
The proceedings version of this paper appears as [21]. This is the full version.

Authenticated-Encryption with Associated-Data

Phillip Rogaway∗

20 September 2002

Abstract

When a message is transformed into a ciphertext in a way designed to protect both its
privacy and authenticity, there may be additional information, such as a packet header, that
travels alongside the ciphertext (at least conceptually) and must get authenticated with it. We
formalize and investigate this authenticated-encryption with associated-data (AEAD) problem.
Though the problem has long been addressed in cryptographic practice, it was never provided a
definition or even a name. We do this, and go on to look at efficient solutions for AEAD, both in
general and for the authenticated-encryption scheme OCB. For the general setting we study two
simple ways to turn an authenticated-encryption scheme that does not support associated-data
into one that does: nonce stealing and ciphertext translation. For the case of OCB we construct
an AEAD-scheme by combining OCB and the pseudorandom function PMAC, using the same
key for both algorithms. We prove that, despite “interaction” between the two schemes when
using a common key, the combination is sound. We also consider achieving AEAD by the generic
composition of a nonce-based, privacy-only encryption scheme and a pseudorandom function.

Keywords: Associated-data problem, authenticated-encryption, block-cipher usage, key sep-
aration, modes of operation, OCB .

∗Department of Computer Science, University of California at Davis, Eng. II Building, Davis, California 95616
USA; and Department of Computer Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand.
Email: rogaway@cs.ucdavis.edu Web: http://www.cs.ucdavis.edu/∼rogaway

Contents

1 Introduction 1

2 Preliminaries 3

3 Definition of the Goal 4

4 Nonce Stealing 5

5 Ciphertext Translation 6

6 Single-Key OCB · PMAC 10

7 Generic Composition 15

8 Acknowledgments 18

References 18

A Definitions of OCB and PMAC 20

B Proof of Lemma 4 22

1 Introduction

Security practice has long recognized the following cryptographic problem: flow a message in such
a way that part of it is privacy-protected, part of it is in the clear, and all of it is authenticated.
In this paper we formalize and investigate this goal, which we call authenticated-encryption with
associated-data (AEAD).

The generic composition approach. In the past, protocol designers addressed AEAD using the
generic composition paradigm (as first named and investigated by [3]), where one glues together
a (privacy-only) encryption scheme and a message authentication code (MAC). One might, for
example, encrypt a string M , prepend a header H, and then MAC the resulting string. Solutions
like this are so natural and obvious that it seems to have escaped notice that one was addressing
a cryptographic problem in its own right.

What brought about the recognition of AEAD as a distinct cryptographic problem was the
development of techniques that provide privacy+authenticity without using the generic composition
paradigm. Beginning with Jutla [15] and continuing with Gligor et al. [9] and Rogaway et al. [22]
there emerged new block-cipher modes that entwined privacy and authenticity in a single, compact
mode. Such “integrated” authenticated-encryption (AE) schemes promised improved efficiency
compared to the generic composition of conventional mechanisms. But the schemes also had a
significant (and initially unnoticed) shortcoming: an apparent inability to efficiently authenticate
a string of associated-data, such as a message header, binding this to the ciphertext.

Naive solutions. To see some of the issues, consider a protocol that flows a message H ‖ C ‖ T
where H is a message header and C is determined by encrypting a plaintext M under a key K1

and T is determined by MACing the string H ‖C under a key K2. Suppose, to make things faster,
we wish to modify this flow to employ an AE-scheme such as OCB [22]. (1) We cannot just send
an OCB-encrypted H ‖M because, presumably, H had to be in the clear for purposes of routing or
parsing the message. (2) Nor can we OCB-encrypt just M and send this along with H, for in this
case we would have done nothing to authenticate H. (3) We can not get around this problem by
sending a message consisting of H, a MAC over H, and the OCB-encrypted M , because we would
have done nothing to bind H to M . (4) We could send H, the OCB-encrypted M , and a MAC
taken over both H and the OCB-encrypted M , but this would lengthen the transmitted message and
waste time computing a MAC over information that was already authenticity-protected by OCB.
(5) We could send an OCB-encrypted H ‖M along with H, now encrypting H only as a means to
provide for its authenticity, but doing this would again lengthen the message sent. (6) We might
try to erase this inefficiency by having the sender omit from the ciphertext the portion of it that
corresponds to H (assuming that the ciphertext has such a structure, as it does with OCB). But
such an approach does not, in general, work: an AE-scheme is not required to provide authenticity
if misused in this way (and modes like [15, 22] do not provide authenticity if so misused).

Contributions of this paper. This paper singles out AEAD as a cryptographically-significant
problem and provides a provable-security treatment of it. First we give a definition for the security of
an AEAD-scheme. Our definition is very strong; in particular, the attack-model gives the adversary
the ability to control the associated-data H, while the notion of adversarial success generalizes the
notion of authenticity of ciphertexts [4, 17].

Second, we describe two ways to turn an AE-scheme into an AEAD-scheme. One method,
suggested by Cam-Winget and Walker [6], we call nonce stealing. The method is simple and useful,
but somewhat limited in its applicability as, in practice, the associated-data H can only be a few
bytes. A less restrictive approach, ciphertext translation, works like this: we use the AE-scheme

1

to encrypt message M under a key K, getting an intermediate ciphertext CT ; we apply a hash-
function FK′ to the associated data H to get an offset ∆; and then the final ciphertext C is CT
except that ∆ is xored into its last |∆| bits. When the associated-data is the empty string we
let C = CT so that the AEAD-scheme will be a proper extension of the AE-scheme. Notice
that if H is held fixed during a communications session then ∆ may be precomputed, essentially
eliminating the per-message cost of binding in H. We prove that ciphertext translation produces
a secure AEAD-scheme if the underlying AE-scheme is secure and F is good either as an almost-
xor-universal (AXU) hash-function or a pseudorandom function (PRF).

Third, we concretize and adjust the general ciphertext-translation solution to yield a suggestion
tailored to OCB [22]. Namely, define OĊB = (K̇, Ė , Ḋ) by combining OCB and PMAC according to
ciphertext translation—except use the same key for both primitives.1 So to compute ĖN,H

K (M) the
message M is OCB-encrypted under key K to get C = C ‖ T = EN

K (M) where C is the “ciphertext
core” and T is a τ -bit “tag”; associated-data H, if nonempty, is PMAC-authenticated [5] under the
same key to yield a τ -bit result ∆ = PMACK(H) (set ∆ = 0τ if H = ε); and the OĊB-ciphertext is
ĖN,H

K (M) = C ‖(T ⊕∆). We favor this OCB-extension because it is simple to implement (especially
when the associated-data is less than one block long), retains OCB’s use of a single block-cipher
key, is fully parallelizable in both M and H, has near-zero per-message cost when H is fixed per
session, and one recovers a parallelizable PRF MACK(H) as OĊB.Enc0,H

K (ε).
Finally, we examine achieving AEAD by generic composition. In particular, we look at gluing

together a nonce-based symmetric encryption scheme and a PRF. Our results here seem a bit
different from those in [3] (both encrypt-then-mac and mac-then-encrypt work fine), but that is
not surprising, because we start from somewhat different tools.

Origin of the problem. The need to handle associated-data when using an integrated AE
mode was first pointed out to the author by Burt Kaliski [16]. Several more individuals soon
communicated the same sentiment. Those attuned to this problem were involved in standardization
efforts that needed to bind to a ciphertext some cleartext data, such as an IP address. People wanted
a cheap and secure way to do this when using an AE-mode such as OCB.

Additional related work. Hawkes and Rose [13] propose a way to modify Jutla’s IAPM
mode [15] in order to create an AEAD-scheme. They claim a security proof and that their method
works for authenticated-encryption schemes beyond IAPM. A proposal by Whiting, Housley and
Ferguson [23] constructs an AEAD-scheme that entails CTR mode encryption and the CBC-MAC.
A proof is offered by [14]. Somewhat further afield, recent work that considers circumstances under
which a key may be safely reused across two different cryptographic mechanisms include [8, 12].
An early version of the current paper was provided to NIST and has been on their web site since
Nov ’01. The proceedings version of this paper appears as [21].

Remarks. (1) AE and AEAD schemes employ a nonce. They have to do this (or be stateful or
probabilistic) in order to achieve semantic security [11]. It is the responsibility of the sender not
to reuse any nonce. For this purpose the sender will need to maintain state (such as a counter)
or use coins. The receiver can be stateless (replay-detection is not a part of the defined goal)
and deterministic. (2) It is outside of the model how the associated-data H is made known to
the receiver. We do not consider the associated-data to be part of the ciphertext, though the

1 We emphasize that the reuse of cryptographic keys across two cryptographic mechanisms is, in general, a
dangerous thing to do. This practice should be contemplated only when there is a proof establishing that, for the
target context, key re-use does not lead to trouble. Once a key is used across two different mechanisms the combined
mechanism must be thought of as a single, atomic mechanism.

2

receiver will need it in order to decrypt. The same comments apply the nonce N . (3) All of our
solutions allow one to bind-in the associated-data H regardless of the length of the plaintext; there
is no restriction such as the plaintext having some minimum number of bits. (4) Correctness of
ciphertext translation using an AXU hash-function relies on the AE-scheme meeting a stronger-
than-usual definition of privacy: ciphertexts should be indistinguishable from random bits (when
the adversary launches a chosen-plaintext attack), which we call IND$-CPA. This notion, used
already in [22], asks more than IND-CPA, where ciphertexts must be indistinguishable from the
encryption of random bits. The IND$-CPA property also allows the direct use of an encryption
scheme as a pseudorandom generator or as a PRF. (5) Given the frequency with which networking
protocols need to solve the AEAD-problem—not the privacy problem, the authenticity problem, or
the AE-problem—we begin to view AEAD as the “right” goal in many settings. We suggest that it
is the abstract interface of an AEAD-scheme that designers of secure networking protocols should,
in most instances, be writing to and thinking in terms of. Simply understanding the signature of
an AEAD-scheme—what are the inputs and outputs—may make a helpful abstraction boundary.

2 Preliminaries

Adversaries. An adversary is a program with access to an oracle. Oracle queries are tuples of
strings. An adversary is nonce-respecting if it never repeats the first component, N , to its oracle,
regardless of oracle responses. Adversaries for AE and AEAD schemes are always assumed to be
nonce-respecting. We write an oracle as superscript to the adversary that uses it.

AE-schemes. We follow [22] (which builds on [1, 4, 11]) in defining nonce-using authenticated-
encryption schemes and their security. An authenticated-encryption scheme (an AE-scheme), or
simply an encryption scheme, is a three-tuple Π = (K, E ,D). Associated to Π are sets Nonce =
{0, 1}n and Message ⊆ {0, 1}∗, the latter having a linear-time membership test and satisfying
M ∈ Message ⇒ M ′ ∈ Message for any M ′ of the same length as M . The key space K is a
finite nonempty set of strings. Algorithm E is a deterministic algorithm that takes strings K ∈ K
and N ∈ Nonce and M ∈ Message and returns a string C = EN

K (M) = EK(N, M). Algorithm D
is a deterministic algorithm that takes strings K ∈ K and N ∈ Nonce and C ∈ {0, 1}∗ and
returns DN

K(C), which is either a string in Message or else the distinguished symbol Invalid. We
require that DN

K(EN
K (M)) = M for all K ∈ K, N ∈ Nonce, and M ∈ Message. We assume that

|EN
K (M)| = �(|M |) for some linear-time computable “length function” �.

Let $(·, ·) be an oracle that, on input N, M , returns a random string of length �(|M |) where �

is the length function of Π. Let A be an adversary. Define Advpriv
Π (A) = Pr[K $←K: AEK(·,·) =

1] − Pr[A$(·,·) = 1]. We call this notion IND$-CPA: indistinguishability from random bits under a
chosen-plaintext attack. It appears in [22].

Let Π = (K, E ,D) be an AE-scheme. Choose K
$←K and run the adversary A, providing it an

oracle for EK(·, ·). We say that adversary A forges (for this key K and on some particular run) if A
outputs a pair (N, C) where DN

K(C) �= Invalid and A did not ask a query EK(N, M) that resulted
in a response C. Let Advauth

Π (A) be the probability that A forges. The probability is over the
random choice of K and over the internal coin tosses, if any, of A.

We note that requiring A to be nonce-respecting does not give rise to a restrictive notion.
Quite the opposite: we are allowing the adversary to choose the nonce, rather than the sender, only
demanding that it does not request multiple encryptions under the same nonce. Note too that A
being nonce-respecting does not forbid use of a formerly-queried nonce within A’s forgery attempt.

