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1 Introduction

An authenticated-encryption scheme is a shared-key encryption scheme whose goal is to provide
both privacy and authenticity. The encryption algorithm takes a key, a plaintext, and a nonce, and
it returns a ciphertext. The decryption algorithm takes a key, a ciphertext, and a nonce, and it
returns either a plaintext or a special symbol, Invalid. In addition to the customary privacy goal,
an authenticated-encryption scheme aims for authenticity: if an adversary should try to create
some new ciphertext, the decryption algorithm will almost certainly regard it as Invalid.

An authenticated-encryption scheme can be constructed by appropriately combining an encryp-
tion scheme and a message authentication code (MAC), an approach used pervasively in practice
and in standards. (Analyses of these methods are provided in [6]). But an extremely attractive goal
is an authenticated-encryption scheme having computational cost significantly lower than the cost
to encrypt plus the cost to MAC. The classical approach for trying to do this is to encrypt-with-
redundancy, where one appends a noncryptographic checksum to the message before encrypting it,
typically with CBC mode. In the past, such schemes have invariably been broken. Recently, how-
ever, Jutla has proposed two authenticated-encryption schemes supported by a claim of provable
security [14]. Jutla’s schemes were the first ones publicly disclosed which meet the stated goals.

The present submission presents a new mode of operation, OCB, which refines one of Jutla’s
schemes, IAPM. OCB (which stands for “offset codebook”) retains the desirable characteristics
of IAPM—in particular, OCB is fully parallelizable and adds minor overhead compared to con-
ventional modes. But OCB provides several new features, including that it works for messages of
any bit length (returning a ciphertext of minimal length), it uses a single block-cipher key, and it
employs an arbitrary nonce (as opposed to a random IV). The number of block-cipher invocations
to encrypt+authenticate a message M is reduced to d|M |/ne+2, where n is the block length. The
overhead beyond block-cipher calls is likewise reduced. In settings where there is no opportunity
for parallelizability, OCB-AES-128 is more expensive than CBC-AES-128 by less than 10%. In
settings where there is adequate opportunity for parallelizability, OCB will be faster than CBC.

OCB comes with a full proof of security. Specifically, we prove indistinguishability under chosen-
plaintext attack (IND-CPA) [2, 12] and authenticity of ciphertexts [6, 7, 15]. As shown in [6, 15]
this combination implies indistinguishability under the strongest form of chosen-ciphertext attack
(CCA) (which is equivalent to non-malleability [9] under CCA [3]). Our proof of privacy assumes
that the underlying block cipher is good in the sense of a pseudorandom permutation (PRP) [5, 16],
while our proof of authenticity assumes that the block cipher is a strong PRP [16]. The actual
results are quantitative; the security analysis is in the concrete-security paradigm.

2 Mathematical Preliminaries

Notation. If a and b are integers, a ≤ b, then [a..b] is the set {a, a + 1, . . . , b}. If i ≥ 1 is an
integer then ntz(i) is the number of trailing 0-bits in the binary representation of i (equivalently,
ntz(i) is the largest integer z such that 2z divides i). So, for example, ntz(7) = 0 and ntz(8) = 3.

A string is a finite sequence of symbols, each symbol being 0 or 1. The string of length 0 is
called the empty string and is denoted ε. Let {0, 1}∗ denote the set of all strings. If A,B ∈ {0, 1}∗
then A B, or A ‖ B, is their concatenation. If A ∈ {0, 1}∗ and A 6= ε then firstbit(A) is the
first bit of A and lastbit(A) is the last bit of A. Let i, n be nonnegative integers. Then 0i and 1i

denote the strings of i 0’s and 1’s, respectively. Let {0, 1}n denote the set of all strings of length n.
If A ∈ {0, 1}∗ then |A| denotes the length of A, in bits, while ‖A‖n = max{1, d|A|/ne} denotes
the length of A in n-bit blocks, where the empty string counts as one block. For A ∈ {0, 1}∗ and
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|A| ≤ n, zpadn(A) is the string A 0n−|A|. With n understood we will write A 0∗ for zpadn(A). If
A ∈ {0, 1}∗ and τ ∈ [0..|A|] then A [first τ bits] and A[last τ bits] denote the first τ bits of A and the
last τ bits of A, respectively. Both of these values are the empty string if τ = 0. If A,B ∈ {0, 1}∗
then A⊕ B is the bitwise xor of A [first ` bits] and B [first ` bits], where ` = min{|A|, |B|} (where
ε ⊕ ε = ε). So, for example, 1001 ⊕ 11 = 01. If A = an−1 · · · a1a0 ∈ {0, 1}n is a string (each
ai ∈ {0, 1}) then str2num(A) is the number

∑n−1
i=0 2iai. If a ∈ [0..2n − 1] then num2strn(a) is the

n-bit string A such that str2num(A) = a. Let lenn(A) = num2strn(|A|). We omit the subscript
when n is understood.

If A = an−1an−2 · · · a1a0 ∈ {0, 1}n then A<<1 = an−2an−3 · · · a1a00 is the n-bit string which is
a left shift of A by 1 bit (the first bit of A disappearing and a zero coming into the last bit), while
A>>1 = 0an−1an−2 . . . a2a1 is the n-bit string which is a right shift of A by one bit (the last bit
disappearing and a zero coming into the first bit).

In pseudocode we write “Partition M into M [1] · · ·M [m]” as shorthand for “Let m = ‖M‖n and
let M [1], . . . ,M [m] be strings such that M [1] · · ·M [m] = M and |M [i]| = n for 1 ≤ i < m.” We
write “Partition C into C[1] · · ·C[m]T” as shorthand for “if |C| < τ then return Invalid. Otherwise,
let C = C [first |C| − τ bits], let T = C[last τ bits], let m = ‖C‖n, and let C[1], . . . , C[m] be strings
such that C[1] · · ·C[m] = C and |C[i]| = n for 1 ≤ i < m. Recall that ‖M‖n = max{1, d|M |/ne},
so the empty string partitions into m = 1 block, that one block being the empty string.

The field with 2n points. Recall that a finite field is a finite set together with an addition
operation and a multiplication operation, each defined to take a pair of points in the field to
another point in the field. The operations must obey certain basic axioms. (For example, there
must be a point 0 in the field such that a + 0 = 0 + a = a for every a; there must be a point 1 in
the field such that a · 1 = 1 ·a = a for every a; and for every a 6= 0 there must be a point a−1 in the
field such that a · a−1 = a−1 · a = 1.) If one fixes a positive integer n, then there turns out to be
a unique finite field (up to the naming of the points) that has 2n elements. It is called the Galois
field of size 2n, and it is denoted GF(2n).

Example 1 The field GF(2) has two points, 0 and 1, and operations ⊕ (addition) and · (multipli-
cation) are defined by 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0, 0 · 0 = 0, 0 · 1 = 0, 1 · 0 = 0, and
1 · 1 = 1.

We interchangeably think of a point a in GF(2n) in any of the following ways: (1) as an
abstract point in a field; (2) as an n-bit string an−1 . . . a1a0 ∈ {0, 1}n; (3) as a formal polynomial
a(x) = an−1xn−1 + · · · + a1x + a0 with binary coefficients; (4) as a nonnegative integer between 0
and 2n − 1, where the string a ∈ {0, 1}n corresponds to the number str2num(a). For example, one
can regard the string a = 0125101 as a 128-bit string, as the number 5, as the polynomial x2 +1, or
as a particular point in the finite field GF(2128). We write a(x) instead of a if we wish to emphasize
that we are thinking of a as a polynomial.

To add two points in GF(2n), take their bitwise xor. We denote this operation by a⊕ b.
Before we can say how to multiply two points we must fix some irreducible polynomial pn(x)

having binary coefficients and degree n. (Saying that pn(x) is irreducible means that if q(x) and
q′(x) are polynomials over GF(2) which multiply to give pn(x), then one of these polynomials
is 1 and the other is pn(x).) For OCB, choose the lexicographically first polynomial among the
irreducible degree n polynomials having a minimum number of coefficients. For n = 128, the
indicated polynomial is

p128(x) = x128 + x7 + x2 + x + 1

A few other pn(x)-values are x64+x4+x3+x+1 and x96+x10+x9+x6+1 and x160+x5+x3+x2+1
and x192 + x7 + x2 + x + 1 and x224 + x9 + x8 + x3 + 1 and x256 + x10 + x5 + x2 + 1.
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To multiply points a, b ∈ GF(2n), which we denote a · b, regard a and b as polynomials a(x) =
an−1xn−1 + · · ·+ a1x+ a0 and b(x) = bn−1xn−1 + · · ·+ b1x+ b0, form their product c(x) where one
adds and multiplies coefficients in GF(2) (the coefficient of degree j in c(x), where j ∈ [0..2n−2], is
cj = ⊕j

i=0 (ai · bj−i)) and take the remainder one gets when dividing c(x) by the polynomial pn(x).
By convention, the multiplication operator has higher precedence than addition operator so, for

example, γ1 · L⊕R means (γ1 · L)⊕R.

Example 2 Assume n = 128. Suppose one multiplies a(x) = x127 + x + 1 by b(x) = x + 1. The
result is c(x) = x128 + x2 + x + x127 + x + 1 = x128 + x127 + x2 + 1. If one divides c(x) by p(x) one
gets a quotient of q(x) = 1 and a remainder (which is the answer) of r(x) = x127 + x7 + x. In string
notation, 1012511 · 012611 = 1011910000010.

It is particularly easy to multiply a point a ∈ {0, 1}n by x. We illustrate the method for
n = 128, where p(x) = x128 + x7 + x2 + x + 1. Then multiplying a = an−1 · · · a1a0 by x yields a
product an−1xn + an−2xn−1 + a1x2 + a0x. Thus, if the first bit of a is 0, then a · x = a<<1. If the
first bit of a is 1 then we must add x128 to a<<1. Since x128 + x7 + x2 + x + 1 = 0 we know that
x128 = x7 + x2 + x + 1, so adding x128 means to xor by 012010000111. In summary, when n = 128,

a · x =
{

a<<1 if firstbit(a) = 0
(a<<1)⊕ 012010000111 if firstbit(a) = 1

Example 3 Let us again compute 1012511 · 012611. Since the latter string is x + 1, we should
multiply the first string by x and then add it to (xor it with) the first string. As the first bit of
1012511 is 1, multiplying this point by x yields 0125110⊕ 012010000111 = 012010000001, and xoring
this with 1012511 gives a final answer of 1011910000010, as before.

If L ∈ {0, 1}n and i ≥ 0, we write L(i) as shorthand for L · xi. We have an easy way to
compute L(1), L(2), . . . , L(µ)-values, where µ is a small number. Namely, set L(0) = L and compute
L(i) = L(i− 1) · x for all i ∈ [1..µ].

If a 6= 0 is a point in {0, 1}n, we can divide a by x, meaning that one multiplies a by the
multiplicative inverse of x in the field: a · x−1. It is easy to compute a · x−1. To illustrate, again
assume that n = 128. Then if the last bit of a is 0, then a ·x−1 is a>>1. If the last bit of a is 1, then
we must add (xor) to a>>1 the value x−1. Since x128 = x7+x2+x+1 we have x127 = x6+x+1+x−1

and so x−1 = x127 + x6 + x + 1 = 101201000011. In summary, for n = 128,

a · x−1 =
{

a>>1 if lastbit(a) = 0
(a>>1)⊕ 101201000011 if lastbit(a) = 1

We point out that, for any n = 128, the value huge = x−1 will be an enormous number (when
viewed as a number); in particular, huge starts with a 1 bit, so 2n−1 ≤ huge. For the remainder of
this submission, we will use huge as a synonym for x−1 whenever this seems to add to clarity. We
will later assume that any messages M = M [1] · · ·M [m] to be MACed has block length m < huge,
for otherwise our theorem statements assert a non-result. Thus for any message M = M [1] · · ·M [m]
to be MACed, each of γ1, γ2, . . . , . . . , γm is different from huge.

Gray codes. For ` ≥ 1, a Gray code is an ordering γ` = γ`
0 γ`

1 . . . γ`
2`−1

of {0, 1}` such that
successive points differ (in the Hamming sense) by just one bit. For n a fixed number, OCB makes
use of the “canonical” Gray code γ = γn constructed by

γ1 = 0 1
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while, for ` > 0,

γ`+1 = 0γ`
0 0γ`

1 · · · 0γ`
2`−2 0γ`

2`−1 1γ`
2`−1 1γ`

2`−2 · · · 1γ`
1 1γ`

0

It is easy to see that γ is a Gray code. What is more, for 1 ≤ i ≤ 2n−1, γi = γi−1⊕(0n−11<<ntz(i)).
This makes it easy to compute successive points.

Example 4 The canonical Gray code with 2 points is γ1 = γ1
0γ1

1 = 0 1. The canonical Gray
code with 4 points is obtained by writing this once forward, then once backwards, prefixing each
string in the first half by 0 and prefixing each string in the second half by 1: that is, γ2 =
γ2

0γ2
1γ2

2γ2
3 = 00 01 11 10 = 0 1 3 2. Repeating the process, the canonical Gray code with 8 points

is γ3 = γ3
0γ3

1γ3
2γ3

3γ3
4γ3

5γ3
6γ3

7 = 000 001 011 010 110 111 101 100 = 0 1 3 2 6 7 5 4. In OCB we use
the Gray code γ = γn having 2n points: γ = γ0 γ1 γ2 γ3 · · · γ2n−1 = 0 1 3 2 6 7 5 4 12 · · · 2n−1.
To calculate γi from γi−1, xor γi−1 by 0n−11<<ntz(i). For example, γ8 = 12 can be computed from
γ7 = 4 by xoring 4 with 0n−11<<3.

We emphasize the following characteristics of the Gray-code values γ1, γ2, . . . , γ2n−1. First, they
are distinct and different from 0. Second, that γ1 = 1. Third, that γi ≤ 2i.

Let L ∈ {0, 1}n and consider the problem of successively forming the strings γ1 · L, γ2 · L,
γ3 · L, . . ., γm · L. Of course γ1 · L = 1 · L = L. Now, for i ≥ 2, assume one has already produced
γi−1 · L. Since γi = γi−1 ⊕ (0n−11<<ntz(i)) we know that

γi · L = (γi−1 ⊕ (0n−11<<ntz(i))) · L

= (γi−1 · L)⊕ (0n−11<<ntz(i)) · L

= (γi−1 · L)⊕ (L · xntz(i))

= (γi−1 · L)⊕ L(ntz(i))

That is, the ith word in the sequence γ1 ·L, γ2 ·L, γ3 ·L, . . . is obtained by xoring the previous word
with L(ntz(i)).

