
Collision attacks on OCB

Niels Ferguson∗

February 11, 2002

Abstract

We show that collision attacks are quite effective on the OCB block
cipher mode. When a collision occurs OCB loses its authentication
capability. To keep adequate authentication security OCB has to be
limited in the amount of data it processes. This restriction is relevant
to real-life applications, and casts doubt on the wisdom of using OCB.

Keywords: OCB, block cipher mode, collision attack

1 Introduction

OCB is a block cipher mode that provides both encryption and authentica-
tion [RBBK01b, RBBK01a]. It has been submitted to NIST as a proposal
for standardisation, and is being considered for inclusion in the IEEE 802.11
wireless network standard. The main advantage of OCB is that it provides
both authentication and encryption at about the same cost as CBC encryp-
tion. This makes OCB significantly faster then a combination of a classical
encryption mode and an authentication mode. OCB comes with a proof of
security [RBBK01a].

Since its publication OCB has received some attention, but very little crypt-
analysis. We believe this has several reasons. Firstly, a proof of security
seems to imply that cryptanalysis is useless. Secondly, the proof is quite
complicated and analysis of the proof details is restricted to those people
well-versed in these type of proof techniques. Thirdly, the OCB mode has
been patented. This last reason has been the main reason for the author,

∗MacFergus cryptography consulting, niels@ferguson.net

1

and several other reputable cryptanalysts he has spoken to, not to spend
any time on OCB. Spending time on OCB will only help the patent-holders
sell their licenses without any further compensation to the cryptanalyst.
There is a significant cost, both direct and indirect, associated with using
a patented algorithm. Given that OCB’s computational advantage over the
patent-free modes is at most a factor of 2, there seem to be only a few sit-
uations in which this cost is justified. We therefore expect OCB only to
be used in niche applications where the performance advantage is critical.
Thus the gain to the general community of cryptanalytical work on OCB is
limited. All these factors lead to cryptanalysts spending their time on other
interesting problems.

OCB is being considered for inclusion in IEEE 802.11 wireless network stan-
dard. The author was hired to advise on the security aspects of this stan-
dard, and in the course of that work had a look at OCB. The attacks in
this paper were developed in the course of about a day. The fact that such
simple attacks were found in such a short time is indicative that little, if
any, cryptanalysis of OCB has been done up to now. This fact alone casts
doubts on the wisdom of using OCB in any new design.

We present a two versions of a collision attack on OCB. If a particular
collision on 128-bit values occurs, then an attacker can modify the message
without being detected by the OCB authentication function. This implies
that users who want to limit the probability of a successful forgery attempt
to less than 2−64 cannot use OCB for more than 232 blocks of data.

2 OCB

We first give a short description of OCB using the notation from [RBBK01a]
with some of our own extensions. OCB encrypts a message M using a key
K and a nonce N . Each nonce value should be used at most once for any
given key.

We define

L := EK(0)
R := EK(N ⊕ L)

Both L and R are used to derive the various offsets. Let γi be the represen-
tation of the integer i in the canonical Gray code.1 The offset Zi is defined

1The Gray code is an alternative bijective mapping of the bit strings {0, 1}n to the

2

by
Zi := γi · L⊕R

where the multiplication · is done in the field GF(2128) using the canoni-
cal conversion from bit strings to polynomials over GF(2). The primitive
polynomial used to define the field is x128 + x7 + x2 + x + 1.

The message M is split into message blocks M1, . . . , Mm where all but the
last block are 128 bits long. The blocks i = 1, . . . ,m − 1 are encrypted as
follows:

Xi := Mi ⊕ Zi

Yi := EK(Xi)
Ci := Yi ⊕ Zi

where Ci is the ciphertext block corresponding to Mi. The last block Mm is
treated differently, because it might be shorter than a full block. Let µ be
the length of Mm in bits, encoded as a 128-bit integer.