3

AXU hash-functions. Function families and universality conditions on them originate with
Carter and Wegman [7]. A function family is a map F : K×X → {0, 1}τ where K has an associated
distribution and X ⊆ {0, 1}∗. We assume that X has a linear-time membership test. We use a
variant of the property called almost-xor-universal (AXU), which was first defined by [19]. For
consistency with other notions we define xor-universality as a kind of adversarial advantage. For
F : K × X → {0, 1}τ a function family and A an adversary, let Advaxu

F (A) be the larger of δ =
Pr[K $←K; (X1, X2, ∆) ← A : X1 �= X2 and FK(X1)⊕FK(X2) = ∆] and ε = Pr[K $←K; (X, C) ←
A : FK(X) = C].

Pseudorandom functions. Pseudorandom function originate with [10]; our treatment is a
concrete-security one that follows [2]. Let F : K×X → {0, 1}τ be a function family. Let Rand(X , τ)
be the set of all functions from X to {0, 1}τ . Define Advprf

F (A) as Pr[K $←K: AFK(·) = 1] −
Pr[ρ $← Rand(X , τ): Aρ(·) = 1]. Let Perm(n) be the set of all permutations from n bits to n bits.

Running-time conventions. When we speak of the running time of an algorithm we include its
description size, relative to some fixed encoding. If f : K×X → Y then Timef (q, σ) is the worst-case
time to compute K

$←K plus the time to compute fK(X1), . . . , fK(Xq) where
∑

|Xq| ≤ σ. When
we write an expression for the running time of an algorithm and that expression includes an O(·),
the constants hidden in the big-O notation are absolute constants, depending only on the details
of the model of computation.

Resource-parameterized advantage. If Π is a scheme and A is an adversary and Advxxx
Π (A)

is a measure of adversarial advantage already defined, then we write Advxxx
Π (R) to mean the

maximal value of Advxxx
Π (A) over all adversaries A that use resources bounded by R. Here R is

a list of variables specifying the resources of interest for the adversary in question. The name of
the variable will be enough to unambiguously indicate the resource in question. In this paper the
adversarial resources to which we pay attention are: t—the running time of the adversary; q—the
number of queries asked by the adversary; σ—the aggregate length of these queries; σ̂—the length
of the longest query; ς—the length of the adversary’s output. String lengths and aggregate string
lengths can be measured either in bits or in n-bit blocks (when a value n is understood); when it
matters we will specify the convention. When one measure lengths in terms of n-bit blocks a string
of � bits contributes min{1,
|�|/n�} to the total. Note that an adversary’s queries and its output
may encode multiple strings, and we count in σ and ς the length of the entire string.

3 Definition of the Goal

Syntax. We define an authenticated-encryption scheme with associated-data (an AEAD-scheme)
as a three-tuple Π = (K, E ,D). Associated to Π are sets of strings Nonce = {0, 1}n and Message ⊆
{0, 1}∗, as before, and also a set Header ⊆ {0, 1}∗ that has a linear-time membership test. The key
space K is as before. The encryption algorithm E is a deterministic algorithm that takes strings
K ∈ K and N ∈ Nonce and H ∈ Header and M ∈ Message. It returns a string C = EN,H

K (M) =
EK(N, H, M). Decryption algorithm D is a deterministic algorithm that takes strings K ∈ K
and N ∈ Nonce and H ∈ Header and C ∈ {0, 1}∗. It returns DN,H

K (C), which is either a string
in Message or the distinguished symbol Invalid. We require that DN,H

K (EN,H
K (M)) = M for all

K ∈ K, N ∈ Nonce, H ∈ Header, and M ∈ Message. As before, |EN
K (M)| = �(|M |) for some

linear-time computable length function �.

Security. Let Π = (K, E ,D) be an AEAD-scheme with length function �. Let $(·, ·, ·) be an

4

oracle that, on input (N, H, M), returns a random string of �(|M |) bits. Let AdvPRIV
Π (A) =

Pr[K $←K: AEK(·,·,·) = 1] − Pr[A$(·,·,·) = 1] measure the advantage of adversary A. We name this
notion IND$-CPA, as before. Note the use of capital letters (AdvPRIV) for an AEAD-scheme and
the use of little letters (Advpriv) for an AE-scheme.

Let Π = (K, E ,D) be an AEAD-scheme and let A be an adversary having access to an oracle
EK(·, ·, ·) for some key K. We say that A forges (for this key K and on some particular run) if A
outputs (N, H, C) where DN,H

K (C) �= Invalid and A did not ask a query EN,H
K (M) that resulted

in a response C. Define AdvAUTH
Π (A) as the probability that A forges, where the probability is

over K
$←K and the random coins, if any, of A. Note the use of capital letters (AdvAUTH) for an

AEAD-scheme and the use of little letters (Advauth) for an AE-scheme.
Informally, an AEAD-scheme Π is “secure” if AdvPRIV

Π (A) and AdvAUTH
Π (A) are “small” for any

“reasonable” adversary A. Theorems make quantitative statements about the maximum possible
value of AdvPRIV

Π (A) and AdvAUTH
Π (A) among adversaries A with specified resources.

Remarks. Our authenticity definition is very strong: the attack model is strong insofar as the
adversary is allowed to manipulate both the nonce and the associated-data (subject to the constraint
that no nonce is repeated), and the adversary’s goal is modest insofar as it “gets credit” even for
forgeries that use bizarre nonces and associated-data values, whether new or repetitions. In a real
system, the message and the nonce will primarily be controlled by the sender (for example, the
nonce may be a counter) while the associated-data will primarily be chosen by the sender and/or
the receiver. Still, an adversary may be able to influence these values. For example, an adversary
might force a nonce to get incremented by thwarting a transmission from reaching its destination.
Or an adversary might induce the sender to utilize bogus associated-data by manipulating flows in
an unauthenticated handshake. Allowing the adversary to manipulate N , H, and M , and giving
the adversary credit for any new (N, H, C), leads to a robust definition.

There are of course alternatives to our definition of AEAD security. In particular, one can
use IND-CPA instead of IND$-CPA, eliminate the nonce and make encryption probabilistic, or
eliminate the nonce and make encryption stateful. All of these choices result in reasonable, weaker,
definitions.

4 Nonce Stealing

We now consider a first suggestion, due to Nancy Cam-Winget and Jesse Walker [6], for incorpo-
rating associated-data into an AE-scheme. We call the method nonce stealing.

Suppose that the nonce in an AE-scheme is n bits but the application that uses this AE-scheme
is content with a nonce of n̄ bits, where n̄ < n. In such a case associated-data may be dropped into
the unused h = n − n̄ bits. For example, the nonce for the AE-scheme may be n = 128 bits but
the application may use an n̄ = 32 bit counter for a nonce, leaving h = 96 bits for associated-data.

More formally, given AE-scheme Π = (K, E ,D) having nonce space Nonce = {0, 1}n and given a
parameter n̄ ∈ [1..n−1] define the AEAD-scheme Π̄ = Π|n̄ = (K̄, Ē , D̄) having nonce space Nonce =
{0, 1}n̄ and a space of associated-data Header = {0, 1}n−n̄ and where K̄ = K and ĒN,H

K (M) =
ĒN ‖ H

K (M) and D̄N,H
K (C) = D̄N ‖ H

K (C). This formalization drops the nonce in front of the associated-
data but other conventions are equally acceptable.

At first glance, nonce stealing might seem of limited use, because so few bits of associated-data
can be accommodated. But often a few bytes is all that one needs (e.g., the associated-data may be
a 32-bit IPv4 addresses, or a pair of such addresses). Nonce stealing is simple and adds essentially
no overhead. Its security is captured by following theorem.

5

Theorem 1 [Security of nonce stealing] Let Π be an AE-scheme with nonce space Nonce =
{0, 1}n and let n̄ ∈ [1..n]. Then

AdvPRIV

Π|n̄ (t, q, σ) ≤ Advpriv
Π (t1, q, σ)

AdvAUTH

Π|n̄ (t, q, σ, ς) ≤ Advauth
Π (t2, q, σ, ς)

where t = t1 + O(σ + q) and t = t2 + O(σ + ς + q). ♦

Proof: We begin with the privacy statement. Let A be an adversary that attacks the privacy
of Π̄ = Π|n̄. (Recall that all AEAD-adversaries are nonce-respecting.) We construct an adversary B
that attacks the privacy of Π. Algorithm B runs A. When A makes an oracle query of (Ni, Hi, Mi)
adversary B asks its own oracle (Ni ‖Hi, Mi), returning the result to A. When A halts, outputting
a bit b, adversary B outputs the same bit b.

Because A is nonce-respecting it asks queries (N1, H1, M1), . . . , (Nq, Hq, Mq) with distinct Ni values.
As a consequence, the Ni ‖ Hi values are also distinct, so B is nonce-respecting. Furthermore,
AdvPRIV

Π̄ (A) = Pr[AEK(·,·,·) = 1]−Pr[A$(·,·,·) = 1] = Pr[BEK(·,·) = 1]−Pr[B$(·,·) = 1] = AdvPRIV
Π (B).

The first inequality follows.

Authenticity is similarly straightforward. We reuse the names A and B. Let A be a nonce-
respecting adversary that attacks the authenticity of Π̄. We construct an adversary B that attacks
the authenticity of Π. Algorithm B runs A. When A makes an oracle query of (Ni, Hi, Mi)
adversary B asks its own oracle (Ni ‖Hi, Mi), returning the result to A. When A outputs a forgery
attempt (N, H, C) adversary B outputs the forgery attempt (N ‖ H, C). Then AdvAUTH

Π̄ (A) =
Pr[AEK(·,·,·) forges] = Pr[BEK(·,·) forges] = AdvAUTH

Π (B). The second inequality follows.

The possibility of nonce stealing provides yet another reason, besides those enumerated in [22], why
an AE-scheme is best designed to employ an arbitrary nonce, as opposed to a counter or random
value.

5 Ciphertext Translation

We now give a solution to the AEAD-problem that permits arbitrary associated-data. In particular,
we show how to transform an AE-scheme Π into an AEAD-scheme Π̈ = Π¨F with the help of a
function family F : K′ × Header → {0, 1}τ . We call the technique ciphertext translation.

We begin with some notation. When X and Y are binary strings of possibly different lengths
define X ⊕̂ Y by prepending enough 0-padding to the shorter string to make it as long as the longer
string, and then xor the two strings. For example, 0101001 ⊕̂ 111 = 0101110.

Let Π = (K, E ,D) be an AE-scheme in which the length of any ciphertext is at least τ bits,
for some constant τ . Let Header ⊆ {0, 1}∗ be a set of strings with a linear-time membership
test and let F : K′ × Header → {0, 1}τ be a function family. Then we define the AEAD-scheme
Π̈ = (K̈, Ë , D̈) = Π¨F as follows:

K̈ = K ×K′.
ËN, H

KK′ (M) = EN
K (M) if H = ε, and ËN, H

KK′ (M) = EN
K (M) ⊕̂ FK′(H) otherwise.

D̈N, H
KK′(C) = DN

K(C) if H = ε, and D̈N, H
KK′(C) = DN

K(C ⊕̂ FK′(H)) otherwise.
That is, assuming H �= ε, take the associated-data H, compute from it ∆ = FK′(H), and encrypt M
by computing its ciphertext without regards to H, and then xoring in ∆ to the last τ bits.

6

For more concise notation we sometimes write ËN, H
KK′ (M) = EN

K (M) ⊕̂ F ∗
K′(H) and D̈N, H

KK′(C) =
DN

K(C ⊕̂ F ∗
K′(H)) where F ∗

K′(H) = ε if H = ε, and F ∗
K′(H) = FK′(H) otherwise.

Remarks. Ciphertext translation has the following pleasant properties: (1) the method applies
to any AE-scheme Π; (2) it is a proper extension of the AE-scheme in the sense that ËN, ε

KK′(M) =
EN

K (M); (3) as such, no overhead is added to an AE-scheme when associated-data is not used;
(4) if H is static over the course of a session (or even over the course of several messages) the
value ∆ = FK′(H) may be precomputed, minimizing the per-message overhead to authenticate
the associated data; (5) because F is a parameter we can instantiate it in whatever way seems
most appropriate to match the characteristics of E . Ciphertext translation also has the following
unpleasant property: it uses a new key, K ′, different from that used by the underlying AD-scheme Π.
This disadvantage will be erased in Section 6 for the specific case of Π = OCB and F = PMAC.

It is not important which bits of the ciphertext get modified by ∆ = FK′(H); the last bits
were chosen for concreteness and because one may wish, as in [22], to think of the last τ bits of
ciphertext as an authenticity-ensuring tag.

The double-dot notation Π̈ = Π¨F serves as a gentle reminder that two keys are used in the
construction, K and K ′. We will later consider the analogous transformation where a single key is
used, denoting this Π̇ = Π · F .

