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Abstract

The 2006 paper Conjunctive, Subset, and Range Queries on Encrypted Data by Dan Boneh and Brent Waters
addresses the problem of predicate evaluation on encrypted data in the public key setting – one that does not leak any
additional information about the data. The authors provide both a security notion for such queries and an efficient
construction based on the bilinear and 3-party composite Diffie-Hellman assumptions. The goal of this write-up is
to present the security notion devised by Boneh and Waters and describe their construction at a high level.

Introduction

This paper is motivated by situations in which a non-malicious party may wish to learn information of interest about
encrypted data. For example, one may want to encrypt student test results for privacy reasons; however, a statistical
program may want to know some information the data. For example, it may want to count how many students
scored over 90%, which is a fairly innocuous goal. Yet we would not want to allow such a program to decrypt all of
the data and find out the identities of the students. Therefore, it is desirable to encode the “x ≥ 90%” predicate in a
token TKp to allow the program to compute this information. Furthermore, if the predicate contains a conjunction
P1 ∧ P2, we do not want the encryption scheme to leak which predicate satisfied the expression.

Boneh and Waters describe the syntactic components of a searchable encryption scheme defined with respect to
a set of predicates Φ; they do not provide a decryption algorithm, arguing that it can always be added by using
a standard public key encryption system. The authors then define two similar notions of security for a searchable
system, both of a find-then-guess flavor, that capture the intuition that an adversary should not be able to distinguish
encrypted data values that agree on the predicate; then, they provide a trivial construction of a searchable encryption
system based on standard pubic key encryption, showing it to produce very long ciphertexts. They then construct a
Hidden Vector Encryption system based on the bilinear and 3-party composite Diffie-Hellman assumptions which can
be used to encode conjunctions of range and subset queries, and demonstrate significant improvement in efficiency.

Searchable Encryption

Let Σ be the space containing data values andM be a space of messages that can be associated with the data. Given a
set of predicates Φ, a Φ-searchable encryption scheme is a four-tuple of algorithms (Setup,Encrypt,GenToken,Query)
that behave as follows:

– Setup(λ) is a probabilistic algorithm that generates keys PK,SK based on the security parameter λ.

– Encrypt(PK, I,M) encrypts the pair (I,M) where I ∈ Σ is a data value and M ∈ M is a safe-to-reveal
message that provides some additional information about the data. In a scenario where we are only interested
in whether a predicate is satisfied, M may be limited to just {true}.

– GenToken(SK, 〈P 〉) takes as input the secret key and a description of the predicate P ∈ Φ and generates the
corresponding token TKP .

– Query(TK,C) describes how a token for predicate P ∈ Φ can be used to test the ciphertext C, outputting
message M ∈M.

This description is subject to the correctness condition, which states that for all data-message pairs (I,M) ∈ Σ×M
and all predicates P ∈ Φ, if we run the setup, encryption and token-generation algorithms

(PK,SK)
$←− Setup(λ);C

$←− Encrypt(PK, I,M);TK
$←− GenToken(SK, 〈P 〉)

then the query algorithm will behave as expected, revealing M if the predicate P holds for I and failing otherwise.

– If P (I) = 1 then Query(TK,C) = M

– If P (I) = 0 then Pr[Query(TK,C) =⊥] > 1− ε(λ), where ε is a negligible function.
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Security

The paper defines the security of a Φ-searchable encryption system through the following game, which consists of
several phases:

• Setup – The Setup(λ) algorithm is run by the simulation environment and PK is passed to the adversary.

• Query Phase I – The adversary is allowed adaptively request tokens for the predicates P1, . . . Pq′ ∈ Φ; these
predicate queries are answered by running GenToken(SK, 〈Pi〉).

• Challenge – The adversary chooses two data-message pairs (I0,M0) and (I1,M1) subject to the restrictions
that

– Pi(I0) = Pi(I1) for all i = 1, . . . , q′ – the data values agree on all previously computed predicates.

– If M0 6= M1 then Pi(I0) = Pi(I1) = 0 for all i = 1, . . . , q′ – the tokens do not directly distinguish M0 from
M1.

• Query Phase II – The adversary can request more tokens for predicates Pq′+1, . . . , Pq ∈ Φ as long as they
adhere to the above restrictions.

• Guess – We flip a coin β ∈ {0, 1} and give C∗
$←− Encrypt(PK, Iβ ,Mβ) to the adversary, who returns a guess

β′ ∈ {0, 1}. The advantage of adversary A is then given by

AdvQUE (A) =
∣∣Pr[β′ = β]− 1
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and a Φ-searchable scheme E is considered secure if AdvQUE is a negligible function of λ.

This is a familiar, find-then-guess type of game; the authors do not justify their preference of this style of game to
a left-or-right construction or something else entirely. The authors also define selective security to be a slightly
weaker version of the game above – in this game, everything is the same except the adversary commits to I0, I1
during the Setup phase.

