
Bucket Hashing and its Application to
Fast Message Authentication

Phillip Rogaway
Department of Computer Science, University of California,

Davis, CA 95616. e-mail: rogaway@cs.ucdavis.edu

October 13, 1997

Earlier version appears in Advances in Cryptology – CRYPTO ’95. This is the full paper.

Abstract. We introduce a new technique for constructing a family of universal hash functions.
At its center is a simple metaphor: to hash a string x, cast each of its words into a small
number of buckets; xor the contents of each bucket; then collect up all the buckets’ contents.
Used in the context of Wegman–Carter authentication, this style of hash function provides a
fast approach for software message authentication.

Key words: Cryptography, Hashing, Message authentication codes, Universal Hashing.

1 Introduction

Message authentication. Message authentication is one of the most common cryptographic
aims. The setting is that two parties, a signer S and verifier V , share a (short, random, secret)
key, k. When S wants to send V a message, x, S computes for it a message authentication code
(MAC), σ ← MACk(x), and S sends V the pair (x, σ). On receipt of (x′, σ′), verifier V checks that
MACVk(x′, σ′) = 1.

To describe the security of a message authentication scheme, an adversary E is given an
oracle for MACk(·). The adversary is declared successful if she outputs an (x∗, σ∗) such that
MACVk(x∗, σ∗) = 1 but x∗ was never asked of the MACk(·) oracle. For a scheme to be “good,”
reasonable adversaries should rarely succeed.

Software-efficient MACs. In the current computing environment it is often necessary to
compute MACs frequently and over strings which are commonly hundreds to thousands of bytes
long. Despite this, there will usually be no special-purpose hardware to help out: MAC generation
and verification will need to be done in software on a conventional workstation or personal computer.
So to reduce the impact of message authentication on the machine’s overall performance, and to
facilitate more pervasive use of message authentication, we need to develop faster techniques. This
paper provides one such technique.

Two approaches to message authentication. The fastest software MACs in common use
today are exemplified by MACk(x) = h(k ‖x ‖ k), with h a (software-efficient) cryptographic hash
function, such as h =MD5 [22]. Such methods are described in [30]. The algorithm HMAC [3]

1

represents the most refined algorithm in this direction. Schemes like these might seem to be about
as software-efficient as one might realistically hope for: after all, we are computing one of the fastest
types of cryptographic primitives over a string nearly identical in length to that which we want
to authenticate. But it is well-known that this reasoning is specious: in particular, Wegman and
Carter [32] showed back in 1981 that we do not have to “cryptographically” transform the entire
string x.

In the Wegman–Carter approach communicating parties S and V share a secret key k = (h, P)
which specifies both an infinite random string P and a function h drawn randomly from a strongly
universal2 family of hash functions H. (Recall that H is strongly universal2 if for all x �= x′, the
random variable h(x) ‖ h(x′), for h ∈ H, is uniformly distributed.) To authenticate a message x,
the sender transmits h(x) xor-ed with the next piece of the pad P . The thing to notice is that x is
transformed first by a non-cryptographic operation (universal hashing) and only then is it subjected
to a cryptographic operation (encryption), now applied to a much shorter string.

A standard cryptographic technique —the use of a pseudorandom function family, F— allows S
and V to use a short string a in lieu of the infinite string P . Signer S now MACs the ith message,
xi, with MAC(h,a)(xi) = (i, Fa(i) ⊕ h(xi)).

As it turns out, to make a good MAC it is enough to construct something weaker than a strongly
universal2 family. Carter and Wegman [10] also introduced the notion of an almost universal2 family,
H. This must satisfy the weaker condition that Prh∈H[h(x) = h(x′)] is small for all x �= x′. As
observed by Stinson [27], an almost universal2 family can easily be turned into an almost strongly
universal2 family by composing the almost universal2 family with an almost strongly universal2
one. In computing h2(h1(x)), where h1 is drawn from an almost universal2 family and h2 is drawn
from a strongly universal2 one, the bulk of the time will typically be spent in computing h1(x),
since x may be a long string but h1(x) will be a short string, and so h2 won’t have much work left
to do. Thus the problem of finding a fast-to-compute MAC has effectively been reduced to finding
a family of almost universal2 hash functions whose members are fast to compute.

Bucket hashing. This paper provides a new almost universal2 family of hash functions. We call
our hash family bucket hashing. It is distinguished by its member functions being extremely fast to
compute—as few as 6 elementary machine instructions per word (independent of word size) for the
version of bucket hashing we concentrate on in this paper. Putting such a family of hash functions
to work in the framework described above will give rise to an efficient software MAC.

A bucket hash MAC will involve significant overhead beyond the time which is spent bucket
hashing. For one thing, the output of bucket hashing is too long to use directly; it will need to
be composed with an additional layer of hashing. All the same, one can compare the instruction
count mentioned above to that of MD5, which uses ≈ 36 instructions per 32-bit word [7], and see
that there is potential for substantial efficiency gains even if the true cost of using bucket hashing
substantially exceeds 6 instructions/word.

A bucket hash MAC has advantages in addition to speed. Bucket hashing is a linear function
—it is a special case of matrix multiplication over GF(2)— and this linearity yields many pleasant
characteristics for a bucket hash MAC. In particular, bucket hashing is parallelizable, since each
word of the hash is just the xor of certain words of the message. Bucket hashing is incremental in
the sense of [4] with respect to both append and substitute operations. Finally, the only processor
instructions a bucket hash needs are word-aligned load, store, and xor; thus a bucket hash MAC
is essentially endian-indifferent.

In a bucket hash MAC —indeed in any Wegman-Carter MAC— one is afforded the luxury
of conservative (slow) cryptography even in a MAC whose software speed has been aggressively

2

optimized. This is because one arranges that the time complexity for the MAC is dominated by
the non-cryptographic work.

One might worry that the linearity or simple character of bucket hashing might give rise to
some “weakness” in a MAC which exploits it. But it does not. A bucket hash MAC, like any
MAC which follows the Wegman–Carter paradigm, enjoys the assurance advantages of provable
security. Moreover, this provable security is achieved under extremely “tight” reductions, so that
an adversary who can successfully break the MAC can break the underlying cryptographic primitive
(the pseudorandom function F) with essentially identical efficiency.

