographer as an engine for turning atomic primitives into
protocols. That is, we focus on protocol design under the assumption that good
atomic primitives exist. Some examples of the kinds of questions we are interested in
are these. What is the best way to encrypt a large text file using DES, assuming DES
is secure? What is the best way to design a signature scheme using multiplication,
assuming that multiplication is one-way? How “secure” are known methods for
these tasks? What do such questions even mean, and can we find a good framework
in which to ask and answer them?

A poorly designed protocol can be insecure even though the underlying atomic
primitive is good. The fault is not of the underlying atomic primitive, but that
primitive was somehow misused.

Indeed, lots of protocols have been broken, yet the good atomic primitives, like
DES and multiplication and RSA, have never been convincingly broken. We would
like to build on the strength of such primitives in such a way that protocols can
“inherit” this strength, not lose it. The provable-security paradigm lets us do that.

The provable-security paradigm is as follows. Take some goal, like achieving pri-
vacy via symmetric encryption. The first step is to make a formal adversarial model
and define what it means for an encryption scheme to be secure. The definition
explains exactly when—on which runs—the adversary is successful.
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Figure 1.11: The provable-security paradigm.

With a definition in hand, a particular protocol, based on some particular atomic
primitive, can be put forward. It is then analyzed from the point of view of meeting
the definition. The plan is now show security via a reduction. A reduction shows
that the only way to defeat the protocol is to break the underlying atomic primitive.
Thus we will also need a formal definition of what the atomic primitive is supposed
to do.

A reduction is a proof that if the atomic primitive does the job it is supposed
to do, then the protocol we have made does the job that it is supposed to do.
Believing this, it is no longer necessary to directly cryptanalyze the protocol: if
you were to find a weakness in it, you would have unearthed one in the underlying
atomic primitive. So if one is going to do cryptanalysis, one might as well focus on
the atomic primitive. And if we believe the latter is secure, then we know, without
further cryptanalysis of the protocol, that the protocol is secure, too.

A picture for the provable-security paradigm might look like Figure 1.11.
In order to do a reduction one must have a formal notion of what is meant

by the security of the underlying atomic primitive: what attacks, exactly, does it
withstand? For example, we might assume that RSA is a one-way function.

Here is another way of looking at what reductions do. When I give you a
reduction from the onewayness of RSA to the security of my protocol, I am giving
you a transformation with the following property. Suppose you claim to be able to
break my protocol P . Let A be the adversary that you have that does this. My
transformation takes A and turns it into another adversary, A′, that breaks RSA.
Conclusion: as long as we believe you can’t break RSA, there could be no such
adversary A. In other words, my protocol is secure.

Those familiar with the theory of NP-completeness will recognize that the basic
idea of reductions is the same. When we provide a reduction from SAT to some
computational problem Ξ we are saying our Ξ is hard unless SAT is easy; when we
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We think that computational problem Ξ
can’t be solved in polynomial time.

We think that cryptographic protocol Π
can’t be effectively attacked.

We believe this because if Ξ could be
solved in polynomial time, then so could
SAT (say).

We believe this because if Π could be effec-
tively attacked, then so could RSA (say).

To show this we reduce SAT to Ξ: we
show that if somebody could solve Ξ in
polynomial time, then they could solve
SAT in polynomial time, too.

To show this we reduce RSA to Π: we
show that if somebody could break Π
by effective means, then they could break
RSA by effective means, too.

Figure 1.12: The analogy between reductionist-cryptography and NP-Completeness.

provide a reduction from RSA to our protocol Π, we are saying that Π is secure
unless RSA is easy to invert. The analogy is further spelled out in Figure 1.12, for
the benefit of those of you familiar with the notion of NP-Completeness.

Experience has taught us that the particulars of reductions in cryptography are
a little harder to comprehend than they were in elementary complexity theory. Part
of the difficulty lies in the fact that every problem domain will have it’s own unique
notion of what is an “effective attack.” It’s rather like having a different “version” of
the notion of NP-Completeness as you move from one problem to another. We will
also be concerned with the quality of reductions. One could have concerned oneself
with this in complexity theory, but it’s not usually done. For doing practical work in
cryptography, however, paying attention to the quality of reductions is important.
Given these difficulties, we will proceed rather slowly through the ideas. Don’t
worry; you will get it (even if you never heard of NP-Completeness).

The concept of using reductions in cryptography is a beautiful and powerful
idea. Some of us by now are so used to it that we can forget how innovative it was!
And for those not used to it, it can be hard to understand (or, perhaps, believe)
at first hearing—perhaps because it delivers so much. Protocols designed this way
truly have superior security guarantees.

In some ways the term “provable security” is misleading. As the above indicates,
what is probably the central step is providing a model and definition, which does
not involve proving anything. And then, one does not “prove a scheme secure:” one
provides a reduction of the security of the scheme to the security of some underlying
atomic primitive. For that reason, we sometimes use the term “reductionist security”
instead of “provable security” to refer to this genre of work.

1.5.7 Theory for practice

As you have by now inferred, this course emphasizes general principles, not specific
systems. We will not be talking about the latest holes in sendmail or Netscape, how
to configure PGP, or the latest attack against the ISO 9796 signature standard.
This kind of stuff is interesting and useful, but it is also pretty transitory. Our focus
is to understand the fundamentals, so that we know how to deal with new problems



30 INTRODUCTION

as they arise.
We want to make this clear because cryptography and security are now quite

hyped topic. There are many buzzwords floating around. Maybe someone will ask
you if, having taken a course, you know one of them, and you will not have heard
of it. Don’t be alarmed. Often these buzzwords don’t mean much.

