The AuthA Protocol for Password-Based Authenticated Key Exchange

Contribution to IEEE P1363, and its study group looking at new projects

Mihir Bellare* Phillip Rogaway'

March 14, 2000

Abstract

We suggest a simple protocol, AuthA, for the problem of password-based authenticated key
exchange (AKE). We assume the asymmetric trust model: the client A has a password pwa and
the server B has a particular one-way function of this, pwh. Two flows of the protocol comprise
a Diffie-Hellman key exchange, using a group on which the Diffie-Hellman problem is hard. At
least one of these two flows is encrypted using the key pwb. Then an authentication tag, AuthA,
is flowed from the client to the server. This tag is just the hash of some values easily computable
by both parties. The server checks the received tag prior to accepting the session key.

The protocol just sketched provides security against dictionary attack, and it ensures for-
ward secrecy and client-to-server authentication. Server-to-client authentication can be added
cheaply, by flowing a second authentication tag, AuthB, from server to client.

Like most work in this area, our protocol springs from ideas of Bellovin and Merritt [BM92,
BM93]. There has been a large body of other follow-on to this, including protocol suggestions
by [STW95, Ja96, Ja97, Lu97, MS99, Wu98, RCW98, BESW00, BMP00]. But AuthA would
seem to be somewhat simpler and more efficient than prior suggestions.

Rigorous proofs and definitions in this domain turn out to be extremely complex, and a proof
of security (in the random-oracle model or the ideal-cipher model, under the Diffie-Hellman
assumption) is the subject of ongoing work by the authors. Definitions appear in [BPRO0], as
does a proof for the symmetric protocol at the core of what is described here.

* Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,
CA 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://wuw-cse.ucsd.edu/users/mihir.

* Dept. of Computer Science, Engineering II Bldg., University of California at Davis, Davis, CA 95616, USA.
E-mail: rogaway@cs.ucdavis.edu. URL: http://www.cs.ucdavis.edu/~rogaway.

1 Introduction

SETTING. Consider the scenario in which there are two entities—a client A and a server B—
where A holds a password Password and B holds a function of this password, f(Password). The
parties would like to engage in a conversation at the end of which each holds a session key, sk, which
is known to nobody but the two of them. There is present an active adversary whose capabilities
include enumerating, off-line, the words in a dictionary D, this dictionary being rather likely to
include Password. In a protocol we deem “good” the adversary’s chance to defeat protocol goals
will depend on how much she interacts with protocol participants—it won’t significantly depend
on her expenditure of computation.

This lovely problem, password-based authenticated key exchange (AKE), comes out of two pa-
pers of Bellovin and Merritt [BM92, BM93]. These authors brought forth the problem and gave the
first proposed solutions. There have been a great many subsequent suggestions for password-based
AKE protocols, including the work of Steiner, Tsudik and Waidner [STW95], Jablon [Ja96, Ja97],
Lucks [Lu97], Wu [Wu98], Roe, Christianson and Wheeler [RCW98], MacKenzie and Swaminathan
[MS99], Boyko, MacKenzie and Patel [BMPO00], and Bellare, Pointcheval and Rogaway [BPROO].
Further related work includes Shoup [Sh99] and Halevi and Krawczyk [HK99]. Gong, Lomas, Need-
ham, and Saltzer [GLNS93] were also involved early in this topic, though they focus on a richer
trust model.

The purpose of this note is to suggest yet another protocol for this problem. A separate note,
currently being written, encourages standardization in this domain and discusses what one should
look for in a protocol for password-based AKE.

ProToCcoL AUTHA. The protocol we describe, which we call AuthA, seems to provide the same
security properties as the best prior suggestions, but it does so more simply, at lower cost in com-
munications, and with greater versatility. The method is based on the encrypted Diffie-Hellman
key exchange of Bellovin and Merritt. There are many choices possible for the underlying group.
When it is an appropriate elliptic curve group, the communications cost for AuthA is as little as
two flows of (say) 160 bits and one flow of (say) 64 bits. The client and server each perform three
exponentiations (multiplications in the language for elliptic curve groups), with trivial computa-
tional overhead beyond that. For both client and server, one of these operations may be done
off-line. See Section 2 for a description of the protocol.

FURTHER CHARACTERISTICS OF AUTHA. Let us single out some further characteristics of the
protocol AuthA.

1. The protocol is in the asymmetric trust model (the client key is different from the server key,
with the former being hard to compute from the latter.) If desired, the symmetric model can
also be supported by a trivial protocol change.

2. This adversary won’t be able to obtain any information about the distributed session key
more effectively than by interactively trying the most likely passwords, in order (security
against “dictionary attacks”).