Had the sequence we were considering been γ1 · L ⊕ R, γ2 · L ⊕ R, γ3 · L ⊕ R, . . . the ith word
would be formed in the same way for i ≥ 2, but the first word in the sequence would have been
L⊕R instead of L.

3 Specification

3.1 Definition of the Scheme

Parameters. To use OCB one must specify two parameters: a block cipher and a tag length.

• The block cipher E is a function E : K×{0, 1}n → {0, 1}n, for some number n, where each
E(K, ·) = EK(·) is a permutation on {0, 1}n. Here K is the set of possible keys and n is the
block length. Both are arbitrary, though we insist that n ≥ 64, and we discourage n < 128.

• The tag length τ is an integer between 0 and n. By trivial means, the adversary will be
able to forge a valid ciphertext with probability 2−τ .

The popular block cipher to use with OCB is likely to be AES-128, AES-192, or AES-256, but use
of OCB with any other block ciphers is allowed. As for the tag length, a suggested default of τ = 64
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T
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C[m]

Y [m]
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EK

Z[1]

M [1]

Z[2]

Z[2]

M [2]

C[2]

EK
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Z[m − 1]

EK

C[m − 1]

M [m − 1]

Checksum

N

L

R

EK EK
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Algorithm OCB.EncK (N,M)

Partition M into M [1] · · ·M [m]
L← EK(0n)
R← EK(N ⊕ L)
for i← 1 to m do Z[i] = γi · L⊕R
for i← 1 to m− 1 do

C[i]← EK(M [i]⊕ Z[i]) ⊕ Z[i]
X[m]← len(M [m])⊕ L · x−1 ⊕ Z[m]
Y [m]← EK(X[m])
C[m]← Y [m]⊕M [m]
C ← C[1] · · ·C[m]
Checksum←

M [1]⊕ · · · ⊕M [m− 1]⊕ C[m] 0∗ ⊕ Y [m]
T ← EK(Checksum⊕ Z[m]) [first τ bits]
return C← C ‖ T

Algorithm OCB.DecK (N,C)

Partition C into C[1] · · ·C[m] T
L← EK(0n)
R← EK(N ⊕ L)
for i← 1 to m do Z[i] = γi · L⊕R
for i← 1 to m− 1 do

M [i]← E−1
K (C[i]⊕ Z[i]) ⊕ Z[i]

X[m]← len(C[m])⊕ L · x−1 ⊕ Z[m]
Y [m]← EK(X[m])
M [m]← Y [m]⊕ C[m]
M ←M [1] · · ·M [m]
Checksum←

M [1]⊕ · · · ⊕M [m− 1]⊕ C[m] 0∗ ⊕ Y [m]
T ′ ← EK(Checksum⊕ Z[m]) [first τ bits]
if T = T ′ then return M

else return Invalid

Figure 1: OCB encryption. The message to encrypt is M and the key is K. Message M is written as
M = M [1]M [2] · · ·M [m− 1]M [m], where m = max{1, d|M |/ne} and |M [1]| = |M [2]| = · · · = |M [m− 1]| =
n. Nonce N is a non-repeating value selected by the party that encrypts. It is sent along with ciphertext
C = C[1]C[2]C[3] · · ·C[m − 1]C[m] T . The Checksum is M [1] ⊕ · · · ⊕M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]. Offset
Z[1] = L ⊕ R while, for i ≥ 2, Z[i] = Z[i − 1] ⊕ L(ntz(i)). String L is defined by applying EK to a fixed
string, 0n. For M [m] ⊕ Y [m] and C[m] ⊕ Y [m], truncate Y [m] if it is longer than the other operand. By
C[m] 0∗ we mean C[m] padded on the right with 0-bits to get to length n. The function len represents the
length of its argument as an n-bit string.
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is reasonable. Tags of length τ = 32 bits have been standard for retail banking for many years,
while tags of τ = 80 bits are used in IPSec. Using a tag of more than 80 bits adds questionable
security benefit, though it does lengthen each ciphertext.

We let OCB[E, τ ] denote the OCB mode of operation using block cipher E and tag length τ .

Nonces. Encryption under OCB mode requires an n-bit nonce, N . The nonce would typically
be a counter (maintained by the sender) or a random value (selected by the sender). Security is
maintained even if the adversary can control the nonce, subject to the constraint that no nonce may
be repeated within the current session (that is, during the period of use of the current encryption
key). The nonce need not be random, unpredictable, or secret.

The nonce N is needed both to encrypt and to decrypt. Typically it would be communicated,
in the clear, along with the ciphertext. However, it is out-of-scope how the nonce is communicated
to the party who will decrypt. In particular, we do not regard the nonce as part of the ciphertext.

Definition of the mode. See Figure 1 for a definition and illustration of OCB. The figure defines
OCB encryption and decryption. The key space for OCB is the key space K for the underlying
block cipher E.

3.2 Conformance Criteria

An implementation of OCB is said to conform to this specification if
Some specified subset MsgSpace ⊆ {0, 1}∗ of plaintexts and ciphertexts can be presented for
encryption and decryption; and
The encryption of a string M ∈ MsgSpace under key K ∈ K and using nonce N ∈ {0, 1}n
yields either OCB.EncK(N,M) or else an indication of failure; and
The decryption of a string C ∈ MsgSpace under key K ∈ K and using nonce N ∈ {0, 1}n
yields either OCB.DecK(N,C) or else an indication of failure.

For example:
A conforming implementation might only be able to encrypt and decrypt nonempty byte
strings.
An example of a reason for returning an indication of failure by the encryption process is that
the plaintext is too long for the implementation.
Example reasons for returning an indication of failure by the decryption process (besides
OCB.Dec returning Invalid) are: the repetition of a nonce has been detected; or the nonce is
outside of some “window” of currently-allowed nonces. These considerations arise when one
wants to detect “replay attacks.”

3.3 An Equivalent Description

The following description of OCB may help to clarify what a typical implementation might choose
to do. (However, it is not the intent of this section to mandate any particular implementation
strategy.) In what follows, fix a block length n, block cipher E : K × {0, 1}n → {0, 1}n, and a tag
length τ . An OCB implementation may work as follows.

Key generation. Choose a random key K
R← K for the block cipher. The key K is provided to

both the entity that encrypts and the entity that decrypts.

Key setup. Once the key K is known, the following may be precomputed.



OCB Mode 7

1. Setup the block-cipher key. For the party that encrypts: do any necessary key setup associated
to block-cipher encryption. For the party that decrypts: do any necessary key setup associated
to block-cipher encryption and do any key setup associated to block-cipher decryption.

2. Precompute L. Let L← EK(0n), where 0n is the n-bit string specified already.
3. Precompute L(i)-values. Let m bound the maximum number of n-bit blocks that any message

which will be encrypted or decrypted may have. Let µ ← dlog2 me. Let L(0) ← L and, for
i ∈ [1..µ], let L(i)← L(i− 1) ·x using a shift and a conditional xor, as described in Section 2.
Compute L(−1)← L ·x−1 using a shift and a conditional xor, as described in Section 2. Save
the values L(−1), L(0), L(1), L(2), . . . , L(µ) in a table.

Encryption. To encrypt plaintext M ∈ {0, 1}∗ using key K nonce N ∈ {0, 1}n, obtaining a
ciphertext C, do the following steps.

1. Partition the plaintext. Let m← d|M |/ne. If m = 0 then let m← 1. Let M [1], . . . ,M [m] be
strings such that M [1] · · ·M [m] = M and |M [i]| = n for i ∈ [1..m− 1].

2. Initialize variables. Let Offset← EK(N ⊕ L). Let Checksum← 0n.
3. Encipher all blocks but the last one. For i← 1 to m− 1, do the following:

Let Checksum← Checksum⊕M [i].
Let Offset← Offset ⊕ L(ntz(i)).
Let C[i]← EK(M [i]⊕Offset)⊕Offset.

4. Mask the final block.
Let Offset← Offset ⊕ L(ntz(m)).
Let Y [m]← EK(len(M [m])⊕ L(−1)⊕Offset).
Let C[m]←M [m] xored with the first |M [m]| bits of Y [m].
Let Checksum← Checksum⊕ Y [m]⊕ C[m] 0∗.

5. Form the tag. Let T be the first τ bits of EK(Checksum⊕Offset).
6. Return the ciphertext. The ciphertext is C = C[1] · · ·C[m− 1]C[m] T . It must be communi-

cated along with the nonce N .

Decryption. To decrypt a ciphertext C ∈ {0, 1}∗ using key K and nonce N ∈ {0, 1}n, obtaining
a plaintext M ∈ {0, 1}∗ or else an indication Invalid, do the following steps.

1. Partition the ciphertext. If |C| < τ , then return Invalid (the ciphertext has been rejected).
Otherwise, let C be the first |C| − τ bits of C and let T be the remaining τ bits. Let m ←
d|C|/ne. If m = 0 then let m = 1. Let C[1], . . . , C[m] be strings such that C[1] · · ·C[m] = C
and |C[i]| = n for i ∈ [1..m− 1].

2. Initialize variables. Let Offset← EK(N ⊕ L). Let Checksum← 0n.
3. Decipher all blocks but the last one. For i← 1 to m− 1, do the following:

Let Offset← Offset ⊕ L(ntz(i)).
Let M [i]← E−1

K (C[i]⊕Offset)⊕Offset.
Let Checksum← Checksum⊕M [i].

4. Recover the final block.
Let Offset← Offset ⊕ L(ntz(m)).
Let Y [m]← EK(len(C[m])⊕ L(−1)⊕Offset).
Let M [m]← C[m] xored with the first |C[m]| bits of Y [m].
Let Checksum← Checksum⊕ Y [m]⊕ C[m] 0∗.
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5. Check the tag. Let T ′ be the first τ bits of EK(Checksum ⊕ Offset). If T 6= T ′ then return
Invalid (the ciphertext has been rejected). Otherwise,

6. Return the plaintext. The plaintext is M = M [1] · · ·M [m− 1]M [m].

4 Discussion

4.1 Properties

OCB has been designed to have a variety of desirable properties. These properties are summarized
in Figure 2. We now expand on some of the points referenced in that table.

Security Function. We emphasize that an authenticated-encryption scheme has qualitatively
better security guarantees than those provided by standard modes of operation. In particular, non-
malleability [9] and indistinguishability under chosen-ciphertext attack are not achieved by CBC, or
by any other standard mode, but these properties are achieved by OCB. Achieving these properties
is automatic when one achieves indistinguishability under chosen-plaintext attack and authenticity-
of-ciphertexts [6, 15]. The lack of strong security properties has been a problem for the standard
modes of operation, because many users of encryption implicitly assume strong security properties
when designing their protocols. For example, it is common to see protocols which use symmetric
encryption in order to “bind together” the parts of a plaintext. It is also common to see protocols
which encrypt related messages as a way to do a “handshake.” Standard modes do not support such
practices. This fact has sometimes led practitioners to invent their own peculiar ways to encrypt
(as when the Needham-Schroeder 3-party key-distribution protocol, which uses encryption for both
binding and a related-message handshake, was modified and implemented within Kerberos). We
believe that a mode like OCB is less likely to be misused in applications because the common
“abuses” of encryption become correct cryptographic techniques.

By way of comparison, a chosen-ciphertext attack by Bleichenbacher on the public-key encryp-
tion scheme of RSA PKCS #1 v.1 motivated the company that controls this de facto standard to
upgrade it [8, 17]. In contrast, people seem to accept as a matter of course symmetric-encryption
schemes which are not even non-malleable. There would seem to be no technical reason to account
for this difference in expectations.

Error-Propagation. We view error-propagation as a largely outmoded idea; in most contexts,
it no longer has any significance. But to the extent that “infinite error propagation” is the phrase
but “message integrity” is the underlying goal (by message integrity we mean, here, the detection
of non-adversarial modifications to a ciphertext), we point out that message integrity is automatic
for any authenticated-encryption scheme and, what is more, a scheme like OCB achieves it at a
lower added cost, in software, than computing a CRC-32 checksum, for example.

Parallelizability. In settings where there is adequate opportunity for parallelism, OCB encryp-
tion will be faster than CBC encryption. We believe that parallelizability is becoming important
for obtaining good performance from both high-speed hardware and commodity processors. In the
former case, one may want to encrypt-and-authenticate at speeds in excess of 10 Gbits/second—an
impossible task for CBC (with today’s technology). In the latter case, there is an architectural trend
towards highly pipelined machines with multiple instruction pipes and lots of registers. Optimally
exploiting such features necessitates algorithms with plenty to do in parallel.

We were pleased that the selected AES algorithm is an algorithm with good parallelizability
characteristics. In some ways this lessens the need to achieve parallelizability at the level of the
mode of operation. Still, it can only be good that ciphertext blocks can be computed in parallel.
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Security
Function

Authenticated encryption. Provides both privacy and authenticity,
eliminating the need to compute a separate MAC. Specifically, the scheme
achieves authenticity of ciphertexts [6, 7, 15] and indistinguishability
under chosen-plaintext attack [2, 12].

Error
Propagation

Infinite. If the ciphertext is corrupted in any manner then the received
ciphertext will almost certainly (probability ≈ 1− 2−τ ) be rejected.

Synchronization Optional. If the nonce N is transmitted along with each ciphertext, there
are no synchronization requirements. If it is not sent (to save transmission
bits) the receiver must maintain the corresponding value.

Parallelizability Fully parallelizable. Both encryption and decryption are fully paral-
lelizable: all block-cipher invocations (except the first and last) may be
computed at the same time.

Keying Material One block-cipher key. One needs a single key, K, which keys all
invocations of the underlying block cipher.

Ctr/IV/Nonce
Requirements

Single-use nonce. The encrypting party must supply a new nonce with
each message it encrypts. The nonce need not be unpredictable or secret.
The nonce is n bits long (but it would typically be communicated using
fewer bits, as determined by the application).

Memory
Requirements

Very modest. About 6n bits beyond the key are sufficient for internal
calculations. Implementations may choose whether or not to store L(i)-
values, allowing some tradeoff between memory and simplicity/speed.

Pre-processing
Capability

Limited. During key-setup the string L would typically be pre-computed
(one block cipher call), as would the first few L(i) values, and maybe
L · x−1. The block-cipher key K would be converted into its convenient
representation. Unlike counter mode, additional pre-computation prior
to knowing the string to encrypt/decrypt is not possible.

Message-Length
Requirements

Any bit string allowed. Any string M ∈ {0, 1}∗ may be encrypted,
including the empty string and strings which are not an integral number
of bytes. The length of the string does need not be known in advance.