Security of ciphertext translation. Let Π is a secure AE-scheme. We give two sufficient
conditions on the hash function F in order that Π¨F will be a secure AEAD-scheme. One is that F

is a good AXU hash-function; the other is that F is a good PRF.

Theorem 2 [Security of ciphertext translation] Let Π = (K, E ,D) be an AE-scheme where
each ciphertext is at least τ bits long. Let F : K′ × Header → {0, 1}τ be a function family. Then

AdvPRIV
Π¨F (t, q, σ) ≤ Advpriv

Π (t1, q, σ)

AdvAUTH
Π¨F (t, q, σ, σ̂, ς) ≤ Advauth

Π (t2, q, σ, ς) + Advpriv
Π (t3, q, σ) + Advprf

F (t4, 2, σ̂ + ς) + 2−τ

AdvAUTH
Π¨F (t, q, σ, σ̂, ς) ≤ Advauth

Π (t5, q, σ, ς) + Advpriv
Π (t6, q, σ) + Advaxu

F (σ̂ + ς)

where t = t1 + TimeF (q, σ) + O(σ + q) and t = t2 + t3 + t4 + 2 TimeF (q + 1, σ + ς) + O(σ + ς + q)
and t = t5 + t6 + 2 TimeF (q + 1, σ + ς) + O(σ + ς + q). ♦

Proof: We begin with the privacy claim. Let A be an adversary that attacks the privacy of
Π¨F = (K̈, Ë , D̈). Assume that A runs in time at most t and asks at most q queries, these totaling
at most σ bits. We construct an adversary B that attacks the privacy of Π. Adversary B works
as follows. First B chooses a random K ′ $←K′. Then B runs A. When A makes its ith oracle
query, (Ni, Hi, Mi), adversary B makes query (Ni, Mi) to it own oracle. Adversary B receives
a response Ci, computes ∆i = F ∗

K′(Hi), and provides to A the ciphertext Ci ⊕̂ ∆i. After A
makes all of its oracle queries (and B makes the correspond queries) adversary A outputs a bit b.
At that point adversary B outputs the same bit b. Note that B runs in time at most t1 =
t + TimeF (q, σ) + O(σ + q) and asks at most q queries and these total at most σ bits. Also note
that B is nonce-respecting since A is. Finally, since B perfectly simulates the native environment
for A we have that AdvPRIV

Π[F](A) = Advpriv
Π (B), establishing the first inequality.

We now prove the first authenticity claim. Reusing the name, let A be an adversary that attacks
the authenticity of Π¨F = (K̈, Ë , D̈). Assume that A runs in time at most t and asks at most q

queries, the longest of at most σ̂ bits and the queries totaling at most σ bits, and then A outputs

7

a string having at most ς bits. We construct an adversary Aauth that attacks the authenticity of Π
and an adversary Apriv that attacks the privacy of Π and an adversary Aprf that attacks F as a
PRF.

Adversary Aauth chooses a random K ′ $←K′ then runs A. When A makes its ith oracle query,
(Ni, Hi, Mi), adversary Aauth makes the query (Ni, Mi) to it own oracle, getting back a response Ci.
Adversary Aauth computes ∆i = F ∗

K′(Hi) and provides to A the ciphertext C̈i = Ci ⊕̂ ∆i. After A
makes its oracle queries (and Aauth makes the corresponding oracle queries) it outputs its forgery
attempt (N, H, C). At that point Aauth computes ∆ = F ∗

K′(H) and C∗ = C ⊕̂ ∆. Adversary Aauth

outputs its own forgery attempt of (N, C∗). Note that Aauth runs in t2 = t + TimeF (q + 1, σ + ς) +
O(σ + ς + q) time, makes at most q queries, the longest of at most σ̂ bits, and these queries total
at most σ bits. Its forgery attempt has at most ς bits.

Adversary Aauth provides adversary A a perfect simulation of the environment that defines the
advantage of A in attacking Π¨F . Still the advantage of Aauth may be less than that of A

because it is possible for A to forge (in an execution under Aauth) when Aauth does not forge
(in that execution). This happens iff A’s forgery attempt (N, H, C) is new for it, (N, H, C) �∈
{(N1, H1, C1), . . . , (Nq, Hq, Cq)}, but (N, C∗) is not new for Aauth, namely, (N, C ⊕̂ F ∗

K′(H)) =
(Ni, Ci ⊕̂ F ∗

K′(H)) for some i ∈ [1..q]. To analyze the situation let collides be the event that A makes
a forgery attempt (N, C ‖ T) after asking (N1, H1, M1), . . . , (Nq, Hq, Mq) and getting responses
C1‖T1, . . . , Cq‖Tq, where N = Ni for some i ∈ [1..q] and C = Ci but T ⊕̂ F ∗

K′(H)) = Ti ⊕̂ F ∗
K′(Hi)).

The last condition is the same as: T ⊕ Ti = FK′(H) ⊕ FK′(Hi) if H �= ε and H ′ �= ε; and
T ⊕ Ti = FK′(H) if H �= ε and Hi = ε; and T ⊕ Ti = FK′(Hi) if H = ε and Hi �= ε; and T = Ti if
H = ε and Hi = ε. The last possibility would mean that (N, H, C) is not a forgery and thus it can
be ignored. We have that

AdvAUTH
Π¨F (A) = Pr[A

Π¨F
forges] ≤ Pr[AΠ

auth forges] + Pr[A
Π¨F

collides]

By hybrid argument we bound Pr[A
Π¨F

collides] in terms of Advpriv
Π (·) and Advprf

F (·) values. Note

Pr[A
Π¨F

collides] = (Pr[A
Π¨F

collides] − Pr[A
$¨F

collides]) +

(Pr[A
$¨F

collides] − Pr[A
$¨R

collides]) +

Pr[A
$¨R

collides] (1)

where $ is the oracle that, on input (N, H, M), returns �(|M |) random bits (for � the length function
of the encryption scheme), and where R is selected from Rand({0, 1}∗, τ). We now claim:

Pr[A
Π¨F

collides]−Pr[A
$¨F

collides] ≤ Advpriv
Π (t3, q, σ, σ̂) (2)

Pr[A
$¨F

collides]−Pr[A
$¨R

collides] ≤ Advprf
Π (t4, 2, σ̂ + ς) (3)

Pr[A
$¨R

collides] ≤ 2−τ (4)

for values t3 and t4 yet to be specified.

To justify Equation (2) and compute t3 construct Apriv as follows. It begins by choosing K
$←K′

and then runs adversary A. When A makes its ith oracle query, (Ni, Hi, Mi), adversary Apriv makes
its own oracle call of (Ni, Mi), getting a response Ci. Adversary Apriv then computes ∆i = F ∗

K′(Hi)
and returns to A the value C̈i = Ci ⊕̂ ∆i. When A halts, outputting a forgery attempt (N, H, C),

8

adversary Apriv computes if event collides has occurred: it checks if (N, H, C) is new for A but
(N, C ⊕̂ F

∗
K′(H)) is not new for Apriv. If so then Apriv outputs 1; otherwise, it outputs 0. The

running time of Apriv is t3 = t + TimeF (q + 1, σ + ς) + O(σ + ς + q), it asks at most q queries and

these total at most σ bits. Also, Advpriv
Π (Apriv) = Pr[A

Π¨F
collides] − Pr[A

$¨F
collides].

To justify Equation (3) and compute t4 construct adversary Aprf as follows. When A makes its ith
oracle query, (Ni, Hi, Mi), adversary Aprf computes C̈i

$←{0, 1}�(|Mi|) where � is the length function
of the encryption scheme Π. AdversaryAprf then answers A’s query with C̈i. When A outputs a
forgery attempt (N, H, C) and halts, adversary Aprf asks its oracle H, getting a response ∆, and
then it asks its oracle Hi, getting a response ∆i. Adversary Aprf then computes if event collides
has occurred: it checks if (N, H, C) is new for A but (N, C ⊕̂ ∆) is not new for Aprf . If so then Aprf

outputs the bit 1; otherwise, it outputs 0. The running time of Aprf is t4 = t+O(σ+ς +q), it asks 2

queries and these total at most σ̂ + ς bits. Also, by definition, Advprf
F (Aprf) = Pr[A

$¨F
collides] −

Pr[A
$¨R

collides].

We now verify Equation (4). For A to produce a collision when interacting with a $¨R oracle
it must produce Ti, Hi, T, H such that T ⊕ Ti = RK′(H) ⊕ RK′(Hi) if H �= ε and H ′ �= ε; or
T ⊕ Ti = RK′(H) if H �= ε and Hi = ε; or T ⊕ Ti = RK′(Hi) if H = ε and Hi �= ε. Equivalently, A
succeeds in making a collision if, given no queries, it can predict of its oracle RK′(·) the value of
RK′(H) ⊕ RK′(Hi) for chosen and distinct Hi, H; or if it can predict of its oracle RK′(·) the value
of RK′(H) for a chosen H. This happens with probability 2−τ . We have now shown the second
inequality of the theorem.

For the final inequality of the theorem we proceed as above until the hybrid decomposition. There
we use instead that Pr[A

Π¨F
collides] = (Pr[A

Π¨F
collides] − Pr[A

$¨F
collides]) + Pr[A

$¨F
collides].

The first difference is bounded as before. We have left to show Pr[A
$¨F

collides] ≤ Advaxu
F (σ̄ + ς).

As before, A, attacking $¨F , gets no information about F as it makes oracle queries. Still it must
produce Ti, Hi, T, H such that T ⊕Ti = FK′(H)⊕RK′(Hi) if H �= ε and H ′ �= ε; or T ⊕Ti = FK′(H)
if H �= ε and Hi = ε; or T ⊕Ti = FK′(Hi) if H = ε and Hi �= ε. Equivalently, A succeeds in making
a collision if, given no queries, it can predict of its oracle FK′(·) the value of FK′(H) ⊕ FK′(Hi)
for chosen and distinct Hi, H; or if it can predict of its oracle FK′(·) the value of FK′(H) for a
chosen H. From the definition, this happens with probability at most Advaxu

F (σ̂ + ς). We have
finished the proof.

AXU hash-function vs. PRF. According to Theorem 2 the function family F used for cipher-
text translation needs only to satisfy a verifiable, probabilistic criteria (the third inequality of the
theorem). Still, there are some advantages to using a function family F secure according to the
complexity-theoretic criterion of being a good PRF (the second inequality of the theorem). One ad-
vantage is that using a PRF for F facilitates using Π¨F as a deterministic MAC: let the message M

to encrypt be the empty string, let the nonce be N = 0, and let the message that one wants to
MAC be the associated-data H. This addresses a question posed by Rivest, who asked if OCB can
be used in some simple way to give a MAC [20]. (Note that trying to use OCB [22] or IAPM [15]
as a MAC by sending only the tag block does not work.) When building an AEAD-scheme based
on an AE-scheme like those in [15, 22] a more significant advantage of using a PRF for F is that
it leads to a simpler algorithm than one would get by choosing any known universal hash function
(e.g., one based on polynomial evaluation in a finite field). We expand on this in the following
section.

9

6 Single-Key OCB · PMAC

When Π = (K, E ,D) is an AE-scheme we defined ciphertext translation, Π̈ = Π¨F = (K̈, Ë , D̈), to
use two different keys, K and K ′. Using two keys is necessary insofar as the analogous single-key
construction Π̇ = Π · F = (K̇, Ė , Ḋ) where K̇ = K and ĖN, H

K (M) = EN
K (M) ⊕̂ F ∗

K(H) and
ḊN, H

K (C) = DN
K(C) ⊕̂ F ∗

K(H) certainly will not, in general, work; it is easy to exhibit a coun-
terexample to demonstrate this. Nonetheless, we single out a useful case where the single-key
definition does work: when coupling Π = OCB [22] with F = PMAC [5].

Throughout this section the following holds. The block length n is fixed, as is an underlying
block cipher E: K×{0, 1}n → {0, 1}n and tag length τ ∈ [1..n]. When combining OCB and PMAC
we use the same block cipher E and tag length τ for both algorithms. We write OĊB = (K̇, Ė , Ḋ) =
OCB · PMAC and OC̈B = (K̈, Ë , D̈) = OCB¨PMAC. String lengths are measured in n-bit blocks.
For convenience, we recall the definitions of OCB and PMAC in Appendix A.

