
CBC MACs for Arbitrary-Length Messages:
The Three-Key Constructions

J. Black
∗

P. Rogaway
†

December 3, 2003

Abstract

We suggest some simple variants of the CBC MAC that enable the efficient authentication of arbitrary-
length messages. Our constructions use three keys, K1, K2, K3, to avoid unnecessary padding and MAC
any message M ∈ {0, 1}∗ using max{1, �|M |/n�} applications of the underlying n-bit block cipher. Our
favorite construction, XCBC, works like this: if |M | is a positive multiple of n then XOR the n-bit
key K2 with the last block of M and compute the CBC MAC keyed with K1; otherwise, extend M ’s
length to the next multiple of n by appending minimal 10� padding (� ≥ 0), XOR the n-bit key K3
with the last block of the padded message, and compute the CBC MAC keyed with K1. We prove the
security of this and other constructions, giving concrete bounds on an adversary’s inability to forge in
terms of his inability to distinguish the block cipher from a random permutation. Our analysis exploits
new ideas which simplify proofs compared to prior work.

Keywords: CBC MAC, message authentication codes, modes of operation, provable security, standards.

1 Introduction

This paper describes some simple variants of CBC MAC. Unlike the basic CBC MAC, our algorithms correctly
and efficiently handle messages of any bit length. In addition to our schemes, we introduce new techniques
to prove them secure. Our proofs are much simpler than prior work. We begin with some background.

The cbc mac. The CBC MAC [7, 9] is the simplest and most well-known way to make a message authenti-
cation code (MAC) out of a block cipher. Let’s recall how it works. Let Σ = {0, 1} and let E : K×Σn → Σn

be a block cipher. The key space for the CBC MAC is the key space K for E and the message space
for the CBC MAC is the set (Σn)+ of all binary strings whose length is a positive multiple of n. So let
M = M1 · · ·Mm be a string that we want to MAC, where |M1| = · · · = |Mm| = n, and let K ∈ K be the key
we want to use to MAC this string. Then CBCEK

(M), the CBC MAC of M under key K, is the value Cm

where Ci = EK(Mi ⊕Ci−1) for i = 1, . . . ,m and C0 = 0n.
Bellare, Kilian, and Rogaway proved the security of the CBC MAC in the sense of reduction-based

cryptography [1]. Their proof depends on the assumption that it is only messages of one fixed length, mn
bits, that are being MACed. Indeed when message lengths can vary the CBC MAC is not secure. This
fact is well-known. As a simple example, notice that given the CBC MAC of a one-block message X, say
T = CBCEK

(X), the adversary immediately knows the CBC MAC for the two-block message X ‖ (X ⊕T)
since this is once again T .

Thus the CBC MAC (in the “raw” form that we have described) has two problems: it can’t be used to
MAC messages outside of (Σn)+ and all messages must have the same fixed length.

∗ Department of Computer Science, 430 UCB, Boulder, Colorado 80309 USA. E-mail: jrblack@cs.colorado.edu WWW:
www.cs.colorado.edu/∼jrblack/

† Department of Computer Science, University of California, Davis, California, 95616, USA; and Department of Computer
Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail: rogaway@cs.ucdavis.edu WWW:
www.cs.ucdavis.edu/∼rogaway/

Construction Domain Block cipher calls Block cipher keys Key length

CBC Σnm |M |/n 1 k

EMAC (Σn)+ 1 + |M |/n 2 2k

EMAC∗ Σ∗ 1 + �(|M | + 1)/n� 2 2k

ECBC Σ∗ 1 + �|M |/n� 3 3k

FCBC Σ∗ �|M |/n� 3 3k

XCBC Σ∗ �|M |/n� 1 k + 2n

Figure 1: The CBC MAC and variants. Here M is the message to MAC and E : Σk × Σn → Σn is a block cipher. The
third column gives the number of applications of E, assuming |M | > 0. The fourth column is the number of keys used to
key E. For CBC the domain is actually (Σn)+ but the scheme is secure only on messages of some fixed length nm.

Dealing with variable message lengths: emac. When message lengths vary, the CBC MAC must
be embellished. There have been several suggestions for doing this. The most elegant one we have seen is
to encipher CBCEK1(M) using a new key, K2. That is, the domain is still (Σn)+ but one defines EMAC
(for Encrypted MAC) by EMACEK1 EK2(M) = EK2(CBCEK1(M)). This algorithm was developed for the
RACE project [2]. It was analyzed by Petrank and Rackoff [13] who show, roughly said, that an adversary
who obtains the MACs for messages that total σ blocks cannot forge with probability better than 2σ2/2n.

Among the nice features of EMAC is that one need not know |M | prior to processing the message M ;
the method is said to be on-line. All of our suggestions will retain this feature.

Our contributions. EMAC has a domain limited to (Σn)+ and uses 1 + |M |/n applications of the block
cipher E. In this paper we refine EMAC in three ways: (1) we extend the domain to Σ∗; (2) we shave off
one application of E; and (3) we avoid keying E by multiple keys. Of course we insist on retaining provable
security (across all messages lengths).

We introduce three refinements to EMAC, which we call ECBC, FCBC, and XCBC. These algorithms
are natural extensions of the CBC MAC. We would like to think that this is an asset. The point here is to
strive for economy, in terms of both simplicity and efficiency.

Figure 1 summarizes the characteristics of the CBC MAC variants mentioned in this paper. The top
three rows give known constructions (two of which we have now defined). The next three rows are our new
constructions. Note that our last construction, XCBC, retains essentially all the efficiency characteristics of
the CBC MAC, but extends the domain of correct operation to all of Σ∗. The cost to save one invocation of
the block cipher and extend our domain to Σ∗ is a slightly longer key.

For each of the new schemes we give a proof of security. Rather than adapt the rather complex proof
of Petrank and Rackoff [13], or the even more complicated one of Bellare, Kilian, and Rogaway [1], we
follow a new tack, viewing EMAC as an instance of the Carter-Wegman paradigm [5, 14]: with EMAC one
is enciphering the output of an almost-universal hash-function family, this almost-universal hash-function
family being the CBC MAC itself. Since it is not too hard to upper bound the collision probability of the
CBC MAC (see Lemma 3), this approach leads to a simple proof for ECBC. We then use the security of
ECBC to prove security for FCBC, and then we use the security of FCBC to prove security for XCBC. In
passing from FCBC to XCBC we use a general lemma (Lemma 6) which says, in effect, that you can always
replace a pair of random independent permutations π1(·), π2(·) by a pair of functions π(·), π(· ⊕K), where
π is a random permutation and K is a random constant.

Subsequent work. Iwata and Kurosawa present a variant of XCBC that makes due with a single block-
cipher key [10]. Their OMAC algorithm is identical to XCBC except that one selects (K1,K2,K3) =
(K, 2EK(0n), 4EK(0n)), say, with the indicated multiplication being carried out in the finite field GF(2n).
We like this refinement, and see no significant drawback to it.