Xm := µ⊕ x−1 · L⊕ Zm

Ym := EK(Xm)
Cm := Mm ⊕ first-µ-bits(Ym)

The authentication is provided by a tag that is computed in two steps:

S := M1 ⊕ · · · ⊕Mm−1 ⊕ Cm0∗ ⊕ Ym

T := first-τ -bits(EK(S)⊕ Zm)

where Cm0∗ is the last ciphertext block padded with zeroes to the full 128
bit length. (The value S is called “Checksum” in the specification.) The
parameter τ specifies the number of bits in the authentication tag, allowing
a tradeoff between the size of tag to be transmitted and the authentication
security level. The OCB documentation suggests to use a τ in the range
32 . . . 80.

Although OCB can be used with any block cipher, it is clearly designed to
be used with AES, or some other 128-bit block cipher. For the rest of this
article we will assume that AES is used as the block cipher.

integers 0, . . . , 2n − 1. The main interesting property is that γi ⊕ γi+1 has Hamming-
weight 1 for all i.

3

3 An attack on OCB

Our attack proceeds in two steps. First, we wait for a specific type of collision
to occur on 128-bit values. Once this collision occurs, we can modify the
ciphertext (and thereby the plaintext after decryption) without modifying
the authentication tag. In effect, the authentication tag is entirely ineffective
at stopping message forgery once the collision has occurred.

Our first attack will use a single large message. We choose random message
blocks M1, . . . ,Mm subject to the restriction M4 ⊕M5 ⊕M6 ⊕M7 = 0. We
let the sender encrypt this message giving the ciphertext C1, . . . , Cm, T . As
the last message block is treated differently we will not use it or modify it
in our attack.

The collision we want to have is a pair of indices (i, j) such that Xi = Xj .
We define ∆ := (γi ⊕ γj) · L. When this collision occurs we also have

Mi ⊕ γi · L = Mj ⊕ γj · L
∆ = Mi ⊕Mj

Yi = Yj

Ci ⊕ γi · L = Cj ⊕ γj · L
Mi ⊕ Ci = Mj ⊕ Cj

The last equality allows us to recognise this type of collision. We sort the
blocks by Mi ⊕ Ci and look for collisions. For any pair (i, j) we have a
chance of 2−128 that Xi = Xj . If Xi 6= Xj then there is a 2−128 chance
that Mi⊕Ci = Mj ⊕Cj anyway, so we expect that half the instances where
Mi⊕Ci = Mj⊕Cj are due to a collision of the X values. For the rest of the
attack we assume that the collision is due to the X values. (This implies
that when we find a Mi⊕Ci = Mj ⊕Cj the rest of the attack succeeds with
a probability of 50%.)

Given that Xi = Xj , we can now recover L by

L = (Mi ⊕Mj) · (γi ⊕ γj)−1

where the inversion is of course taken in GF(2128). Knowledge of L allows
us to change the message. We will indicate modified values with a prime.
Choose any index d and set

C ′
k := Cd ⊕ (γd ⊕ γk) · L for k = 4, . . . , 7

4

It is easy to see that for k = 4, . . . , 7 we have Y ′
k = Yd and therefore X ′

k = Xd.
We have

M ′
4 ⊕M ′

5 ⊕M ′
6 ⊕M ′

7 = Xd ⊕ Z4 ⊕Xd ⊕ Z5 ⊕Xd ⊕ Z6 ⊕Xd ⊕ Z7

= Z4 ⊕ Z5 ⊕ Z6 ⊕ Z7

= (γ4 ⊕ γ5 ⊕ γ6 ⊕ γ7) · L
= (110⊕ 111⊕ 101⊕ 100) · L
= 0 · L
= 0

The original message had M4⊕M5⊕M6⊕M7 = 0 too, so this modification
has not changed the checksum S or the tag T . Therefore, the modified
message will be accepted by the receiver, but decrypt to a different message
then what was originally sent.

3.1 Workload

The workload of this attack is less than the effort the sender and receiver
of the message must expend to encrypt and decrypt the message. The only
bulk data handling the attacker has to do is to store the values Mi⊕Ci in a
hash table and detect collisions. All other computations are constant time.

3.2 Probability of success

If a collision in the X values occurs then this attack succeeds almost cer-
tainly. (We only have a problem if there is a second pair of blocks with
Mi ⊕ Ci = Mj ⊕ Cj that is not due to an X value collision. This is very
unlikely to happen.)