Trivial Construction

The authors provide a trivial construction of a Φ-searchable security system ETR with t predicates based on any
existing public key system E = (Setup′, Encrypt′, Decrypt′). The searchable keys PK,SK are generated simply by
running Setup′(λ) t times and the encryption algorithm Encrypt(PK, I,M) computes ciphertext C1C2 . . . Ct where
each Cj is computed by running Encrypt′(M) if Pj holds for I and Encrypt′(⊥) otherwise. The token TKPj

is the
index j of the predicate in Φ and the secret key SKj corresponding to that predicate and Query(TK,C) is trivially
accomplished by decrypting Cj with SKj . This scheme is shown to be secure as a searchable scheme assuming E
is secure against chosen message attacks using a hybrid argument with a chain of t + 1 experiments, where the ith

experiment encrypts M0 for all Pj that hold for I0 if j ≥ i and M1 for all Pj that hold for I1 if j < i. If ExpiQU is
the probability that the adversary guesses β′ = 1 in experiment i then its advantage is given by the difference in the
outer experiments

AdvQUETR
= |Exp1QU (A)−Expt+1

QU (A)| ≤
t∑
i=1

|ExpiQU (A)−Expi+1
QU (A)|

and we count on |ExpiQU (A) − Expi+1
QU (A)| to be negligible since E is assumed to be semantically secure in the

public key setting. Boneh and Waters then point out that, given data space Σ = {1, . . . n}w and the set Φn,w of all
comparison predicates over Σ = {1, . . . , n}w

Pa1,...aw(x1, . . . , xw) = xj ≥ aj for all j = 1, . . . , w

this system will produce ciphertexts of length O(nw); this motivates the construction of a scheme that is more
efficient.

Hidden Vector Encryption

Boneh and waters create a general scheme for searchable encryption of vector-like data that can be used to easily
encrypt equality or range predicates that test if a data value falls within a certain range. They also demonstrate that
the scheme can be extended to encode more general subset predicates, which ask if a certain data value is a mem-
ber of a subset. Their construction uses two flavors of the Diffie-Hellman assumption: the bilinear Diffie-Hellman
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assumption states that, if G is a group generator which outputs tuple (p, q,G,H,m) where p 6= q are distinct primes
and G,H are two groups order n = pq and m is a non-degenerate, bilinear map m : G×G→ H, then given random
element gp ∈ Gp where Gp is a subgroup of order p of G and the values of gap , g

b
p, g

c
p, it is difficult to distinguish

m(gp, gp)
abc from an element randomly chosen from H where a, b, c ∈ Z. The composite 3-party Diffie-Hellman

assumption states that, given gap , g
b
p, g

ab
p ·R1, g

abc
p ·R2, it is difficult to identify gcp ·R3 where R1, R2, R3 are randomly

selected from Gq, a subgroup of order q of G; that is, that it is difficult to test for Diffie-Hellman tuples in the order-p
subgroup if the elements have a random component in the order-q subgroup.

The authors give a construction for defining general equality predicates that can also be used for comparison and
subset queries. The predicates are constructed over Σ∗ = Σ∪{∗}, where Σ is now a set of predicate values and * is a
wildcard symbol that indicates that we do not care about a value. For example, an equality predicate Pσ is defined
over Σ`∗ so that if x ∈ Σ` then Pσ(x) is 1 on all non-* coordinates j of σ where σj = xj and zero otherwise. The
construction of a secure HVE system views Σ as Zm and the message space M as a small subset of the group H
described above; specifically, it stipulates that |M| < |H|1/4. A high-level description of the algorithm follows:

– Setup generates a bilinear group with G and creates the secret key by choosing a random triple from G3
p for each

of ` predicates; it then creates the public key by choosing 3`+ 1 random blinding factors in Gq and multiplying
them with some of the previously chosen values. The algorithm also chooses two random elements g, v from Gp
and publishes the result of the bilinear map m(g, v)α as part of the public key where α is an exponent chosen
from Zp.

– Encrypt(PK, I,M) is performed by picking random elements in Gq by raising gq to random exponents from Zn
and the predicate is encrypted by multiplying those values with components of the public key. The algorithm
encrypts the message using the value of the bilinear map.

– GenToken(SK, 〈P 〉) generates a token for a predicate Pσ ∈ Σ`∗ based on the product of the secret key at the
indices at which σ 6= ∗, along with randomly chosen exponents.

– Query(TK,C) is then able to compute the message through division, using values and indicies known from the
token and exponentiation properties of the bilinear map.

Although the details are not shown, one of the elegant parts of this construction is that it gives part one of the
correctness condition almost automatically, leveraging the property that m(hp, hq) = 1 if hp ∈ Gp and hq ∈ Gq. The
second part of the correctness condition is established from the stipulation that |M| < |H|1/4 < (pq)1/4. Boneh and
Waters estabilish the security of HVE using a hybrid argument, employing the Diffie-Hellman assumptions outlined
above by establishing games that differ in a certain index of the predicate vector.

Application

The Hidden Vector Encryption system can be used to construct predicate and range queries with relatively compact
ciphertexts and tokens; compared to the results of the trivial construction, this system produces ciphertexts and
tokens for the predicate family Φn,w of size O(nw) and O(w), respectively. The Encrypt(PK, I,M) algorithm builds
a vector σ(i, j) for I = (x1, . . . , xw) ∈ {1, . . . , n}w, setting σi,j = j ≥ xi interpreted as a boolean value and run
EncryptHVE on this vector, which is now defined over {0, 1}. GenToken(SK, 〈Pa〉) where a = {a1, . . . , aw} ∈
{1, . . . , n}w will define a predicate vector σ∗i,j = 1 if xi = j and * otherwise. Thus, we can see how this algorithm
significantly compacts the values of the encryption while retaining the necessary information to compute the query.
The authors show how this construction can be used to build conjunctions of range, as well as subset, queries.

Conclusion

This paper introduces and motivates the notion of searchable encryption schemes, pointing out scenarios in which
searching encrypted data would be useful. The authors give a syntactic notion of a searchable encryption system,
which should generate predicate tokens that could then be used to run queries on encrypted data. They provide a
security notion built on the intuition that the knowledge that can be gained about the data from the encryption
scheme should be limited to only that which is revealed by the evaluating the predicates. The authors give a trivial
construction for the scheme to demonstrate existence and then construct a more efficient scheme using two variants
of the Diffie-Hellman assumption while leveraging other group-theoretic properties.
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