Standards. This work was motivated by the emergence of the Advanced Encryption Standard (AES) and
the anticipated interest in updating old modes of operation that we hoped AES would engender. Our belief
is that a modern MAC standard needs to clearly specify an algorithm that can correctly MAC any sequence

2

E

K2 K3

10 · · · 0

EK1EE K1K1

M1 M2 M3 M1 M2

E E

T

K1 E K1 E K1

M3

T

Figure 2: The ECBC construction using a block cipher E : K × Σn → Σn. Three keys are used, K1, K2, K3 ∈ K. On
the left is the case where |M | is a positive multiple of n, while on the right is the case where it isn’t.

of bit strings. The methods here are simple, efficient, provably sound, and patent-free—good characteristics
for a modern cryptographic standard.

We have been told that NIST intends to release a recommendation specifying the OMAC variant of
XCBC [6]. The algorithm will be renamed CMAC.

Publication history. An earlier version of this paper appeared in CRYPTO ’00 [4].

2 Schemes ECBC, FCBC, and XCBC

Arbitrary-length messages without obligatory padding: ecbc. We have defined CBCEK1(M),
which is not secure across strings of varying lengths, and EMACEK1 EK2(M) = EK2(CBCEK1(M)), which
is. But the domain of EMAC remains limited to (Σn)+. What if we want to MAC a message whose length
is not a multiple of n?

The simplest approach is to use obligatory 10� padding: always append a “1” bit and then the minimum
number of “0” bits so as to make the length of the padded message a multiple of n, and then apply EMAC.
We call this method EMAC∗. Formally, EMAC∗

EK1 EK2
(M) = EMACEK1,EK2(M ‖ 10n−1−|M | mod n). This

construction works fine. In fact, it is easy to see that this form of padding always works to extend the
domain of a MAC from (Σn)+ to Σ∗.

One unfortunate feature of EMAC∗ is this: if |M | is already a positive multiple of n then we are appending
an entire extra block of padding, seemingly “wasting” an application of E. People have worked hard to
optimize new block ciphers, and it seems a shame to squander some of this efficiency with an unnecessary
block-cipher call. Furthermore, there are settings where one needs to MAC short messages that are always or
often a multiple of the block size. In such a case saving one block-cipher call can be a significant performance
gain.

Our first new scheme lets us avoid padding when |M | is a nonzero multiple of n. We simply make two
cases: one for when |M | is a positive multiple of n and one for when it isn’t. In the first case we compute
EMACEK1 EK2(M). In the second case we append minimal 10� padding (� ≥ 0) to make a padded message P
whose length is divisible by n, and then we compute EMACEK1 EK3(P). Notice the different second key—K3
instead of K2—in the case where we’ve added padding. Here, in full, is the algorithm. It is also shown in
Figure 2.

Algorithm ECBCEK1 EK2 EK3(M)
if M ∈ (Σn)+

then return EK2(CBCEK1(M))
else return EK3(CBCEK1(M ‖ 10�)) where � = n − 1 − |M | mod n

In Section 4 we prove that ECBC is secure. We actually show that it is a good pseudorandom function
(PRF), not just a good MAC. The security of ECBC does not seem to directly follow from Petrank and

3

M3

K2 K3K1K1K1

10 · · · 0

T

K1

M3

T

EEEEEE

M1 M2 M1 M2

Figure 3: The FCBC construction with a block cipher E : K × Σn → Σn. Three keys are used, K1, K2, K3 ∈ K. On
the left is the case where |M | is a positive multiple of n, while on the right is the case where it isn’t.

Rackoff’s result [13]. At issue is the fact that there is a relationship between the key (K1,K2) used to MAC
messages in (Σn)+ and the key (K1,K3) used to MAC other messages.

Improving efficiency: fcbc. Ignoring the case of M being the empty string, with ECBC we are using
�|M |/n� + 1 applications of the underlying block cipher. We now show how to get rid of the +1. We start
off, as before, by padding M when it is outside (Σn)+. Next we compute the CBC MAC using key K1 for
all but the final block, and then use either key K2 or K3 for the final block. Which key we use depends on
whether or not we added padding. The algorithm follows, and is also shown in Figure 3. In Section 5 we
prove the security of this construction. Correctness will follow from the correctness of ECBC.

Algorithm FCBCEK1 EK2 EK3(M)
if M ∈ (Σn)+

then K ← K2, and P ← M
else K ← K3, and P ← M ‖ 10� where � ← n − 1 − |M | mod n

Let P = P1 · · ·Pm where |P1| = · · · = |Pm| = n
C0 ← 0n

for i ← 1 to m − 1 do
Ci ← EK1(Pi ⊕Ci−1)

return EK(Pm ⊕Cm−1)

Avoiding multiple encryption keys: xcbc. Most block ciphers have a key-setup step, when the key is
turned into subkeys. Taken together, the subkeys are usually larger than the original key, and computing
them may be expensive. So keying the underlying block cipher with multiple keys, as is done in EMAC,
ECBC, and FCBC, is not so desirable. It would be better to use the same key for all of the block-cipher
invocations. The algorithm XCBC does this.

We again make two cases. If M ∈ (Σn)+ we invoke CBC as usual, except that we XOR in an n-bit key,
K2, before enciphering the last block. If M 	∈ (Σn)+ then append minimal 10� padding (� ≥ 0) and invoke
CBC as usual, except we XOR in a different n-bit key, K3, before enciphering the last block. The algorithm
follows; also see Figure 4. The proof of security can be found in Section 6.

Algorithm XCBCEK1 K2 K3(M)
if M ∈ (Σn)+

then K ← K2, and P ← M
else K ← K3, and P ← M ‖ 10� where � ← n − 1 − |M | mod n

Let P = P1 · · ·Pm where |P1| = · · · = |Pm| = n
C0 ← 0n

for i ← 1 to m − 1 do
Ci ← EK1(Pi ⊕Ci−1)

return EK1(Pm ⊕Cm−1 ⊕K)

4

10 · · · 0

K1K1K1K1K1K1

K2 K3

M2M1M3M2M1

E E E E E

T

E

T

M3

Figure 4: The XCBC construction with a block cipher E : K×Σn → Σn. Here K1 ∈ K and K2, K3 ∈ Σn. On the left
is the case where |M | is a positive multiple of n, while on the right is the case where it isn’t.

Comment. Note that the XCBC-variant that XORs the second key just after applying the final enci-
phering does not work. That is, insisting that |M | is a nonzero multiple of the blocksize, we’d have that
MACπ,K(M) = CBCπ(M)⊕K. For an attack, let the adversary ask for the MACs of three messages:
the message 0 = 0n, the message 1 = 1n, and the message 1 ‖ 0. As a result of these three queries
the adversary gets tag T0 = π(0)⊕K, tag T1 = π(1)⊕K, and tag T2 = π(π(1))⊕K. But now the
adversary knows the correct tag for the (unqueried) message 0 ‖ (T0 ⊕T1), since this is just T2: namely,
MACπ,K(0 ‖ (T0 ⊕T1)) = π(π(0) ⊕ (π(0)⊕K)⊕ (π(1)⊕K)) ⊕K = π(π(1))⊕K = T2. Thanks to Mi-
hir Bellare for pointing out this attack.