The probability of having an X collision is about (m−1)22−128/2 ≈ m22−129.
For a message of 232 blocks the probability of the attack succeeding is around
2−65. For a message of 240 blocks the probability of the attack succeeding
is around 2−49.

Our detection of the X-collisions is not perfect. We expect twice as many
Mi ⊕ Ci = Mj ⊕ Cj collisions, half of which are X-collisions. This means
that once the attacker detects an Mi⊕Ci = Mj ⊕Cj collision he has a 50%
chance of succeeding with this attack.

5

4 Extension to multiple messages

We now extend this attack to deal with multiple messages. Suppose we
have a large number of messages encrypted using the same key but different
nonces. We will again ignore the final blocks of each message as they are
treated differently. To distinguish the various values in the different messages
we add a subscript, or add an extra subscript in front of the existing one.
Note that L does not require an extra subscript as it depends only on the
key and not on the nonce. Therefore it is the same for all the messages.

We choose the messages with random message blocks subject to the restric-
tion that for any q, M4q ⊕ M4q+1 ⊕ M4q+2 ⊕ M4q+3 = 0. It is possible to
relax this restriction to cover sums over larger chunks, but this is the easiest
variant of the attack to explain. There is a slight problem in that M0 does
not exist, so there is no first group of four. As long as the message sizes are
reasonably large (m > 100) the chance of encountering this problem is very
low, so we will ignore it.

We again look for a collision where Xa,i = Xb,j . If a = b then the collision
occurs within a single message and we can use the attack of the previous
section. For the rest of this attack we will assume a 6= b, and thus Na 6= Nb.

If Xa,i = Xb,j we have

Ya,i = Yb,j

Ma,i = Xa,i ⊕ Za,i = Xa,i ⊕Ra ⊕ γi · L
Ma,i ⊕Mb,j = Ra ⊕Rb ⊕ (γi ⊕ γj) · L
Ca,i ⊕ Cb,j = Ra ⊕Rb ⊕ (γi ⊕ γj) · L
Ma,i ⊕ Ca,i = Mb,j ⊕ Cb,j

so we can use the same detection rule to find our X-collisions.

Unlike in our previous case we cannot recover L from this collision, but
we don’t have to. The differences between the message blocks gives us
∆ := Ra ⊕Rb ⊕ (γi ⊕ γj) · L which is enough.

Let d := bi/4c and e := bj/4c. Let s(k) be the value such that γs(k) =
γk ⊕ γi ⊕ γj for k ∈ {4d, 4d + 1, 4d + 2, 4d + 3}. It is clear that s(i) = j.
As the bit strings γ4d, γ4d+1, γ4d+2, γ4d+3 only differ in their last two bits we
have { s(k) k = 4d, 4d + 1, . . . , 4d + 3 } = {4e, 4e + 1, 4e + 2, 4e + 3}
We modify the message a as follows:

C ′
a,k := Cb,s(k) ⊕∆ for k = 4d, . . . , 4d + 3

6

and get

C ′
a,k = Yb,s(k) ⊕Rb ⊕ γs(k) · L⊕Ra ⊕Rb ⊕ (γi ⊕ γj) · L

= Yb,s(k) ⊕Ra ⊕ (γs(k) ⊕ γi ⊕ γj) · L
= Yb,s(k) ⊕Ra ⊕ γk · L

Y ′
a,k = C ′

a,k ⊕Ra ⊕ γk · L = Yb,s(k)