Previous work. The general theory of unconditional authentication was developed by Simmons;
see [26] for a survey. As we have already explained, the universal-hash-and-then-encrypt paradigm
is due to Wegman and Carter [32]. The idea springs from their highly influential [10].

In Wegman–Carter authentication the size of the hash family corresponds to the number of bits
of shared key—one reason to find smaller families of universal hash functions than those of [10, 32].
Siegel (for other reasons) [25] constructs families of fast-to-compute hash functions which use few
bits of randomness and have small description size. Stinson finds small hash families in [27], and
also gives general results on the construction of universal hash functions. We exploit some of these
ideas here. Subsequent improvements (rooted in coding theory) came from Bierbrauer, Johansson,
Kabatianskii and Smeets [6], and Gemmell and Naor [12].

The above work concentrates on universal hash families and unconditionally-secure authenti-
cation. Brassard [9] first connects the Wegman–Carter approach to the complexity-theoretic case.
The complexity-theoretic notion for a secure MAC is a straightforward adaptation of the definition
of a digital signature due to Goldwasser, Micali and Rivest [14]. Their notion of an adaptive cho-
sen message attack is equally at home for defining an unconditionally-secure MAC. Thus we view
work like ours as making statements about unconditionally-secure authentication which give rise
to corresponding statements and concrete schemes in the complexity-theoretic tradition. To make
this translation we regard a finite pseudorandom function (PRF) as the most appropriate tool.
Bellare, Kilian and Rogaway [5] were the first to formalize such objects, investigate their usage in
the construction of efficient MACs, and suggest them as a desirable starting point for practical,
provably-good constructions. Finite PRFs are a refinement of the PRF notion of Goldreich, Gold-
wasser and Micali [13] to take account of the fixed lengths of inputs and outputs in the efficient
primitives of cryptographic practice.

Zobrist [33] gives a hashing technique which predates [10] and essentially coincides with one
method from [10]. Arnold and Coppersmith [2] give an interesting hashing technique which allows
one to map a set of keys ki into a set of corresponding values vi using a table only slightly bigger
than

∑
i vi. The proof of our main technical result is somewhat reminiscent of their analysis.

Lai, Rueppel and Woolven [19], Taylor [28], and Krawczyk [18] have all been interested in
computationally efficient MACs. The last two works basically follow the Wegman–Carter paradigm.
In particular, Krawczyk obtains efficient message authentication codes from hash families which
resemble traditional cyclic redundancy codes (CRCs), and matrix multiplication using Toeplitz
matrices. Though originally intended for hardware, these techniques are fast in software, too. We
recall Krawczyk’s CRC-like hash in Section 2.

An earlier version of this paper appeared as [23].

Subsequent work. Shoup [24] has carried out implementations and analysis of hash function
families akin to polynomial evaluation. Such hash functions make good candidates for “second level
hashing” when a speed-optimized hash function is applied to a long string. The techniques are also

3

fast enough to be gainfully employed all by themselves.
Halevi and Krawczyk describe a family of hash functions, MMH, which achieves extremely

impressive software speeds on some modern platforms [15]. To achieve such performance one needs
the underlying hardware to be able to quickly multiply two 32-bit integers to form a 64-bit product.

Johansson investigates how to reduce the size of the key for bucket hashing, which, in the
current paper, is quite enormous [16].

Organization. We continue in Section 2 by reviewing the definition and basic properties of
universal hash families. Sections 3 and 4 give our main result. In the former we formally define
our family of hash functions, B; we state a theorem which upper bounds the collision probability
of B; and we discuss the efficiency of computing functions drawn from B. In the latter we prove
our main theorem, relegating one lemma to Appendix A. Section 5 reviews the Wegman-Carter
approach for making a MAC out of a family of universal hash functions, while Section 6 gives a
concrete example of this and discusses some of the difficulties involved in constructing a good MAC
using bucket hashing. Section 7 considers some extensions and directions for our work.

2 Preliminaries

This section provides background drawn from Carter and Wegman [10, 32], Stinson [27], and
Krawczyk [18]. Proofs are omitted.

A family of hash functions is a finite multiset H of string-valued functions, each h ∈ H having
the same nonempty domain A ⊆ {0, 1}∗ and range B ⊆ {0, 1}b, for some constant b.

Definition 1 [10] A family of hash functions H = {h : A → {0, 1}b} is ε-almost universal2,
written ε-AU2, if for all distinct x, x′ ∈ A, Pr

h∈H
[
h(x) = h(x′)

] ≤ ε. The family of hash functions H
is ε-almost XOR universal2, written ε-AXU2, if for all distinct x, x′ ∈ A, and for all c ∈ {0, 1}b,
Pr

h∈H
[
h(x)⊕h(x′) = c

] ≤ ε.

The value of ε = maxx �=x′{Prh[h(x) = h(x′)]} is called the collision probability. For us, the principle
measures of the worth of an AU2 hash family are how small is its collision probability and how fast
can one compute its functions.

To make a fast MAC one may wish to “glue together” various universal hash families. The
following are the basic methods for doing this.

First we need a way to make the domain of a hash family bigger. LetH = {h : {0, 1}a → {0, 1}b}.
By Hm = {h : {0, 1}am → {0, 1}bm} we denote the family of hash functions whose elements are the
same as in H but where h(x1x2 · · ·xm), for |xi| = a, is defined by h(x1) ‖ h(x2) ‖ · · · ‖ h(xm).

Proposition 2 [27] If H is ε-AU2 then Hm is ε-AU2.

Sometimes one needs a way to make the collision probability smaller. Let H1 = {h : A→ {0, 1}b1}
and H2 = {h : A→ {0, 1}b2} be families of hash functions. By H1&H2 = {h : A→ {0, 1}b1+b2} we
mean the family of hash functions whose elements are pairs of functions (h1, h2) ∈ H1 × H2 and
where (h1, h2)(x) is defined as h1(x) ‖ h2(x).