3. Security is provided against an active adversary who can direct multiple sessions (the “arbi-
trary interleaving model”).

4. Learning already distributed session keys won’t help the adversary (security against “Denning-
Sacco attack”).

5. The distributed session key is not used within the protocol. (This is desirable because pre-
mature use of the session key destroys any chance for composibility and provable-security
results.)

6. If the adversary learns pwa or pwb (the client’s and server’s password-derived key, respec-
tively), still the adversary won’t be able to ascertain anything about already distributed
session keys (“forward secrecy”).

7. Even after learning pwa or pwb, the adversary won’t be able to ascertain anything about
session keys if the adversary only eavesdrops.

8. If the adversary learns pwb for server B, the adversary will still have to perform a dictionary
attack in order to impersonate A or a server B’ # B (the point of the asymmetric model).

9. The protocol is very simple, and stems from well-known techniques.
10. The protocol supports a variety of “flow architectures” (that is, who speaks to whom when).

11. A variety of groups can be used, including both modular exponentiation and elliptic-curve
methods.

12. The protocol always provides client-to-server authentication. It optionally provides server-
to-client authentication.

We believe that protocol AuthA meets the definitions of [BPR00], with reasonable bounds, and
under reasonable assumptions. However, these definitions are too complicated to explain here.
Let us move on now to describe the protocol.

2 Description of AuthA

2.1 Preliminaries

Protocol AuthA involves two entities, A and B. We refer to A as the client and we refer to B
as the server. Each is named by a string and, for notational simplicity, we will not distinguish in
notation between the entity and the string which names it.

There is an underlying client-password Password of unknown quality. Client A has a secret
pwa which is derived from Password. Server B has a secret pwb which is derived from pwa. How
pwa and pwb are determined from Password is defined in Section 2.2. It is not our concern how
A and B came to hold pwa and pwb, but likely Password was typed in by a human user, client A
is executing on behalf of that user, and pwb was formerly installed at the server B with which
the client will communicate. It is allowed that there be multiple clients or servers who hold keys
derived from the same underlying user password.

Operations will be performed in a cyclic group G. We will denote the group operation multi-
plicatively, so that applying the group operation to an element X a total of ¢ — 1 times is denoted
by exponentiation: X*. The group is assumed to be given by a generator (g). We let ¢ = |G|. We
assume that G, g and ¢ are well-known, and that there is a fixed representation of group elements
as binary strings. There must be a way to efficiently go from group elements to binary strings,
and from binary strings to group elements. We will interchangeably write group elements and the
strings which represent them. The group G should be a group on which the Diffie-Hellman problem

is hard. One possibility is G = Z,, where p is a large prime number. A second possibility is that

G is an appropriate subgroup of Z;. A third possibility is that G is an appropriate elliptic curve
group, with well-known parameters. This last case can have efficiency advantages.

Protocol AuthA uses two types of primitives beyond the group operation. The first is a mask-
generation function: H and H'. These map strings of effectively arbitrary length to strings of
whatever length we need. The second primitive we need is an encryption function: £' and £2. These
map group elements into strings under the control of a key which is again a group element. Beware
that the properties that the encryption function must possess are different from the customary
ones for an encryption scheme. See Section 1 for a description of some possible instantiations of &'
and £2.

We summarize the notation introduced so far:

A The client, or the name of the client.
B The server, or the name of the server.
G The underlying group.
q The size of this group.
Password The client’s password.
pwa The Password-derived key known by the client.
This is an element of G.
pwb The pwa-derived key known by B (and A). This is an element of G.

H, H Mask-generation functions. Like a cryptographic hash function,
but the output-length is whatever is convenient.
&L, &2 Encryption functions for use by A and B, respectively.

We will describe two “versions” of protocol AuthA. The “UA version” (unilateral authentica-
tion) is slightly more efficient than the “MA version” (mutual authentication). The UA version
provides client-to-server but not server-to-client authentication. The MA version provides both.

Section 2.3 describes what messages need to be exchanged for our protocol, but it is open-ended
about who speaks first. This is because the application domain may involve special constraints
or considerations. For example, [BESWO00] explains that in a password-based authenticated key
exchange for TLS (the standard corresponding to SSL) it may be desirable for the server to send
the first relevant flow, and that this flow should not depend on the client’s identity. Separating
what messages are exchanged from when they are exchanged, is an approach used to achieve this
versatility. We are also open-ended about who encrypts, and how. This is done by speaking in
terms of two encryption functions, £! and £2, one of which may be instantiated by the identity
function.

