Problem Set 1

Please turn in your solutions at the beginning of class on Thursday, January 26, 2012. Remember that if you work with someone on a solution to any problem, you should please turn in a single solution for it.

Some problem(s) may need you to employ a "hybrid argument," which I am hoping you manage to "invent" for the need, but which you can always look up, now that I have given you this term. The mathematical tool underlying a hybrid argument is just the triangle inequality: $|a - b| \le |a - c| + |b - c|$.

Problem 1.

Part A. A natural way to formalize a probabilistic Turing machine is to provide it a distinguished state $q_{\rm S}$ out of which it transitions to a state $q_{\rm H}$ with probability 0.5, transitioning to a state $q_{\rm T}$ otherwise. Show that such a formulation is inadequate to enable a TM M that runs in any fixed amount of time T to perfectly shuffle a deck of cards.¹

Because of the above, we should henceforth assume a different formulation of probabilistic Turing machines, where the machine can write positive numbers $n, m, n \leq m$, on a distinguished query tape and then it enters state $q_{\rm H}$ with probability n/m, and state $q_{\rm T}$ otherwise.

Part B. Alice shuffles a deck of cards and deals it out to herself and Bob so that each gets half of the 52 cards. Alice now wishes to send a secret message M to Bob by saying something aloud. Eavesdropper Eve is listening in: she hears everything Alice says (but Eve can't see the cards).

Suppose Alice's message M is a string of 48-bits. Describe how Alice can communicate M to Bob in such a way that Eve will have no information about what is M. You do not need to concern yourself with "encoding-level" details.

Part C. Now suppose Alice's message M is 49 bits. Explain why there exists no protocol that allows Alice to communicate M to Bob in such a way that Eve will have no information about M.

Problem 2. Let $g: \{0,1\}^n \to \{0,1\}^N$ be a function (a "pseudorandom generator", or PRG), and let A be an adversary. In class we defined the advantage A gets in attacking g as

$$\mathbf{Adv}_q^{\mathrm{prg}}(A) = \Pr[A^{g(\$)} \Rightarrow 1] - \Pr[A^{\$} \Rightarrow 1]$$

In the first experiment the oracle responds to each query by computing $s \stackrel{\$}{\leftarrow} \{0,1\}^n$ and returning g(s); in the second experiment the oracle responds to each query by computing $y \stackrel{\$}{\leftarrow} \{0,1\}^N$ and returning y.

Part A. Suppose there exists an adversary A that, making q queries, manages to obtain prg-advantage δ . Describe and analyze an adversary B, about as efficient as A, that gets advantage $\delta' = \delta/q$ while asking only a single query.

Part B. Consider a different kind of advantage for $g : \{0,1\}^n \to \{0,1\}^N$, the "next-bit-test" advantage. The adversary A makes a query $\ell \in [0..N-1]$ and is then given the first ℓ bits of y=g(s) for a random $s \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \{0,1\}^n$. The adversary tries to predict the next bit, $y[\ell+1]$, outputting its guess b as to this bit. The adversary's nbt-advantage, $\mathbf{Adv}_g^{\mathrm{nbt}}(A)$, is twice the probability that she correctly predicts this bit, minus one.

Formalize and demonstrate that security in the prg-sense is equivalent, up to some factor you compute, to security in the nbt-sense.

Part C. Suppose you have a "good" PRG $g: \{0,1\}^n \to \{0,1\}^{n+1}$. Construct from it a "good" PRG $G: \{0,1\}^n \to \{0,1\}^{2n}$. Formalize and prove a result that captures the idea that G is secure if g is.

¹To perfectly shuffle a deck of cards means that the machine outputs a uniformly random list of distinct numbers from 1 to 52.