To be explicit, we are constructing the AEAD-scheme OĊB = OCB · PMAC = (K̇, Ė , Ḋ) from
OCB = (K, E ,D) and PMAC: K × {0, 1}∗ → {0, 1}τ in the following way. The nonce space for
OĊB remains Nonce = {0, 1}n. The key space remains K̇ = K. The space of associated-data is
Header = {0, 1}∗. Encryption is defined by ĖN, H

K (M) = EN
K (M) ⊕̂ PMAC∗

K(H). Decryption is
done according to ḊN, H

K (C) = DN
K(C) ⊕̂ PMAC∗

K(H). Recall that under the notation introduced
already, PMAC∗

K(H) is the empty string if H = ε and it is PMACK(H) otherwise.

Interference. To prove the security of OĊB one might hope to establish that there is no
significant interaction between what goes on in OCB and in PMAC when the two algorithms use
a common key K. One would aim to show that all the internal values generated by the algorithms
will, almost certainly, be distinct. But an inspection of OCB and PMAC reveals that this is simply
not true. First there is the common definition of the variable L = EK(0n) used by the algorithms.
Worse still is the fact that OCB defines an internal variable R = EK(N ⊕ L) while PMAC defines
an internal variable Y [1] = EK(M [1] ⊕ L). Both N and M [1] are under the adversary’s control,
and so it can force OCB’s R and PMAC’s Y [1] to take on identical values. Though it is not clear
how an adversary can exploit such interaction, its possibility would normally spell serious trouble:
either the joint scheme really will be breakable, or it won’t be breakable but the prospects for a
reasonable proof will be dim.

We prove that, despite the interactions described above, OCB · PMAC is secure. We manage
to prove this without opening up the (already complex) proofs for OCB and PMAC—something
that might have seemed unavoidable in the presence of such cross-scheme interactions.

Security of OĊB. The main result of this section is a quantitative bound on the security (privacy
and authenticity) of OĊB = OCB · PMAC.

Theorem 3 [Security of OĊB]

AdvPRIV

OĊB[Perm(n),τ]
(q, σ) ≤ 9.5 σ2

1 / 2n

AdvAUTH

OĊB[Perm(n),τ]
(q, σ, ς) ≤ 13 σ2

2 / 2n + 2−τ

where σ1 = σ + q + 3 and σ2 = σ + q + 5ς + 11. ♦

We have stated the theorem for the information-theoretic setting, where one is using a random per-
mutation instead of a “real” block cipher. Passing to the complexity-theoretic setting is standard.
The needed complexity-theoretic assumption is a pseudorandom permutation for privacy, and a

10

strong pseudorandom permutation for authenticity. Since our target is Theorem 3 we henceforth
understand OCB, OĊB, OC̈B, and PMAC to all be taken over the block cipher Perm(n), sometimes
omitting this from the notation.

Proof idea. From [5, 22] and Theorem 2 we know right off that OC̈B = OCB¨PMAC = (K̈, Ë , D̈)

is secure. We would like to show that OĊB = OCB · PMAC = (K̇, Ė , Ḋ) is secure, too. So, at
least for privacy, it would be enough to show that reasonable adversaries can’t do a good job at
distinguishing an oracle for Ėπ (for π

$← Perm(n)) from an oracle for Ëπ,π′ (for π, π′ $← Perm(n)). We
show this by carefully expanding the adversary’s capabilities when attacking Ė or Ë . We define two
oracles, Ȯ and Ö. The oracles begin by choosing random permutations π and (π, π′), respectively.
Each oracle then accepts ten types of queries. The oracles have been designed so that, using Ȯ
an adversary can compute Ėπ for a random π; and using Ö an adversary can compute Ėπ,π′ for a
random π, π′. Then we show that oracles Ȯ and Ö are themselves adversarially indistinguishable.

Some subtleties arise when trying to work out this approach. One is that the oracles Ȯ and Ö
must enable the adversary to compute Ḋ and D̈ as well as Ė and Ë . This is necessary to ensure
that indistinguishability of Ȯ and Ö implies authenticity of OĊB. The oracles themselves must
be made simple enough to reason about, powerful enough that an adversary can compute what is
needed, but not so powerful that the oracles become distinguishable.

Oracles Ȯ and Ö, and valid queries to them. Oracle Ȯ and Ö are defined in Figure 1. The
description there omits checks on the validity of oracle queries, which we now explain. An oracle
query Q = (ty , N, i, M) that follows a sequence of oracle queries Q = (Q1, . . . , Qr) with responses
Z = (Z1, . . . , Zr) is said to be valid if all of the following hold:

(V0) ty ∈ [0..9] and N ∈ {0, 1}n and i ∈ [1..2n−1 − 1] and M ∈ {0, 1}∗.
(V1) If ty ∈ [1..4] then (ty , N, i, M) �∈ Q; if ty = 5 then (5, ·, i, M) �∈ Q (for any value filling in

the dot, language that we henceforth omit); if ty = 6 then (6, ·, ·, M) �∈ Q; if ty = 7 then
(7, ·, ·, M) �∈ Q; if ty = 8 then (8, N, ·, M) �∈ Q; and if ty = 9 then (9, N, ·, M) �∈ Q.

(V2) If ty = 1 then there is no Qs = (4, N, i, ·) ∈ Q that returned Zs = M ; and if ty = 4 then
there was no Qs = (1, N, i, ·) ∈ Q that returned Zs = M .

(V3) If ty = 1 then (3, N, i, ·) �∈ Q and if ty = 3 then (1, N, i, ·) �∈ Q.
(V4) If ty = 5 then i �= 1.
(V5) If ty = 6 then M �= 0n.
(V6) There is no (0, ·, ·, ·) �∈ Q, and if ty = 0 then there is some (·, N, ·, ·) ∈ Q.

We say that a sequence of queries Q = (Q1, . . . , Qq) and their responses Z = (Z1, . . . , Zq) is valid if
each query Qs is valid given the earlier queries (Q1, . . . , Qs−1) and their responses (Z1, . . . , Zs−1).
We also demand that the last query Qq = (0, ·, ·, ·) be of type 0.

A query Q following (Q,Z) is invalid if it is not valid. We define Ȯ and Ö to return a random
n-bit string in response to any invalid query. Since the validity condition is easily checked by an
adversary one can assume without loss of generality that adversaries do not ask invalid queries.

Let us sketch the meaning of the validity conditions. Condition V0 says not to consider ill-
formed queries or queries with i = 0. It also guarantees that the first bit of i (when regarded as an
n-bit string) is 0. Conditions V1 and V2 demand that an adversary not ask a query that it already
knows the answer to. Condition V3 prohibits an adversary from asking both π(iL⊕R)]⊕iL⊕R and
π(iL⊕R). Condition V4 keeps the adversary from trivially learning an R-value, while condition V5
keeps the adversary from trivially learning L. Query type 0 lets the adversary add iL ⊕ R to a
value of its choice, but condition V6 says that it can only do this once and it must have already
asked a query that used the N that gave rise to this R.

11

Initialization
π

$← Perm(n); L ← π(0n)

To respond to query Ȯ(ty , N, i,M)
R ← π(N ⊕ L)
case ty of

0: return M ⊕ iL ⊕ R
1: return π(M ⊕ iL ⊕ R) ⊕ iL ⊕ R
2: return π(M ⊕ iL ⊕ R ⊕ L · x−1)
3: return π(M ⊕ iL ⊕ R)
4: return π−1(C ⊕ iL ⊕ R) ⊕ iL ⊕ R
5: return π(M ⊕ iL) //i �= 1
6: return π(M) //M �= 0n

7: return π(M ⊕ L · x−1)
8: return π(M ⊕ R)
9: return π(M ⊕ R ⊕ L · x−1)

Initialization
π

$← Perm(n); L ← π(0n)
π′ $← Perm(n); L′ ← π(0n)

To respond to query Ö(ty , N, i,M)
R ← π(N ⊕ L); R′ ← π(N ⊕ L′)
case ty of

0: return M ⊕ iL ⊕ R
1: return π(M ⊕ iL ⊕ R) ⊕ iL ⊕ R
2: return π(M ⊕ iL ⊕ R ⊕ L · x−1)
3: return π(M ⊕ iL ⊕ R)
4: return π−1(C ⊕ iL ⊕ R) ⊕ iL ⊕ R
5: return π′(M ⊕ iL′) //i �= 1
6: return π′(M) //M �= 0n

7: return π′(M ⊕ L′ · x−1)
8: return π′(M ⊕ R′)
9: return π′(M ⊕ R′ ⊕ L′ · x−1)

Figure 1: Oracles Ȯ (left) and Ö (right).

Closeness of Ȯ and Ö. For oracles X and Y define Advdist
X ,Y(A) =

∣∣Pr[AX = 1] − Pr[AY = 1]
∣∣.

This immediately gives the corresponding resource-bounded notion, as explained at the end of
Section 2. The main technical lemma that we need can now be stated. It’s proof is given in
Appendix B. Recall that n has been fixed and oracles Ȯ and Ö silently depend on this parameter.

Lemma 4 [Indistinguishability of Ȯ and Ö] Advdist
Ȯ, Ö (q) ≤ 8q2/2n ♦

Relating OĊB and OC̈B security. We have defined Ȯ in such a way that having an oracle
for Ȯπ lets one compute Ėπ on any number of points and lets one compute Ḋπ on one point.
Similarly, we have defined Ö in such a way that having an oracle for Öπ,π′ lets one compute Ëπ,π′

on any number of points and lets one compute Ḋπ,π′ on one point. We use this to relate the security
of OĊB to the security of OC̈B and the distinguishability of Ȯ and Ö. We have the following result.

Lemma 5 [Relating OĊB to OC̈B and the distinguishability of Ȯ, Ö]

AdvPRIV

OĊB
(q, σ) ≤ AdvPRIV

OC̈B
(q, σ) + Advdist

Ȯ, Ö(σ)

AdvAUTH

OĊB
(q, σ, ς) ≤ AdvAUTH

OC̈B
(q, σ, ς) + Advdist

Ȯ, Ö(σ + ς)

Proof of Lemma 5: We start with the privacy claim. Let A be an adversary that asks at
most q queries, these totaling at most σ blocks, and suppose that A distinguishes Ė and Ë with
advantage δ = Advdist

Ė, Ë(A). Then there exists another adversary, B, that asks at most σ queries and

distinguishes Ȯ and Ö with identical advantage δ. This adversary is constructed in Figure 2. We
leave it for the reader to check that B with an Ȯ-oracle perfectly simulates for A an Ė-oracle, and B
with an Ö-oracle perfectly simulates for A an Ë-oracle. From this it follows that Advdist

Ė, Ë(q, σ) ≤
Advdist

Ȯ, Ö(σ).

Let $ be the oracle that, on input (N, H, M), returns |M | + τ random bits. Then AdvPRIV

OĊB
(q, σ) =

Advdist
Ė,$

(q, σ) ≤ Advdist
Ė, Ë(q, σ) + Advdist

Ë,$
(q, σ) ≤ AdvPRIV

OC̈B
(q, σ) + Advdist

Ė, Ë(q, σ) ≤ AdvPRIV

OC̈B
(q, σ) +

12

Define g(ty , N, i,M) as follows:
If there has already been a call of g(ty , N, i,M), return the value previously returned.
If ty = 4 and there has already been a call of g(1, N, i,M ′) that returned M , return M ′.
If ty = 1 and there has already been a call of g(1, N, i, C) that returned M , return M .
Otherwise return O(ty , N, i,M).

i = 1; N = 0n ← Dummy values, for readability, for when this argument is not used by O
Run adversary A

When A makes an oracle query, (N,H,M), do the following:
Partition M into M [1] · · ·M [m] and partition H into H[1] · · ·H[h]
for i ← 1 to m − 1 do Ci ← g(1, N, i,M [i])
Y [m] ← g(2, N,m, len(M [m])); C[m] ← Y [m] ⊕ M [m]
Checksum ← M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]
Tag ← g(3, N,m,Checksum); T ← Tag [first τ bits]
for i ← 2 to h − 1 do Y [i] ← g(5,N, i,H[i])
if |H| < n then Tag ← g(6,N, i, pad(H))
else if H = n then Tag ← g(7,N, i,H)
else if |Hm| < n then Tag ← g(8,H[1], i, Y [2] ⊕ · · · ⊕ Y [h − 1] ⊕ pad(H[h])
else if |Hm| = n then Tag ← g(9,H[1], i, Y [2] ⊕ · · · ⊕ Y [h − 1] ⊕ H[h])
T = Tag [first τ bits]; C ← C ‖ (T ⊕ ∆)
Answer A’s query with C

When A outputs a bit, b ← for a privacy-attacking adversary
return b

When A outputs a forgery attempt (N,C ‖ T,H) ← for an authenticity-attacking adversary
Partition C into C[1] · · ·C[ς] T and partition H into H[1] · · ·H[h]
for i ← 1 to ς − 1 do Mi ← g(4, N, i, C[i])
Y [ς] ← g(2, N, ς, len(C[ς])); Checksum ← M [1] ⊕ · · · ⊕ M [ς − 1] ⊕ C[ς] 0∗ ⊕ Y [ς]
for i ← 2 to h − 1 do Y [i] ← g(5,N, i,H[i])
if |H| < n then ∆ ← g(6,N, i, pad(H))
else if H = n then ∆ ← g(7,N, i,H)
else if |Hς | < n then ∆ ← g(8,H[1], i, Y [2] ⊕ · · · ⊕ Y [h − 1] ⊕ pad(H[h])
else if |HM | = n then ∆ ← g(9,H[1], i, Y [2] ⊕ · · · ⊕ Y [h − 1] ⊕ H[h])
Tag∗ ← g(1, N, ς,Checksum), Tag ← g(0, N, ς,Tag∗), T ′ ← Tag [first τ bits]
∆′ = ∆ [first τ bits]; if T ′ ⊕ ∆′ = T then return 1 else return 0

Figure 2: Construction for the proof of Lemma 5.