Alternative notation. The subscripts to CBC, ECBC, FCBC, and XCBC have been written as EK

(for CBC) and EK1 EK2 EK3 (for ECBC and FCBC) and EK1 K2 K3 (for XCBC). It is important for the
remainder of this paper to realize that, used as subscripts above, EK and EK1 and EK2 and EK3 may be
considered as names of functions—we could just as well have written chosen ρ and ρ1 and ρ2 and ρ3, for
example. Even though we had called E a block cipher, it was never necessary for EK , EK1, EK2, or EK3 to be
permutations—any function from Σn to Σn would be fine. So at this point, for any ρ, ρ1, ρ2, ρ3 : Σn → Σn and
any K2,K3 ∈ Σn, we have defined the map CBCρ : (Σn)+ → Σn and maps from Σ∗ to Σn of ECBCρ1 ρ2 ρ3

and FCBCρ1 ρ2 ρ3 and XCBCρ1 K2 K3. We will henceforth be using this less cumbersome notation.

3 Preliminaries

Basic notation. All strings are understood to be over the alphabet Σ = {0, 1}. If X is a string then
‖X‖n = max{�|X|/n�, 1} is its length in n-bit blocks. By X

$←X we denote the experiment of choosing a
random element from the set X and assigning it to X. By Pr[Experiment : Event] we denote the probability
of the specified event after performing the specified experiment.

Function families. A function family is a collection of functions F = {f : M → N } where M,N ⊆ Σ∗

are sets of strings, along with an associated probability distribution. We speak of choosing a random element
of F by writing f

$← F .
Let Rand(n) be the set of all functions from Σn to Σn, let Perm(n) be the set of all permutations on

Σn, and let Rand(M, n) be the set of all functions from M to Σn, where M is a set of strings. Rand(n),
Perm(n), and Rand(M, n) are function families, endowed with the uniform distribution in the natural way.

It is often the case that each function in a function family is named by a key K from a set of possible
keys K. The function family is then viewed as a map F : K×M → N . We write FK(X) instead of F (K,X).
It is K that must now have an understood distribution, so that one can speak of choosing a random element K
from K. The two views of a function family are equivalent.

A block cipher is a function family E : K×Σn → Σn. One normally requires that EK(·) be a permutation
for all K ∈ K, but this restriction is never actually needed in this paper.

Collision probability. Fix n > 0 and let H = {h : M → N } be a function family. The collision

5

probability of H is the function

CollH(m, m′) = max
M,M ′∈M, ‖M‖n=m, ‖M ′‖n=m′, M �=M ′

{
Pr[h $← H : h(M) = h(M ′)]

}
.

We define CollH(m, m′) as 0 if there are no distinct M and M ′ in M where ‖M‖n = m and ‖M ′‖n = m′.
The collision probability of a function family is a formalization and generalization of the idea of a hash-
function family being almost-universal [5].

Making function families from cbc, ecbc, fcbc, xcbc. We defined CBC, ECBC, FCBC, and XCBC
as maps that depend on a function ρ (for CBC), on a triple of functions ρ1, ρ2, ρ3 (for ECBC and FCBC), or
on a function ρ1 and strings K2,K3 (for XCBC). To speak of security, we will need to think of CBC, ECBC,
FCBC, and XCBC as naming function families. Namely, one specifies the function family from which ρ is
drawn (for CBCρ), or the function families from which ρ1, ρ2, and ρ3 are drawn (for ECBC and FCBC),
or the function family from which ρ1 is drawn (for XCBC, where K2 and K3 are assumed to be chosen
uniformly at random from Σn). We write the needed information in brackets, following the mode name, as
in F = ECBC[Rand(n)×Rand(n)×Rand(n)], meaning that a random element f is determined by choosing
ρ1, ρ2, ρ3

$← Rand(n) and setting f = ECBCρ1 ρ2 ρ3 .

Adversaries. An adversary A is an algorithm with an oracle. In this paper the oracle will compute some
deterministic function. Adversaries are assumed to never ask an oracle query outside of the domain of the
oracle and to never repeat a query. We write A⇒1 for the event that A outputs the bit 1.

Security notions. Let M be a nonempty set, let F = {M → Σn} be a function family and let A be
an adversary with an oracle f : M → Σn. We say that the adversary forges if it outputs a pair (M,f(M))
where M ∈ M and the adversary never queried its oracle f at M . We let

Advmac
F (A) = Pr[f $← F : Af forges]

Advprf
F (A) = Pr[f $← F : Af⇒1] − Pr[ρ $← Rand(M, n) : Aρ⇒1]

Advprp
F (A) = Pr[f $← F : Af⇒1] − Pr[π $← Perm(n) : Aπ⇒1] for the case of M = Σn

We overload the notation above and write Advxxx
F (R) (where xxx ∈ {mac,prf,prp}) for the maximal value

of Advxxx
F (A) among adversaries that use resources at most R. Resources of interest are: t, the running time

of the adversary; q, the number of queries the adversary makes; and σ (where n ≥ 1), the communications
complexity of the adversary, as measured in n-bit blocks. Time is understood to include the description size
of the adversary A. Communications complexity is the sum of the block lengths of each oracle query.

Switching prp/prf. It is often convenient to replace random permutations with random functions, or vice
versa. The following proposition lets us easily do this. For a proof see Proposition 2.5 in [1].

Lemma 1 [PRF/PRP Switching] Fix n ≥ 1. Let A be an adversary that asks at most q queries. Then

∣∣∣Pr[π $← Perm(n) : Aπ(·)⇒1] − Pr[ρ $← Rand(n) : Aρ(·)⇒1]
∣∣∣ ≤ q(q − 1)

2n+1
�

4 Security of ECBC

We prove the security of ECBC, showing that ECBC[Perm(n)×Perm(n)×Perm(n)] resembles Rand(Σ∗, n)
provided the adversary asks no more than some specified maximum number of oracle queries. The proof views
ECBC as the CBC MAC followed by an enciphering step. The CBC MAC is regarded as an almost-universal
hash-function family, and we bound its collision probability. The enciphering step is done by applying one
of two functions, ρ2 or ρ3, depending on the padding that was initially performed.

6

Applying a PRF to the output of an almost-universal hash-function family is a well-known approach for
creating a PRF or MAC [3, 5, 14]. The novelty here is our method of dealing with messages that are not a
multiple of the block length and, more significantly, the treatment of the CBC MAC as an almost-universal
hash-function family. The latter might run against one’s instincts because the CBC MAC is a much stronger
object than an almost-universal hash-function family. What we are doing is to ignore this extra strength
and focus just on the object’s collision probability.

4.1 Security of the three-key Carter-Wegman construction

We abstract the structure of ECBC, replacing the CBC construction that it uses by an arbitrary hash
function h. So, letting h : (Σn)+ → Σn and ρ2 : Σn → Σn and ρ3 : Σn → Σn, define CW3h ρ2 ρ3(M) as
ρ2(h(M)) if |M | is a positive multiple of n, and ρ3(h(M ‖ 10�)) otherwise, where � = n − 1 − |M | mod n.
Now let H = {h : (Σn)+ → Σn} and F2 = {ρ2 : Σn → Σn} and F3 = {ρ3 : Σn → Σn} be function families.
Then the definition of CW3h ρ2 ρ3 lifts to give a function family F = CW3[H × F2 × F3] where a random
element f from F is determined by choosing h

$← H, ρ2
$← F2, ρ3

$← F3 and setting f(M) = CW3h ρ2 ρ3(M).
We now prove the security of this function family, assuming ρ2 and ρ3 are random functions and H is good
as an almost-universal hash-function family.