Proposition 3 If H1 is ε1-AU2 and H2 is ε2-AU2 then H1&H2 is ε1ε2-AU2.

4

Next is a way to make the image of a hash function shorter. Let H1 = {h : {0, 1}a → {0, 1}b} and
H2 = {h : {0, 1}b → {0, 1}c} be families of hash functions. Then by H2 ◦ H1 = {h : {0, 1}a →
{0, 1}c} we mean the family of hash function whose elements are pairs of functions (h1, h2) ∈ H1×H2

and where (h1, h2)(x) is defined as h2(h1(x)).

Proposition 4 [27] If H1 is ε1-AU2 and H2 is ε2-AU2 then H2 ◦ H1 is (ε1 + ε2)-AU2.

Composition can also be used to turn an AU2 family H1 whose members hash A to B, and an
AXU2 family H2 whose members hash B to C, into an AXU2 family H2 ◦H1 whose members hash
A to C. If B = {0, 1}b for some small b, and elements of H2 are fast to compute on this domain,
we have effectively “promoted” H1 from being AU2 to AXU2 at little cost.

Proposition 5 [27] Suppose H1 = {h : A → B} is ε1-AU2, and H2 = {h : B → C} is ε2-AXU2.
Then H2 ◦ H1 = {h : A→ C} is (ε1 + ε2)-AXU2.

We end this section with a sample construction for a software-efficient AXU2 hash family, this
one due to Krawczyk [18]. Let n, � ≥ 1 be numbers and let m ∈ {0, 1}n� be the string we wish
to hash. We can view m as a polynomial m(x) over GF(2) of degree n� − 1 (or less) by viewing
the bits of m as the coefficients of xn�−1, . . . , x2, x, 1. We then define a family of hash functions
K[n, �] = {h : {0, 1}n� → {0, 1}�} as follows. A random hash function h ∈ K is described by
a random irreducible polynomial h over GF(2) of degree �. To hash m using h we compute the
degree �− 1 (or less) polynomial m(x) ·x� mod h(x). Viewing the coefficients of this polynomial as
a string of length � gives us the hash function h evaluated at m.

Theorem 6 [18] K[n, �] is n�+�
2�−1 -AXU2.

The efficiency with which hash functions h ∈ K can be computed has been studied by Shoup [24]
(who also looked at related hash families). These functions are fast to compute— about 6 in-
structions/byte on a 32-bit machine, assuming � = 64, and ignoring the time to “preprocess” the
function h. Still, for sufficiently long messages, it will be faster to use the bucket hashing technique
from the following section.

We comment that there are many other well-known techniques for universal hashing, such as
the linear congruential hash (modulo a prime) [10], the shift register hash [31], or the Toeplitz
matrix hash [18].

3 Bucket Hashing

Let X = X1 . . . Xn be a string, partitioned into n words. To hash X using bucket hashing we
will scatter the words of X into N “buckets,” then XOR the contents of each bucket, and then
concatenate the bucket contents.

Some ways of scattering the words of X work out better than others. In this paper we analyze
a particular bucket hashing scheme, which we denote by B. The scheme will depend on parameters
n, N, w. Scheme B will scatter each word into three buckets.

5

3.1 Defining the bucket hash family B
Fix a word size w ≥ 1 and parameters n ≥ 1 and N ≥ 3. We will be hashing from domain
D = {0, 1}wn to range R = {0, 1}wN . As a typical example, take w = 32, n = 1024, and N = 140.
If we want to be explicit, such a family would be denoted B[32, 1024, 140]. For the scheme we
describe to make sense we require that

(N
3

) ≥ n.
Each hash function h ∈ B is specified by a length-n list of cardinality-3 subsets of {1, . . . , N}.

We denote this list by h = h1 · · ·hn. The three elements of hi are written hi = {hi1, hi2, hi3}.
Choosing a random h from B[w, n, N] means choosing a random length-n list of three-element

subsets of {1, . . . , N} subject to the constraint that no two of these sets are the same. That is, we
insist that hi �= hj for all i �= j.

Let h ∈ B and let X = X1 · · ·Xn be the string we want to hash, where each |Xi| = w. Then h(X)
is defined by the following algorithm. First, for each j ∈ {1, . . . , N}, initialize Yj to 0w. Then, for
each i ∈ {1, . . . , n} and k ∈ hi, replace Yk by Yk ⊕Xi. When done, set h(X) = Y1 ‖ Y2 ‖ · · · ‖ YN .

In pseudocode we have:

for j ← 1 to N do Yj ← 0w

for i← 1 to n do
Yhi1 ← Yhi1 ⊕Xi

Yhi2 ← Yhi2 ⊕Xi

Yhi3 ← Yhi3 ⊕Xi

return Y1 ‖ Y2 ‖ · · · ‖ YN

The computation of a h(X) can be envisioned as follows. We have N buckets, each initially empty.
The first word of X is thrown into the three buckets specified by h1. The second word of X is
thrown into the three buckets specified by h2. And so on, with the last word of X being thrown into
the three buckets specified by hn. Our N buckets now contain a total of 3n words. Compute the
xor of the words in each of the buckets (with the xor of no words being defined as the zero-word).
The hash of X, h(X), is the concatenation of the final contents of the N buckets.

3.2 Collision probability of the bucket hash family B
The collision probability for B[w, n, N]. is the maximum, over all distinct x, x′ ∈ {0, 1}nw, of the
probability that h(x) = h(x′). Our main theorem gives an upper bound on the collision probability
of B. The bound is about 3312N−6. In other words, B[w, n, N] is ε-AU2 for ε ≈ 3312N−6.

Theorem 7 [Main result] Assume w ≥ 1, N ≥ 32 and n ≤ (N
3

)
/12. Let ε be the collision

probability for B[w, n, N]. Then ε ≤ B(N), where B(N) = λ(N)β(N), for λ(N) = 1/(1 − 6/
(N

3

)
)

and

β(N) =
720(N−3)(N−4)(N−5)+1944(N−3)(N−4)2+648(N−2)(N−3)2

N3(N−1)3(N−2)3
.