13

Advdist
Ȯ, Ö(q, σ) where the last inequality is the result from the prior paragraph. We have shown the

first equation of the lemma.

Carrying on, let A be a (new) adversary that asks at most q queries, these totaling at most σ
blocks, and suppose that A outputs a message having at most ς blocks. Adversary A’s forgery is
valid with probability Advauth

OĊB
(A) if A interacts with an Ė-oracle, and it is valid with probability

Advauth
OC̈B

(A) if A interacts with an Ë-oracle. From A we construct a (new) adversary B as (again)
specified in Figure 2. When interacting with an Ȯ oracle, adversary B asks at most σ + ς queries
and outputs 1 with probability Pr[BȮ = 1] = AdvAUTH

OĊB
(A). When interacting with an Ö oracle

it asks the same number of queries and outputs 1 with probability Pr[BÖ = 1] = AdvAUTH

OC̈B
(A).

We leave it for the reader to check those facts, which follow because B with an Ȯ-oracle pro-
vides A the same environment that A would see if A had an Ė oracle, while B with an Ö-oracle
provides A the same environment that A would see if A had an Ë oracle. (In addition, A’s forgery
attempt is correctly decrypted with respect to the same oracle, and it outputs 1 if and only if
the forgery was valid.) Thus AdvAUTH

OĊB
(A) − AdvOC̈B(A) = Pr[BȮ = 1] − Pr[BÖ = 1], so

AdvAUTH

OĊB
(A) ≤ AdvAUTH

OC̈B
(A) + Advdist

Ȯ, Ö(B). Passing to the resource-based statement we have

that AdvAUTH

OĊB
(q, σ, ς) ≤ AdvOC̈B(q, σ, ς) + Advdist

Ȯ, Ö(q, σ + ς), which is the second equation of the
lemma.

Proof of Theorem 3: We can now complete the proof of Theorem 3. We will use the following
results from [5, 22]:

Advpriv
OCB[Perm(n),τ](q, σ) ≤ 1.5 σ2

1/2n

Advauth
OCB[Perm(n),τ](q, σ, ς) ≤ 1.5 σ2

2/2n + 2−τ

Advprf
PMAC[Perm(n),τ](q, σ) ≤ 2 σ2

3/2n

where σ1 = σ + q + 3 and σ2 = σ + q + 5ς + 11 and σ3 = σ + 1. Combining the equations above
with Theorem 2 we have that

AdvPRIV

OCB¨PMAC[Perm(n),τ](q, σ) ≤ 1.5 σ2
1/2n

AdvAUTH

OCB¨PMAC[Perm(n),τ](q, σ, ς) ≤ 5 σ2
2/2n + 2−τ

Combining Lemma 4, Lemma 5, and the two equations above we get:

AdvPRIV

OĊB
(q, σ) ≤ 9.5σ2

1/2n

AdvAUTH

OĊB
(q, σ, ς) ≤ 13 σ2

2/2n + 2−τ

This completes the proof of Theorem 3.

14

H

M

C T

H M

CT

T

N

N

E
K

F
K’

FK’

EK

Figure 3: Two methods of generic composition for making an AEAD-scheme: (nonce-based, AD-
using) encrypt-then-mac (left) and (nonce-based, AD-using) mac-then-encrypt (right).

7 Generic Composition

So far we have focused on making an AEAD-scheme Π̄ out of an AE-scheme Π and a function
family F . However, it makes just as much sense to construct Π̄ from a (privacy-only) encryption
scheme Π and a function family F . Following [3], we call the construction of an AE/AEAD-scheme
from a privacy-only encryption scheme and a MAC the generic composition approach.

We consider two different methods for generic composition: (1) nonce-based, AD-using, encrypt-
then-mac, where, using a nonce N , one encrypts message M to a ciphertext C and then MACs
the associated-data H along with N and C to get a tag T to accompany C; and (2) nonce-based,
AD-using mac-then-encrypt, where one MACs the associated-data H and the message M and a
nonce N to make a tag T , and then encrypts, using N , the message M and the tag T . See Figure 3.

Our viewpoints in this section are strongly motivated by [3]. But we have already made defini-
tional choices different from theirs, and this does impact our findings.

Encrypt-then-MAC. Let 〈X, Y 〉 denote a string that encodes strings X and Y . In particular, X
and Y should be recoverable, and in linear time, from 〈X, Y 〉. Let Π = (K, E ,D) be an encryption
scheme. For simplicity, assume Π has a message space of Message = {0, 1}∗. Let its nonce space be
Nonce = {0, 1}n. Let F : K′ × {0, 1}∗ → {0, 1}τ be a function family. Let Header ⊆ {0, 1}∗. Given
all this, we define the AEAD-scheme [Π, F] = (K̄, Ē , D̄) as follows:

K̄ = K ×K′.
ĒN,H

K,K′(M) = C ‖ T where C = EN
K (M) and T = FK′(〈N, H, C〉).

D̄N,H
K,K′(C) = DN

K(C) if |C| ≥ τ and C = C ‖ T where |T | = τ and FK′(〈N, H, C〉) = T ; and

D̄N,H
K,K′(C) = Invalid otherwise.

Note that in the construction above, to match our nonce-based treatment of AEAD-schemes, we
have assumed a symmetric encryption scheme Π that explicitly surfaces its nonce (as opposed to
its being a probabilistic or stateful encryption encryption scheme).

As one might expect, if Π is a secure encryption scheme (in the Advpriv
Π sense) and F is a

good pseudorandom function (in the Advprf
F -sense) then [Π, F] is a good AEAD-scheme. The

quantitative result is as follows.

15

Theorem 6 [Security of encrypt-then-mac] Let Π = (K, E ,D) be an encryption scheme
with message space {0, 1}∗ and let F : K′ × {0, 1}∗ → {0, 1}τ be a function family. Then

AdvPRIV

[Π,F](t, q, σ) ≤ Advpriv
Π (t1, q, σ) + Advprf

F (t2, q, σ)

AdvAUTH

[Π,F] (t, q, σ, ς) ≤ Advprf
F (t3, q + 1, σ + ς) + 2−τ

where t = t1 + t2 + TimeF (q, σ) + O(σ + q) and t = t3 + TimeE(q, σ + ς) + O(σ + ς + q). ♦

Proof: Let A be an adversary that attacks the privacy of Π̄ = [Π, F] = (K̄, Ē , D̄). Suppose A runs
in time t and asks at most q queries, these totaling at most σ bits. We construct an adversary AΠ

that attacks the privacy of Π and an adversary AF that attacks F .

Adversary AΠ works as follows. It chooses K ′ $←K′. Then it runs adversary A. When A makes an
oracle call (N, H, M) have AΠ make an oracle call of (N, M), getting back a ciphertext C. Then AΠ

returns to A the string C ‖FK′(〈N, H, C〉). When A outputs a bit b and halts, have AΠ output the
identical bit b and halt.

Adversary AF works as follows. It runs adversary A. When A makes an oracle call (N, H, M)
have AF choose a random C

$←{0, 1}�(|M |) where � is the length function of Π. Then AF calls its
oracle on 〈N, H, C〉, getting a return value T . Have AF return to A the string C ‖ T . When A
outputs a bit b and halts, have AF output the identical bit b and halt.

We now analyze the construction. Let EKFK′ be a synonym for ĒK,K′ . Let $ FK′ be the oracle
that, on input N, H, M , chooses a random C

$←{0, 1}�(|M |) and returns C ‖FK′(〈N, H, C〉). Let $ $
be the oracle that, on input (N, H, M), returns a random string of �(|M |) + τ bits. Now note that

AdvPRIV

Π̄ (A) = Pr[AEKFK′ = 1] − Pr[A$ $ = 1]

= Pr[AEKFK′ = 1] − Pr[A$ FK′ = 1] + Pr[A$ FK′ = 1] − Pr[A$ $ = 1]

= Pr[AEK
Π = 1] − Pr[A$

Π = 1] + Pr[AFK
F = 1] − Pr[A$

F = 1]

= Advpriv
Π (AΠ) + Advprf

F (AF)

The running time of AΠ is t + TimeF (q, σ) + O(σ + q). The running time of AF is t + O(σ + q).
The first equation follows.

Let B be an adversary that attacks the authenticity of Π̄ = [Π, F] = (K̄, Ē , D̄). Suppose B runs in
time t and asks at most q queries, these totaling at most σ bits, and then B produces an output
of ς bits. We construct an adversary BF that attacks F .

Adversary BF works as follows. It chooses a random key K. Then it runs adversary B. When B
makes an oracle query (N, H, M) have BF compute C ← EN

K (M). Then BF calls its own oracle
on the string 〈N, H, C〉, receiving a value T . Then have BF answer B’s oracle query with C ‖ T .
When B halts, outputting a forgery attempt (N∗, H∗, C∗T ∗), where |T ∗| = τ , let BF call its oracle
on 〈N∗, H∗, C∗〉, obtaining a return value T . If T = T ∗ and (N∗, H∗, C∗T ∗) is new then have BF

output 1; otherwise, have BF output 0.

Note that the running time of BF is t+TimeE(q, σ)+O(σ + ς + q) and BF asks q +1 oracle queries
and these queries total at most σ + ς bits.

If the oracle to BF is a valid PRF-oracle FK′ then B, when being run by BF , forges with probability
AdvAUTH

Π̄ (B). If the oracle to BF is a random function ρ then B, when being run by BF , forges
with probability 2−τ . The second equation in the theorem now follows.

16

Mac-then-encrypt. Let Π = (K, E ,D), F : K′ × {0, 1}∗ → {0, 1}τ , Header ⊆ {0, 1}∗, Message =
{0, 1}∗ and Nonce = {0, 1}n all be as before. Then we define the AEAD-scheme [F, Π] = (K̄, Ē , D̄)
as follows:

K̄ = K ×K′.
ĒN,H

K,K′(M) = EN
K (〈M, T 〉) where T = FK′(〈N, H, M〉).

D̄N,H
K,K′(C) = M if 〈M, T 〉 = DN

K(C) where |T | = τ and T = FK′(〈N, H, M〉); and D̄N,H
K,K′(C) =

Invalid otherwise.
Following [3] one might expect that [F, Π] may be insecure even when F is secure as a pseudorandom
function and Π achieves privacy. But the definitions we are using differ from those in [3] and [F, Π] is
in fact secure under natural assumptions. The essential difference lies in the nonce-based treatment
of encryption we have used; this forces there to be only one possible ciphertext for a plaintext (once
the nonce is pinned down), eliminating the kind of counter-example demonstrated by [3].

Theorem 7 [Security of mac-then-encrypt] Let Π = (K, E ,D) be an encryption scheme
with message space {0, 1}∗ and let F : K′ × {0, 1}∗ → {0, 1}τ be a function family. Then

AdvPRIV

[F,Π](t, q, σ) ≤ Advpriv
Π (t1, q, σ)

AdvAUTH

[F,Π] (t, q, σ, ς) ≤ Advprf
F (t2, q + 1, σ + ς) + 2−τ

where t = t1 + TimeF (q, σ) + O(σ + q) and t = t2 + TimeE(q, σ) + TimeD(1, ς) + O(σ + ς + q). ♦

Proof: Let A be an adversary that attacks the privacy of Π̄ = [F, Π] = (K̄, Ē , D̄). Suppose A runs
in time t and asks at most q queries, these totaling at most σ bits. We construct an adversary AΠ

that attacks the privacy of Π.

Adversary AΠ works as follows. It chooses K ′ $←K′. Then it runs adversary A. When A makes an
oracle call (N, H, M) have AΠ compute T = FK′(〈N, H, M〉) and then have AΠ make its own oracle
call of (N, 〈M, T 〉), getting back a ciphertext C. Then AΠ returns to A the string C‖FK′(〈N, H, C〉).
When A outputs a bit b and halts, have AΠ output the identical bit b and halt.