Lemma 2 [Three-Key CW] Let H = {h : (Σn)+ → Σn} be a function family. Then

Advprf
CW3[H×Rand(n)×Rand(n)](σ) ≤ max

q,m1,...,mq
m1+···+mq=σ




∑
1≤i<j≤q

CollH(mi, mj)


 �

Proof: We provide a game-playing argument, as used in works like [11]. Let A be an adversary with access
to an oracle. Assume that the queries asked by A to this oracle total at most σ blocks. Without loss of
generality, assume that A never repeats an oracle query. We must compare (1) what A does when its oracle is
f = CW3h ρ2 ρ3 , for h

$← H and ρ2, ρ3
$← Rand(n), and (2) what A does when its oracle is ρ

$← Rand(Σ∗, n).
In particular, we are aiming to bound

Advprf
CW3[H×Rand(n)×Rand(n)](A) = Pr[ACW3h ρ2 ρ3 (·)⇒1] − Pr[Aρ(·)⇒1] .

Consider providing an oracle for A in one of two ways, game E1 or game E2, as specified in Figure 5.
In the pseudocode there, and in later proofs, we let Domain(ρ) denote the set of points X ∈ Σ∗ such that
ρ(X) 	= undefined. Game E1 provides a perfect simulation of f = CW3h ρ2 ρ3 for h

$← H and ρ2, ρ3
$← Rand(n)

and game E2 provides a perfect simulation of ρ
$← Rand(Σ∗, n). Thus Pr[ACW3h ρ2 ρ3 (·)⇒1] = Pr[AE1(·)⇒1]

and Pr[Aρ(·)⇒1] = Pr[AE2(·)⇒1] and so AdvCW3[H×Rand(n)×Rand(n)]prf(A) = Pr[AE1(·)⇒1] − Pr[AE2(·)⇒1].
Since games E1 and E2 are identical until the flag bad gets set to true, we can use the usual game-playing
paradigm to conclude that Pr[AE1(·)⇒1] − Pr[AE2(·)⇒1] ≤ Pr[AE2(·) sets bad]. We are left with finding a
suitable upper bound on Pr[AE2(·) sets bad].

We note that, in game E2, what is returned to the adversary in response to a query is just n random bits,
unrelated to the adversary’s query or the function h. Thus the adversary’s ability to produce collisions
in h—to set the flag bad to true—is not made smaller if we insist that the adversary prepare all of its queries
M1, . . . ,Mq in advance (still subject to the constraint that these messages sum to σ blocks). At this point
we have eliminated the interaction in game E2. We may also reorder the queries without impacting the
probability that bad will get set to true, so relabel M1, . . . ,Mq so that M1, . . . ,Mp are the queries in (Σn)+

and let Mp+1, . . . ,Mq be the remaining queries. For each s ∈ [p+1 .. q], let M ′
s = Ms10n−1−|Ms| mod n. Since

M1, . . . ,Mq are distinct, M1, . . . ,Mp are distinct and M ′
p+1, . . . ,M

′
q are distinct as well. (This follows by

noticing that distinct strings Mr,Ms 	∈ (Σn)+ will still be distinct after padding.) Let mj = ‖Mj‖n and
note that mj = ‖M ′

j‖n as well, for j ≥ p + 1. By the sum bound, we can now conclude that

Pr[AE2(·) sets bad] ≤ Pr[AE2(·) sets bad at line 23] + Pr[AE2(·) sets bad at line 34]

≤
∑

1≤i<j≤p

CollH(mi, mj) +
∑

p+1≤i<j≤q

CollH(mi, mj)

7

Initialization:
01 h

$← H
02 bad ← false
03 for all X ∈ Σn, let ρ2(X) ← ρ3(X) ← undefined

Oracle f , when asked f(M):
10 Z

$← Σn

20 if M ∈ (Σn)+ then
21 Y ← h(M)
22 if Y ∈ Domain(ρ2) then
23 bad ← true , Z ← ρ2(Y)
24 ρ2(Y) ← Z
30 else
31 M ′ ← M10n−1−|M | mod n

32 Y ← h(M ′)
33 if Y ∈ Domain(ρ3) then
34 bad ← true , Z ← ρ3(Y)
35 ρ3(Y) ← Z
40 return Z

Figure 5: Games used in the analysis of CW3. Game E1 is the mechanism above, as written, while game E2 omits the
shaded statement.

≤
∑

1≤i<j≤q

CollH(mi, mj)

The result follows.

4.2 The collision probability of the CBC MAC

We show that if M,M ′ ∈ (Σn)+ are distinct then Pr[ρ $← Rand(n) : CBCρ(M) = CBCρ(M ′)] is small. By
“small” we mean a slowly growing function of m = ‖M‖n and m′ = ‖M ′‖n. One way at getting such a
result is to infer it from the result of Petrank and Rackoff [13]. Here we provide a direct analysis, using a
game-playing argument. The lemma improves the (m+m′)2/2n bound we proved in the proceedings version
of this paper [4].

Lemma 3 [CBC Collision Bound] Fix n,m,m′ ≥ 1 and let M ∈ (Σn)m and M ′ ∈ (Σn)m′
be distinct

strings. Then

CollCBC[Rand(n)](m, m′) ≤ mm′

2n
+

max{m,m′}
2n �

Proof: If the lengths of M and M ′ differ then, without loss of generality, let M name the shorter of the two
strings and let M ′ name the longer. Then write M = M1 · · ·Mm and M ′ = M ′

1 · · ·M ′
m′ where each Mi and

each M ′
j is n-bits long and m′ ≥ m. Write M as M = N ‖ I and write M ′ as M ′ = N ‖ I ′ where N is the

longest common prefix of M and M ′ whose length is divisible by n. Let k = ‖N‖n. Note that k = m if M
is a prefix of M ′ and otherwise k is the largest nonnegative integer such that M1 · · ·Mk = M ′

1 · · ·M ′
k but

Mk+1 	= M ′
k+1. By definition, if M1 	= M ′

1 then k = 0. Further note that k < m′.

Consider game C1, as defined in Figure 6. This game realizes one way to compute Ym = CBCρ(M) and
Y ′

m′ = CBCρ(M ′) for a random ρ ∈ Rand(n), and so we would like to bound the probability, in game C1,
that Ym = Y ′

m′ . Also depicted in Figure 6 is game C2, obtained by eliminating the shaded statements.