Because the properties of the s function we get

{Y ′
a,4d, Y

′
a,4d+1, Y

′
a,4d+2, Y

′
a,4d+3} = {Yb,4e, Yb,4e+1, Yb,4e+2, Yb,4e+3}

{X ′
a,4d, X

′
a,4d+1, X

′
a,4d+2, X

′
a,4d+3} = {Xb,4e, Xb,4e+1, Xb,4e+2, Xb,4e+3}

and

M ′
a,4d ⊕M ′

a,4d+1 ⊕M ′
a,4d+2 ⊕M ′

a,4d+3

= X ′
a,4d ⊕X ′

a,4d+1 ⊕X ′
a,4d+2 ⊕X ′

a,4d+3 ⊕ (γ4d ⊕ γ4d+1 ⊕ γ4d+2 ⊕ γ4d+3) · L
= X ′

a,4d ⊕X ′
a,4d+1 ⊕X ′

a,4d+2 ⊕X ′
a,4d+3 ⊕ 0 · L

= Xb,4e ⊕Xb,4e+1 ⊕Xb,4e+2 ⊕Xb,4e+3

= Mb,4e ⊕Mb,4e+1 ⊕Mb,4e+2 ⊕Mb,4e+3

= 0

In other words, the modification we made to the ciphertext has not changed
the sum of the four affected message words, so the checksum is not changed.
The modified message will be accepted by the receiver, but decrypt to a
different message than what the sender sent.

5 Discussion

These attacks on OCB seem rather harmless. Most block cipher modes
have collision attacks. Yet when looked at more closely these attacks are
worrisome. For most block cipher modes, the consequences of a collision are
rather minor. With OCB a collision leads to complete loss of an essential
function. The resulting need to keep the probability of a collision down to
very low levels means that OCB is incapable of processing large quantities
of data with a single key.

Modern systems are designed to withstand an attacker that can perform
2128 steps of computation. This is a reasonable requirement for systems

7

that will survive several decades [LV01]. The move to this security level was
the major motivation behind the whole AES standardisation process. DES
[NIS93] is limited by its 56-bit key, and 3DES [NIS99] is limited by its 64-bit
block size. The larger block size and the larger key sizes allow AES-based
systems to achieve a far higher security level than DES-based ones.

It turns out to be very difficult to avoid collision attacks. There are, for
example, fairly generic pre-computation attacks that effectively perform a
collision attack on the encryption key. As stopping all collision attacks is
extremely difficult, if not impossible, the obvious solution is to move to 256-
bit values.2 The 256-bit key capability of AES makes it easy to achieve
the 2128 effort bound.3 Unfortunately, the 128-bit block size still supports
collision attacks with a complexity of 264 steps. Thus, careful design is
necessary to achieve the full security required.

5.1 Collision attacks on CBC-MAC

The best known block cipher authentication mode is CBC-MAC. Pure CBC-
MAC has many versions of collision attacks [BM01]. Even the addition of
various padding rules or sequence numbers do not stop these attacks. For
CBC-MAC the critical parameter is not the amount of data but the number
of messages authenticated by the sender. CBC-MAC forgery is possible as
soon as a collision on the MAC value has occurred. For typical message
sizes this implies that CBC-MAC is marginally more secure than OCB, as
the collision will occur earlier in OCB.

So far there seems to be little difference between OCB and CBC-MAC. But
this is not a fair comparison. OCB is a combined encryption and authenti-
cation mode, and it uses a unique nonce. If we look at the authentication
function of OCB by itself (without the encryption) it is laughably weak.
It is only the combination of the authentication with the encryption that
makes OCB secure. For a fair comparison we have to compare OCB with a
combination of an encryption mode and an authentication mode.

2One of our general design rules: To force an attacker to spend 2n steps in attacking
your system, all cryptographic values should be at least 2n bits long. Given the prevalence
of collision attacks this is just sound engineering.

3The use of 128-bit keys very often leads to more efficient attacks, and always requires
careful analysis.

8

5.2 A suggested CTR-CBC-MAC mode

We give a rough specification of CTR-CBC-MAC: a combination of the CTR
encryption mode with the CBC-MAC authentication mode. This is not a
complete specification but only intended for comparison to OCB. It is based
on [WHF02].

The message M is split into blocks M1, . . . , Mm, where the last block is
padded with 0 bytes if it is not full-size. The nonce N for this mode is 8
bytes long.

First the CBC-MAC is computed by starting with the 128-bit value V :=
N ‖ 0 ‖ ` where ` is the length of M in bytes and ‖ is the concatenation
operator. The MAC is computed by setting X0 := V and defining Xi :=
EK(Xi−1) ⊕Mi. The tag T is defined as the first τ bits of EK(Xm). The
tag T is appended to the message M , and they are both encrypted together.