We have that AdvPRIV

Π̄ (A) = Pr[AĒK = 1]−Pr[A$ = 1] = Pr[AEK
Π = 1]−Pr[A$

Π = 1] = Advpriv
Π (AΠ).

The running time of AΠ is t + TimeF (q, σ) + O(σ + q). The first equation follows.

Now let B be an adversary that attacks the authenticity of Π̄ = [Π, F] = (K̄, Ē , D̄). Suppose B
runs in time t and asks at most q queries, these totaling at most σ bits, and then B produces an
output of at most ς bits. We construct an adversary BF that attacks F .

Adversary BF works as follows. It chooses a random key K. Then it runs adversary B. When B
makes an oracle query (N, H, M) have BF make its own oracle call of 〈N, H, M〉 getting a return
value of T . Then let BF compute C ← EN

K (〈M, T 〉). Then BF returns to B value C. When B halts,
outputting a forgery attempt (N∗, H∗, C∗) let BF compute M∗ ‖ T ∗ = DN∗

K (C) where |T ∗| = τ .
(Adversary B fails and returns 0 if |DN∗

K (C)| < τ .) Then BF calls its oracle on 〈H∗, N∗, M∗〉,
obtaining a return value T . If T = T ∗ and (N∗, H∗, C∗) is new then BF outputs 1; otherwise it
outputs 0.

The running time of BF is t + TimeE(q, σ) + TimeD(1, ς) + O(σ + ς + q) and BF asks q + 1 oracle
queries and these queries total at most σ + ς bits.

If the oracle to BF is a valid PRF-oracle FK′ then B, when being run under BF , forges with
probability AdvAUTH

Π̄ (B). This is because B forges only when (N∗, H∗, C∗) is new, which means

17

that N∗ is new or H∗ is new or M∗ has not yet been queried along with N∗ and H∗. If the oracle
to BF is a random function ρ then B, when being run by BF , forges with probability 2−τ . The
second equation in the theorem now follows.

Remarks. The two constructions of this section use a nonce-based symmetric encryption scheme
that is secure in the Advpriv sense. It needs to be emphasized that conventional modes of operation,
like CBC mode with the IV as the nonce, do not achieve good security in this sense. Thus one
can not expect to achieve a secure AEAD-scheme, in the sense we have defined it, by using the
constructions of this section and encrypting under CBC mode, with the IV as the nonce. There
are simple ways to achieve the notion of privacy defined here, starting from a block cipher, but an
investigation of this topic would take us too far afield.

8 Acknowledgments

Burt Kaliski first described the AEAD problem to me and inspired me to work on it. I was also
motivated by NIST’s modes-of-operation effort and a workshop they organized; thanks to Elaine
Barker, William Burr, and Morris Dworkin. I received useful feedback from Mihir Bellare, John
Black, Nancy Cam-Winget, Robert Moskowitz, Ron Rivest, Jesse Walker, and some anonymous
referees. Work on this paper was funded by NSF CCR-0208842 and a gift from CISCO Systems.
Special thanks to CISCO’s Dave McGrew, who has followed and championed my work.

References

[1] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treat-
ment of symmetric encryption: Analysis of the DES modes of operation. Proceedings of
38th Annual Symposium on Foundations of Computer Science (FOCS 97), IEEE, 1997.
www.cs.ucdavis.edu/∼rogaway/

[2] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message
authentication code. Journal of Computer and System Sciences, vol. 61, no. 3, 2000. (Earlier
version in Advances in Cryptology – CRYPTO ’94.) www.cs.ucdavis.edu/∼rogaway/)

[3] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. Advances in Cryptology – ASIACRYPT ’00.
Lecture Notes in Computer Science, vol. 1976, T. Okamoto., ed., Springer-Verlag, 2000.
www-cse.ucsd.edu/users/mihir/

[4] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or
redundancy in plaintexts for efficient encryption. Advances in Cryptology – ASIACRYPT ’00.
Lecture Notes in Computer Science, vol. 1976, T. Okamoto., ed., Springer-Verlag, 2000.
www.cs.ucdavis.edu/∼rogaway/

[5] J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message
authentication. Advances in Cryptology – EUROCRYPT 2002. Lecture Notes in Computer
Science, vol. 2332, Springer-Verlag, 2002. www.cs.ucdavis.edu/∼rogaway

[6] N. Cam-Winget and J. Walker. Personal communications, June 2001.

[7] L. Carter and M. Wegman. Universal hash functions. J. of Computer and System Sciences,
vol. 18, pp. 143–154, 1979.

18

[8] J. Coron, M. Joye, D. Naccache, and P. Paillier. Universal padding schemes for RSA.
Advances in Cryptology – CRYPTO ’02, Lecture Notes in Computer Science, vol. 2442,
pp. 226–241, 2002.

[9] V. Gligor and P. Donescu. Fast encryption and authentication: XCBC encryption and
XECB authentication modes. Fast Software Encryption, Lecture Notes in Computer Science,
Springer-Verlag, 2001.

[10] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Jour-
nal of the ACM, vol. 33, no. 4, pp. 210–217, 1986.

[11] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, vol. 28, April 1984, pp. 270–299.

[12] S. Haber and B. Pinkas. Securely combining public-key cryptosystems. Proceedings of
the 8th ACM Conference on Computer and Communications Security (CCS-8), ACM Press,
pp. 215–224, 2001.

[13] P. Hawkes and G. Rose. A mode of operation with partial encryption and message integrity
(PEMI). Manuscript, 2002.

[14] J. Jonsson. On the security of CTR + CBC MAC. Selected Areas in Cryptography, Ninth
Annual Workshop (SAC 2002), Lecture Notes in Computer Science, Springer-Verlag, 2002.

[15] C. Jutla. Encryption modes with almost free message integrity. Advances in Cryptology –
EUROCRYPT 2001. Lecture Notes in Computer Science, vol. 2045, Springer-Verlag, 2001.

[16] B. Kaliski. Personal communication, May 2001.

[17] J. Katz and M. Yung. Unforgeable encryption and adaptively secure modes of operation.
Fast Software Encryption ’00. Lecture Notes in Computer Science, B. Schneier, ed., 2000.

[18] J. Kilian and P. Rogaway. How to protect DES against exhaustive key search (an analysis
of DESX). J. of Cryptology, vol. 14, no. 1, pp. 17–35, 2001. Earlier version in CRYPTO ’96.

[19] H. Krawczyk. LFSR-based hashing and authentication. Advances in Cryptology –
CRYPTO ’94. Lecture Notes in Computer Science, vol. 839, Springer-Verlag, pp. 129–139,
1994.

[20] R. Rivest. Personal communications, Aug 2001.

[21] P. Rogaway. Authenticated-encryption with associated-data. Ninth ACM Conference on
Computer and Communications Security (CCS-9). ACM Press, 2002. Proceedings version of
this paper.

[22] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A block-cipher mode of
operation for efficient authenticated encryption. Eighth ACM Conference on Computer and
Communications Security (CCS-8). ACM Press, 2001. www.cs.ucdavis.edu/∼rogaway

[23] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). Submission
to NIST, June 2002. csrc.nist.gov/encryption/modes/

19

�

��

�

� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

� �

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

M [m]

Z[m]

len

L · x−1

EK

T

Z[m]

first τ bitsτ

C[m]

Y [m]

C[1]

Z[1]

EK

Z[1]

M [1]

Z[2]

Z[2]

M [2]

C[2]

EK

Z[m − 1]

Z[m − 1]

EK

C[m − 1]

M [m − 1]

Checksum

N

L

R

EK EK

X[m]

Algorithm EN
K (M)

Partition M into M [1] · · ·M [m]
L ← EK(0n); R ← EK(N ⊕ L)
for i ← 1 to m do Z[i] = γi · L ⊕ R
for i ← 1 to m − 1 do

C[i] ← EK(M [i] ⊕ Z[i]) ⊕ Z[i]
X[m] ← len(M [m]) ⊕ L · x−1 ⊕ Z[m]
Y [m] ← EK(X[m])
C[m] ← Y [m] ⊕ M [m]
C ← C[1] · · ·C[m]
Checksum ←

M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]
T ← EK(Checksum ⊕ Z[m]) [first τ bits]
return C ← C ‖ T

Algorithm DN
K (C)

Partition C into C[1] · · ·C[m] T
L ← EK(0n); R ← EK(N ⊕ L)
for i ← 1 to m do Z[i] = γi · L ⊕ R
for i ← 1 to m − 1 do

M [i] ← E−1
K (C[i] ⊕ Z[i]) ⊕ Z[i]

X[m] ← len(C[m]) ⊕ L · x−1 ⊕ Z[m]
Y [m] ← EK(X[m])
M [m] ← Y [m] ⊕ C[m]
M ← M [1] · · ·M [m]
Checksum ←

M [1] ⊕ · · · ⊕ M [m − 1] ⊕ C[m] 0∗ ⊕ Y [m]
T ′ ← EK(Checksum ⊕ Z[m]) [first τ bits]
if T = T ′ then return M

else return Invalid

Figure 4: OCB. The plaintext is M , the key is K, the nonce is N , the key space is K. Each Z[i] = γi ·L⊕R.

A Definitions of OCB and PMAC

The following material is taken from [5, 22]. Throughout, fix integer n > 0. Let ntz(i) (where
i ≥ 1) be the number of trailing 0-bits in the binary representation of integer i. If X ∈ {0, 1}∗
then len(X) = max{1,
|X|/n�}. For X ∈ {0, 1}∗ and |X| ≤ n let X 0∗ = X 0n−|X|. Let
pad(X) be X if |X| = n and X10n−|X|−1 if |X| < n. Let GF(2n) be the field with 2n points.
We think of a point a in GF(2n) as an n-bit string an−1 . . . a1a0 ∈ {0, 1}n or as the polynomial
a(x) = an−1xn−1 + · · · + a1x + a0. Addition and multiplication is defined in the usual way where,
for multiplication, we fix an irreducible degree n polynomial. Define γ = γn by γ1 = (0 1) and, for
� > 0, γ�+1 = (0γ�

0 0γ�
1 · · · 0γ�

2�−2
0γ�

2�−1
1γ�

2�−1
1γ�

2�−2
· · · 1γ�

1 1γ�
0). We write “Partition M into

M [1] · · ·M [m]” for “Let m = len(M) and let M [1], . . . , M [m] be strings such that M [1] · · ·M [m] =
M and |M [i]| = n for 1 ≤ i < m.” We write “Partition C into C[1] · · ·C[m] T” for “if |C| < τ then

20

τ

� ��

� ��

� ��

� ��

���

�

�� �� �

�
�

�

�

�

�

�

��

�

�

�

���� �

�

M [m]

EK

γ2 · L

M [2]

EK

γm−1 · L pad

EK

EK

γ1 · L

M [1]

first τ bits

Y [1]

X[1]

Y [2]

X[2]

M [m − 1]

X[m − 1]

Y [m − 1]

T

Σ

0n if |M [m]| < n
L · x−1 if |M [m]| = n

}

Algorithm PMACK (M)

L ← EK(0n)
if |M | > n2n then return 0τ

Partition M into M [1] · · ·M [m]
for i ← 1 to m − 1 do

X[i] ← M [i] ⊕ γi · L
Y [i] ← EK(X[i])

Σ ← Y [1] ⊕ Y [2] ⊕ · · · ⊕ Y [m − 1] ⊕ pad(M [m])
if |M [m]| = n then X[m] = Σ ⊕ L · x−1

else X[m] ← Σ
T = EK(X[m]) [first τ bits]
return T

Figure 5: PMAC. The message to MAC is M and the key is K. Value L = EK(0n) is derived from K.

return Invalid. Otherwise let C = C [first |C| − τ bits], T = C[last τ bits], and m = len(C), and
let C[1], . . . , C[m] be strings such that C[1] · · ·C[m] = C and |C[i]| = n for 1 ≤ i < m.”

To use OCB or PMAC one must specify a block cipher E: K × {0, 1}n → {0, 1}n. One must
also specify a tag length τ ∈ [1..n]. We let OCB[E, τ] and PMAC[E, τ] be the algorithms with
the indicated parameters. Encryption and decryption under OCB depend on an n-bit nonce N .
Encryption and decryption under OCB is defined in Figure 4, while PMAC is defined in Figure 5

21

B Proof of Lemma 4

Let $ denote the oracle that responds to every query by returning n-random bits. To show
Advdist

Ȯ, Ö (q) ≤ 8q2/2n we use the triangle inequality after establishing that

Advdist
Ȯ,$

(q) ≤ 4q2/2n and (5)

Advdist
Ö,$

(q) ≤ 4q2/2n (6)

We now prove Equation (5). The proof for Equation (6) is analogous and therefore omitted.
We use the game-playing approach, as in works like [18]. First we define, in Figure 6, a game

that we denote game O. Though not shown in the pseudocode, game O (like game Ȯ) returns
n random bits in response to any invalid query (invalid queries are defined in Section 6). An
inspection of game O makes clear that it and game Ȯ engender identical views to any adversary:
Pr[AȮ = 1] = Pr[AO = 1] for any A.