8

01 bad ← false
02 for X ∈ Σn do η(X) ← ι(X) ← ι′(X) ← undefined

10 Y0 ← 0n

11 for i ← 1 to k do
12 Yi

$← Σn

13 Xi ← Yi−1 ⊕Mi

14 if Xi ∈ Domain(η) then Yi ← η(Xi), bad ← true else η(Xi) ← Yi

20 for i ← k + 1 to m do
21 Yi

$← Σn

22 Xi ← Yi−1 ⊕Mi

23 if Xi ∈ Domain(ι) then Yi ← ι(Xi) else ι(Xi) ← Yi

24 if Xi ∈ Domain(η) then Yi ← η(Xi), bad ← true

30 Y ′
k ← Yk

40 for j ← k + 1 to m′ do
41 Y ′

j
$← Σn

42 if Y ′
j = Ym then bad ← true

43 X ′
j ← Y ′

j−1 ⊕M ′
j

44 if X ′
j ∈ Domain(ι′) then Yj ← ι′(X ′

j) else ι′(X ′
j) ← Y ′

j

45 if X ′
j ∈ Domain(ι) then Y ′

j ← ι(X ′
j), bad ← true

46 if X ′
j ∈ Domain(η) then Y ′

j ← η(X ′
j), bad ← true

Figure 6: Game C1, as written, and game C2, after eliminating the shaded statements. Game C1 provides a way to
compute the CBC MAC of distinct messages M = M1 · · ·Mm and M ′ = M ′

1 · · ·M ′
m′ that are identical up to block k.

The computed MACs are Ym and Y ′
m′ .

Before taking up the analysis of the games in earnest, we give a bit of intuition about what they aim to
capture. We are interested in the probability that Ym = Y ′

m′ . This can happen due either to an internal
collision between Xm and X ′

m′ , where Ym was produced as ρ(Xm) and Y ′
m′ was produced as ρ(X ′

m′), or Ym

might equal Y ′
m′ even in the absence of this collision between Xm and X ′

m′ . Intuitively, the latter seems
unlikely, and it is. The former is unlikely too, but to prove this we generalize and consider a broader set of
internal collisions than just Xm coinciding with X ′

m′ . That is, consider the X1, . . . , Xm values that get fed
to ρ as we process M = M1 · · ·Mm, and consider the X ′

1, . . . , X
′
m′ values that get fed to ρ as we process

M ′ = M ′
1 · · ·M ′

m′ . Accounting for the fact that Xi = X ′
i for all i ∈ [1 .. k] (that is, the Xi-values that

occur as we process the common prefix N of M and M ′), we don’t really expect to see collisions among
X1, . . . , Xm,X ′

i+1, . . . , X
′
m′ . To get a better bound, we will “give up” in the analysis for some of these

possibilities, but not all. Specifically, the internal collisions that we focus on are (a) collisions that occur
while we process N (meaning collisions among any of X1, . . . , Xk); (b) collisions that occur between N and I
(those between one of X1, . . . , Xk and one of Xk+1, . . . , Xm); (c) collisions that occur between N and I ′ (one
of X1, . . . , Xk coincides with one of X ′

k+1, . . . , X
′
m′); and (d) collisions that occur between I ′ and I (one of

Xk+1, . . . , Xm coincides with one of X ′
k+1, . . . , X

′
m′). There is nothing “magical” about giving up exactly on

these internal collisions—it is simply that the more internal collisions one gives up on the worse the bound
but the easier the analysis. The proof we give formalizes the intuition of this paragraph and does all the
necessary accounting.

Now look at game C1. It works not by growing a single random function ρ but by growing three random
functions: η, ι, and ι′. The function η keeps track of the association of points that arise during the processing
of N , the function ι keeps track of the association of points that arise during the processing of I, and the
function ι′ keeps track of the association of points that arise during the processing of I ′. If a value X should
get placed in the domain of two or more of these three functions then we regard the corresponding range

9

value as that specified first by η if such a value has been specified, and as the value secondarily by ι otherwise.
Game C1 can thus be seen to provide a perfect simulation of the CBC algorithm over a random function
ρ ∈ Rand(n), and we seek to bound the probability, in game C1, that Ym = Y ′

m′ .

We first claim that, in game C1, any time that Ym = Y ′
m′ it is also the case that flag bad gets set to true.

Focus on line 42. Since m′ ≥ k +1 we know that the loop covering lines 40–46 will be executed at least once
and Y ′

m′ will take its value as a result of these statements. When a preliminary Y ′
m′ value gets chosen at

line 41 for iteration j = m′ we see that if Y ′
m′ = Ym then line 42 will set the flag bad. But observe that the

initially chosen Y ′
m′ value is not necessarily the final Y ′

m′ value returned by game C1—the Y ′
m′ value chosen

at line 42 could get overwritten at any of lines line 44, 45, or 46. If the value gets overwritten at either of
line 45 or line 46 then bad will get set to true. If Y ′

m′ gets overwritten by Ym at line 44 then Ym had earlier
been placed in the range of ι′ and it could only have gotten there (since ι′ grows only by the else-clause of
line 44) by Y ′

m′ being equal to Y ′
j for an already selected j ∈ [k +1 .. m′− 1]. In that case the flag bad would

have already been set to true by an earlier execution of line 42: when the Y ′
j value was randomly selected

at line 41 and found to coincide with Ym the flag bad is set. We thus have that every execution of game C1
that results in Ym = Y ′

m′ also results in bad being true.

Let Pr1[·] denote the probability of an event in game C1 and let Pr2[·] denote the probability of an event in
game C2. Let B be the event (whether in game C1 or game C2) that the flag bad gets set to true. By the
contents of the last paragraph, Prρ[CBCρ(M) = CBCρ(M ′)] ≤ Pr1[B]. Also note that games C1 and C2 are
identical until the flag bad gets set to true (meaning that any execution in which a highlighted statement is
executed it is also the case that bad is set to true in that execution) and so, in particular, Pr1[B] = Pr2[B].
We thus have that Prρ[CBCρ(M) = CBCρ(M ′)] ≤ Pr2[B]. We now proceed to bound Pr2[B], showing that
Pr2[B] ≤ mm′/2n + max{m,m′}/2n. This is done by summing the probabilities that bad gets set to true at
lines 14, 24, 42, 45, and 46.

The probability that bad gets set at line 14 of game C2 is at most 0.5k(k−1)/2n. This is because every point
placed into the domain of η is of the form Xi = Yi−1 ⊕Mi where each Yi−1 is randomly selected from Σn

(at line 12) with the single exception of Y0, which is a constant. So for any i and j with 1 ≤ i < j ≤ k we
have that Pr[Yi−1 ⊕Mi = Yj−1 ⊕Mj] = 2−n and there are 0.5 k(k − 1)/2n such (i, j) pairs possible.

The probability that bad gets set at line 24 of game C2 is at most k(m − k)/2n. Each point Xi whose
presence in the domain of η we test is of the form Xi = Yi−1 ⊕Mi, as defined at line 22. Each of these Yi−1

values with the exception of Yk is uniformly selected at line 21, independent of the now-determined domain
of η. As for Xk+1 = Yk ⊕Mk+1, the value Yk was just selected uniformly at random (at the last execution
of line 12) and is independent of the domain of η. Thus each time line 24 executes there is at most a k/2n

chance that bad will get set, and the line is executed m − k times.