Ciphertext
Expansion

Minimal possible (for a scheme meeting the desired privacy notion).
Expansion is 0–n bits for the tag plus 0–n bits for the nonce. The former
depends on a user-specified parameter τ , with 32–80 bits being typical.
Messages which are not a multiple of the blocksize do not receive addi-
tional expansion due to padding.

Other
Characteristics

Efficiency: Uses d|M |/ne+ 2 block-cipher calls and very efficient offset-
calculations. Endian neutrality: Can be implemented equally effi-
ciently on big-endian and little-endian machines. Provable security:
The mode provably meets its goals, assuming the underlying block cipher
meets now-standard cryptographic assumptions.

Figure 2: Summary properties of OCB.
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Keying Material. Conceptually the key is (K, L), but L is defined from the underlying key K,
and then key K is still used. Normally such “lazy key-derivation” would get one in trouble. For
OCB we prove that it does not. Avoiding multiple block-cipher keys is important for saving on
memory and key-setup time.

Ctr/IV/Nonce Requirements. We believe that modes of operation whose correct operation
requires a random IV are error-prone. We have been careful to avoid this.

As an example, consider CBC mode (C[i] = EK(M [i] ⊕ C[i − 1]) where C[0] = IV). Though
this mode has been around for ages, it seems not well known that the IV should be unpredicable:
it must not be zero, a counter, or the last block of ciphertext from the previous message. If it is
any of these things, one certainly will not achieve any of the standard definitions of security [2, 12].
Implementations and popular books routinely get this wrong. Of course, for a given application,
one might be fine, because what is “leaked” by these usage errors will usually be irrelevant. The
point is more that we have definitions for encryption-scheme security, and there is no reason to fall
short of them—since when one does it is not clear what one is getting. For CBC, the “correction”
is simple: define C[0] = EK(IV) instead of C[0] = IV.

We comment that, as with any nonce-based scheme, it is particularly easy for the receiver to
implement replay-detection for OCB, and doing this does not increase the length of ciphertexts.

Message-Length Requirements and Ciphertext Expansion. Any string M ∈ {0, 1}∗ can
be encrypted, and this yields a ciphertext C of length |M |+τ . (Here we are not including the nonce
that may accompany the ciphertext. The encoding of that nonce may occupy up to n additional
bits.) This is better (by up to n bits of ciphertext length) than what one would get if one had used
conventional padding.

Encryption is “on line,” meaning that one does not need to know the length of the message M
in advance. Instead, the message can be encrypted as one goes along, continuing until there is
an indication that the message is now over. An incremental interface (in the style popular for
cryptographic hash functions) would be used to support this functionality.

Efficiency. Shaving off a few block-cipher calls or a few bytes of ciphertext may not seem
important. But often one is dealing with short messages. For example, roughly a third of the
messages on the Internet backbone are 43 bytes. If one is encrypting messages of such short
lengths, one should be very careful about both ciphertext expansion and extra computational work
since, by percentage, the inefficiencies can be large.

Endian Neutrality. In contrast to a scheme based on mod p arithmetic or based on mod 2n

arithmetic, there is almost no endian-favoritism implicit in the definition of OCB. (The exception
is that the one left shift used for forming L(i + 1) from L(i) is more convenient under a big-endian
convention, as is the one right shift used for forming L(−1) = L · x−1 from L.)

Provable Security. In recent years provable security has become a popular goal. This is for
good reason: provable security it is the best way to gain assurance that a cryptographic scheme
does what it is supposed to do. For a scheme which enjoys provable security one does not need
to consider attacks, since successful ones imply successful attacks on some simpler object (say the
AES algorithm).

When we say that “OCB is provably secure” we are asserting the existence of two theorems.
One says that if an adversary A could do a good job at forging ciphertexts with OCB[E, τ ] (the
adversary does this much more than a 2−τ fraction of the time) then there would be another
adversary B that does a good job at distinguishing (E(K, ·), E−1(K, ·)), for a random key K,
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from (π(·), π−1(·)), for a random permutation π ∈ Perm(n). The other theorem says that if an
adversary A could do a good job at distinguishing OCB[E, τ ]-encrypted messages from random
strings, then there would be another adversary B that does a good job at distinguishing E(K, ·),
for a random key K, from π(·), for a random permutation π ∈ Perm(n). Theorems of this sort are
called reductions. In cryptography, provable security normally means giving reductions (along with
the associated definitions).

Provable security begins with Goldwasser and Micali [12], though the style of provable security
which we use here—where the primitive is a block cipher, the scheme is a usage mode, and the
analysis is concrete (no asymptotics)—is the approach of Bellare and Rogaway [2, 4, 5].

It is not enough to know that there is some sort of provable-security result; one should also
understand the definitions and the bounds. We have already sketched the definitions. When we
speak of the bounds we are addressing “how effective is the adversary B in terms of the efficacy of
adversary A” (where A and B are as above). For OCB, the bounds can be summarized as follows.
An adversary can always forge with probability 1/2τ . Beyond this, the maximal added advantage
is about σ2/2n, where σ is the total number of blocks the adversary sees. The privacy bound
likewise degrades as σ2/2n. The conclusion is that one is safe using OCB as long as the underlying
block cipher is secure and σ is small compared to 2n/2. This is the same security degradation one
observes for CBC encryption and in the bound for the CBC MAC [2, 5]. This kind of security loss
was the main motivation for choosing a block length for the AES algorithm of n = 128 bits.

Simplicity. Though not a quantifiable property, simplicity has been a central design goal. Among
the characteristics which we see as contributing to simplicity:

Because the offset stream is a key-dependent sequence translated by a nonce-dependent
amount, implementations are simplified, since L(1), L(2), . . . may be pre-computed.
Short and full final-message-blocks are handled without making a special case: the treatment
of messages is uniform, regardless of their length. (Some earlier versions of OCB, including [19],
treated full-final-block messages and short-final-block messages differently, using different off-
sets in these two cases. Correctness became more delicate, showing up in added case analysis
and more obscure intuition.)
Only the simplest form of padding is used: append a minimal number of 0-bits to make a
string whose length is a multiple of n. (Some earlier versions used a more complex form
of padding: append a 1-bit and then 0-bits when one is not a multiple of the block length;
do nothing when one is already a multiple of the block length.) The 0∗-padding method is
computationally fastest and helps avoid a proliferation of cases in the analysis.
Only one algebraic structure is used throughout the algorithm: the finite field GF(2n). (Some
earlier versions allowed use of the ring of integers modulo n, and there were potential ad-
dition/xor interactions to worry about. Earlier schemes also allowed use of the finite field
GF(p), for a prime p, which would be used in addition to GF(2n).)
The first offset is γ1 = 1. (Some earlier versions had to “skip” this offset for technical reasons.)
Then the offsets are taken monotonically, stopping at γm. One never has to go back to some
“earlier” offset. (Some earlier versions used one or two extra offsets, or reverted to an early
offset at the end.)
There is still a need for one “peculiar” offset, the one that involves L · x−1. Earlier versions
used L>>1 instead of L · x−1. Though this looks simpler, it is fundamentally more complex:
L<<1 can be one of two points in the field, complicating the correctness proof and the intuition,
and losing a factor of 2 in the security analysis.
The base offset, R, is made by a block-cipher call. Though there are alternatives, they seem
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to add complexity, at least if one wants a non-cryptographic approach which takes an n-bit
nonce and can be executed as fast as a single AES-128 call.

4.2 Design Rationale

Starting point. Jutla specified two modes of operation: a parallelizable mode, IAPM, and a
non-parallelizable mode, IACBC. We immediately selected the former as our starting point in the
design of OCB. Though the latter mode would be slightly faster for serial execution environments,
the overall difference in speed would not be significant, while having a parallelizable scheme is a
major win.

Not fixing how the nonce is communicated. We have chosen not to specify how the nonce
is chosen or how it is communicated. Formally, it is not part of the ciphertext (even though the
receiving party needs it to decrypt). This has been done because, in many contexts, there is already
a natural value to use as a nonce. For example, there may already be a sequence number present
in the flow which includes a ciphertext; or there may be a long random value already present
in such a flow; or the sender and receiver may be communicating across a reliable channel, the
two maintaining matching sequence numbers. Even when a protocol is designed from scratch, the
number of needed bits in order to communicate the nonce will vary. In some applications, 32 or even
8 bits is enough. For example, one might have reason to believe that there are at most 232 messages
that will flow during the connection, or one may be communicating only the low bits of a sequence
number, counting on the receiver to maintain the high-order bits, assuming a bounded amount of
out-of-order message delivery. By not mandating how the nonce is communicated, applications can
save on communication bits.

Not fixing the tag length. The number of bits that are necessary for the tag vary according
to the application. In a context where the adversary obtains something quite valuable from a
successfully forgery, one may wish to choose a tag length of 80 bits or more. In contexts such as
authenticating a video stream, where an adversary would have to forge a significant fraction of the
frames even to have a noticeable effect on the image, an 8-bit tag may be appropriate. With no
universally correct value to choose, it is best to leave this parameter unspecified.

We comment that short tags are more appropriate for OCB than for some other MACs, par-
ticularly Carter-Wegman MACs. Many Carter-Wegman MACs have the property that if you can
forge one message with probability δ, than you can forge an arbitrary set of (all correct) messages
with probability δ. This does not appear to be true for OCB (though we have not investigated
formalizing or proving such properties).

Forming R using a block-cipher call (rather than by non-cryptographic means). We
discovered during our work that there are methods for authenticated-encryption which encrypt M
using d|M |/ne+1 block-cipher calls (as opposed to our d|M |/ne+2 block-cipher calls). Shai Halevi
also has made what amounts to this same observation [13]. However, the methods we know which
save a block-cipher call either require an unpredicable IV instead of a nonce (which we have already
said is an invitation for misuse) or they add conceptual and computation complexity to compute
the initial offset R by non-cryptographic means (eg., using a finite-field multiplication). All in all,
while methods exist to further reduce the number of block-cipher calls by one, we know of no way
to do this that ends up being a net win.

Avoiding mod 2n addition. Our earlier designs included a scheme based on modular 2n addition
(“addition” for the remainder of this paragraph). Basing an authenticated-encryption scheme on
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addition is an interesting idea due to Gligor and Donescu [10]. Compared to our GF(2n)-based
approach (“xor” for the remainder of this paragraph), an addition-based scheme is quicker to
understand a specification for, and may be easier to implement. But the use of addition (where
n ≥ 128) has significant disadvantages:

The bit-asymmetry of the addition operator implies that the resulting scheme will have a bias
towards big-endian architectures or little-endian architectures; there will be no way to achieve
an endian-neutral scheme. The AES algorithm was constructed to be endian-neutral. We did
not want to lose this nice attribute with our mode of operation.
Modular addition of n-bit words is unpleasant when programming in a high-level language,
where one does not have access to the underlying add-with-carry instruction.
Modular addition of n-bit words is not parallelizable. As a consequence, dedicated hardware
will perform this operation more slowly than xor, and, correspondingly, modern processors
can xor two n-bit quantities faster than they can add them.
Supporting the last claim, we ran experiments which indicated that, on a Pentium 3 Processor,
an assembly-language addition-based OCB used about 50% more overhead than our (xor-
based) scheme. An even bigger performance difference was expected for C implementations.
The concrete security bound is worse with an addition-based scheme: the degradation in the
bound appears to be Θ(lg m̄), where m̄ is the maximal message length.
We had constant difficulties getting our addition-based schemes right. Minimally, the use of
addition complicates what is already a complex proof. And unexpected xor/addition interac-
tions would sometimes emerge when working out the proofs.

We eventually came to feel that even the simplicity benefit of addition-based schemes was not quite
real: these schemes are harder to understand, prove correct, and implement well. Nonetheless, we
choose a design that does have a natural addition-based counterpart.

About the definition of the Checksum. An initially odd-looking aspect of the mode’s
definition is the definition of Checksum = M [1] ⊕ · · ·M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]. In Jutla’s
scheme, where one assumes that all messages are a positive multiple of the block length, the
checksum is the simpler-looking Checksum = M [1] ⊕ · · ·M [m − 1] ⊕M [m]. We comment that
these two definitions are identical in the case that |M [m]| = n. What is more, the definition
Checksum = M [1] ⊕ · · ·M [m − 1] ⊕ M [m] 0∗ turns out to be the wrong way to generalize the
Checksum to allow for short-final-block messages; in particular, the scheme using that checksum is
easily attacked.

Avoiding pretag collisions. Many of our earlier schemes, including [19], allowed the adversary
to force what we call a “pretag collision.” Recall that we compute the tag T by first computing a
“pretag” X[m+1] = Checksum⊕SomeOffset, and then forming a value Y [m+1] = EK(X[m+1]),
and, finally, forming the tag T by doing some further processing to Y [m + 1]. All schemes that we
have considered have taken this form. For a scheme of this form, we say that an adversary can force
a pretag collision if there is an N, M̄ that can be asked, getting C̄ T̄ , and then a forgery attempt
N, C T can be generated such that, in the forgery attempt, the pretag X[m + 1] will coincide with
a value X[i] or X̄[i] at which the block cipher E was already evaluated. We have refined OCB so
that the adversary can not force a pretag collision. We claim this is a good thing:

An adversary’s ability to force a pretag collision complicates any proof and subverts the
intuition for correctness, which says that tags are unpredictable because pretag-values rarely
repeat. For schemes like IAPM [14] and [19], where the adversary can force pretag collisions,
this intuition is simply wrong, and the correct intuition is much more delicate.
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For many schemes, pretag collisions lead to subtle attacks. In [19], the value Y [m + 1] for
short-final-block messages was offset by γm+1 · L ⊕ R and then truncated to make T . By
forcing a pretag collision the adversary could create a ciphertext which would have a prior-
to-truncation tag which differed from a known value by a known multiple of L. But we had
also fixed the first two bits of L to be 0, which means that the first bit of L, 2 · L, and 3 · L
is known. Since we had allowed arbitrary taglengths, including τ = 1 bit, the scheme did
not have the desired security bound. Similarly, the addition-based version of the scheme only
avoided trouble because we had taken the first τ bits of the extended tag—taking the last τ
bits would have led to a similar attack.

These issues convinced us that we would have a simpler and more robust scheme if we could
architect it so as to avoid pretag collisions.

4.3 Limitations

We are aware of the following limitation/drawbacks on the use of OCB.