Our protocol description is not intended as a bit-level definition. For an area like password-
based AKE, where implementation considerations vary a lot, starting with a higher-level framework
would seem to be best.

2.2 Deriving keys pwa and pwb
Convert client-password Password, which is a string, into group elements pwa and pwb as follows:

pwa = the group element represented by H'(A || B || Password)
pwb = g

pwa

To carry out our protocol client A will use pwa and pwb, while server B will use pwb.

2.3 Message exchanges

THE ENCRYPTED DH KEY EXCHANGE. The following two steps can be performed in any order.

e Client A chooses a random number z € {1,...,q}, computes X = g%, and then computes
X* = S;Wb(X). Client A sends X* to the server.

e Server B chooses a random number y € {1,...,q}, computes Y = ¢¥, and then computes
Y* = Sgwb(Y). Server B sends Y* to the server.

Other information (such as the sender’s name) may accompany the flows. The parties then continue
as follows:

e Client A receives Y*, computes Y = D?)Wb(Y_*), and then computes DiffieHellmanKeyA = Y".

e Server B receives X*, computes X = D},Wb(X_*), and then computes DiffieHellmanKeyB =
XY

The value of X* might differ from X*, and the value of Y* might differ from Y *, due to the behavior
of an adversary.

AUTHENTICATING AT LEAST A TO B, AND DERIVING THE SESSION KEY. Client A computes the
following;:

MasterKeyA = H(A| B | X || Y || DiffieHellmanKeyA)
SessionKeyA = H(MasterKeyA || 0)
AuthA = H(MasterKeyA || YP"?))
[AuthBcheck = H(MasterKeyA || 2)]

The value AuthBcheck need only be calculated for the MA version of the protocol.
Server B likewise computes the following:

MasterKeyB = H(A| B || X | Y || DiffieHellmanKeyB)
SessionKeyB = H(MasterKeyB || 0)
AuthAcheck = H(MasterKeyB || pwbY)

[AuthB = H(MasterKeyB || 2)]

The value AuthB need only be calculated for the MA version of the protocol.

Client A flows AuthA to B. Server B receives flow AuthA. Server B accepts session key
SessionKeyB if and only if AuthA = AuthAcheck.

In the MA version of the protocol the server B flows AuthB to A. Client A receives AuthB
and accepts session key SessionKeyA if and only if AuthB = AuthBcheck.

In the UA version of the protocol the server B does not flow AuthB. In this version of the
protocol A accepts session key SessionKeyA as soon as it is calculated.

It is not clear to the authors that the symmetric model should be supported. If that is desired,
allow that AuthA = H(MasterKeyA || 1) and AuthAcheck = H(MasterKeyB || 1).

2.4 Mapping the message exchanges into protocol flows

The sequences of flows depicted in Figure 1 capture various possibilities for mapping the message
exchanges we have described into protocol flows. We comment that the name of the sender likely
accompanies the first flow, but we regard this as an element of the implementation and note that,
in general, further information may accompany each flow.

A X" B A X" B
y* Y* || AuthB
AuthA AuthA

(a) (b)

A Y* B A Y* B
X* || AuthA X* || AuthA
AuthB

(c) (d)

Figure 1: Possible flow sequences in protocol AuthA. Scenarios (a) and (b) are client-initiated.
Scenarios (c) and (d) are server-initiated. All four scenarios provide client-to-server authentication.
Scenarios (b) and (d) provide server-to-client authentication as well.

2.5 Instantiating the primitives

INSTANTIATING H AND H'. These functions are easily instantiated, using a cryptographic hash
function, by applying techniques well-known in P1363. We comment that there is reason to arrange
H' such that its computation is intentionally slow. In particular, doing this slows down a dictionary
attack by a dishonest server or by an adversary who has obtained the server’s database.

INSTANTIATING £' AND £2. We believe that security can be proven when £ € {£!, £2} is realized
in one of the following ways, and the underlying group is appropriately chosen:

e By an ideal cipher, mpu(2).
e By &pwp(z) = 2 - H(pwb) where H is a random oracle.

e By Epwi(z) = (r, - H(r || pwb)), where H is a random oracle and r is a random string of
some appropriate length.

The second of these possibilities is the simplest to concretely instantiate: you apply the mask
generation function to pwb, interpret the result as a group element, and multiply by the plaintext.
Instantiations which more directly imitate an ideal cipher are also possible. We will give more
feedback on desirable instantiations of £, £2 in the future. We warn that incorrect instantiation of

the encryption primitive, including instantiates which are quite acceptable in other contexts, can
easily destroy the protocol’s security.