The probability that bad gets set at line 42 of game C2 is at most (m′ − k)/2n. This is because the line
is executed m′ − k times and each time the chance that bad gets set is 1/2n since Y ′

j was just selected at
random from Σn.

The probability that bad gets set at line 45 of game C2 is at most (m − k)(m′ − k). Each point X ′
j whose

presence in the domain of ι is being tested is of the form X ′
j = Y ′

j−1 ⊕M ′
j , as defined at line 43. Each

of these Y ′
i−1 values with the exception of Y ′

k was uniformly selected at line 41, independent of the now-
determined domain of ι. As for X ′

k+1 = Y ′
k ⊕M ′

k+1, the value Y ′
k was just selected uniformly at random back

at line 12 and is independent of the domain of ι apart from the domain point Yk ⊕Mk+1, which is guaranteed
to be distinct from Y ′

k ⊕M ′
k+1 by our criterion for choosing k. Thus each time line 45 executes there is at

most a (m − k)/2n chance that bad will get set, and the line is executed m′ − k times.

The probability that bad gets set at line 46 of game C2 is at most k(m′ − k) for reasons exactly analogous
to that argument used at line 24.

We conclude by the sum bound that the probability that bad gets set somewhere in game C2 is at most
(k(k − 1)/2 + k(m − k) + (m′ − k) + (m − k)(m′ − k) + k(m′ − k))/2n = mm′ + m′ − k(k − 3)/2. Since k
can be zero, this value is at most (mm′ + m′)/2n. Recalling that m′ is the block length of the longer of M
and M ′, the proof is complete.

10

4.3 The security of ECBC

The lemmas given establish the security of ECBC. The result is as follows.

Theorem 4 [Security of ECBC] Fix n ≥ 1. Then for any σ ≥ 0,

Advprf
ECBC[Perm(n)×Perm(n)×Perm(n)](σ) ≤ 2.5 σ2

2n
�

Proof: Combining Lemma 2 and Lemma 3, we have that

Advprf
ECBC[Rand(n),Rand(n),Rand(n)](σ) = Advprf

CW3[CBC[Rand(n)],Rand(n),Rand(n)](σ)

≤ max
q,m1,...,mq

m1+···+mq=σ




∑
1≤i<j≤q

CollCBC[Rand(n)](mi, mj)




≤ max
q,m1,...,mq

m1+···+mq=σ




∑
1≤i<j≤q

mimj

2n
+

max{mi,mj}
2n


 (1)

≤
(

σ

2

)
/2n +

(
σ

2

)
/2n

≤ σ2/2n

where the second-to-last statement derives from the fact that equation (1) is maximized for q = σ and
m1 = · · · = mq = 1. To see this, consider any sequence {m1, . . . ,mq} where mi > 1, for some i. Without
loss of generality, assume i = q. Then it is easily seen that the new sequence {m1, . . . ,mq−1,mq − 1, 1}
increases the sum (1) by exactly mq − 1 in the first term, and by at least mq − 1 in the second term. So the
maximum must be achieved when q = σ and m1 = · · · = mq = 1. Finally, using Lemma 1, we know that∣∣∣Advprf

CW3[CBC[Perm(n)]×Perm(n)×Perm(n)](q, σ) − Advprf
CW3[CBC[Rand(n)]×Rand(n)×Rand(n)](q, σ)

∣∣∣ ≤ (0.5 σ2 + q2)/2n

from which the result follows.

Comments. We have given an entirely information-theoretic treatment of ECBC. In the standard way one
can now pass from the information-theoretic setting to a complexity-theoretic one. This is standard and so
we omit doing this. For our final scheme, XCBC, we will include a complexity-theoretic bound.

The security of ECBC as a MAC follows immediately from the security of ECBC as a PRF. This too is
standard. See [1] for an exposition.

It is easy to exhibit an attack on FCBC that asks σ < C2n blocks worth of queries and then forges with
success probability at least cσ2/2n, where c, C > 0 are absolute constants. In this sense our analysis is tight.
The same claim of tightness can be made for the FCBC and XCBC analyses. Thus our security bounds say
that if the underlying block cipher is a good PRP, then it is safe to use ECBC, FCBC, and XCBC on a
number of blocks σ well under 2n/2, while easy attacks make clear that it is unsafe to use ECBC, FCBC,
and XCBC on a number of blocks σ near or beyond 2n/2.

Similar arguments to what we have given can be used to prove the security of the EMAC construction [2],
yielding a proof much simpler than that found in [13].

5 Security of FCBC

In this section we prove the security of FCBC, obtaining the same bound we had for ECBC.

Theorem 5 [Security of FCBC] Fix n ≥ 1. Then for any σ ≥ 0,

Advprf
FCBC[Perm(n)×Perm(n)×Perm(n)](σ) ≤ 2.5 σ2

2n

11

�

Proof: Let us compare the distribution on functions

{ECBCπ1 π2 π3(·) | π1, π2, π3
$← Perm(n)} and

{FCBCπ1 σ2 σ3(·) | π1, σ2, σ3
$← Perm(n)} .

We claim that these are the same distribution, so, information theoretically, the adversary has no way to
distinguish a random sample drawn from one distribution from a random sample from the other. The reason
is simple. In the ECBC construction we compose the permutation π1 with the random permutation π2. But
the result of such a composition is just a random permutation, σ2. Elsewhere in the ECBC construction we
compose the permutation π1 with the random permutation π3. But the result of such a composition is just
a random permutation, σ3. Making these substitutions—σ2 for π2 ◦ π1, and σ3 for π3 ◦ π1, we recover the
definition of ECBC. Changing back to the old variable names we have

Pr[π1, π2, π3
$← Perm(n) : AFCBCπ1 π2 π3 (·)⇒1] = Pr[π1, π2, π3

$← Perm(n) : AECBCπ1 π2 π3 (·)⇒1]

so the bound of the present theorem follows immediately from Theorem 4.

6 Security of XCBC

We now prove the security of the XCBC construction. We begin with a lemma that bounds an adversary’s
ability to distinguish between a pair of random permutations (π1(·), π2(·)) and the pair of permutations
(π(·), π(K ⊕ ·)), where π is a random permutation and K is a random n-bit string. This lemma, and ones
like it, may make generally useful tools. Indeed, this technique anticipates the generalization of making
multiple permutations from one [12].

Lemma 6 [Two permutations from one] Fix n ≥ 1. Let A be an adversary with a left oracle and a
right oracle, and assume that A asks at most q total queries. Then

∣∣∣ Pr[π $← Perm(n); K
$← Σn : Aπ(·), π(K ⊕ ·)⇒1] − Pr[π1, π2

$← Perm(n) : Aπ1(·), π2(·)⇒1]
∣∣∣ ≤ 1.25 q2

2n
. �

Proof: Without loss of generality, assume that adversary A is deterministic and never repeats a left-query
and never repeats a right-query. We consider answering the adversary’s queries by either of two games, X1
or X2, shown in Figure 7. These games are identical except for game X2 omitting the four shaded statements.
As before, Domain(π) is the set of all X ∈ Σn for which π(X) is not undefined. We write Range(π) for the set
of all Y ∈ Σ∗ such that π(X) = Y for some X. By Range(π) we denote Σn −Range(π). For both games X1
and X2, First we invoke the initialization procedure. Then when the adversary makes a query X to its left
oracle we compute f(X), and when the adversary makes a query X to its right oracle we compute g(X).