The proof of Theorem 7 is given in Section 4.

Plot of B(N). In Figure 1 we plot B(N) against N . Consulting the graph we see, for example,
that if you hash a string down to 140 words the collision probability is about 2−31.

Comments. In the applications of bucket hashing to message authentication one typically wants
a collision probability of, say, ε ≤ 2−30 or less. As can be seen from Figure 1, getting such a small

6

collision probability requires a fairly large value of N . Since N is the length of our hashed string
(in words), large values of N are undesirable and typically require additional layers of hashing. An
example of this will be illustrated in Section 5.

Note that our bound shows no dependency on w or n (though there is the technical restriction
that n ≤ (N

3

)
/12). Indeed it is easy to see (and the proof of Theorem 7 will show) that the

collision probability does not depend on w. In fact, it is a consequence of the proof that, when
4 ≤ n ≤ (N

3

)
/12, the collision probability does not depend on n, either.

Observe that λ(N) = N/(N − 36), where N = N(N−1)(N−2). By our assumption that
N ≥ 32 we have that 1 ≤ λ(N) ≤ 1.002. So the multiplication by λ(N) can effectively be ignored;
B(N) ≈ β(N).

We believe that it is possible to relax the restriction n ≤ (N
3

)
/12 all the way to n <

(N
3

)
. However,

doing this would add considerable complexity to the proof, yet have relatively little practical value,
since the number of buckets, N , needs to quite large in order to obtain what would usually be
regarded as a suitably small collision probability.

Explanation. Here is a bit of intuition for what is going on. Suppose an adversary wants to
find a pair of distinct messages x, x′ ∈ {0, 1}wn which are most likely to collide under a function
from B. What two messages should she choose? In the proof of Theorem 7 we recast this question
into the following one. An adversary will throw t triples of balls into N buckets. Each of the 3t
balls will land in a random bucket, except for the following constraints: three distinct buckets are
selected for the three balls of each toss; and no tosses will land in identical triples of buckets. The
adversary’s goal is the following: make every bucket end up with an even number of balls in it. All
the adversary can do is choose how many triples of balls, t, she will disperse. The question we
must answer is: what choice of t, where 1 ≤ t ≤ n, will maximize the adversary’s chance to win
this game?

It is not hard to guess the right answer to this question: four. Here is an explanation. If the
adversary tosses just one triple of balls into the buckets she can’t possibly win: 3 buckets are
guaranteed to have an odd number of balls. If she throws out two triples of balls she again can not
win, thanks to the constraint that no two triples of balls land in identical triples of buckets. If she
throws out three triples of balls she again can not win because 9 balls can’t be distributed into
buckets in such a way that every bucket has an even number of balls. If the adversary throws out
four triples of balls then, finally, she has a chance to win. This seems like it ought to be the best
thing for the adversary to do, because it would seem to become increasingly unlikely to get every
bucket to have an even number of balls when more balls get tossed into the N buckets. Though
this intuition is a long way from being formal, four triples of balls does turn out to be the right
answer. Translating back into the adversary’s original goal, the adversary can do no better than to
choose messages X and X ′ which differ by exactly 4 words: for X these words are, say, 0w, while
for X ′ these words are, say, 1w.

3.3 The efficiency of the bucket hash family B
Instruction counts. To get a feel for the efficiency of bucket hashing, let us do some approximate
instruction counts for computing a function h ∈ B. Though instruction counting is an extremely
crude predictor of speed, an analysis like this is still a good implementation-independent way to
get some feel for our method’s potential efficiency.

To construct a good MAC we will probably want a collision probability of ε ≈ 2−30 (perhaps
less) and so, in view of Figure 1, we will be using a reasonably large value of N , say N ≥ 120. Thus

7

2**-35

2**-34

2**-33

2**-32

2**-31

2**-30

2**-29

2**-28

2**-27

2**-26

2**-25

2**-24

2**-23

2**-22

2**-21

2**-20

40 60 80 100 120 140 160 180 200

U
pp

er
 b

ou
nd

 o
n

co
lli

si
on

 p
ro

ba
bl

ity
, B

(N
)

Number of buckets, N

Figure 1: A graphical representation of Theorem 7. We plot of N verses, B(N), our bound on the
collision probability of B[w, n, N].

we will be needing more buckets than can be accommodated by a typical machine’s register set.
There are then two natural strategies to hash the string X = X1 . . . Xn, where each Xi is a word
of the machine’s basic word size:

• Method-1 (Process words X1, . . . , Xn). We can read each Xi from memory (in sequence)
and then, three times: (1) load from memory the value Yj of the appropriate bucket j;
(2) compute Xi⊕ Yj ; (3) store this back into memory, modifying Yj . Total instruction count
is 10 instructions per word (4 reads, 3 writes, 3 xors).

• Method-2 (Fill buckets Y1, . . . , YN). We can xor together all words that should wind up in
bucket 1; then xor all words that go into bucket 2; and so forth, for each of the N buckets.
We will need a total of 3n reads into X1, . . . , Xn, plus 3n−N xor operations (assuming each
bucket contains at least one word). Depending on what we want done with the hash, we may
need another N writes to put the hash value back into memory. So the total instruction count
is about 6 instructions per word.

Achieving the stated instruction counts requires the use of self-modifying code (“sm-code”); in
effect, we implicitly assumed that the representation of h ∈ B is the piece of executable code which
computes h. In implementation, this can be tricky. If we don’t want to use self-modifying code
(“sm-code”) we will need to load from memory the bucket locations (Method-1) or word location
(Method-2). This would add 3 loads per word. For Method 2, sm-code would further increase the
instruction count because of the overhead needed to control the looping: it is h-dependent how
many words will fall into a given bucket, so this will have to be read from memory, and loop-
unrolling may be difficult. Assuming an additional one instruction per word to account for this
work, we have the following approximate instruction counts:

8

implementation ≈ instrs/wd
Method-1, sm-code 10
Method-1, sm-code 13
Method-2, sm-code 6
Method-2, sm-code 10

The sm-code uses a table to specify h. Assume a machine with a word size of 32 bit. For Method-1
the needed table would typically be 3n or 12n bytes long (depending on whether one packs bucket
indices into bytes or words). For Method-2 that table would typically be be 6n or 12n bytes long
(depending on whether one packs word indices into double-bytes or words), plus an additional N
or 4N bytes long (depending on whether one packs counter-limits into bytes or words). To get a
fast implementation, tables need to fit into cache. Note that there is better locality of reference for
Method-1 than Method-2, and this can have a substantial efficiency impact when actually coded.