Next we modify game O, as is standard, by dropping each statement that immediately follows
the setting of the variable bad to true. The revised game, which we call game R, is show in Figure 7.
As before, random bits are returned in response to any invalid query.

We claim that game R provides an adversary with a view identical to game $; that is, in response
to any query made, game R returns n random bits. To see this, first observe that for any query Q

of type ty ∈ {1, 2, 3, 5, 6, 7, 8, 9} we set Y
$←{0, 1}n and return Y . For ty = 4 we set X

$←{0, 1}n

and return X ⊕ iL ⊕ R where iL and R are independent of X. This has the effect of returning a
random string in {0, 1}n. Finally, there may be a single query of type ty = 0. We claim that the
response to this one query is also uniform. For if the adversary asks a query (0, N, i, M) where
N �∈ N then the response Z is uniform because a fresh random value R will be used in computing
M ⊕ iL ⊕ R. On the other hand, if the adversary selects an N -value that was used already, then
the game already selected a random R. That earlier R value, however, had no influence on the
Z1, . . . , Zr values that were returned to the adversary before its ty = 0 query. The selected R-value
is therefore independent of the values M and i that the adversary chooses. The value R was chosen
independent of L. Thus the R that is used in computing the response Z = M ⊕ iL⊕R is a uniform
random variable that is independent of the random variable M ⊕ iL, and so Z is uniform.

Since games O and R are syntactically identical apart from what happens after the flag bad is
set to true, using the customary technique from the game-playing approach we have that for any
adversary A,

Advdist
O,R (A) ≤ Pr[AR sets flag bad]

Our goal, then, is to show that

Pr[AR sets flag bad] ≤ 4q2/2n (7)

if A makes q or fewer queries. Lemma 4 will then follows.
We now expunge the many rounds of interaction present in game R, simplifying to an adversary

getting one vector of strings and providing another. To make this simplification remember that in
game R the first q − 1 responses returned to the adversary are the random strings Z1, . . . , Zq−1.
The strings don’t depend on the adversary’s queries and they don’t depend on any calculations
carried out during the game. (For the latter claim one needs first to rewrite the code associated to
queries of type 4: choose Z at random instead of X and then let X ← Z ⊕ iL ⊕ R.) As a result
of this, we may choose Z1, . . . , Zq−1

$←{0, 1}n at the very beginning of the game instead of one Zs

22

Initialization
π(x) ← undef for all x ∈ {0, 1}n; N ← ∅; bad ← false;

L
$←{0, 1}n; π(0n) ← L

To respond to query O(ty , N, i, M)
if N ∈ N then R ← π(N ⊕ L)

else { N ← N ∪ {N}; R
$←{0, 1}n

if R ∈ Range(π) then bad ← true, R
$← Range(π)

if N ⊕ L ∈ Dom(π) then bad ← true, R ← π(N ⊕ L)
π(N ⊕ L) ← R }

case ty of
0: Z ← M ⊕ iL ⊕ R

1: X ← M ⊕ iL ⊕ R; Y
$←{0, 1}n

if Y ∈ Range(π) then bad ← true, Y
$← Range(π)

if X ∈ Dom(π) then bad ← true, Y ← π(X)
π(X) ← Y ; Z ← Y ⊕ iL ⊕ R

2: X ← M ⊕ iL ⊕ R ⊕ L · x−1; Y
$←{0, 1}n

if Y ∈ Range(π) then bad ← true, Y
$← Range(π)

if X ∈ Dom(π) then bad ← true, Y ← π(X)
Z ← π(X) ← Y

3: X ← M ⊕ iL ⊕ R; Y
$←{0, 1}n

if Y ∈ Range(π) then bad ← true, Y
$← Range(π)

if X ∈ Dom(π) then bad ← true, Y ← π(X)
Z ← π(X) ← Y

4: C ← M ; Y ← C ⊕ iL ⊕ R; X
$←{0, 1}n

if X ∈ Dom(π) then bad ← true, X
$← Dom(π)

if Y ∈ Range(π) then bad ← true, X ← π−1(Y)
π(X) ← Y ; Z ← X ⊕ iL ⊕ R

5: X ← M ⊕ iL; Y
$←{0, 1}n //i �= 1

if Y ∈ Range(π) then bad ← true, Y
$← Range(π)

if X ∈ Dom(π) then bad ← true, Y ← π(X)
Z ← π(X) ← Y

6: X ← M ; Y
$←{0, 1}n //M �= 0n

if Y ∈ Range(π) then bad ← true, Y
$← Range(π)

if X ∈ Dom(π) then bad ← true, Y ← π(X)
Z ← π(X) ← Y

7: X ← M ⊕ L · x−1; Y
$←{0, 1}n

if Y ∈ Range(π) then bad ← true, Y
$← Range(π)

if X ∈ Dom(π) then bad ← true, Y ← π(X)
Z ← π(X) ← Y

8: X ← M ⊕ R; Y
$←{0, 1}n

if Y ∈ Range(π) then bad ← true, Y
$← Range(π)

if X ∈ Dom(π) then bad ← true, Y ← π(X)
Z ← π(X) ← Y

9: X ← M ⊕ R ⊕ L · x−1; Y
$←{0, 1}n

if Y ∈ Range(π) then bad ← true, Y
$← Range(π)

if X ∈ Dom(π) then bad ← true, Y ← π(X)
Z ← π(X) ← Y

return Z

Figure 6: Oracle O. This oracle is adversarially equivalent to oracle Ȯ.

23

Initialization
π(x) ← undef for all x ∈ {0, 1}n; N ← ∅; bad ← false

L
$←{0, 1}n; π(0n) ← L

To respond to query R(ty , N, i, M)
if N ∈ N then R ← π(N ⊕ L)

else { N ← N ∪ {N}; R
$←{0, 1}n

if R ∈ Range(π) then bad ← true
if N ⊕ L ∈ Dom(π) then bad ← true
π(N ⊕ L) ← R }

case ty of
0: Z ← M ⊕ iL ⊕ R

1: X ← M ⊕ iL ⊕ R; Y
$←{0, 1}n

if Y ∈ Range(π) then bad ← true
if X ∈ Dom(π) then bad ← true
π(X) ← Y ; Z ← Y ⊕ iL ⊕ R

2: X ← M ⊕ iL ⊕ R ⊕ L · x−1; Y
$←{0, 1}n

if Y ∈ Range(π) then bad ← true
if X ∈ Dom(π) then bad ← true
Z ← π(X) ← Y

3: X ← M ⊕ iL ⊕ R; Y
$←{0, 1}n

if Y ∈ Range(π) then bad ← true
if X ∈ Dom(π) then bad ← true
Z ← π(X) ← Y

4: C ← M ; Y ← C ⊕ iL ⊕ R; X
$←{0, 1}n

if X ∈ Dom(π) then bad ← true
if Y ∈ Range(π) then bad ← true
π(X) ← Y ; Z ← X ⊕ iL ⊕ R

5: X ← M ⊕ iL; Y
$←{0, 1}n //i �= 1

if Y ∈ Range(π) then bad ← true
if X ∈ Dom(π) then bad ← true
Z ← π(X) ← Y

6: X ← M ; Y
$←{0, 1}n //M �= 0n

if Y ∈ Range(π) then bad ← true
if X ∈ Dom(π) then bad ← true
Z ← π(X) ← Y

7: X ← M ⊕ L · x−1; Y
$←{0, 1}n

if Y ∈ Range(π) then bad ← true
if X ∈ Dom(π) then bad ← true
Z ← π(X) ← Y

8: X ← M ⊕ R; Y
$←{0, 1}n

if Y ∈ Range(π) then bad ← true
if X ∈ Dom(π) then bad ← true
Z ← π(X) ← Y

9: X ← M ⊕ R ⊕ L · x−1; Y
$←{0, 1}n

if Y ∈ Range(π) then bad ← true
if X ∈ Dom(π) then bad ← true
Z ← π(X) ← Y

return Z

Figure 7: Oracle R omits statements following the setting of bad to true. In doing so it returns n random
bits in response to each query.

24

per query. Then, instead of giving the adversary the Zs-values one-by-one, we give the adversary
the vector Z = (Z1, . . . , Zq−1) at the very beginning. The adversary now has a potentially easier
task of finding valid queries Q = (Q1, . . . , Qq−1) that will cause event bad to get set to true. We
call this new game S. It is described in Figure 8.

Initialization
Z1, . . . , Zq−1

$←{0, 1}n

Provide the adversary query answers Z = (Z1, · · · , Zq−1)

Finalization
The adversary provides queries Q = (Q1, . . . , Qq) where Qs = (tys, Ns, is,Ms)
L

$←{0, 1}n; N ← {N1, . . . , Nq}; R(N) $←{0, 1}n for each N ∈ N
for s ← 1 to q − 1 do case tys of

1: Xs ← Ms ⊕ isL ⊕ R(Ns), Ys ← Zs ⊕ isL ⊕ R(Ns)
2: Xs ← Ms ⊕ isL ⊕ R(Ns) ⊕ L · x−1, Ys ← Zs

3: Xs ← Ms ⊕ isL ⊕ R(Ns), Ys ← Zs

4: Xs ← Zs ⊕ isL ⊕ R(Ns), Ys ← Ms ⊕ isL ⊕ R(Ns)
5: Xs ← Ms ⊕ isL, Ys ← Zs

6: Xs ← Ms, Ys ← Zs

7: Xs ← Ms ⊕ L · x−1, Ys ← Zs

8: Xs ← Ms ⊕ R(Ns), Ys ← Zs

9: Xs ← Ms ⊕ R(Ns) ⊕ L · x−1, Ys ← Zs

X ← {{0n}} ∪ {{N ⊕ L : N ∈ N}} ∪ {{X1, . . . , Xq−1}}
Y ← {{L}} ∪ {{R(N) : N ∈ N}} ∪ {{Y1, . . . , Yq−1}}
bad ← (there is a repetition in X) or (there is a repetition in Y)

Figure 8: Definition of game S.

L
$←{0, 1}n; N ← {N1, . . . , Nq}; R(N) $←{0, 1}n for each N ∈ N

for s ← 1 to q − 1 do case tys of
1: Xs ← Ms ⊕ isL ⊕ R(Ns), Ys ← Zs ⊕ isL ⊕ R(Ns)
2: Xs ← Ms ⊕ isL ⊕ R(Ns) ⊕ L · x−1, Ys ← Zs

3: Xs ← Ms ⊕ isL ⊕ R(Ns), Ys ← Zs

4: Xs ← Zs ⊕ isL ⊕ R(Ns), Ys ← Ms ⊕ isL ⊕ R(Ns)
5: Xs ← Ms ⊕ isL, Ys ← Zs

6: Xs ← Ms, Ys ← Zs

7: Xs ← Ms ⊕ L · x−1, Ys ← Zs

8: Xs ← Ms ⊕ R(Ns), Ys ← Zs

9: Xs ← Ms ⊕ R(Ns) ⊕ L · x−1, Ys ← Zs

X ← {{0n}} ∪ {{N ⊕ L : N ∈ N}} ∪ {{X1, . . . , Xq−1}}
Y ← {{L}} ∪ {{R(N) : N ∈ N}} ∪ {{Y1, . . . , Yq−1}}
bad ← (there is a repetition in X) or (there is a repetition in Y)

Figure 9: Definition of game T . Values Z1, . . . , Zq−1 ∈ {0, 1}n are fixed, distinct constants, and valid
queries Q = (Q1, . . . , Qq), where Qs = (tys, Ns, is,Ms), are also fixed.

In game S we have recast the computing of bad. We no longer maintain π, which, in game R,
holds the growing sets Dom(π) and Range(π) and keeps track of the correspondence between points
in the former and points in the latter. We recognize that in game R the association of domain
points to range points was never actually used—all that was needed was to know what points
had been admitted into the domain and what points had been admitted into the range. Thus

25

in game S we keep these as multisets, X and Y, and dispense with π. For s ∈ [1..q − 1], query
Qs = (tys, Ns, is, Ms) and its response Zs brings in one or two points into X (depending on whether
or not the nonce Ns is new) and it brings in one or two point into into Y (again depending on
whether or not the nonce Ns is new). There is one additional point, 0n in X , and there is one
additional point, L, in Y. The flag bad is set to true exactly when there is a repetition in X or
a repetition in Y—exactly what would have happened in game R. To emphasize that a set is a
multiset we put it in double braces.