OCB decryption uses both the block cipher and its inverse. (OCB encryption uses only
the forward direction of the block cipher.) Particularly when the block cipher is the AES
algorithm, the effect of this is to have larger tables or different code compared to a mode like
CTR, which uses only the forward direction of the block cipher.
If a nonce N should get reused within the session associated to the underlying key K, the
privacy of the messages associated to this nonce is compromised, and future message integrity
is lost. Any standard should emphasize that nonces must not be reused within a session. (We
comment that if a nonce gets reused, still K and L seem not to be compromised, and the
privacy of other messages, past or future, does not seem to be impacted.) (An implementation
of OCB encryption may wish to check the current nonce is different from the previous one
used within this session. This provides a check against the most flagrant type of nonce-reuse.)
Unlike CTR mode, there is no useful work that can be done (beyond key-setup) prior to
knowing the message to encrypt. (Of course one could pre-compute R if one knows the next
nonce, but this is minor.)
Encryption and decryption are not quite symmetric. In particular, the Checksum is calculated
in an inherently asymmetric manner, and the inverse direction of E, not E itself, is used in
decryption. (Still, encryption and decryption are “nearly” symmetric.)
As with all modes of operation, the key K used for OCB should be used only for this one
purpose. Standard key-separation techniques should be used to derive a multiplicity of keys
when keys are needed for a multiplicity of purposes. The key K itself must not be used to
derive additional keys.

4.4 Design History

The submitter began the design of OCB soon after learning of Jutla’s work at CRYPTO 2000. It
seemed at first a simple project: create cleaner and more efficient version of Jutla’s IAPM, and
craft a good proof to go with it. The project turned out to be more complex than anticipated.
At least 15 unpublished versions of the algorithm were eventually considered, evolving over about
five months. The evolution was guided by three factors. First, bugs (sometimes quite subtle) were
often found in the schemes. Second, sometimes proofs could not be pushed through even though
we knew of no bug. Third, we would abandon a correct scheme every time we found a more elegant
alternative.
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In advance of the first modes workshop we released our then-current scheme [19]. But we later
found that the scheme in [19] fell short of the desired security bound (because of forced pretag
collisions, as sketched in Section 4.2). The scheme continued to evolve—both to address this issue
and because we continued to find other, unrelated improvements.

At the time of [19], there were actually three schemes described: an addition based scheme
(mod 2n addition); an xor-based scheme (GF(2n) addition); and a mod p scheme (where p is a
large prime). But now, at this later point in the design process, it seemed necessary to make a
choice. We have already described why we went with the xor-approach.

Our experience on the project has made it clear to us that the authenticated-encryption goal is
surprisingly difficult to get right. And we had aimed not only to get it right, and to prove that we
had done so, but also to work-in a host of further properties, as documented in Section 4.1. The
various “tricks” used to achieve these further properties often wanted to work against one another,
and seemed antithetical to getting the mode right.

5 Theorems

This section gives our security results on OCB. The proofs of the lemmas we use are deferred to
Appendix A.

5.1 Security Definitions

We begin with the requisite definitions. These are not completely standard because OCB uses a
nonce, and we wish to give the adversary every possible advantage (more than is available in real
life) by allowing her to choose this nonce (though we forbid the adversary from choosing the same
nonce twice).

Syntax. We extend the syntax of an encryption scheme as given in [2]. A (nonce-using, symmetric)
encryption scheme Π is a triple Π = (K, E ,D) and an associated number n (the nonce length). Here
K is a finite set and E and D are deterministic algorithms. Encryption algorithm E takes strings
K ∈ K, N ∈ {0, 1}n, and M ∈ {0, 1}∗, and returns a string C← EK(N,M). Decryption algorithmD
takes strings K ∈ K, N ∈ {0, 1}n, and C ∈ {0, 1}∗, and returns DK(N,M), which is either a string
M ∈ {0, 1}∗ or the distinguished symbol Invalid. If C← EK(N,M) then DK(N,C) = M .

Privacy. We modify the syntax of an encryption scheme [2] to nonce-using schemes, and we
modify the definition of security to give a particularly strong (and convenient) definition—one as-
serting indistinguishability from random strings. (The notion is easily seen to imply more standard
definitions, and by tight reductions.) Consider an adversary A who has one of two types of oracles:
a “real” encryption oracle or a “fake” encryption oracle. A real encryption oracle, EK(·, ·), takes
as input N,M and returns C ← EK(N,M). It is assumed that |C| = `(|M |) depends only on
|M |. A fake encryption oracle, $(·, ·), takes as input N,M and returns returns a random string
C

R← {0, 1}`(|M |). Given adversary A and encryption scheme Π = (K, E ,D), define Advpriv
Π (A) =

Pr[K R← K : AEK(·,·) = 1]−Pr[K R← K : A$(·,·) = 1]. An adversary A is nonce-respecting if it never
repeats a nonce: if A asks its oracle a query (N,M) it will never subsequently ask its oracle a
query (N,M ′), regardless of its coins (if any) and regardless of oracle responses. All adversaries
are assumed to be nonce-respecting.

Authenticity. We extend the notion of integrity of ciphertexts of [6, 7, 15]. Fix an encryption
scheme Π = (K, E ,D) and run an adversary A with an oracle EK(·, ·) for some key K. We say
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that adversary A forges (in this run) if A is nonce-respecting, A outputs (N,C) where DK(N,C) 6=
Invalid, and A made no earlier query (N,M) which resulted in a response C. Let Advauth

Π (A) =
Pr[K R← K : AEK(·,·) forges ]. We stress that the nonce used in the forgery attempt may coincide
with a nonce used in one of the adversary’s queries.

Block ciphers and PRFs. A function family from n-bits to n-bits is a map E : K × {0, 1}n →
{0, 1}n where K is a finite set of strings. It is a block cipher if each EK(·) = E(K, ·) is a permutation.
Let Rand(n) denote the set of all functions from {0, 1}n to {0, 1}n and let Perm(n) denote the set
of all permutations from {0, 1}n to {0, 1}n. These sets can be regarded as a function families by
imagining that each member is specified by a string. Define

Advprf
E (A) = Pr[K R← K : AEK(·) = 1]− Pr[ρ R← Rand(n) : Aρ(·) = 1]

Advprp
E (A) = Pr[K R← K : AEK(·) = 1]− Pr[π R← Perm(n) : Aπ(·) = 1]

Advsprp
E (A) = Pr[K R← K : AEK(·),E−1

K (·) = 1]− Pr[π R← Perm(n) : Aπ(·),π−1(·) = 1]

where E−1
K (Y ) is the unique string X such that EK(X) = Y .

5.2 Theorem Statements

We give the following information-theoretic bounds on the security of OCB.

Theorem 1 [Authenticity] Fix OCB parameters n and τ . Let A be an adversary that asks q
queries and then makes its forgery attempt. Suppose the q queries have aggregate length of σ
blocks, and the adversary’s forgery attempt has at most c blocks. Let σ̄ = σ + 2q + 5c + 11. Then

Advauth
OCB[Perm(n),τ ] (A) ≤ 1.5 σ̄2

2n
+

1
2τ

In the theorem statement, and from now on, the aggregate length of queries M1, . . . ,Mq means the
number σ =

∑q
r=1 ‖Mr‖n.

From the theorem above it is standard to pass to a complexity-theoretic analog, but in doing
this one must be careful: one will need access to an E−1 oracle in order to verify a forgery attempt,
which translates into needing the strong PRP assumption. One gets the following. Fix OCB
parameters n and τ , and a block cipher E : K × {0, 1}n → {0, 1}n. Let A be an adversary that
asks q queries and then makes its forgery attempt. Suppose the q queries have aggregate length
of σ blocks, and the adversary’s forgery attempt has at most c blocks. Let σ̄ = σ + 2q + 5c + 11.
Let

δ = Advauth
OCB[Perm(n),τ ] (A)− 1.5 σ̄2

2n
− 1

2τ

Then there is an adversary B for attacking block cipher E that achieves advantage Advsprp
E (B) ≥ δ.

Adversary B asks at most q′ = σ + 2q + 5c + 11 oracle queries and has a running time which is
equal to A’s running time plus the time to compute E or E−1 at q′ points plus additional time
which is Cnσ̄, where the constant C depends only on details of the model of computation.

We now give the information-theoretic theorem describing the privacy of OCB.
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Theorem 2 [Privacy] Fix OCB parameters n and τ . Let A be an adversary that asks q queries.
Suppose these q queries have aggregate length of σ blocks. Let σ̄ = σ + 2q + 3. Then

Advpriv
OCB[Perm(n),τ ] (A) ≤ 1.5 σ̄2

2n

From the theorem above it is standard to pass to a complexity-theoretic analog. One gets the
following. Fix OCB parameters n and τ , and a block cipher E : K × {0, 1}n → {0, 1}n. Let
Π = OCB[E, τ ]. Let A be an adversary that asks q queries. Suppose the q queries have aggregate
length of σ blocks. Let σ̄ = σ + 2q + 3. Let

δ = Advauth
OCB[Perm(n),τ ] (A)− 1.5 σ̄2

2n

Then there is an adversary B for attacking block cipher E that achieves advantage Advprp
E (B) ≥ δ.

Adversary B asks at most q′ = σ + 2q + 1 oracle queries and has a running time which is equal
to A’s running time plus the time to compute E at q′ points plus additional time which is Cnσ̄,
where the constant C depends only on details of the model of computation.

5.3 Structure of the Proofs

Our proof of Theorem 1 is based on three lemmas. The first, the structure lemma, relates the
authenticity of OCB to three functions: the M-collision probability, denoted Mcolln(·), the MM-
collision probability, denoted MMcolln(·, ·), and the CM-collision probability, denoted CMcolln(·, ·).
We state this lemma and then explain its purpose and the functions to which it refers.

Lemma 1 [Structure lemma] Fix OCB parameters n and τ . Let A be an adversary that asks q
queries and then makes its forgery attempt. Suppose the q queries have aggregate length of σ
blocks, and the adversary’s forgery attempt has at most c blocks. Let σ̄ = σ + 2q + 5c + 11. Let
Mcolln(·), MMcolln(·, ·) and CMcolln(·, ·) be the M-, MM-, and CM-collision probabilities. Then

Advauth
OCB[Perm(n),τ ](A) ≤ max

m1,...,mq∑
mi=σ

mi≥1

 ∑
r∈[1..q]

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms)+

∑
r∈[1..q]

CMcolln(c,mr)

 +
σ̄2

2n+1
+

1
2τ

What this lemma does. The structure lemma provides a recipe for measuring the maximal
forging probability of an adversary attacking the authenticity of OCB: compute the M-, MM- and
CM- collision probabilities, and then put them together using the formula of the lemma.

Informally, Mcolln(m) measures the probability of running into trouble when the adversary
asks a single query of the specified length. Trouble means the occurrence of any collision in the
associated block-cipher-input values. This includes the “special” input 0n (used to define L = π(0n)
and N ⊕ L (used to define R = π(N ⊕ L)).

Informally, MMcolln(m, m̄) measures the probability of running into trouble when the adversary
asks some two particular oracle queries of the specified lengths. Trouble means that a block-cipher
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input associated to the first message coincides with a block-cipher input associated to the second
message.

Informally, CMcolln(c, m̄) measures the probability of running into trouble when the adversary
tries to forge some particular ciphertext C of the specified block length c, there having been an
earlier query of some particular message M of the specified block length m, it receiving some
particular response. This time trouble basically refers to the final block-cipher input for the forgery
attempt, X[c + 1], coinciding with some earlier block-cipher input.

The structure lemma simplifies the analysis of OCB in two ways. First, it allows one to excise
adaptivity as a concern. Dealing with adaptivity is a major complicating factor in proofs of this
type. Second, it allows one to concentrate on what happens to fixed pairs of messages. It is easier
to think about what happens with two messages than what is happening with all q + 1 of them.

The M- and MM-collision probability. We next define the M-collision probability and the
MM-collision probability, and then state our upper bound on these functions.

Definition 1 [M- and MM-collision probabilities] Fix n and let M = M [0] · · ·M [m + 1] and
M̄ = M̄ [0] · · · M̄ [m̄+1] be strings of at least 2n bits, where each M [i] and M̄ [j] has n bits. Choose

L,R, R̄
R← {0, 1}n and then associate to M and M̄ the points

X[−1] = 0n

X[0] = M [0]⊕ L X̄[0] = M̄ [0]⊕ L
X[1] = M [1]⊕ γ1 · L⊕R X̄[1] = M̄ [1]⊕ γ1 · L⊕ R̄
X[2] = M [2]⊕ γ2 · L⊕R X̄[2] = M̄ [2]⊕ γ2 · L⊕ R̄

...
...

X[m− 1] = M [m− 1]⊕ γm−1 · L⊕R X̄[m̄− 1] = M̄ [m̄− 1]⊕ γm̄−1 · L⊕ R̄
X[m] = M [m]⊕ (γm ⊕ huge) · L⊕R X̄[m̄] = M̄ [m̄]⊕ (γm̄ ⊕ huge) · L⊕ R̄
X[m + 1] = M [m + 1]⊕ γm · L⊕R X̄[m̄ + 1] = M̄ [m̄ + 1]⊕ γm · L⊕ R̄

and the multisets

X0 = {X[−1], X[0], X[1], . . . , X[m], X[m + 1] }

X = {X[0], X[1], . . . , X[m], X[m + 1] }

X̄ = { X̄[0], X̄[1], . . . , X̄[m̄], X̄[m̄ + 1] }

Let Mcolln(M) denote the probability that some string is repeated in the multiset X0, and let
MMcolln(M,M̄) denote the probability that some element occurs in both X and X̄ . When m
and m̄ are numbers, let Mcolln(m) denote the maximal value of Mcolln(M) over all strings M ∈
({0, 1}n)m+2 and let MMcolln(m, m̄) denote the maximal value of Mcolln(M,M̄) over all M ∈
({0, 1}n)m+2 and M̄ ∈ ({0, 1}n)m̄+2 such that M [0] 6= M̄ [0].

Think of M [0] as a synonym for the nonce N , think of M [m] as a generalization of len(M [m])
(where the adversary can effectively control M [m] as opposed to len(M [m]) to influence X[m]),
and think of M [m + 1] as a synonym for Checksum, which we likewise let the adversary control.
One similarly understands M̄ [0], M̄ [m̄], and M̄ [m̄ + 1].