Implementation. A variety of bucket hashing schemes have been implemented (that is, B and
methods similar to B). The observed performance of these implementations varies enormously ac-
cording to the particular scheme, the parameters n and N , and the implementation. As a couple
points of reference: on a typical 32-bit RISC machine (an SGI with a 150 MHz IP22 processor,
16 KByte data cache, 16 KBytes instruction cache) the most straightforward Method-1/sm imple-
mentation ran at 340 Mb/s to hash 1024 words to 140, while a Method-2/sm implementation of a
bucket hash family based on the C[10, 6] graph (see Section 7) ran at 1160 Mb/s to hash 909 words
to 182.

Rough comparisons. Shoup estimates a cost of about 24 instructions/word (6 instructions per
byte) for computing a hash function h ∈ K[n, 64], where K is described in Section 2 [24]. Bosselaers,
Govaerts and Vandewalle have implemented MD5 at a cost of 36 instructions/word on a Pentium [7]
(they obtain a good degree of overlapping instruction-issue, too). In recent work, Halevi and
Krawczyk estimate a cost of about 7.5 instructions per word (assuming architectural support for
multiplying two 32-bit words to yield a 64-bit product) for their MMH technique [15]. We emphasize
that trying to compare such numbers hides many significant factors, including length of hash output
(worst for bucket hashing), table sizes and caching issues, and the degree of available parallelism.
We have not studied these tradeoffs in detail and do not know if bucket hashing will eventually
“win out” in the choice of hash techniques for making a practical MAC.

4 Proof of the Main Theorem

In this section we prove Theorem 7. Throughout this section fix values of n and N satisfying the
conditions of the theorem.

Our first two claims show how to simplify the setting.

One can assume a word length of w = 1. First we argue that, without loss of generality, we
can assume that the word length for B[w, n, N] is w = 1. Intuitively, this follows from the “bitwise”
character of bucket hashing: when we hash X1 · · ·Xn down to Y1 · · ·YN , where |Xi| = |Yj | = w,
the �-th bit of Yi depends only on X1[�], . . . , Xn[�]. For this reason, no advantage can be gained by
trying to exploit long words.

Claim 8 max
X,X′∈{0,1}nw

X �=X′

Pr
H∈B[w,n,N]

[
H(X) = H(X ′)

]
= max

x,x′∈{0,1}n

x �=x′

Pr
h∈B[1,n,N]

[
h(x) = h(x′)

]
.

9

Proof : Let X, X ′ ∈ {0, 1}wn be distinct strings which maximize PrH [H(X) = H(X ′)]. Since
X �= X ′ there must be some bit position 1 ≤ � ≤ w such that the n-bit strings x = X1[�] · · ·Xn[�]
and x′ = X ′1[�] · · ·X ′n[�] are distinct. Now notice that we can treat any H ∈ B[w, n, N] as a
hash function h = H from B[1, n, N], and conversely, because the description of a bucket hash
hash function (a sequence of triples of indices) is insensitive to the word length w. Furthermore,
H(X) = H(X ′) implies that h(x) = h(x′), and so PrH [H(X) = H(X ′)] ≤ Prh[h(x) = h(x′)] . We
conclude that maxX,X′ PrH [H(X) = H(X ′)] ≤ maxx,x′ Prh[h(x) = h(x′)].

For the opposite inequality, let x, x′ ∈ {0, 1}n be distinct strings which maximize Prh[h(x) =
h(x′)]. Write x = x1 . . . xn and x′ = x′1 . . . x′n, where xi and x′i are bits, for all 1 ≤ i ≤ n. Define
the wn-bit strings X = X1 . . . Xn and X ′ = X ′1 . . . X ′n by setting Xi[j] = xi and X ′i[j] = x′i
for each 1 ≤ j ≤ w. Clearly Prh[h(x) = h(x′)] = PrH [H(X) = H(X ′)]. We conclude that
maxx �=x′ Prh[h(x) = h(x′)] ≤ maxX �=X′ PrH [H(X) = H(X ′)], as desired. ♦

Given what we have just shown, we henceforth assume a word length as w = 1. We will use B as
shorthand for B[1, n, N].

Exploiting linearity. For 0 ≤ t ≤ n, let 1t = 1t0n−t and let 0 = 0N . For 0 < t ≤ n define

δt = Pr
h∈B

[h(1t) = 0] .

We are trying to bound ε, the collision probability of B, which is the maximum, over all distinct
x, x′ ∈ {0, 1}n, of Prh∈B[h(x) = h(x′)]. We use Claim 8 and the structure of bucket hashing
(particularly its linearity) to get the following:

Claim 9 If n ≥ 4 then ε = max
t=4,6,8,...

δt . If n < 4 then ε = 0.

Proof : First observe that, for h ∈ B, computing h(x) amounts to computing a product Ax over
GF[2] of an N×n matrix A and a column vector x. In fact, selecting a random hash function h ∈ B
corresponds to picking a random binary n×N matrix A which has three ones in each column and
no two identical columns. Writing A for the set of all such matrices we observe that

ε = max
x �=x′ Pr

h∈B
[h(x) = h(x′)]

= max
x �=x′ Pr

A∈A
[Ax = Ax′]

= max
x �=x′ Pr

A∈A
[A(x− x′) = 0]

= max
x �=0n

Pr
A∈A

[Ax = 0]

= max
x �=0n

Pr
h∈B

[h(x) = 0]

Thus we don’t have to think about the probability of distinct strings colliding; it is simpler and
more convenient to think about the probability that a non-zero string gets hashed to 0.