We claim that game X1 perfectly simulates a pair of oracles where the first is a random permutation
π(·) ∈ Perm(n) and the second is π(K ⊕ ·), for a random n-bit string K; while game X2 perfectly simulates
a pair of independent random permutations on n-bits, π1(·), π2(·). In particular:

Pr[AX1(·)⇒1] = Pr[π $← Perm(n); K
$← Σn : Aπ(·), π(K ⊕ ·)⇒1] (2)

Pr[AX2(·)⇒1] and = Pr[π1, π2
$← Perm(n) : Aπ1(·), π2(·)⇒1] . (3)

To verify (3) note that the externally-visible behavior of game X2 does not depend on lines 10, 12, 20, and 22;
these only determine the setting of a flag, bad, whose value is never consulted. With those lines expunged the
set S tracks the diminishing set of allowed return-values to f -calls and the set T tracks the diminishing set

12

Initialization:
01 bad ← false; S, T ← Σn; K

$← Σn; for all X ∈ Σn do π(X) ← undefined

Oracle f , when asked f(X):
10 if X ∈ Domain(π) then bad ← true , return π(X)

11 Y
$←S

12 if Y ∈ Range(π) then bad ← true , Y
$← Range(π)

13 π(X) ← Y ; S ← S − {Y }; return Y

Oracle g, when asked g(X):
20 if (K ⊕X) ∈ Domain(π) then bad ← true , return π(K ⊕X)

21 Y
$←T

22 if Y ∈ Range(π) then bad ← true , Y
$← Range(π)

23 π(K ⊕X) ← Y ; T ← T − {Y }; return Y

Figure 7: Game used in the proof of Lemma 6. Game X1 is as written and game X2 has the shaded statements removed.
The former behaves like π(·), π(K ⊕ ·) and the latter behaves like π1(·), π2(·), where π, π1, π2 are random permutations
and K is a random n-bit string.

of allowed return-values to g-calls. (Note that in game X2, π(·) is updated but never consulted; in game X1,
where π(·) is used, we will require it be a permutation. In game X2 this is not required and indeed π(·) will
typically be non-injective.) Thus game X2 faithfully simulates a pair of random permutations π1(·), π2(·).
To verify (2) focus on the variable π, which we build up in a manner consistent with answering (f(·), g(·)) =
(π(·), π(K ⊕ ·)) for a random K ∈ Σn. Lines 10 and 20 ensure that we answer queries consistent with the
current assignment to π. When we need to assign a new value to π, selecting a random value Y in Range(π),
we do this in a somewhat peculiar way, first sampling from a set S and then, if this fails to give a point
in Range(π), sampling again, this time from Range(π). That this two-step procedure (lines 11–12) gives a
random sample from Range(π) follows from the invariant that S ⊇ Range(π). Similarly, T ⊇ Range(π) and
so lines 21–22 choose a random sample from Range(π) and game X1 faithfully simulates a pair of oracles
π(·), π(K ⊕ ·).
Games X1 and X2 sometimes set a variable bad to true during the execution of the game. Notice that the
two games behave identically prior to bad becoming true, and so, as per the usual game-playing approach,
we know that

Pr[AX1⇒1] − Pr[AX2⇒1] ≤ Pr[AX2 sets bad] . (4)

Putting this together with (2) and (3), the advantage that we aim to bound is Pr[AX2 sets bad].

Note that

Pr[AX2 sets bad] ≤ Pr[AX2 sets bad in line 10 or 20] + Pr[AX2 sets bad in line 12 or 22] . (5)

Let us proceed by bounding the second of these two addends. When the adversary makes its ith oracle call
the set S and the set T have at least 2n − i + 1 points, while Range(π) has at most i − 1 points. Thus
the chance that we ever choose a random point Y from S or T that happens to lie in Range(π) is at most∑q

i=1(i − 1)/(2n − i + 1) ≤ q2/2n, since the denominator is at least 2n−1 if q ≤ 2n−1 and the statement is
trivially true otherwise. We have established that

Pr[AX2 sets bad in line 12 or 22] ≤ q2/2n . (6)

We are left with bounding Pr[AX2 sets bad in line 10 or 20]. To do this, we simplify game X2 in a number
of ways that will not impact the probability that bad gets set at line 10 or 20. (1) Start off by eliminating

13

Initialization:
01 bad ← true; K

$← Σn; X ← ∅

Oracle f , when asked f(X):
10 if X ∈ X then bad ← true
11 π(X) ← X ∪ {X}

Oracle g, when asked g(X):
20 if (K ⊕X) ∈ X then bad ← true
21 X ← X ∪ {K ⊕X}

Figure 8: Game X3, which is used in the analysis of game X2.

lines 12 and 22. These lines are not relevant to the event in question. (2) Next, observe that the values
assigned to π are never used—all that mattered was whether or not a point was placed in the domain of π. So,
letting X correspond to the domain of π, replace the for-statement of line 01 by X ← ∅; replace Domain(π)
by X at line 10; replace the first statement of line 13 by X ← X ∪ {X}; replace Domain(π) by X at line 20;
and replace the first statement of line 23 by X ← X ∪ {K ⊕X}. (3) Finally, observe that the random
values Y that are returned to A, and that diminish the sets S and T as the game runs, have no other impact
on the game. The adversary could simulate this part of the game on its own. That is, imagine replacing the
adversary A by an adversary B that also asks q queries but that takes responsibility for maintaining S and T
and returning correctly-distributed Y -values. Adversary B would initialize S ← T ← ∅. Then B would
run A. When A makes a query f(X), adversary B would query f(X), sample Y

$←S, set S ← S − {Y },
and return Y to A. When A makes a query g(X), adversary B would query g(X), sample Y

$←T , set
T ← T − {Y }, and return Y to A. The probability that bad gets set to true at lines 10 or 20 would be
unchanged; we have simply moved part of the function of the game into the adversary. The game has at this
point been simplified to that shown in Figure 8, and we aim to bound the probability that an adversary B
that asks q queries of game X3 manages to set bad. Adversary B never repeats an f -query or a g-query, and

Pr[BX3sets bad] = Pr[AX2sets bad at line 10 or 20] . (7)

To bound Pr[BX3 sets bad], realize that queries to this game return nothing to the adversary, and so we
may assume that the adversary B is noninteractive. Suppose it asks queries V1, . . . , Vp of its f -oracle, and
queries V ′

1 , . . . , V ′
p′ of its g-oracle, where p + p′ = q. Values V1, . . . , Vp are distinct, and values V ′

1 , . . . , V ′
p′

are distinct. The points that will be placed into X are {V1, . . . , Vp,K ⊕V ′
1 , . . . ,K ⊕V ′

p′} and the flag bad
will be set to true if any two of these coincide. We know that Vi 	= Vj for i, j ∈ [1 .. p] and i 	= j; and we
know that K ⊕V ′

i 	= K ⊕V ′
j for i, j ∈ [1 .. p′] and i 	= j. On the other hand, Pr[Vi = K ⊕V ′

j] = 2−n by the
randomness of K. There are at most (q/2)2 such pairs of values, and so the probability that bad gets set to
true in game G3 is at most 0.25 q2/2n:

Pr[BX3 sets bad] ≤ 0.25 q2/2n (8)

Combining the numbered equations completes the proof.