IDENTITY-INSTANTIATION OF ONE ENCRYPTION FUNCTION. Referring to Figure 1, scenario (a): it
is acceptable for X* = X, assuming that £ is a proper encryption function. In scenario (b): it
is acceptable for Y* = Y, assuming that £' is a proper encryption function. In scenario (c): it is
acceptable for X* = X, assuming that £2 is a proper encryption function. In scenario (d): it is
acceptable for X* = X, assuming that £2 is a proper encryption function.

2.6 Comments on known limitations

We’d like to be clear about the following limitations on AuthA:
1. If the server is compromised a dictionary attack is unavoidable.

2. We have not yet worked out a proof for security. This is extremely complex. We are working
on it.

3. We do not yet fully understand the assumptions required of the encryption scheme in order
to get a proof of security. We are hoping that multiplication by H(pwb) works out.

4. Any valid security proof in this domain is likely to be so complicated as to make verification
rather difficult. The protocol is simple, but the definitions and analysis are not.

References

[BCK98| M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and
Analysis of Authentication and Key Exchange Protocols. Proc. of the 30th STOC.
ACM Press, New York, 1998.

[BPROO] M. Bellare, D. Pointcheval and P. Rogaway. Authenticated Key Exchange Secure
Against Dictionary Attack. To appear in Eurocrypt 2000.

[BR94] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. CRYPTO
’93, LNCS 773, pages 232-249. Springer-Verlag, Berlin, 1994.

[BR95] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: the Three
Party Case. Proc. of the 27th STOC. ACM Press, New York, 1995.

[BM92] S. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols
Secure against Dictionary Attacks. Proc. of the Symposium on Security and Privacy,
pages 72-84. IEEE, 1992.

[BM93] S. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-Based
Protocol Secure against Dictionary Attacks and Password File Compromise. Proceed-

ings of the 1st Annual Conference on Computer and Communications Security, ACM,
1993.

[Bo99] M. Boyarsky. Public-Key Cryptography and Password Protocols: The Multi-User
Case. Proceedings of the 6th Annual Conference on Computer and Communications
Security, ACM, 1999.

[BMP00]

[BESWOO]

[GLNS93]

[HK99]

[Ja96]

[Ja97]

[Lu97]

[MS99]

[MVO96]

[RCWOS]

[Sh]

[STW95]

[Wu9s]

V. Boyko, P. MacKenzie and S. Patel. Provably Secure Password Authenticated Key
Exchange Using Diffie-Hellman. To appear in Eurocrypt 2000.

P. Buhler, T. Eirich, M. Steiner, M. Waidner. Secure Password-Based Cipher Suite for
TLS. Proceedings of Network and Distributed Systems Security Symposium. Febru-
ary 2000.

L. Gong, M. Lomas, R. Needham, and J. Saltzer. Protecting Poorly Chosen Se-
crets from Guessing Attacks. IEEE Journal on Selected Areas in Communications,
11(5):648-656, June 1993.

S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols. Febru-
ary 1999. Earlier version in Proc. of the 5th CCS. ACM Press, New York, 1998.

D. Jablon. Strong Password-Only Authenticated Key Exchange. ACM Computer Com-
munications Review, October 1996.

D. Jablon. Extended Password Key Exchange Protocols Immune to Dictionary At-
tacks. Proc. of WET-ICE ’97, pages 248-255. IEEE Computer Society, June 1997.

S. Lucks. Open Key Exchange: How to Defeat Dictionary Attacks Without Encrypting
Public Keys. Proc. of the Security Protocols Workshop, LNCS 1361. Springer-Verlag,
Berlin, 1997.

P. MacKenzie and R. Swaminathan. Secure Authentication with a Short Secret.
Manuscript. November 2, 1999. Earlier version as Secure Network Authentication
with Password Identification. Submission to IEEE P1363a. August 1999.

Available from http://grouper.ieee.org/groups/1363/addendum.html

A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography.
CRC Press, 1996.

M. Roe, B. Christianson and D.Wheeler. Secure Sessions from Weak Secrets. Technical
report from University of Cambridge and University of Hertfordshire, 1998. Submitted
to Operating Systems Review.

V. Shoup. On Formal Models for Secure Key Exchange (version 4). Manuscript,
November 15, 1999. Proceedings version in ACM Computer and Communications Se-
curity, 1999.

M. Steiner, G. Tsudik and M. Waidner. Refinement and Extension of Encrypted Key
Exchange. Operating Systems Review, vol. 29, Iss. 3, pp. 22-30 (July 1995).

T. Wu. The Secure Remote Password Protocol. Proceedings of the Internet Society
Symposium on Network and Distributed System Security, pages 97-111, 1998.