Next we argue that Prh[h(x) = 0] depends only on the number of ones in x (its Hamming
weight), and not on the particular arrangement of zeros and ones within x. Suppose that x has t
ones: we claim that PrA[Ax = 0] = PrA[A1t = 0]. For suppose that the non-zero positions
of x = x1 · · ·xn are at locations 1 ≤ j1 < · · · < jt ≤ n (meaning that xi = 1 if and only if and

10

only if i ∈ {j1, . . . , jt}). Then we pair each matrix A ∈ A with a matrix A′ ∈ A by permuting the
columns of A so that columns j1, . . . , jt come first. Then for every A ∈ A, Ax = A′1t. Since, for
any x, the associated pairing A ↪→ A′ is bijective, PrA[Ax = 0] = PrA[A1t = 0].

From Claim 8 and what we have just shown, we now know that ε = maxt=1,2,3,... δt. So we ask:
for which t ≥ 1 is δt largest? One thing is clear: it can not be any any odd-indexed 1t, for if t is
odd then h(1t) �= 0, because it is impossible to partition 3t ones into disjoint sets in such a way
that there are an even number of ones in each set. In other words, Prh[h(1t) = 0] = 0 for odd t.
Likewise, PrA[A12 = 0], because of our insistence that no two columns of A are identical. The
claim now follows. ♦
Strategy. Our plan is as follows. First we will bound δ4 from above by B(N). Then we will
show that δt ≤ B(N) for all even t ≥ 6. Using Claim 9 we can then conclude that ε ≤ B(N).

Our analysis is made possible by using a particular Markov Chain, M . This Markov chain does
not accurately describe bucket hashing. But we can correct for the inaccuracy which the chain
introduces.

Markov chain model. Consider for a moment an inferior form of bucket hashing: instead of
B, where each hi among h = h1 · · ·hn is required to be different from any other, consider the the
family of hash functions C, which removes that constraint. In other words, a random h = h1 . . . hn ∈
C[1, n, N] is a sequence of random triples, hi = {hi1, hi2, hi3}, where hi1, hi2, hi3 ∈ {1, . . . , N} are
distinct. This corresponds to a random N × n binary matrix C with three ones per column.

While there is no natural Markov chain model for B, there is a natural Markov chain M
corresponding to C. This chain keeps track of the number of buckets with an odd number of 1’s.
Thus the Markov chain M has (N + 1)-states, {0, 1, . . . , N}. Being in state i means that i buckets
now have an odd number of ones (and N − i buckets have an even number of ones). A transition
in M corresponds to throwing three balls into 3 distinct buckets: after each such throw, there is
a new number of buckets with an odd number of ones. So state 0 is the start state. Since three
balls are tossed with each throw, there can be a non-zero transition probability from states i to j
only when |i − j| ≤ 3. (In fact, the only transitions that can happen are from a state i to a state
j ∈ {i − 3, i − 1, i + 1, i + 3} ∩ {0, . . . , N}). The probability of returning to state 0 after t steps
corresponds precisely to Prh∈C [h(1t) = 0].

Let N = N(N − 1)(N − 2). Let Pij denote the transition probability of M : the probability of
of moving from state i to state j in a single step. To capture the process C we have described we
need to define M ’s transition probabilistic as follows:

Pij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (i, j) ∈ {(0, 3), (N, N−3)}
3(N−1)(N−2)/N if (i, j) ∈ {(1, 2), (N−1, N−2)}
(N−1)(N−2)(N−3)/N if (i, j) ∈ {(1, 4), (N−1, N−4)}
6(N−2)/N if (i, j) ∈ {(2, 1), (N−2, N−1)}
6(N−2)(N−3)/N if (i, j) ∈ {(2, 3), (N−2, N−3)}
(N−2)(N−3)(N−4)/N if (i, j) ∈ {(2, 5), (N−2, N−5)}
i(i−1)(i−2)/N if 3 ≤ i ≤ N−3 and j = i−3
3i(i−1)(N−i)/N if 3 ≤ i ≤ N−3 and j = i−1
3i(N−i)(N−i− 1)/N if 3 ≤ i ≤ N−3 and j = i+1
(N−i)(N−i−1)(N−i−2))/N if 3 ≤ i ≤ N−3 and j = i+3
0 otherwise

(1)

Let us give an example of how the above values are computed. Consider Pij for the case associated
to 3 ≤ i ≤ N−3 and j = i + 1. In order to go from state i to state i + 1 in a single step, one ball of

11

0

3

6

9

1

24

57

810

210

24

120

216

720

360

 start
 state

126

378

504

48216

336

60

336

336

60

300

360 300

336126

48

216

720

6

210

120

24

6

504

216

378

Figure 2: The Markov chain M for N = 10 states. The start state is state 0. Divide the number
labeling each arc i→ j by N = N(N − 1)(N − 2) = 720 to get the transition probability Pij .

the three will have to land in one of the i buckets that has an odd number of balls already, while the
remaining two balls must land among the N − i remaining buckets. There are 3i(N − i)(N − i− 1)
ordered triples of bucket indices that will accomplish this among the N ordered triples of bucket
indices. (The “3” takes care of the fact that there are 3i ways to choose the ball which lands in
a bucket with an odd number of balls; after that ball is selected, the remaining two balls have to
land in the other N − i buckets.) The reasoning for all of the other Pij values is similar.

In Figure 2 we depict the Markov chain M for some the case where the number of states is
N = 10. The transition probabilities are computed from Equation 1.

Using M to bound δ4. We are now ready to show that δ4 ≤ B(N). Recall that B(N) =
λ(N) · β(N), where λ(N) and β(N) are given by the formulas in the statement of Theorem 7.

Lemma 10 δ4 ≤ B(N) .

Proof : First some notation. Let t ≤ n be a number and let h1 · · ·ht be a sequence of triples of
distinct elements drawn from {1, . . . , N}. We make the following definitions.
• Parity(h1 · · ·ht) is the N -vector whose i-th component, i ∈ {1, . . . , N}, is 0 if i occurs an even

number of times in the multiset h1∪ · · · ∪ht, and 1 if i occurs an odd number of times. (Thus
Parity(h1 · · ·ht) records the parity of the number of balls in each of the N buckets, if we toss
balls according to h1, . . . , ht.)