The needed bound is as follows.
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10 bad ← false; for all x ∈ {0, 1}n do π(x)← undefined

11 L
R← {0, 1}n; π(0n)← L

20 X̄[0]← N̄ ⊕ L; Ȳ [0]← R̄
R← {0, 1}n

21 for i← 1 to m̄ do Z̄(i)← γi · L⊕ R̄
22 for i← 1 to m̄− 1 do { X̄[i]← M̄ [i]⊕ Z̄[i]; Ȳ [i]← C̄[i]⊕ Z̄[i] }
23 X̄[m̄]← len(M̄ [m̄])⊕ huge · L⊕ Z̄[m̄] ; Ȳ (m̄)← C̄[m̄]⊕ M̄ [m̄] 0∗

24 Checksum′ ← M̄ [1]⊕ · · · ⊕ M̄ [m̄− 1]⊕ C̄[m̄] 0∗ ⊕ Ȳ [m̄]
25 X̄[m̄ + 1]← Checksum′ ⊕ Z̄[m̄]
26 for i← 0 to m̄ + 1 do π(X̄[i])← Ȳ [i]

30 X[0]← N ⊕ L
31 if N 6= N̄ and X[0] ∈ Domain(π) then bad ← true

32 if N = N̄ then R← R̄ else R
R← {0, 1}n

33 π(X[0])← R
34 for i← 1 to c do Z[i]← γi · L⊕R
35 for i← 1 to c− 1 do {
36 Y [i]← C[i]⊕ Z[i]
37 if Y [i] ∈ Range(π) then X[i]← π−1(Y [i]) else X[i] R← {0, 1}n
38 π(X[i])← Y [i]; M [i]← X[i]⊕ Z[i] }
39 X[c]← len(C[c])⊕ huge · L⊕ Z[c]
40 if X[c] ∈ Domain(π) then Y [c]← π(X[c]) else Y [c] R← {0, 1}n
41 π(X[c])← Y [c]
42 Checksum←M [1]⊕ · · · ⊕M [c− 1]⊕ C[c] 0∗ ⊕ Y [c]
43 X[c + 1]← Checksum⊕ Z[c]
44 if X[c + 1] ∈ Domain(π) then bad ← true

Figure 3: Defining the CM-collision probability. The function CMcolln(N̄ , M̄ , C̄, N,C) is defined as
the probability that bad gets set to true when executing this game. The value CMcolln(c, m̄) is the maximal
value of CMcolln(N̄ , M̄ , C̄, N, C) over all m̄-block M̄ and C̄, and all c-block C.

Lemma 2 [Bound on the M- and MM-collision probability]

Mcolln(m) ≤
(

m + 3
2

)
· 1
2n

and MMcolln(m, m̄) ≤ (m + 2)(m̄ + 2)
2n

The proof is deferred to Appendix A.2.

The CM-collision probability. The CM-collision probability is defined in Figure 3. The
following lemma tells us how large it can possibly be.

Lemma 3 [Bound on the CM-collision probability]

CMcolln(c, m̄) ≤ 2c + 3m̄ + 9
2n

The proof is mostly a case analysis. It is given in Appendix A.3

Concluding the authenticity theorem. To prove Theorem 1, combine lemmas 1, 2, and 3.
Let Π = OCB[Perm(n), τ ]. Given the aggregate block length σ and the length of the bound c on
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the length of the forgery attempt, one must bound the maximum possible value of

Advauth
Π (A) ≤ max

m1,...,mq∑
mi=σ

mi≥1

 ∑
r∈[1..q]

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms) +
∑

r∈[1..q]

CMcolln(c,mr)

 +

σ̄2

2n+1
+

1
2τ

≤ max
m1,...,mq∑

mi=σ
mi≥0

 ∑
r∈[1..q]

(mr + 3)2

2n+1
+

∑
1≤r<s≤q

(mr + 2)(ms + 2)
2n

+
∑

r∈[1..q]

(
2c + 3mr + 9

2n

) +

(σ + 2q + 5c + 11)2

2n+1
+

1
2τ

subject to the constraint that
∑q

i=1 mi = σ. One can bound the first sum by letting m1 = σ and
letting the remaining mi = 0; one can bound the second sum by letting each mi = σ; and one can
bound the third sum by letting m1 = σ and letting the remaining mi = 0. These choices can be
justified by the technique of Lagrange multipliers. This gives

Advauth
Π (A) ≤ 0.5(σ + 3)2 + 4.5q

2n
+

0.5q2(σ/q + 2)2

2n
+

2c + 3σ + 9 + q(2c + 9)
2n

+

0.5(σ + 2q + 5c + 11)2

2n
+

1
2τ

≤ 0.5(σ + 3)2 + 4.5q + 0.5(σ + 2q)2 + 2c + 3σ + 9 + 2cq + 9q + 0.5(σ + 2q + 5c + 11)2

2n
+

1
2τ

≤ 0.5(σ + 3)2 + 0.5(σ + 2q)2 + 0.5(σ + 2q + 5c + 11)2 + (3σ + 2cq + 2c + 13.5q + 9)
2n

+
1
2τ

≤ 1.5 (σ + 2q + 5c + 11)2

2n
+

1
2τ

≤ 1.5 σ̄2

2n
+

1
2τ

The fourth inequality can be justified by checking that 0.5(σ + 3 + (2q + 5c + 8))2 − 0.5(σ + 3)2)
already exceeds 3σ + 2cq + 2c + 13.5q + 9. This completes the theorem.

Privacy. Privacy is obtained rather easily en route to proving authenticity. The is because of the
following result, which closely follows the first half of the proof of the structure lemma.

Lemma 4 [Privacy lemma] Fix OCB parameters n and τ , and let Π = OCB[Perm(n), τ ]. Let A
be an adversary that asks q queries, these having aggregate block length of σ blocks. Let Mcolln(·)
and MMcolln(·, ·) be the M- and MM-collision probabilities. Then

Advpriv
Π (A) ≤ (σ + 2q + 1)2

2n+1
+ max

m1,...,mq∑
mi=σ

mi≥1

 ∑
r∈[1..q]

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms)


The proof is in Appendix A.4.

Combining Lemmas 2 and 4 gives Theorem 2. Namely, we have that

Advpriv
Π (A) ≤ (σ + 2q + 1)2

2n+1
+ max

m1,...,mq∑
mi=σ

mi≥0

 ∑
r∈[1..q]

(mr + 3)2

2 · 2n

 + max
m1,...,mq∑

mi=σ
mi≥0

 ∑
1≤r<s≤q

(mr + 2)(ms + 2)
2n
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and we bound the two sums exactly as before, giving

Advpriv
Π (A) ≤ 0.5(σ + 2q + 1)2

2n
+

0.5(σ + 3)2 + 4.5q

2n
+

0.5q2(σ/q + 2)2

2n

≤ 0.5(σ + 2q + 1)2 + 0.5(σ + 3)2 + 4.5q + 0.5(σ + 2q)2 + 4.5q

2n

≤ 1.5 (σ + 2q + 3)
2n

≤ 1.5 σ̄2

2n

The third inequality can be justified by noting that 0.5(σ + 3 + 2q)2 − 0.5(σ + 3)2 already exceeds
4.5q. This completes the proof of the privacy theorem.

6 Performance

Abstract accounting. OCB uses d|M |/ne + 2 block-cipher calls for a nonempty message M .
(The empty string takes three block-cipher invocations, the same as a one-block message). We
compare with CBC encryption and CBC encryption plus a CBC MAC:

“Basic” CBC encryption, where one assumes a random IV and a message which is a multiple
of the block length, uses two fewer block-cipher calls—a total of |M |/n.
A more fair comparison would be to set IV = EK(N) for CBC encryption, so that both schemes
use a (not necessarily random) nonce, and to use obligatory 10∗ padding, so that both schemes
can handle arbitrary strings. This would bring the total for CBC to d(|M |+ 1)/ne+ 1 block-
cipher calls, coinciding with OCB in the case that |M | is a multiple of the block length, and
using one fewer block-cipher call otherwise.
If one combines the basic CBC encryption with a MAC, say MACing the ciphertext, then the
CBC-encryption will use a number of block-cipher calls as just discussed, while the CBC MAC
will use between d|M |/ne+ 1 and d(|M |+ 1)/ne+ 3 block-cipher calls, depending on padding
conventions and the optional processing done to the final block in order to ensure security
across messages of varying lengths. So the total will be as few as 2d|M |/ne+ 1 or as much as
2d(|M |+1)/ne+4 block-cipher calls. Thus OCB saves between d|M |/ne− 1 and d|M |/ne+3
block-cipher calls compared to separate CBC encryption and CBC MAC computation

As with any mode, there is further overhead beyond the block-cipher calls. Per block, this
overhead is about four n-bit xor operations, plus associated logic. The work for this associated
logic will vary according to whether or not one precomputed L(i)-values, and many additional
details.

Though some of the needed L(i)-values are likely to be pre-computed, computing all of them
“on the fly” is not inefficient. Starting with 0n we form successive offsets by xoring the previous
offset with L, 2 · L, L, 4 · L, L, 2 · L, L, 8 · L, and so forth. So half the time we use L itself;
a quarter of the time we use 2 · L; one eighth of the time we use 4 · L; and so forth. Thus the
expected number of times to multiply by x in order to compute an offset is at most

∑∞
i=1 i/2i+1 = 1.

Each a · x instruction requires an n-bit xor and a conditional 32-bit xor. Said differently, for any
m > 0, the total number of a · x operations needed to compute γ1 · L, γ2 · L, . . . , γm · L is∑m

i=1 ntz(i), which is less than m. The above assumed that one does not retain or precompute
any L(i) value beyond L = L(0). Suppose that one retains three extra L(i) values, precomputing
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Algorithm 16 B 128 B 2 KB

OCB 56.2 23.6 19.2

CBC encrypt + CBC MAC 53.3 36.7 34.3
CBC encrypt + HMAC 144.0 46.7 31.5

CBC encrypt 34.9 19.8 17.6
CBC MAC 18.9 17.4 17.1

Figure 4: Performance results (in cycles per byte, on a Pentium 3) across three message lengths, assuming
AES-128 as the underlying block cipher.

and storing L(0), L(1), L(2), L(3). Computing and storing these three extra values is cheaper than
computing L = L(0) itself, which required an application of EK . But now the desired multiple
of L has already been computed 1/2 + 1/4 + 1/8 + 1/16 ≈ 94% of the time. When it has not been
pre-computed it must be calculated, starting from L(3), so the amortized number of multiplications
by x has thus been reduced from 1 to

∑∞
i=1 = i/2i+4 = 0.125.

Experimental results. We compared OCB-AES-128 performance with four conventional al-
gorithms, as shown in Table 4. By CBC encrypt we mean CBC encryption with an IV that is
EK(N). By CBC MAC we mean the “basic” CBC MAC—nothing extra done to take care of
length-variability. By CBC encrypt + CBC MAC we mean to encrypt the message (this time using
basic CBC encryption with a fixed IV) and then MAC the ciphertext (including the IV). By HMAC
we mean HMAC-SHA1. The CBC variants did not check for the need for padding and did not pad.
The code was written in assembly except for HMAC-SHA1, which was written in a combination of
C and assembly. The OS was Windows 2000 sp1 and the compiler was Visual C++ 6.0 sp4. All
data fit into L1 cache.

Some aspects of the experiments above are unfavorable to OCB, making the performance es-
timates conservative. In particular, the “raw” CBC MAC (as used above) needs to be modified
to correctly handle length-variability, and doing so is normally done in a way that results in ad-
ditional block-cipher calls. Focusing on the last column, one sees that OCB incurs about 9%
overhead compared to CBC encryption, and that the algorithm takes about 56% of the time of a
CBC encryption + CBC MAC.

Perhaps a better way to look at the overhead attributable to OCB is to use the identity function
as the underlying cipher, which effectively measures the work attributable to the mode itself. For
2KByte messages and a null block cipher the cost was 2.43 cpb. This compares with 1.22 cpb
for CBC encryption. Thus the “extra work” for OCB/xor compared to CBC encryption is about
1.21 cpb.

We emphasize that these results are for a serial execution environment with a limited number of
registers. In an environment with plenty of registers and multiple instruction pipes, OCB, properly
implemented, will of course be faster than CBC.

7 Intellectual Property Statement and Disclosures

Patent applications covering the ideas of this proposal were filed (Rogaway as inventor) on Septem-
ber 13, 2000; October 12, 2000; and February 9, 2001.

The inventor hereby releases IP rights covering OCB for all non-commercial, non-governmental
applications. For commercial applications, the inventor will license OCB under a non-exclusive
license, on a non-discriminatory basis, based on reasonable terms and conditions.
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IBM indicates that they filed a patent application on Jutla’s work on 14 April 2000. Virgil Gligor
indicates that he filed patent applications on 31 January 2000, 31 March 2000, and 24 August 2000.

The IP status specified in this proposal will be updated when more is known.
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[4] M. Bellare, R. Guérin and P. Rogaway, “XOR MACs: New methods for message
authentication using finite pseudorandom functions.” Advances in Cryptology – CRYPTO ’95.
Lecture Notes in Computer Science, vol. 963, Springer-Verlag, D. Coppersmith, ed., pp. 15–28,
1995. http://www.cs.ucdavis.edu/∼rogaway/

[5] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message
authentication code. Journal of Computer and System Sciences, vol. 61, no. 3, Dec 2000. (Ear-
lier version in Advances in Cryptology – CRYPTO ’94, Lecture Notes in Computer Science,
vol. 839, pp. 340–358, 1994. http://www.cs.ucdavis.edu/∼rogaway/)

[6] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. Advances in Cryptology – ASIACRYPT ’00.
Lecture Notes in Computer Science, vol. 1976, T. Okamoto., ed., Springer-Verlag, 2000.
http://www-cse.ucsd.edu/users/mihir/



OCB Mode 24

[7] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or
redundancy in plaintexts for efficient encryption. Advances in Cryptology – ASIACRYPT ’00.
Lecture Notes in Computer Science, vol. 1976, T. Okamoto., ed., Springer-Verlag, 2000.
http://www.cs.ucdavis.edu/∼rogaway/

[8] D. Bleichenbacher. Chosen ciphertext attacks against protocols based on RSA encryption
standard PKCS #1. Advances in Cryptology – CRYPTO ’98, Lecture Notes in Computer
Science, vol. 1462, pp. 1–12, 1998. http://www.bell-labs.com/user/bleichen/

[9] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. on Com-
puting, vol. 30, no. 2, pp. 391–437, 2000. (Earlier version appears in STOC ’91.
http://www.wisdom.weizmann.ac.il/∼naor/)

[10] V. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryp-
tion and XECB authentication modes. Unpublished manuscript of August 18, 2000,
from http://www.eng.umd.edu/∼gligor/, and contribution to NIST, October 2000, from
http://csrc.nist.gov/encryption/aes/modes/

[11] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Jour-
nal of the ACM, vol. 33, no. 4, pp. 210–217, 1986.

[12] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, vol. 28, April 1984, pp. 270–299.