Encryption is done by generating a key stream using the blocks Si := EK(N‖
1 ‖ i). The key stream bytes are xorred with the message and the tag. As
this is a stream cipher no padding of the message is necessary; the padding
is only used internally by the CBC-MAC part.

There is a proof of security for CTR-CBC-MAC that achieves similar bounds
as OCB [Jon02]. As always this proof gives a lower bound on the security.
We believe that the resistance to forgery is actually much higher.

All the attacks on CBC-MAC require that the attacker can detect when two
MAC values are identical. Encrypting the MAC value in such a way that
equal values can no longer be recognised as being equal stops the attacker
from performing any of these attacks. As far as we are aware, this stops any
of the 264-effort attacks and requires the attacker to perform 2128 operations
before the first forgery. (See [JJV02] for a similar solution to this problem.)
Just like in OCB, the addition of the encryption function has made the
authentication much stronger.

5.3 Comparison

One of the main tools to prevent collision attacks is to limit the amount
of data that is ever processed with a single key. For example, for CTR
encryption the amount of data encrypted with each key should be limited to
264 blocks, at which point the information-theoretical leakage of information
about the plaintext is still below one bit. Limiting the amount of data is
relatively easy to do as the implementation can enforce such limits. However,

9

blocks data limit on τ

1 128
216 96
224 80
232 64
248 32
256 16
264 0

Table 1: Limits on the authentication strength of OCB.

low limits can lead to significant complications as they require frequent
re-keying or using multiple related keys for one large data item. While
limits are necessary, we want them to be so large that they are not an
issue for most situations. With current technology a limit on 264 bytes of
data is not a problem, but smaller limits can be. Current hard disks can
store 236 bytes or more, and we can only expect them to grow. Today, it
is not at all unreasonable for someone to want to protect a backup of a
database containing a Terabyte (240 bytes) of data. For practical reasons
this data might very well be split into several ‘messages’, but it would be
highly desirable to use a single key to secure the whole database. In future
databases will only get bigger. The CTR-CBC-MAC mode can be used for
any amount of data up to 264 blocks, or 268 bytes.4 Full authentication
strength is maintained throughout.

This is where OCB differs. The collision attacks limit the effective authenti-
cation strength of OCB. The parameter τ in OCB allows a trade-off between
message expansion and the security level of the authentication. For any τ ,
it is reasonable to expect that the probability of succeeding in forging a
message is around 2−τ . For OCB this only holds as long as the amount of
information encrypted with a single key is less than 264−τ/2 blocks. Another
way to phrase this is that if 2n blocks of data are processed with OCB, then
then τ is effectively limited to 128 − 2n. The results are shown in table 1.
This table can be interpreted in several ways. If 224 blocks of data are to be
processed, then τ is limited to 80. A larger τ does not improve the security.
The converse is also true. If a design chooses τ = 64 then it should also
limit the number of blocks processed per key to 232. Allowing more data

4Users worried about the leakage of even a single bit of information can restrict them-
selves to a slightly lower bound, such as 264 bytes, which all but eliminates the leakage.

10

to be processed reduces the authentication strength. The designer is only
fooling himself with the value of τ , and could reduce the message expansion
by choosing a τ compatible with the amount of data processed.

The choice τ = 64 seems to be a popular one, but as the table shows it
implies that only about 64 GB of data can be processed using a single key.
This is a severe restriction for modern data-handling systems, certainly if
they are still in use 10 or 20 years from now.

Our comparison is for the very simple case when we only consider the prob-
ability of successful forgery on the first attempt. If we look at the total
amount of work the attacker has to perform the collision attack is slightly
less attractive. If each key is used for 232 blocks, the attacker needs to look
for collisions for 264 different keys before the first success, for a total work
load of 296. (If each key is used for 248 blocks the attacker’s workload is
reduced to 280.) This is well below our target of 2128. Furthermore, the
workload of the attacker is still comparable (if not less than) the workload
of the user of the system. So if enough data is being processed by OCB to
allow this attack, then the attack is practical by definition.