• Given an N -vector of bits y = y1 · · · yN , let NumOnes(y) denote the number of 1-bits in y.
• Define State(h1 · · ·ht) = NumOnes(Parity(h1 · · ·ht)). (Thus State(h1 . . . ht) records the state

of M after hashing 1t with h = h1 · · ·ht · · ·. After tossing balls according to h1, . . . , ht,

12

State(h1 . . . ht) buckets contain an odd number of balls while N − State(h1 . . . ht) buckets
contain an even number of balls.)

• For σ an N -vector of bits, define Stateσ(h1 · · ·ht) = NumOnes(σ⊕Parity(h1 · · ·ht)). (Thus
Stateσ(h1 . . . ht) captures the state of M after hashing 1t with h = h1 · · ·ht · · ·, given that we
start in the configuration specified by σ.)

• Let Hist(h1h2 · · ·ht) = 0 State(h1) State(h1h2) · · · State(h1h2 · · ·ht−1) State(h1h2 · · ·ht) .
This is a list of t + 1 numbers, each in {0, · · · , N}, and it encodes the sequence of states in M
one passes through on hashing 1t according to h = h1h2 · · ·ht · · ·.

• Let Distinct(h1 · · ·ht) be true if h1, . . . , ht are all distinct, and false otherwise.
• Let Rt (“random”) be the uniform distribution on h1, · · · , ht (that is, each hi is a random

triple of distinct points from {1, . . . , N}).
• Let Dt (“distinct”) be the uniform distribution on distinct h1, . . . , ht (that is, each hi is a

random triple of distinct points from {1, . . . , N}, and no two of these triples are identical).
• Let C(m, t) denote the probability of at least one collision in the experiment of throwing t

balls, independently and at random, into m bins.

We are now ready to prove the lemma.

δ4 = Pr
D4

[State(h1h2h3h4) = 0]

= Pr
R4

[State(h1h2h3h4) = 0 | Distinct(h1h2h3h4)]

=
Pr
R4

[State(h1h2h3h4) = 0 and Distinct(h1h2h3h4)]

Pr
R4

[Distinct(h1h2h3h4)]

≤
Pr
R4

[Hist(h1h2h3h4) � {03630, 03430, 03230}]
1− C(

(N
3

)
, 4)

(2)

≤ λ(N) ·
(
Pr
R4

[Hist(h1h2h3h4) = 03630] + Pr
R4

[Hist(h1h2h3h4) = 03430] +

Pr
R4

[Hist(h1h2h3h4) = 03230]
)

= λ(N) ·
(
P03P36P63P30 + P03P34P43P30 + P03P32P23P30

)

= λ(N) ·
(
1 · (N−3)(N−4)(N−5)

N · 120
N · 6

N + 1 · 9(N−3)(N−4)
N · 36(N−4)

N · 6
N +

1 · 18(N−3)
N · 6(N−2)(N−3)

N · 6
N

)
(3)

= λ(N) · 720(N−3)(N−4)(N−5)+1944(N−3)(N−4)2+648(N−2)(N−3)2

N 3

13

= B(N)

Equation 2 is justified by referring to Figure 2: the only length-4 routes from state 0 back to state 0
are 03630, 03430, 03230, and 03030. The last of these can only arise from non-distinct h1, h2, h3, h4.
For the other three we simply disregard the conjunction with Distinct(h1h2h3h4) because we are
giving an upper bound. Equation 3 is obtained directly from Equation 1. ♦
Using M to bound δ6, δ8, · · ·. Assume that N is even and N ≥ 6. We will show, in this case,
that δt ≤ B(N). Here is the idea. Take a random function h ∈ B and look at it’s last 6 maps—
for convenience of notation, we write h = h7 · · ·ht h1h2h3h4h5h6, numbering the final 6 maps
h1, . . . , h6. Now h1, . . . , h6 are statistically correlated to h7, . . . , ht (for example, h1 �= h7), yet
h1, . . . , h6 are not too far from being random and independent, in the sense that, for any h7 · · ·ht,
a uniformly selected sequence of maps h′1h′2h′3h′4h′5h′6 would have been a valid continuation with
probability at least 1/2. (This follows from our assumption that n ≤ (N

3

)
/12.) Thus, up to a factor

of 2, we can bound the chance of landing in state 0 on applying h to 1t by looking at the chance of
landing in state 0 after applying a uniformly selected h1 . . . h6 starting in some arbitrary (unknown)
state of the Markov chain.

To formalize the above argument, let fi(t) denote the maximum, over all initial states s, of the
probability that we arrive in state i in exactly t transitions, given that we start in state s. This is
the same as the supremum, over all distributions π on the starting state of M , of the probability
that we arrive in state i in exactly t transitions, given that we start in an initial state as chosen by
sampling from π. We will need the following lemma about the behavior of Markov chain M .

Lemma 11 f0(6) ≤ (25920N8 + 154080N7)/N 5.

The proof is a tedious but straightforward calculation using the transition probabilities of M . It is
relegated to Appendix A. The point isn’t the specific formula, but only that f0(6) is less than half
B(N) for all sufficiently large N .

Lemma 12 Assume 6 ≤ t ≤ n. Then δt ≤ B(N).

Proof : We use the same notation as in the proof of Lemma 10.