[13] S. Halevi. An observation regarding Jutla’s modes of operation. Cryptology ePrint
archive (reference number 2001/015), submitted February 22, 2001, revised April 2, 2001.
http://eprint.iacr.org/

[14] C. Jutla. Encryption modes with almost free message integrity. Advances in Cryptol-
ogy – EUROCRYPT 2001. Lecture Notes in Computer Science, vol. 2045, B. Pfitzmann,
ed., Springer-Verlag, 2001. (Earlier version in Cryptology ePrint archive, reference number
2000/039, August 1, 2000, http://eprint.iacr.org/; and associated contribution to NIST,
October 2000, http://csrc.nist.gov/encryption/modes/workshop1/)

[15] J. Katz and M. Yung. Unforgeable encryption and adaptively secure modes of operation.
Fast Software Encryption ’00. Lecture Notes in Computer Science, B. Schneier, ed., 2000.

[16] M. Luby and C. Rackoff. How to construct pseudororandom permutations from pseudo-
random functions. SIAM J. Computation, vol. 17, no. 2, April 1988.

[17] RSA Laboratories. PKCS #1: RSA encryption standard, Version 1.5, November 1993;
and PKCS #1: RSA cryptography specifications, Version 2.0, September 1998, B. Kaliski
and J. Straddon. http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/

[18] B. Preneel. Cryptographic primitives for information authentication — State of the art.
State of the Art in Applied Cryptography, COSIC ’97, LNCS 1528, B. Preneel and V. Rijmen,
eds., Springer-Verlag, pp. 49–104, 1998.

[19] P. Rogaway. OCB Mode: Parallelizable authenticated encryption. Earlier version
of the present paper and unpublished contribution to NIST, October 16, 2000.
http://csrc.nist.gov/encryption/modes/workshop1/

[20] US National Bureau of Standards. DES modes of operation. Federal Infor-
mation Processing Standard (FIPS) Publication 81, December 1980. Available as
http://www.itl.nist.gov/fipspubs/fip81.htm

[21] US National Institute of Standards. Specification for the Advanced Encryption Stan-
dard (AES). Draft of a Federal Information Processing Standards (FIPS), February 28,



OCB Mode 25

Initialization:
01 bad ← false; for all x ∈ {0, 1}n do π(x)← undefined

02 L
R← {0, 1}n; π(0n)← L

When A asks query (N,M): //q such queries will be asked
10 Partition M into blocks M [1] · · ·M [m]
11 X[0]← N ⊕ L; Y [0] R← {0, 1}n
12 if X[0] ∈ Domain(π) then { bad ← true; Y [0]← π(X[0]) } else
13 if Y [0] ∈ Range(π) then { bad ← true; Y [0] R← Range(π) }
14 π(X[0])← Y [0]

15 for i← 1 to m do Z[i]← γi · L⊕ Y [0]
16 for i← 1 to m− 1 do {
17 X[i]←M [i]⊕ Z[i]; Y [i] R← {0, 1}n
18 if X[i] ∈ Domain(π) then { bad ← true; Y [i]← π(X[i]) } else
19 if Y [i] ∈ Range(π) then { bad ← true; Y [i] R← Range(π) }
20 π(X[i])← Y [i]; C[i]← Y [i]⊕ Z[i] }

21 X[m]← len(M [m])⊕ huge · L⊕ Z[m]; Y [m] R← {0, 1}n
22 if X[m] ∈ Domain(π) then { bad ← true; Y [m]← π(X[m]) } else
23 if Y [m] ∈ Range(π) then { bad ← true; Y [m] R← Range(π) }
24 π(X[m])← Y [m]; C[m]←M [m]⊕ Y [m]

25 Checksum←M [1]⊕ · · · ⊕M [m− 1]⊕ C[m] 0∗ ⊕ Y [m]
26 X[m + 1]← Checksum⊕ Z[m]; Y [m + 1] R← {0, 1}n
27 if X[m + 1] ∈ Domain(π) then { bad ← true; Y [m + 1]← π(X[m + 1]) } else
28 if Y [m + 1] ∈ Range(π) then { bad ← true; Y [m + 1] R← Range(π) }
29 π(X[m + 1])← Y [m + 1]; T ← Y [m + 1] [first τ bits]
30 return C← C[1] · · ·C[m] T

Figure 5: Game A, part 1. This game provides adversary A a perfect simulation of OCB[Perm(n), τ ].

2001. Based on: J. Daemen and V. Rijmen, AES Proposal: Rijndael. September 3, 1999.
http://www.nist.gov/aes/

A Proofs

A.1 Proof of the Structure Lemma (Lemma 1)

Let A be a (computationally unbounded) adversary that attempts to violate the authenticity of
Π = OCB[Perm(n), τ ]. Without loss of generality, A is deterministic. The adversary is given
an oracle for OCB.Encπ(·, ·). We must bound the probability that A, after adaptively using this
oracle q times, on messages with aggregate length σ blocks, produces a properly forged ciphertext
having at most c blocks. This forgery probability is denoted Advauth

Π (A).

Game A. One can conceive of A interacting with OCB.Encπ(·, ·) and then producing a forgery
attempt as A playing a certain game, game A, as defined in Figures 5 and 6. Rather than choose
π

R← Perm(n) all at once, this game defines the values of π(x) point-by-point, as needed. We use the
notation Domain(π) for the set of values x ∈ {0, 1}n such that π(x) 6= undefined. By Domain(π)
we mean {0, 1}n \ Domain(π). Similarly, Range(π) is the set of y ∈ {0, 1}n such that there exists
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When A makes forgery attempt (N, C):
50 Partition C into C[1] · · ·C[c] T

51 X[0]← N ⊕ L; if X[0] ∈ Domain(π) then Y [0]← π(X[0]) else Y [0] R← Range(π)
52 π(X[0])← Y [0]
53 for i← 1 to c do Z[i]← γi · L⊕ Y [0]
54 for i← 1 to c− 1 do {
55 Y [i]← C[i]⊕ Z[i]
56 if Y [i] ∈ Range(π) then X[i]← π−1(Y [i]) else X[i] R← Domain(π)
57 π(X[i])← Y [i]; M [i]← X[i]⊕ Z[i] }

58 X[c]← len(C[c])⊕ huge · L⊕ Z[c]
59 if X[c] ∈ Domain(π) then Y [c]← π(X[c]) else Y [c] R← Range(π)
60 π(X[c])← Y [c]
61 Checksum←M [1]⊕ · · · ⊕M [c− 1]⊕ C[c] 0∗ ⊕ Y [c]
62 X[c + 1]← Checksum⊕ Z[c]
63 if X[c + 1] ∈ Domain(π) then Y [c + 1]← π(X[c]) else Y [c + 1] R← Range(π)
64 T ′ ← Y [c + 1] [first τ bits]
65 if T = T ′ then bad ← true

Figure 6: Games A, A′ B, B′, and C, part 2.

an x ∈ {0, 1}n for which π(x) = y. And Range(π) = {0, 1}n \ Range(π).
An inspection of game A makes clear that it supplies to A a perfect simulation of OCB.Encπ(·, ·).

Game A simulates OCB in a somewhat unusual way, not only defining π point-by-point, but,
when a value π(x) is needed, for some new x, we get this value, in most cases, not by choosing
y

R← Range(π), as would seem natural, but by choosing y
R← {0, 1}n, setting π(x) to y if y is not

already in the range of π, and “changing our minds,” setting π(x) R← Range(π), otherwise. In the
latter case, a flag bad is set to true. The flag bad is also set to true when the adversary successfully
forges. Consequently, upperbounding the probability that bad gets set to true in game A serves
to upperbound the adversary’s forging probability.

Game A′. We begin by making a couple of quite trivial changes to game A. First, instead of setting
C[m] = M [m]⊕ Y [m] (in line 24 of game A), we set C[m] = M [m] 0∗ ⊕ Y [m], instead. That is, we
imagine returning the “full” final-ciphertext-block instead of the truncated final-ciphertext-block.
Clearly the extra bits given to the adverary can not make worse an optimal adversary’s chance of
successful forgery. Second, instead of returning (in line 30 of game A) a tag T which is the first τ
bits of Y [m + 1], we return the full tag, Y [m + 1]. Once again, the extra bits provided to the
adverary can only improve an optimal adversary’s chance of success. Let game A′ denote this new,
“easier” game. We will bound the probability that bad gets set to true in game A′.

Game B. Next we eliminate from game A′ the statement which immediately follows bad being set
to true in each of lines 12, 13, 18, 19, 22, 23, 27, 28. The else statements are also eliminated.
This new game, game B, is shown in Figure 7. This new game is different from game A′, and an
adversary A having queries answered according to game B will not be seeing the same view as one
whose queries are answered according to A′. Still, game B has been constructed so that it behaves
identically to game A′ until the flag bad is set to true. Only at that point do the two games
diverge. As a consequence, regardless of the behavior of A, the probaiblity that bad will get set
to true when A plays game B is identical to the probability that bad gets set to true when A
plays game A′. Now we are interested in upperbounding the probability of forgery in game A,
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Initialization:
01 bad ← false; for all x ∈ {0, 1}n do π(x)← undefined

02 L
R← {0, 1}n; π(0n)← L

When A asks query (N,M): //q such queries will be asked
10 Partition M into blocks M [1] · · ·M [m]
11 X[0]← N ⊕ L; Y [0] R← {0, 1}n
12 if X[0] ∈ Domain(π) then bad ← true
13 if Y [0] ∈ Range(π) then bad ← true
14 π(X[0])← Y [0]
15 for i← 1 to m do Z[i]← γi · L⊕ Y [0]
16 for i← 1 to m− 1 do {
17 X[i]←M [i]⊕ Z[i]; Y [i] R← {0, 1}n
18 if X[i] ∈ Domain(π) then bad ← true
19 if Y [i] ∈ Range(π) then bad ← true
20 π(X[i])← Y [i]; C[i]← Y [i]⊕ Z[i] }
21 X[m]← len(M [m])⊕ huge · L⊕ Z[m]; Y [m] R← {0, 1}n
22 if X[m] ∈ Domain(π) then bad ← true
23 if Y [m] ∈ Range(π) then bad ← true
24 π(X[m])← Y [m]; C[m]←M [m] 0∗ ⊕ Y [m]
25 Checksum←M [1]⊕ · · · ⊕M [m− 1]⊕ C[m] 0∗ ⊕ Y [m]
26 X[m + 1]← Checksum⊕ Z[m]; Y [m + 1] R← {0, 1}n
27 if X[m + 1] ∈ Domain(π) then bad ← true
28 if Y [m + 1] ∈ Range(π) then bad ← true
29 π(X[m + 1])← Y [m + 1]
30 return C← C[1] · · ·C[m] Y [m + 1]

Figure 7: Game B, part 1.

which we do by upperbound the probability that bad gets set to true in game A′, which is just the
probability that bad gets set to true in game B.

Note that we are not claiming that the probability of the adversary forging in game B (meaning
that bad gets set to true at line 65 of game B) is the same as the probability of the adversary
forging in A′ (meaning that bad gets set to true in the last line of that game). Claims of this sort
are tempting to make, but they are untrue.

Bounding Y -collisions in Game B. We next bound the probability that bad will be set to true
in any of lines 13, 19, 23, or 28 of game B. In each of these lines, a random n-bit string was just
chosen and then it is tested for membership in the growing set Range(π). In the course of game B
the size Range(π) starts off at 0 and then grows one element at a time until it reaches a final size
of σ + 2q + 1 elements. Therefore the probability that, in growing Range(π), there is a repetition
as we add in random points is at most (1 + 2 + · · · + σ + 2q)/2n ≤ (σ + 2q + 1)2/2n+1. We note
this for future reference:

Pr[A causes bad to be set in any of lines 13, 19, 23 or 28 of game B] ≤ (σ + 2q + 1)2

2n+1
(1)

Having bounded the probability that bad will be set in the four indicated lines, we may imagine
eliminating these four lines, forming a new game, game B′. The probability that bad is set in
game B is at most the computed bound more than than the probability that bad is set in game B′.
Thus we may continue the analysis using game B′ as long as we compensate the final bound by
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When A asks its r-th query, (Nr, Mr): //r will range from 1 to q
10 Partition Mr into blocks Mr[1] · · ·Mr[mr]
11 Cr[1], . . . , Cr[mr], Yr[m + 1] R← {0, 1}n
12 return Cr ← Cr[1] · · ·Cr[mr] Yr[mr + 1]

When A is done making oracle queries:
20 bad ← false; for all x ∈ {0, 1}n do π(x)← undefined

21 L
R← {0, 1}n; π(0n)← L

30 for r ← 1 to q do {
31 Xr[0]← Nr ⊕ L; Yr[0] R← {0, 1}n
32 for i← 1 to mr do Zr[i]← γi · L⊕ Yr[0]
33 for i← 1 to mr − 1 do { Xr[i]←Mr[i]⊕ Zr[i]; Yr[i]← Cr[i]⊕ Zr[i] }
34 Xr[mr]← len(M [mr])⊕ huge · L⊕ Zr[mr] ; Yr[mr]← Cr[mr]⊕Mr[mr] 0∗

35 Checksumr ←Mr[1]⊕ · · · ⊕Mr[mr − 1]⊕ Cr[mr] 0∗ ⊕ Yr[mr]
36 Xr[mr + 1]← Checksumr ⊕ Zr[mr] }

37 X ← (X1[0], X1[1], . . . , X1[m1 + 1], . . . , Xq[0], Xq[1], . . . , Xq[mq + 1])
38 Y ← (Y1[0], Y1[1], . . . , Y1[m1 + 1], . . . , Yq[0], Yq[1], . . . , Yq[mq + 1])
39 if some string is repeated in X ∪ {0n} then bad ← true
40 for i← 1 to |X | do π(X [i])← Y[i]

Figure 8: Game C, part 1. This game provides adversary A with the same view as game B, and sets bad
with the same probability. But it defers some random choices.

adding in the term given by Equation (1).

Game C. In game B′, consider the distribution on strings returned to the adversary in response
to a query (N, M), where m = ‖M‖n. The adversary learns C = C[1] · · ·C[m− 1]C[m] Y [m + 1].
Since each block of this string is a uniform random value xor’ed with some other, independent
value, we have that C is uniformly distributed and independent of the query M , apart from its
length. As a consequence, when a query of N,M is made, where M has m blocks, we can return a
random answer C (of nm+n bits) and do no more at that time. Later, when the adversary is done
making its q queries, we can set the remaining random values, make the associated assignments to
π, and set the flag bad, as appropriate. This is what has been done in Game C of Figure 8. From
the adversary’s point of view, game B′ and game C are identical. Furthermore, the probability that
bad gets set to true is identical in the two games.