Things become even more difficult when we look at more complicated models
where we consider the number of interactions with the sender or receiver that
the attacker needs. One generic attack is just guessing the tag value. An
attacker could try multiple times to guess a tag value, and each time have
the same chance of succeeding. The collision attack on OCB does not allow
repeated attempts. On the other hand, an attacker that guesses tag values
will alert the receiver that an attack is going on, as receivers expect very few
authentication failures in normal operation. The collision attack on OCB
never alerts the receiver; there is never an indication of the attack until the
receiver gets a forged message. One can argue which one of these attacks is
more serious; a discussion that is unlikely to be solved in general terms as
it depends heavily on the properties of the rest of the system. We feel that
this is an irrelevant discussion as the security of a block cipher mode should
not depend on the rest of the system. In other words: the block cipher
mode should be secure irrespective of the design of the rest of the system,
or the threat model. A mode that has weaknesses in any reasonable model
should not be used at all, especially since the rest of the system, including
the attack model, is likely to change over time.

If we restrict OCB to its safe operational envelope we get a 2−64 probability
of message forgery and a limit on 232 blocks of data. This is very similar
to the bounds that CTR-CBC-MAC seems to achieve using 3DES. In that

11

sense, OCB does not take advantage of AES, but takes us right back to the
problems we had with 3DES.

Collision attacks are much easier when 64-bit block ciphers are used. There-
fore, we most strongly advise never to use OCB with a 64-bit block cipher.

5.4 OCB’s proof of security

Our attack does not violate the proof of security given in [RBBK01a]. The
proof limits the advantage of the attacker to

1.5 σ̄2

2128
+

1
2τ

where σ̄ is the total number of blocks encrypted under a single key plus a
few other small terms. This bound clearly allows our attack.

6 Acknowledgements

I would like to thank Intersil for financing this research, and Russ Housley
and Doug Whiting for their helpful comments. David Wagner and Tadayoshi
Kohno provided valuable feedback on my first draft which greatly improved
the presentation.

7 Conclusions

The OCB authenticated encryption mode has a much weaker authentication
than could reasonably be expected. This mode is incapable of handling large
amounts of data without losing authentication security. We therefore advice
against the use of OCB.

References

[BM01] Karl Brincat and Chris J. Mitchell. New CBC-MAC forgery at-
tacks. In V. Varadharajan and Y. Mu, editors, Information Se-
curity and Privacy, ACISP 2001, volume 2119 of Lecture Notes
in Computer Science, pages 3–14. Springer-Verlag, 2001.

12

[JJV02] Éliane Jaulmes, Antoine Joux, and Frédéric Valette. On the se-
curity of randomized CBC-MAC, beyond the birthday paradox
limit: a new construction. In Fast Software Encryption 2002,
Lecture Notes in Computer Science. Springer-Verlag, 2002. To
appear.

[Jon02] Jakob Jonsson. Personal communications, January 2002.

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic
key sizes. J. Cryptology, 14(4):255–293, August 2001.

[NIS93] National Institute of Standards and Technology. Data Encryp-
tion Standard (DES), December 30, 1993. FIPS PUB 46-2,
available from http://www.itl.nist.gov/fipspubs/.

[NIS99] National Institute of Standards and Technology. Data Encryp-
tion Standard (DES), 1999. DRAFT FIPS PUB 46-3, available
from http://csrc.ncsl.nist.gov/fips/.

[RBBK01a] Philip Rogaway, Mihir Bellare, John Black, and Ted Krovetz.
OCB: A block-cipher mode of operation for efficient authen-
ticated encryption, September 2001. Available from http:
//www.cs.ucdavis.edu/~rogaway.

[RBBK01b] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz.
OCB: A block-cipher mode of operation for efficient authen-
ticated encryption. In Eighth ACM Conference on Computer
and Communications Security (CCS-8), pages 196–205. ACM
Press, 2001.

[WHF02] Doug Whiting, Russ Housley, and Niels Ferguson. AES en-
cryption & authentication using CTR mode & CBC-MAC, Jan-
uary 2002. Working document from IEEE 802.11 TGi, doc #
02/001r0.

13