This is a theory course. Make no mistake about that! Not in the sense that
we don’t care about practice, but in the sense that we approach practice by trying
to understand the fundamentals and how to apply them. Thus the main goal is to
understand the theory of protocol design, and how to apply it. We firmly believe it is
via an understanding of the theory that good design comes. If you know the theory
you can apply it anywhere; if you only know the latest technology your knowledge
will soon by obsolete. We will see how the theory and the practice can contribute
to each other, refining our understanding of both.

In assignments you will be asked to prove theorems. There may be a bit of math-
ematics for you to pick up. But more than that, there is “mathematical thinking.”

Don’t be alarmed if what you find in these pages contradicts “conventional wis-
dom.” Conventional wisdom is often wrong! And often the standard texts give an
impression that the field is the domain of experts, where to know whether something
works or not, you must consult an expert or the recent papers to see if an attack
has appeared. The difference in our approach is that you will be given reasoning
tools, and you can then think for yourself.

Cryptography is fun. Devising definitions, designing protocols, and proving them
correct is a highly creative endeavor. We hope you come to enjoy thinking about
this stuff, and that you come to appreciate the elegance in this domain.

1.6 What background do I need?

Now that you have had some introduction to the material and themes of the class,
you need to decide whether you should take it. Here are some things to consider in
making this decision.

A student taking this course is expected to be comfortable with the following
kinds of things, which are covered in various other courses.

The first is probability theory. Probability is everywhere in cryptography. You
should be comfortable with ideas like sample spaces, events, experiments, conditional
probability, random variables and their expectations. We won’t use anything deep
from probability theory, but we will draw heavily on the language and basic concepts
of this field.

You should know about alphabets, strings and formal languages, in the style of
an undergraduate course in the theory of computation.

You should know about algorithms and how to measure their complexity. In par-
ticular, you should have taken and understood at least an undergraduate algorithms
class.
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Most of all you should have general mathematical maturity, meaning, especially,
you need to be able to understand what is (and what is not) a proper definition.

1.7 Historical notes

1.8 Exercises and problems

Exercise 1.1 Suppose that you want to encrypt a single message M ∈ {0, 1, 2}
using a random shared key K ∈ {0, 1, 2}. Suppose you do this by representing K
and M using two bits (00, 01, or 10), and then XORing the two representations.
Does this seem like a good protocol to you? Explain.

Exercise 1.2 Suppose that you want to encrypt a single message M ∈ {0, 1, 2}
using a random shared key K ∈ {0, 1, 2}. Explain a good way to do this.

Exercise 1.3 Besides the symmetric and the asymmetric trust models, think of a
couple more ways to “create asymmetry” between the receiver and the adversary.
Show how you would encrypt a bit in your model.

Exercise 1.4 In the telephone coin-flipping protocol, what should happen if Alice
refuses to send her second message? Is this potentially damaging?

Problem 1.1 A limitation on fixed-time fair-coin-flipping TMs. Consider the model
of computation in which we augment a Turing machine so that it can obtain the
output of a random coin flip: by going into a distinguished state Q$, the next state
will be QH with probability 1/2, and the next state will be QT with probability
1/2. Show that, in this model of computation, there is no constant-time algorithm
to perfectly deal out five cards to each of two players.

(A deck of cards consists of 52 cards, and a perfect deal means that all hands
should be equally likely. Saying that the algorithm is constant-time means that
there is some number T such that the algorithm is guaranteed to stop within T
steps.)

Problem 1.2 Symmetric encryption with a deck of cards. Alice shuffles a deck of
cards and deals it all out to herself and Bob (each of them gets half of the 52 cards).
Alice now wishes to send a secret message M to Bob by saying something aloud.
Eavesdropper Eve is listening in: she hears everything Alice says (but Eve can’t see
the cards).

Part A. Suppose Alice’s message M is a string of 48-bits. Describe how Alice can
communicate M to Bob in such a way that Eve will have no information about what
is M .

Part B. Now suppose Alice’s message M is 49 bits. Prove that there exists no
protocol which allows Alice to communicate M to Bob in such a way that Eve will
have no information about M .
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(What does it mean that Eve learns nothing about M? That for all strings κ,
the probability that Alice says κ is independent of M : for all messages M0, M1 we
have that

Pr[ Alice says κ| M = M0] = Pr[ Alice says κ| M = M1] .

The probability is over the the random shuffle of the cards.)

Problem 1.3 Composition of EPT Algorithms. John designs an EPT (expected
polynomial time) algorithm to solve some computational problem Π—but he as-
sumes that he has in hand a black-box (ie., a unit-time subroutine) which solves
some other computational problem, Π′. Ted soon discovers an EPT algorithm to
solve Π′. True or false: putting these two pieces together, John and Ted now have
an EPT algorithm for Π. Give a proof or counterexample.

(When we speak of the worst-case running time of machine M we are looking
at the function T (n) which gives, for each n, the maximal time which M might
spend on an input of size n: T (n) = maxx, |x|=n[#StepsM (x)]. When we speak of
the expected running time of M we are instead looking at the function T (n) which
gives, for each n, the maximal value among inputs of length n of the expected value
of the running time of M on this input—that is, T (n) = maxx, |x|=n E[#StepsM (x)],
where the expectation is over the random choices made by M .)