To show Equation (7) we now aim to show that

Pr[AS sets flag bad] ≤ 4q2/2n (8)

The probability is over the internal coin tosses of A, the random choice of Z1, . . . , Zq−1
$←{0, 1}n,

and the random values L and R(N), for each N ∈ N . Since the adversary A is computationally
unbounded one may assume it to be deterministic, eliminating that first set of coins. We now
eliminate the second set of coins as well.

Consider two ways for flag bad to get set to true in game S: in a Z-collision there is a collision
between two Zs-values, and in a !Z-collision flag bad gets set to true even though there is no
collision among Zs-values. The probability of a Z-collision is

(
q−1
2

)
2−n. We may therefore modify

game S to a game S ′ where Z1, . . . , Zs are selected as random but distinct points in {0, 1}n knowing
that the probability bad getting set to true in game S exceeds the probability of bad getting set
to true in game S ′ by at most

(
q−1
2

)
2−n. It is from this game, S ′, that we eliminate the coins

Z[]1, . . . , Zq−1. Instead of showing that Pr[AS′
sets bad] ≤ δ where the probability is over random

distinct Z = (Z1, . . . , Zq−1), L and R(N), for each N ∈ N , we make the stronger assertion that
for any fixed, distinct Z = (Z1, . . . , Zq−1) and resulting valid queries (Q1, . . . , Qq), the probability
that bad gets set to true is at most δ. We rewrite this game in Figure 9 and call it game T .

We now proceed with a somewhat tedious case analysis to see what is the probability that bad
gets set to true in game T . A point X is put into X due to one of 11 different causes. We identify
these causes with the “type” of the point X. Referring to Figure 8 we see that X may be placed
into X because:

type 0: it is 0n.
type 1–9: it is a point Xs that resulted from a query of type tys ∈ [1..9].
type 10: it is N ⊕ L for some N ∈ N .

Similarly, a point Y in is put into Y due to one of 11 different causes:
type 0: it is L.
type 1–9: it is a point Ys that resulted from a query of type tys ∈ [1..9].
type 10: it is R(N) for some N ∈ N .

Each type-j point X, for j ∈ [0..10], might collide with a type-j′-point X ′, for any j′ ∈ [0..J]. There
are therefore 1+2+· · ·+11 = 66 possible types of collisions —pairings of types of points (X, X ′)—to
consider. There are additional collisions in Y that we will have to account for as well.

We claim that each type of collision occurs with probability at most 2−n.
We begin with (X, X ′) collisions. The X-value has associated to it constants (N, i, M, Z) and

random variables L and R = R(N). The X ′-value has associated to it constants (N ′, i′, M ′, Z ′)
and random variables L and R′ = R(N ′). The validity conditions imply various restrictions on
(N, i, M, Z) and (N ′, i′, M ′, Z ′) that we shall need.

We enumerate the cases for X -collisions (X, X ′). With respect to X -collisions, type-1 points
and type-3 points are treated the same way. We can thus ignore type-3 points apart from their
colliding with type-1 points.

26

(0,0) This type of collision is impossible because there is only one type-0 point.
(1,0) Pr[M ⊕ iL ⊕ R = 0n] = 2−n because L is random and i �= 0.
(1,1) Pr[M ⊕ iL⊕R = M ′ ⊕ i′L⊕R′] = Pr[(i⊕ i′)L = (M ⊕M ′)⊕ (R⊕R′)] = 2−n because either

i �= i′, in which case we rely on the randomness of L, or N �= N ′, in which case we count on
the randomness of R, or i = i′ and N = N ′ and M �= M ′ (by V1) and the probability of a
collision is 0.

(2,0) Pr[M ⊕ iL ⊕ R ⊕ Lx−1 = 0n] = 2−n because L is random.
(2,1) Pr[M ⊕ iL⊕R⊕Lx−1 = M ′ ⊕ i′L⊕R′ ⊕L] = Pr[(M ⊕M ′)⊕ (R⊕R′) = (i⊕ i′ ⊕ x−1L)] ≤

2−n because i ⊕ i′ ⊕ x−1 �= 0 by condition V0 (namely, i ⊕ i′ begins with a zero-bit because
i < 2n−1 while and x−1 begins with a one-bit).

(2,2) Pr[M ⊕ iL ⊕ R ⊕ Lx−1 = M ′ ⊕ i′L ⊕ R′ ⊕ Lx−1] = Pr[(i ⊕ i′)L = (M ⊕ M ′) ⊕ (R ⊕ R′)] ≤
2−n as in case (1, 1).

(3,1) Pr[M ⊕ iL ⊕ R = M ′ ⊕ i′L ⊕ R′] = Pr[(i ⊕ i′)L = (M ⊕ M ′) ⊕ R ⊕ R′] ≤ 2−n because, by
condition V3, N �= N ′ (so R and R′ are independent) or i �= i′.

(4,0) Pr[Z ⊕ iL ⊕ R = 0n] = 2−n because L is random.
(4,1) Pr[Z ⊕ iL⊕R = M ′ ⊕ i′L⊕R′] = Pr[(Z ⊕M ′)⊕ (i⊕ i′)L = R ⊕R′] ≤ 2−n because N �= N ′

or i �= i′ or (N = N ′ and i = i′ and Z �= M ′) by validity condition V2.
(4,2) Pr[Z ⊕ iL ⊕ R = M ′ ⊕ i′L ⊕ R′ ⊕ Lx−1] = Pr[(Z ⊕ M) ⊕ (i ⊕ i′ ⊕ x−1)L = R ⊕ R′] ≤ 2−n

because i ⊕ i′ ⊕ x−1 �= 0 by condition V0.
(4,4) Pr[Z ⊕ iL ⊕ R = Z ′ ⊕ i′L ⊕ R′] = Pr[(Z ⊕ Z ′) ⊕ (i ⊕ i′)L = R ⊕ R′] ≤ 2−n because of

condition V1.
(5,0) Pr[M ⊕ iL = 0n] = 2−n because L is random and i �= 0.
(5,1) Pr[M ⊕ iL = M ′ ⊕ i′L ⊕ R] = 2−n by the randomness of R. Similarly for cases (5,2) and

(5,4).
(5,5) Pr[M ⊕ iL = M ′ ⊕ i′L] = Pr[(M ⊕ M ′) = (i ⊕ i′)L] ≤ 2−n because, by condition V1, i �= i′

(in which case we get 2−n) or i = i′ and M �= M ′ (in which case we get 0).
(6,0) Pr[M = 0n] = 0 by condition V5.
(6,1) Pr[M = M ′ ⊕ i′L ⊕ R′] = 2−n by the randomness of R. Similarly for cases (6,2) and (6,4).
(6,5) Pr[M = M ′ ⊕ i′L] = 2−n by the randomness of L.
(6,6) Pr[M = M ′] = 0 by condition V 1.
(7,0) Pr[M ⊕ L · x−1 = 0n] = 2−n by the randomness of L.
(7,1) Pr[M ⊕L · x−1 = M ′ ⊕ i′L⊕R] = 2−n by the randomness of R. Similarly for cases (7,2) and

(7,4).
(7,5) Pr[M ⊕ L · x−1 = M ′ ⊕ i′L] = Pr[(M ⊕ M ′) = (i′ ⊕ x−1)L] ≤ 2−n because i �= x−1.
(7,6) Pr[M ⊕ L · x−1 = M ′] ≤ 2−n by the randomness of L.
(7,7) Pr[M ⊕ L · x−1 = M ′ ⊕ L · x−1] = 0 by condition V1.
(8,0) Pr[M ⊕ R = 0n] = 2−n by the randomness of R.
(8,1) Pr[M ⊕ R = M ′ ⊕ i′L ⊕ R′] = 2−n by the randomness of L. Similarly for (8,2), (8,4), (8,5)
(8,6) Pr[M ⊕ R = M ′] = 2−n by the randomness of R. Similarly for (8,7).
(8,8) Pr[M ⊕R = M ′ ⊕R′] = Pr[(M ⊕M ′) = (R⊕R′)] ≤ 2−n since, by condition V1, N �= N ′ (in

which case we get 2−n) or N = N ′ and M �= M ′ (in which case we get 0).
(9,0) Pr[M ⊕ R ⊕ Lx−1 = 0n] = 2−n by the randomness of R.
(9,1) Pr[M ⊕R⊕Lx−1 = M ′ ⊕ i′L⊕R′] = Pr[(M ⊕M ′)⊕ (i′ ⊕ x−1)L = (R⊕R′)] ≤ 2−n because

i′ �= x−1 and L is random.

27

(9,2) Pr[M ⊕ R ⊕ Lx−1 = M ′ ⊕ i′L ⊕ R′ ⊕ Lx−1] = Pr[(M ⊕ M ′) ⊕ (R ⊕ R′) = i′L] ≤ 2−n by the
randomness of L.

(9,4) Pr[M ⊕ R ⊕ Lx−1 = Z ′ ⊕ i′L ⊕ R′] = Pr[(M ⊕ Z ′) ⊕ (R ⊕ R′) = (x−1 ⊕ i′)L] ≤ 2−n since
i′ �= x−1.

(9,5) Pr[M ⊕R⊕Lx−1 = i′M ′ ⊕ i′L] ≤ 2−n by the randomness of R. Similarly for (9,6) and (9,7).

(9,8) Pr[M ⊕ R ⊕ Lx−1 = M ′ ⊕ R′] ≤ 2−n by the randomness of L

(9,9) Pr[M ⊕ R ⊕ Lx−1 = M ′ ⊕ R′ ⊕ Lx−1] = Pr[M ⊕ M ′ = R ⊕ R′] ≤ 2−n by condition V1.
(10,0) Pr[N ⊕ L = 0n] = 2−n by the randomness of L.
(10,1) Pr[N ⊕ L = M ′ ⊕ i′L ⊕ R] = 2−n by the randomness of R. Similarly for cases (10,2) and

(10,4).
(10,5) Pr[N ⊕ L = M ′ ⊕ i′L] = Pr[N ⊕ M ′ = (i′ ⊕ 1)L] = 2−n because i �= 1 by condition V4.
(10,6) Pr[N ⊕ L = M ′] = 2−n by the randomness of L.
(10,7) Pr[N ⊕ L = M ′ ⊕ Lx−1] = Pr[N ⊕ M ′ = (1 ⊕ x−1)L] = 2−n by the randomness of L.
(10,8) Pr[N ⊕ L = M ′ ⊕ R′] = 2−n by the randomness of R′. Similarly for case (10,9).
(10,10) Pr[N ⊕ L = N ′ ⊕ L] = 0 because N �= N ′.

Since there are at most 1 + (q − 1) + (q − 1) = 2q − 1 points in the multiset X we conclude that
the probability of an X collision is at most

(
2q−1

2

)
2−n ≤ 2q2/2n.

Now we look at collisions in Y. These are fewer cases because the assignments for queries of 1
and 4 are identical (let 1 be the representative), as are the assignments for queries of types 2, 3, 5, 6,
7, 8, 9 are identical (let 2 be the representative). Recall that we earlier assumed that Z1, . . . , Zq−1

values are distinct, but we have still to account for the associated collision probability.

(0,0) This type of collision is impossible because there is only one is impossible because there is
only one type-0 point.

(1,0) Pr[Z ⊕ iL ⊕ R = L] = 2−n by the randomness of R.
(1,1) Pr[Z ⊕ iL ⊕ R = Z ′ ⊕ i′L ⊕ R′] = Pr[(Z ⊕ Z ′) ⊕ (i ⊕ i′)L = R ⊕ R′] ≤ 2−n because either

i �= i′ or N �= N ′ or Z �= Z ′.
(2,0) Pr[Z = L] = 2−n because L is random.
(2,1) Pr[Z = Z ′ ⊕ i′L ⊕ R′] = 2−n by the randomness of R.
(2,2) Pr[Z ⊕ Z ′] = 2−n (where these collisions are considered before fixing Z-values).
(10,0) Pr[R = L] = 2−n.
(10,1) Pr[R = M ′ ⊕ i′L ⊕ R′ by the randomness of L.
(10,2) Pr[R = Z] = 2−n by the randomness of R.
(10,10) Pr[R = R′] = 2−n since R and R′ correspond to distinct N and N ′.

Overall, we get a probability of a Y collision (including the initial assignment to Z) of at most(
2q−1

2

)
2−n ≤ 2q2/2n. The probability that bad gets set in game S is thus at most 4q2/2n, completing

the proof of Lemma 4.

28