Game D. We have reduced the problem of upperbounding the forging probability to the problem
of upperbounding the probability that bad gets set to true in game C. This probability is over the
coins used in line 11 of game C (which defines the Cr-values) and over the additional coins used
subsequently in the program. We must show that, over this sequence of coins (remember that the
adversary is deterministic) the flag bad is rarely set.

We will show something stronger: that even if one fixes all of the coins used in line 11 (the
Cr-values) and takes the probability over just the remaining coins, still the probability that bad
gets set to true is small. The virtue of ths change is that it effectively eliminates the q interactive
queries from the game. Namely, since the adversary A is deterministic and each response Cr has
been fixed, the adversary can be imagined to “know” all of the queries N1,M1, . . . , Nq,Mq that
it would ask and all of the answers C1, . . . ,Cq that it would receive. All the adversary has left
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20 bad ← false; for all x ∈ {0, 1}n do π(x)← undefined

21 L
R← {0, 1}n; π(0n)← L

30 for r ← 1 to q do {
31 Xr[0]← Nr ⊕ L; Yr[0] R← {0, 1}n
32 for i← 1 to mr do Zr[i]← γi · L⊕ Yr[0]
33 for i← 1 to mr − 1 do { Xr[i]←Mr[i]⊕ Zr[i]; Yr[i]← Cr[i]⊕ Zr[i] }
34 Xr[mr]← len(M [mr])⊕ huge · L⊕ Zr[mr] ; Yr[mr]← Cr[mr]⊕Mr[mr] 0∗

35 Checksumr ←Mr[1]⊕ · · · ⊕Mr[mr − 1]⊕ Cr[mr] 0∗ ⊕ Yr[mr]
36 Xr[mr + 1]← Checksumr ⊕ Zr[mr] }
37 X ← (X1[0], X1[1], . . . , X1[m1 + 1], . . . , Xq[0], Xq[1], . . . , Xq[mq + 1])
38 Y ← (Y1[0], Y1[1], . . . , Y1[m1 + 1], . . . , Yq[0], Yq[1], . . . , Yq[mq + 1])
39 for i← 1 to |X | do π(X [i])← Y[i]
40 if some string is repeated in X ∪ {0n} then bad ← true

50 X[0]← N ⊕ L; if X[0] ∈ Domain(π) then Y [0]← π(X[0]) else Y [0] R← Range(π)
51 π(X[0])← Y [0]
52 for i← 1 to c do Z[i]← γi · L⊕ Y [0]
53 for i← 1 to c− 1 do {
54 Y [i]← C[i]⊕ Z[i]
55 if Y [i] ∈ Range(π) then X[i]← π−1(Y [i]) else X[i] R← Domain(π)
56 π(X[i])← Y [i]; M [i]← X[i]⊕ Z[i] }
57 X[c]← len(C[c])⊕ huge · L⊕ Z[c]
58 if X[c] ∈ Domain(π) then Y [c]← π(X[c]) else Y [c] R← Range(π)
59 π(X[c])← Y [c]
60 Checksum←M [1]⊕ · · · ⊕M [c− 1]⊕ C[c] 0∗ ⊕ Y [c]
61 X[c + 1]← Checksum⊕ Z[c]
62 if X[c + 1] ∈ Domain(π) then Y [c + 1]← π(X[c]) else Y [c + 1] R← Range(π)
63 T ′ ← Y [c + 1] [first τ bits]
64 if T = T ′ then bad ← true

Figure 9: Game D. This game depends on N1, . . . , Nq, M1, . . . ,Mq, C1, . . . , Cq, Y1[m1 +1], . . . , Yq[mq +1],
N , C = C[1] · · ·C[c] and T .

to do is to output the forgery attempt (N,C T ). This value too is now pre-determined, as our
adversary is deterministic. So the adversary is effectively gone, and we are left to claim that for any
N1,M1, . . . , Nq,Mq, C1, . . . ,Cq, N,C, T , the flag bad will rarely be set if we run game C starting
at line 20. The new game is called game D. It depends on N1,M1, . . . , Nq,Mq, C1, . . . ,Cq, N, C, T ,
which are now just constants. The constants are not quite arbitrary: the Nr-values are still required
to be distinct. The lengths of M1, . . . ,Mq are m1, . . . ,mq blocks. The length of C is c blocks.

The Mcolln and MMcolln terms. At this point we make the observation that bad will be set to
true in line 40 of game D if and only if either

There is some r ∈ [1..q] such that there is a repetition in the multiset

{0n, Xr[0], Xr[1], . . . , Xr[mr]}

There is some pair r, s ∈ [1..q], where r < s, such that

{Xr[0], . . . Xr[mr + 1]} has some a point in common with {Xs[0], . . . Xs[ms + 1]}
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50 X[0]← N ⊕ L
51 if N 6= Nr for any r and X[0] ∈ Domain(π) then bad ← true

52 if N = Nr for some r then Y [0]← Yr[0] else Y [0] R← {0, 1}n
53 π(X[0])← Y [0]
54 for i← 1 to c do Z[i]← γi · L⊕ Y [0]
55 for i← 1 to c− 1 do {
56 Y [i]← C[i]⊕ Z[i]
57 if Y [i] ∈ Range(π) then X[i]← π−1(Y [i]) else X[i] R← {0, 1}n
58 π(X[i])← Y [i]; M [i]← X[i]⊕ Z[i] }
59 X[c]← len(C[c])⊕ huge · L⊕ Z[c]
60 if X[c] ∈ Domain(π) then Y [c]← π(X[c]) else Y [c] R← {0, 1}n
61 π(X[c])← Y [c]
62 Checksum←M [1]⊕ · · · ⊕M [c− 1]⊕ C[c] 0∗ ⊕ Y [c]
63 X[c + 1]← Checksum⊕ Z[c]
64 if X[c + 1] ∈ Domain(π) then bad ← true

Figure 10: Game E, part 2. The first half of this game is lines 20–40 of Game D.

The probability of this event is at most∑
r∈[1..q]

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms) (2)

by our definition of Mcolln and MMcolln. Therefore the probability that bad is set to true in
line 40 of Game D is at most the expression above. We are left now to focus on the probability
that bad gets set to true in line 64 of Game D (Figures 9 and 6).

Game E. We modify the second half of game D (lines 20–40 are unchanged). First, we simplify
lines 50, 55 and 58, and 62 by choosing a random value in {0, 1}n as opposed to a value in the
co-range, co-domain, co-range, and co-range of π, respectively. By similar reasoning to that used
before, this new game may decrease the probability that bad gets sets to true, but by an amount
that is at most

(c + 2)(σ + 2q + c + 3)
2n

Second, we modify the game so as to “give up” (set bad) if the condition of line 62 is satisfied.
(Here is where pretag-collisions would begin to cause extra complications.) In doing this, we may
again decrease the probability that bad will be set to true. But the decrease is at most 1/2τ

since, when the else clause of the new line 62 is executed (that is, Y [m + 1] R← {0, 1}n), T will
equal T ′ with probability exactly 1/2τ . Finally, we modify the game to give up (set bad) whenever
N 6∈ {N1, . . . , Nq} but X[0] = N ⊕L is already in Domain(π) when this is checked at line 50. The
new game is called game E and it is shown in Figure 10. We note for future reference:

Pr[bad gets set in game D]

≤ Pr[bad gets set in game E] +
(c + 2)(σ + 2q + c + 3)2

2n
+

1
2τ

(3)

Game F. We now examine game E and relate it to a final game, F. If bad is set to true in game E
the reason is either that X[0] = N ⊕L was found to be in the domain of π even though N is a new
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nonce, or else X[c + 1] was found to be in the domain of π when this was checked. In the latter
case, how did X[c + 1] come to be in the domain of π? At least one of the following must be true:

X[c + 1] = 0n. (The value 0n was added to the domain of π at line 21.)
For some r ∈ [1..q], for some j ∈ [0..mr + 1], X[c + 1] = Xr[j]. (These values were added to
the domain of π at line 39.)
For some i ∈ [0..c], X[c+1] = X[i]. (These values were added to the domain of π at lines 53, 57,
and 61).

When bad is set to true we will assign responsibility for this event to exactly one index r ∈ [1..q].
We say that the responsible index is r where:

If N is a new nonce and X[0] ∈ Domain(π) at line 51, then the responsible index is the least
r ∈ [1..q] such that Xr[j] = X[0] for some j. Otherwise,
If X[c + 1] = 0n, then the responsible index is r = 1. Otherwise,
If there is an r ∈ [1..q] such that, for some j ∈ [0..mr+1], X[c+1] = Xr[j], then the responsible
index is the least such value r. Otherwise,
The responsible index is r = 1. (This last case can happen when X[c + 1] = X[i] for some
i ∈ [0..c].)

Partition the coins used in the running of game E into: the coins s0 used in the initialization step
(line 21); the coins s1, . . . , sq used for processing message M1, . . . ,Mq, respectively (line 31); and
the coins s used to process the forgery attempt C (lines 52, 57, and 60). Suppose we eliminate the
for statement at line 30, and execute lines 31–36 for some specific value of r. Call this game Er.
We make the crucial observation that if bad is set to true in game E using coins (s0, s1, . . . , sq, s)
then bad will still be set to true in game Er using coins (s0, sr, s) when the responsible index
is r. This follows from our definition of the responsible index. The only observation that is needed
is that when X[c + 1] = X[i] for some i ∈ [0..c], then, considering the least such i, if X[i] was
selected by assigning to it an already-selected Xs[j]-value, then the third case in the definition of
the responsible index will result in the selection of an index r that forces bad to true.

By what we have said, one can bound the probability that bad gets set to true in game E by
summing the probabilities that bad gets set to true in game Er, where r ∈ [1..q].

Game Er is precisely the game that was used to define the CMcolln; in particular, the probability
that bad is set in Er is CMcolln(c,mr). We conclude that the probability that bad is set to true
in game Er is at most CMcolln(c,mr). Thus the probability that bad gets set to true in game E
is at most

q∑
r=1

CMcolln(c,mr) (4)

Summing Equations (1), (2), (3) and (4) gives that the adversary’s chance of forgery is at most

∑
r∈[1..q]

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms) +
q∑

r=1

CMcolln(c,mr) +

(σ + 2q + 1)2 + 2(c + 2)(σ + 2q + c + 3)
2n+1

+
1
2τ

Using that (σ + ∆)2 − σ2 ≥ 2σ∆ and (σ + ∆)2 − σ2 ≥ ∆2, we can increase σ by a small amount in
order to compensate for the lower-order terms and clean up the expression. Namely, increasing σ
by 2q + 1 is enough to take care of the first addend, while increasing σ by c + 2 plus 2(c + 2) plus√

2(c+3) is enough to take care of the second addend. So increasing σ by 2q + 5c + 11 will take
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care of both. Letting σ̄ = 2q + 5c + 11 we thus have that the adversary’s chance of forgery is at
most ∑

1≤r<s≤q

MMcolln(qr, qs) +
q∑

r=1

CMcolln(c, qs) +
σ̄2

2
· 1
2n

+
1
2τ

This completes the proof of the structure lemma.

A.2 Proof of the M- and MM-Collision Bounds (Lemma 2)

We assume that m, m̄ < 2n−2, since the specified probability upper bound is meaningless (it exceeds
1) otherwise. According to remarks we have made earlier, this ensures that γ1, . . . , γmax{m,m̄},huge
are distinct nonzero field elements.

We begin with the first inequality. There are m + 3 points in the set X0, and we claim that for
any two of them, the probability that they coincide is at most 1/2n. This is enough to show the
first inequality, that the probability of a collision within X0 is at most

(
m+3

2

)
· 2−n. There are a

few cases to consider. Below, remember that L and R are random, and everything else is constant.
The probabilities are over L,R. In the following, we let i, i′ ∈ [1..m− 1], i 6= i′.

Pr[X[−1] = X[0]] = Pr[0n = M [0]⊕ L] = 1/2n.
Pr[X[−1] = X[i]] = Pr[0n = M [i]⊕ γi · L⊕R] = 1/2n.
Pr[X[−1] = X[m]] = Pr[0n = M [m]⊕ (γm ⊕ huge) · L⊕R] = 1/2n.
Pr[X[−1] = X[m + 1]] = Pr[0n = M [m + 1]⊕ γm · L⊕R] = 1/2n.
Pr[X[0] = X[i]] = Pr[M [0]⊕ L = M [i]⊕ γi · L⊕R] = 1/2n.
Pr[X[0] = X[m]] = Pr[M [0]⊕ L = M [m]⊕ (γm + huge) · L⊕R] = 1/2n.
Pr[X[0] = X[m + 1]] = Pr[M [0]⊕ L = M [m + 1]⊕ γm · L⊕R] = 1/2n.
Pr[X[i] = X[i′]] = Pr[M [i]⊕ γi ·L = M [i′]⊕ γi′ ·L] = Pr[M [i]⊕M [i′] = (γi ⊕ γi′) ·L] = 1/2n

because γi 6= γi′ .
Pr[X[i] = X[m]] = Pr[M [i]⊕ γi · L⊕R = M [m]⊕ (γm ⊕ huge) · L⊕R] = Pr[M [i]⊕ γi · L =
M [m]⊕(γm⊕huge)·L] = Pr[M [i]⊕M [m] = (γm⊕huge⊕γi)·L] = 1/2n because γi⊕γm 6= huge.
The reason that γi⊕ γm 6= huge is that huge has a 1 in bit position 1, while neither γi nor γm

do, because i,m < 2n−2 and γi ≤ 2i, γm ≤ 2m.
Pr[X[i] = X[m+1]] = Pr[M [i]⊕ γi ·L⊕R = M [m+1]⊕ γm ·L⊕R] = Pr[M [i]⊕M [m+1] =
(γi ⊕ γm) · L] = 1/2n.
Pr[X[m] = X[m + 1]] = Pr[M [m] ⊕ (γm ⊕ huge) · L ⊕ R = M [m + 1] ⊕ γm · L ⊕ R] =
Pr[M [m]⊕M [m + 1] = huge · L] = 1/2n.

This completes the first inequality.
For the second inequality, we wish to show that for any point in X and any point in X̄ ,

the probability that they coincide is at most 2−n. The result follows, since there are at most
(m + 2)(m̄ + 2) such pairs. Remember, below, that L, R and R̄ are random, and everything else is
constant. We let i ∈ [1..m− 1] and j ∈ [1..m̄− 1]. As before, γ1, . . . , γm,huge are distinct nonzero
points.