The security of XCBC follows from the security of FCBC (Theorem 5) and the method embodied by
Lemma 6.

Theorem 7 [Security of XCBC] Fix n ≥ 1. Then for any σ ≥ 0,

Advprf
XCBC[Perm(n)](σ) ≤ 3.75 σ2

2n
�

Proof: Theorem 5 says that

Advprf
FCBC[Perm(n)×Perm(n)×Perm(n)](σ) ≤ 2.5 σ2

2n

14

and two applications of Lemma 6 give that
∣∣∣Advprf

XCBC[Perm(n)](q1, q2) − Advprf
FCBC[Perm(n)×Perm(n)×Perm(n)](q1, q2)

∣∣∣ ≤ 1.25 (q2
1 + q2

2)
2n

≤ 1.25 q2

2n

where resource measure q1 is the number of oracle queries that are positive multiples of n bits and resource
measure q2 is the number of oracle queries that are not. As q ≤ σ, the result follows.

We end this paper by giving the complexity-theoretic analog of of Theorem 7. It follows from the
information-theoretic result in the usual way, but, for completeness, we explicitly state the result and provide
a proof for it.

Corollary 8 [Security of XCBC, complexity-theoretic version] Fix n ≥ 1 and let E : K × Σn → Σn

be a block cipher. Then

Advprf
XCBC[E](t, σ) ≤ 3.75 σ2

2n
+ Advprp

E (t′, σ)

where t′ = t + Cnσ for some absolute constant C. �

Proof: Let A be an adversary that runs in time at most t and asks queries totaling at most σ blocks.
Making some simplifications to the notation (omitting K

$←K and π
$← Perm(n) and ρ

$← Rand(Σ∗, n) and
K2,K3 $← Σn), we have that

Advprf
XCBC[E](A) = Pr[AXCBCEK K2 K3⇒1] − Pr[Aρ⇒1]

=
(
Pr[AXCBCEK K2 K3⇒1] − Pr[AXCBCπ K2 K3⇒1]

)
+

(
Pr[AXCBCπ K2 K3⇒1] − Pr[Aρ⇒1]

)
≤ Advprp

E (t′, σ) +
(
Pr[AXCBCπ K2 K3⇒1] − Pr[Aρ⇒1]

)
(9)

= Advprp
E (t′, σ) + Advprf

XCBC[Perm(n)](A)

≤ Advprp
E (t′, σ) + Advprf

XCBC[Perm(n)](σ)

≤ Advprp
E (t′, σ) +

3.75 σ2

2n
.

Equation (9) is justified as follows. Given adversary A having an oracle f : Σ∗ → Σn we can construct an
adversary B having an oracle e : Σn → Σn as follows. Adversary B begins by choosing K2,K3 $← Σn. Then
it runs adversary A. When A makes an oracle query X, adversary B uses its oracle e, along with K2 and K3,
to compute T ← XCBCe K2 K3(X). Adversary B returns T to adversary A. When A halts, outputting a
bit b, adversary B outputs the same bit b. Then Advprp

E (B) = Pr[AXCBCEK K2 K3⇒1]−Pr[AXCBCπ K2 K3⇒1]
and B’s running time t′ is A’s running time t plus overhead of Cnσ, and B asks σ oracle queries. This
establishes the result.

Acknowledgments

Shai Halevi proposed the elegant idea of using three keys to extend the domain of the CBC MAC to Σ∗,
nicely simplifying an approach used in an early version of UMAC [3]. Thanks to Shai and Mihir Bellare for
their comments on an early draft, and to the referees for their useful comments.

Initial work on this paper was done with the support of Rogaway’s NSF CCR-962540 and MICRO
grants 98-129 and 99-103. Major revisions to this manuscript were done while John Black was supported by
NSF CAREER-0240000 and Phil Rogaway was supported by NSF 0208842 and a gift from Cisco Systems.

15

References

[1] Bellare, M., Kilian, J., and Rogaway, P. The security of the cipher block chaining message
authentication code. Journal of Computer and System Sciences (JCSS) 61, 3 (Dec. 2000), 362–399.
Earlier version in CRYPTO ’94. See www.cs.ucdavis.edu/~rogaway.

[2] Berendschot, A., den Boer, B., Boly, J., Bosselaers, A., Brandt, J., Chaum, D.,

Damg̊ard, I., Dichtl, M., Fumy, W., van der Ham, M., Jansen, C., Landrock, P., Pre-

neel, B., Roelofsen, G., de Rooij, P., and Vandewalle, J. Final Report of Race Integrity
Primitives, vol. 1007 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[3] Black, J., Halevi, S., Krawczyk, H., Krovetz, T., and Rogaway, P. UMAC: Fast and secure
message authentication. In Advances in Cryptology – CRYPTO ’99 (1999), vol. 1666 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 216–233.

[4] Black, J., and Rogaway, P. CBC MACs for arbitrary-length messages: The three-key constructions.
In Advances in Cryptology – CRYPTO ’00 (2000), vol. 1800 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 197–215.

[5] Carter, L., and Wegman, M. Universal hash functions. J. of Computer and System Sciences, 18
(1979), 143–154.

[6] Dworkin, M., 2003. Personal communication.

[7] FIPS 113. Computer data authentication. Federal Information Processing Standards Publication 113,
U.S. Department of Commerce/National Bureau of Standards, National Technical Information Service,
Springfield, Virginia, 1994.

[8] Goldreich, O., Goldwasser, S., and Micali, S. How to construct random functions. Journal of
the ACM 33, 4 (1986), 210–217.

[9] Iso/Iec 9797-1. Information technology – security techniques – data integrity mechanism using a cryp-
tographic check function employing a block cipher algorithm. International Organization for Standards,
Geneva, Switzerland, 1999. Second edition.

[10] Iwata, T., and Kurosawa, K. OMAC: One-key CBC MAC. In Fast Software Encryption (FSE
2003) (2003), Lecture Notes in Computer Science, Springer-Verlag.

[11] Kilian, J., and Rogaway, P. How to protect DES against exhaustive key search (An analysis of
DESX). Journal of Cryptology 14, 1 (2001), 17–35.

[12] Liskov, M., Rivest, R., and Wagner, D. Tweakable block ciphers. In Advances in Cryptology –
CRYPTO ’02 (2002), M. Yung, Ed., vol. 2442 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 31–46.

[13] Petrank, E., and Rackoff, C. CBC MAC for real-time data sources. Journal of Cryptology 13, 3
(2000), 315–338.

[14] Wegman, M., and Carter, L. New hash functions and their use in authentication and set equality.
In J. of Comp. and System Sciences (1981), vol. 22, pp. 265–279.

16