Pr[X[0] = X̄[0]] = Pr[M [0]⊕ L = M̄ [0]⊕ L] = 0, since M [0] 6= M̄ [0] by assumption.
Pr[X[0] = X̄[j]] = Pr[M [0]⊕ L = M̄ [j]⊕ γj · L⊕ R̄] = 1/2n due to the influence of R̄.
Pr[X[0] = X̄[m̄] = Pr[M [0] ⊕ L = M̄ [m̄] ⊕ (γm̄ ⊕ huge) · L ⊕ R̄] = 1/2n due to the influence
of R̄.
Pr[X[0] = X̄[m̄ + 1] = Pr[M [0]⊕ L = M̄ [m̄ + 1]⊕ γm̄ · L⊕ R̄] = 1/2n due to the influence of
R̄.
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Pr[X[i] = X̄[j]] = Pr[M [i]⊕ γi ·L⊕R = M̄ [j]⊕ γj ·L⊕ R̄] = 1/2n due to the influence of R̄.
Pr[X[i] = X̄[m̄]] = Pr[M [i] ⊕ γi · L ⊕ R = M̄ [m̄] ⊕ (γm̄ ⊕ huge) · L ⊕ R̄] = 1/2n due to the
influence of R̄.
Pr[X[i] = X̄[m̄ + 1] = Pr[M [i] ⊕ γi · L ⊕ R = M̄ [m̄ + 1] ⊕ γm̄ · L ⊕ R̄] = 1/2n due to the
influence of R̄.
Pr[X[m] = X̄[m̄] = 1/2n, as before, due to the influence of R̄.
Pr[X[m] = X̄[m̄ + 1] = 1/2n for the same reason.
Pr[X[m + 1] = X̄[m̄ + 1] = 1/2n for the same reason.

The remaining cases follow by symmetry. This completes the proof.

A.3 Proof of the CM-Collision Bound (Lemma 3)

Proof: At the top level, we consider two cases: N 6= N̄ and N = N̄ . The second of these will be
analyzed by breaking into three subcases.

Case 1: N 6= N̄ . In this case there are two ways for bad to be set to true: it can happen at
line 31 or line 44 in the game that defines the CMcolln collision probability (Figure 3). Let us first
calculate the probability that bad is set to true at line 31, which is

Pr[bad is set at line 31] = Pr[N ⊕ L ∈ {0n, X̄[1], . . . , X̄[m̄ + 1]}]

One point in the domain of π has been omitted from set B = {0n, X̄[1], . . . , X̄[m̄], X̄[m̄ + 1]}:
X̄[0] = N̄ ⊕L, which we know is different from N ⊕L since N 6= N̄ . The probability above is taken
over L and R̄, where each X̄[i] implicitly depends on both. We claim that for each of the m̄ + 2
values in S, the probability that N ⊕ L is equal to this particular value is exactly 1/2n. This is
verified by:

Pr[N ⊕ L = 0n] = 1/2n.
For any j ∈ [1..m̄], Pr[N ⊕ L = M̄ [j] ⊕ γj · L ⊕ R̄] = 1/2n because of the influence of the
random R̄.
Similarly, Pr[N ⊕ L = M̄ [m̄]⊕ (γm̄ ⊕ huge) · L⊕ R̄] = 1/2n because of the random R̄.

We conclude that

Pr[bad is set at line 31] ≤ m̄ + 2
2n

(5)

We next show that

Pr[X[c] ∈ Domain(π) at line 40] ≤ c + m̄ + 3
2n

(6)

For this, let us define S to be

S = {0n, X̄[0], X̄[1], . . . , X̄[m̄ + 1], X[0], X[1], . . . , X[c− 1]}

This is the domain of π at the time that line 40 is executed. The set has c+m̄+3 points and we shall
use the sum bound to see that the probability that X[m] is one of these is at most (c + m̄ + 3)/2n.
Namely,
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Pr[X[c] = 0n] = Pr[len(C[c])⊕ (γm⊕ huge) ·L⊕R = 0n] = 1/2n as the right-hand side of the
equality sign does not depend on R.
Pr[X[c] = X̄[0]] = Pr[len(C[c])⊕ (γc ⊕ huge) · L⊕R = N̄ ⊕ L] = 1/2n for the same reason.
For j ∈ [1..m̄− 1], Pr[len(C[c])⊕ (γc⊕ huge) ·L⊕R = M̄ [j]⊕ γj ·L⊕ R̄] = 1/2n for the same
reason.
Pr[X[c] = X[m̄]] = Pr[len(C[c])⊕ (γc ⊕ huge) · L⊕R = M̄ [m̄]⊕ (γm̄ ⊕ huge) · L⊕ R̄] = 1/2n

for the same reason.
Pr[X[c] = X̄[m̄ + 1]] = Pr[len(C[c])⊕ (γc ⊕ huge) · L⊕R = Checksum′ ⊕ γm̄ · L⊕ R̄] = 1/2n.
Pr[X[c] = X[0]] = Pr[len(C[c])⊕ (γc ⊕ huge) · L⊕R = N ⊕ L] = 1/2n for the same reason.
For i ∈ [1..c − 1], X[i] is determined in one of two possible ways: either it is a value already
placed into the Domain(π) (the then clause at line 37 was executed) or else it is a randomly
selected value in {0, 1}n (the else clause was executed). In the former case, the sum bound
has already accounted for the probability of a collision with X[i]. In the latter case, the chance
of collision with X[c] = len(C[c])⊕ (γc ⊕ huge) · L⊕R is 1/2n.

Equation (6) has now been established.

Next we observe that

Pr[X[c + 1] ∈ Domain(π) at line 44 | X[c] 6∈ Domain(π) at line 40 ] ≤ c + m̄ + 4
2n

(7)

The reason is that, when the conditioning event happens, Y [c] is selected as a random point in
{0, 1}n at line 40, which results in Checksum being a random value independent of the points in
the domain of π, which results in X[c + 1] being a random value independent of the points in the
domain of π. Since the domain of π has at most 1 + m̄ + 2 + c + 1 = c + m̄ + 4 points at this time,
Equation (7) follows. Now, summing Equations (5), (6) and (7) gives us that

Pr[bad gets set | Case 1 ] ≤ 3m̄ + 2c + 9
2n

(8)

Case 2a: N = N̄ and c 6= m̄. The next case we consider is when N 6= N̄ and c 6= m̄. Redefine S
to be

S = {0n, X̄[0], . . . , X̄[m̄ + 1], X[1], . . . , X[c− 1]}

This is Domain(π) at the time line 40 is executed. We show that

Pr[X[c] ∈ S | Case 2a ] ≤ c + m̄ + 2
2n

(9)

To show this, one has as before to go through the c + m̄ + 2 points of S:

Pr[X[c] = 0n] = Pr[len(C[c])⊕ (γc ⊕ huge) · L⊕R = 0n] = 1/2n.
Pr[X[c] = N ⊕ L] = Pr[len(C[c])⊕ (γc ⊕ huge) · L⊕R = N ⊕ L] = 1/2n.
For j ∈ [1..m̄− 1], Pr[X[c] = X̄[j]] = Pr[len(C[c])⊕ (γc⊕ huge) ·L⊕R = M̄ [j]⊕ γj ·L⊕R] =
Pr[len(C[c])⊕ M̄ [j] = (γj ⊕ γc⊕ huge) ·L] = 1/2n since γj ⊕ γc 6= huge for the reason already
explained.
Pr[X[c] = X̄[m̄]] = Pr[len(C[c])⊕ (γc ⊕ huge) · L⊕R = len(M̄ [m̄])⊕ (γm̄ ⊕ huge) · L⊕R] =
Pr[len(C[c])⊕ len(M̄ [m̄]) = (γc ⊕ γm̄) · L] = 1/2n since γc 6= γm̄

Pr[X[c] = X̄[m̄ + 1]] = Pr[len(C[c]) ⊕ (γc ⊕ huge) · L ⊕ R = Checksum′ ⊕ γm̄ · L ⊕ R] =
Pr[len(C[c])⊕ Checksum′ = (γc ⊕ huge ⊕ γm̄) · L] = 1/2n as before.
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For i ∈ [1..c− 1], either X[i] was selected as a value already in Domain(π), in which case the
sum bound has already accounted for the probability of a collision with X[c], or else X[i] was
selected as a new random value, in which case it has a 1/2n chance of colliding with X[c].

We have established (9). Next, as before, if X[c] 6∈ S then Y [c] is chosen at random, making
Checksum random, and making X[c + 1] random. Thus

Pr[X[c + 1] ∈ Domain(π) at line 44 | X[c] 6∈ Domain(π) at line 40 ] ≤ c + m̄ + 3
2n

(10)

since the size of the domain of π at line 44 is at most c + m̄ + 3. Adding Equations (9) and (10)
we have that

Pr[bad gets set | Case 2a] ≤ 2c + 2m̄ + 5
2n

(11)

Case 2b: N = N̄ and c = m̄ and ∃ a, a < c, s.t. C[a] 6= C̄[a]. In this case, let a ≥ 1 be the
smallest index such that C[a] 6= C̄[a]. We claim that Y [a] is almost certainly not in the range of π
when this point is examined at line 37, when i = a. In fact, we claim something stronger: that
Y [a] is almost certainly different from all of

S = {L, Ȳ [0], . . . , Ȳ [c + 1], Y [1], . . . , Y [a− 1], Y [a + 1], . . . , Y [c− 1]}

In particular,

Pr[Y [a] ∈ S] ≤ c + m̄

2n
(12)

This is verified by going through each point in S, exactly as before. This time, for each point in
S except Ȳ [a], the probability that this point coincides with Y [a] is exactly 1/2n. The probability
that Ȳ [a] = Y [a] is 0, since C[a] 6= C̄[a].

Now we modify the game which defines CMcolln so that X[a] is always selected at random from
{0, 1}n. If we bound the probability that bad gets set in this new game and then add to it the
bound of Equation (12), the result bounds the probability that bad gets set in Case 2b. From now
on in this case analysis, assume this new game.

Next we claim that X[c] is almost certainly different from X[a]:

Pr[X[c] = X[a]] =
1
2n

(13)

This is clear because, in the modified game we have described, X[a] is now chosen at random,
independent of X[c] = len(C[c])⊕ (huge ⊕ γc) · L⊕R.

As before, we may now modify the game once again so that Y [c] is selected at random even in the
case that X[c] = X[a]. Bounding the probability of bad being set in the new game, and adding in
the bound of (13), serves to bound the probability of bad being set in the prior game.

Now we can look at the probability that X[c+1] ∈ Domain(π) when this is checked in the modified
game.

At this point the domain of π contains the c + m̄ + 3 points

Domain∗ = {0n, X̄[0], . . . , X̄[m̄ + 1], X[1], . . . , X[a], . . . , X[c]}
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We want to know the probability that Checksum ⊕ γc · L ⊕ R is in this set. But Checksum
now contains the point Y [c], which, in the modified game, has just been selected at random and
independent of the points above. So

Pr[X[c + 1] ∈ Domain(π) in the modified game] ≤ c + m̄ + 3
2n

(14)

Summing Equations (12), (13), and (14), we conclude that

Pr[bad gets set | Case 2b ] ≤ 2c + 2m̄ + 4
2n

(15)

Case 2c: N = N̄ and c = m̄ and C[i] = C̄[i] for all 1 ≤ i < c and |C[c]| = |C̄[c]|. In
this case, necessarily C[c] 6= C̄[c]. Note that Checksum has a known value, which is different from
Checksum′, being exactly Checksum′⊕ C̄[c] 0∗⊕C[c] 0∗. The values M [1], . . . ,M [c−1] are likewise
known, being identical to M̄ [1], . . . , M̄ [c]− 1, respectively. We are interested in

Pr[X[c + 1] ∈ {0n, X[0], . . . , X[c], X̄[c + 1]}

One goes through each of the points, as before, and sees that the probability that X[c + 1] =
Checksum⊕γc ·L⊕R is any one of them is 1/2n, except for the last point, for which the probability
that they coincide is 0. Thus

Pr[bad gets set | Case 2c ] ≤ c + 2
2n

(16)

Case 2d: N = N̄ and c = m̄ and C[i] = C̄[i] for all 1 ≤ i < c and |C[c]| 6= |C̄[c]|. For this
case, we first claim that X[c] is almost certainly not in the domain of π when this is inspected at
line 40 of Figure 3. The method is as before. The point X[c] is certain to be different from X̄[c],
by construction, and its chance of coinciding with any of the c + 2 points 0n, X[0], X[1], . . . , X[c−
1], X̄[c + 1] is easily verified to be 1/2n. Thus

Pr[X[c] ∈ Domain(π) at line 39 ] ≤ c + 2
2n

(17)

Proceeding as before,

Pr[X[c + 1] ∈ Domain(π) at line 44 | X[c] 6∈ Domain(π) at line 38 ] ≤ c + 3
2n

(18)

since c + 3 bounds the size of the domain when line 44 is executed, and the conditioning even
ensures a random value for X[c + 1] which is independent of these points. Summing the bounds of
Equation (17) and (18) gives

Pr[X[c + 1] ∈ Domain(π) at line 44 ] ≤ 2c + 5
2n

(19)

Conclusion. Taking the maximum from Equations (8), (11), (15), (16), and (19) we have

Pr[bad gets set ] ≤ 3m̄ + 2c + 9
2n

which is the lemma.
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A.4 Proof of the Privacy Bound (Lemma 4)

The proof is straightforward compared to authenticity, so we quickly go though it. We begin by
following the proof of the Structure Lemma (Appendix A.1). Games A to D are defined as before,
except that

The second half of each game is omitted, since there is no forgery attempt in this context.
Return the truncated final-ciphertext-blocks, instead of the full final-ciphertext blocks, as the
games specify.

Focus on the (modified) game C, where we have now returned to the adversary A a random string
of |Mr| + τ bits whenever a query Mr is asked. Furthermore, the behavior of game C coincides
with the behavior of the original game A unless the flag bad is set to true, at which point the two
games diverge. Thus we can bound Advpriv

OCB[Perm(n),τ ](A) by bounding the probability that the flag
bad is set to true in (the modified) game C, which is at most the probability that it gets set in
Game D. From the same reasoning as in the structure lemma, this is at most

(σ + 2q + 1)2

2n+1
+ max

m1,...,mq∑
mi=σ

mi≥1

 ∑
r∈[1..q]

Mcolln(mr) +
∑

1≤r<s≤q

MMcolln(mr,ms)


which is precisely the bound given by the the lemma.

B Test Vectors

OCB-AES test vectors and reference code, using AES-128, AES-192, and AES-256, are available
at http://www.cs.ucdavis.edu/∼rogaway/
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