δt = Pr
h∈B

[h(1t) = 0)]

= Pr
h7···ht h1h2h3h4h5h6∈Dt

[State(h7 · · ·ht h1h2h3h4h5h6) = 0]

= E
h7···ht∈Dt−6

⎡
⎢⎣ Pr

h1···h6∈D6
{h1,···,h6}∩{h7,···,ht}=∅

[State(h7 · · ·ht h1h2h3h4h5h6) = 0]

⎤
⎥⎦

≤ max
h7···ht∈Dt−6

Pr
h1···h6∈D6

{h1,···,h6}∩{h7,···,ht}=∅
[NumOnes(Parity(h7 · · ·ht) ⊕ Parity(h1h2h3h4h5h6)) = 0]

= Pr
h1···h6∈E

[NumOnes(σ ⊕ Parity(h1h2h3h4h5h6)) = 0]

14

where E and σ are defined by fixing some h7 · · ·ht which maximize the probability above and
then letting σ = Parity(h7 · · ·ht) and letting E be the uniform distribution on h1 · · ·h6 subject to
h1, . . . , h6 being distinct from all of h7, . . . , ht and distinct from each other. Continuing, the above
expression is:

=
Pr

h1···h6∈R6

[Stateσ(h1h2h3h4h5h6) = 0 and Distinct(h1 · · ·h6 h7 · · ·ht)]

Pr
h1···h6∈D6

[Distinct(h1h2h3h4h5h6 h7 · · ·ht)]

≤
Pr

h1···h6∈R6

[Stateσ(h1h2h3h4h5h6) = 0]

1− 6 t/
(N

3

)

≤ 2 · Pr
h1···h6∈R6

[Stateσ(h1h2h3h4h5h6) = 0] //From assumption that n ≤ (
N
3

)
/12

≤ 2 · f0(6) //Definition of f

≤ 2 · (25920N8 + 154080N7)/N 5 //By Lemma 11

≤ B(N) for all N ≥ 32

For the last inequality: it is easy to verify that this holds for sufficiently large N . The crossover
point was determined numerically. ♦

We have now shown that, under the conditions of the theorem, B(N) ≥ δt for all t ≥ 1. This
completes the proof.

5 From Universal Hash Families to Message Authentication

In this section we review the Wegman-Carter construction (and its complexity-theoretic variant),
as well as the formal notion of a message authentication code (MAC) and a pseudorandom function
family.

MACs. We follow [14, 5] and define deterministic, counter-based message authentication codes.
A MAC scheme M specifies: constants L and c, determining Messages = {0, 1}≤L and Tags =
{0, 1}c; a set of strings Keys; a number MAX (alternatively, MAX = ∞); and a pair of functions
(MAC, MACV), where

MAC : Keys×Messages× {1, . . . ,MAX} → Tags, and
MACV : Keys×Messages× Tags→ {0, 1} .

The first argument to MAC and MACV will usually be written as a subscript. We demand that
for any x ∈ Messages, k ∈ Keys, and cnt ∈ {1, . . . ,MAX}, MACVk(x,MACk(x, cnt)) = 1 .

LetM be a message authentication scheme. A MAC oracle MACk(·) forM behaves as follows:
it answers its first query, x1, with MACk(x1, 1); it answers its second query, x2, with MACk(x2, 2);
and so forth. The MAC oracle responds with the empty string to queries beyond the MAXth or to
queries not in the set Messages.

An adversary E for a message authentication schemeM is an algorithm equipped with a MAC
oracle MACk(·). Adversary E is said to forge on a particular execution, this execution having MAC

15

oracle MACk(·), if E outputs a string (x∗, σ∗) where MACVk(x∗, σ∗) = 1 yet E made no oracle
query of x∗. When we speak of E forging with a particular probability, that probability is taken
over E’s coin tosses and a random key k ∈ Keys for the MAC oracle. Running times are measured
in a standard RAM model of computation, with oracle queries counting as one step. By convention,
the running time of E also includes the size of E’s description.

One can also provide the adversary with a MACVk(·, ·) oracle, but this leaves the notion essen-
tially unchanged.

The Wegman-Carter Construction. Given a family of hash functions H = {A→ {0, 1}b} we
wish to construct from it a MAC. In the scheme we denote WC[H], the Signer and Verifier share
a random element h ∈ H, as well as an infinite random string P = P1P2P3 · · ·, where |Pi| = b. The
pair (h, P) is the key shared by the Signer and Verifier. The signer maintains a counter, cnt, which
is initially 0. To generate a MAC for the message x the signer increments cnt and then computes
the MAC σ = (cnt, Pcnt⊕h(x)) which authenticates x. To verify a MAC σ = (i, s) for the message x
the Verifier checks if s = Pi⊕h(x).

The following theorem says that it is impossible (regardless of time, number of queries, or
amount of MACed text) to forge with probability exceeding the collision probability.

Proposition 13 [32, 18] Let H be ε-AXU2 and suppose adversary E forges in the scheme WC[H]
with probability δ. Then δ ≤ ε.

PRFs. We follow [13, 5]. A finite pseudorandom function family (PRF) is a map F : {0, 1}κ ×
{0, 1}l → {0, 1}b. We write Fa(x) in place of F (a, x). Let Rl,b be the set of all functions mapping
{0, 1}l to {0, 1}b. A distinguisher is an algorithm D with access to an oracle. We say that a PRF
F is ε(t, q)-secure if for every distinguisher D which runs in time t and makes q or fewer queries
to its oracle, Pr

k←{0,1}κ
[
DFk(·) = 1

]
− Pr

ρ←Rl,b

[
Dρ(·) = 1

]
≤ ε(t, q) . Running times are measured in

a standard RAM model of computation, with oracle queries counting as one step. By convention,
the running time of E also includes the size of E’s description.

Wegman-Carter with a PRF. A natural complexity-theoretic variant is to use, instead of the
random pad P , a random index a ∈ {0, 1}κ into a finite PRF F : {0, 1}κ × {0, 1}l → {0, 1}b. The
Signer maintains a counter cnt ∈ {0, 1}l, initially 0. (We will not distinguish between numbers
and their binary encodings into l-bits.) The Signer and Verifier share a random a ∈ {0, 1}κ and
a random h ∈ H. When the Signer wishes to MAC a message x, if cnt < 2l − 1 then the Signer
computes σ = (cnt, Fa(cnt)⊕h(x)) and increments cnt. (In the unlikely event that cnt reaches
2l − 1, a new MAC key is required by the Signer and Verifier.) To verify a MAC σ = (i, s) for the
message x the Verifier checks if s = Fa(i)⊕h(x). At most 2l messages may be MACed (after that,
the key a must be changed). We call the scheme just described WC[H, F]. The following result is
obtained by standard techniques.

Proposition 14 Let H = {h : A→ {0, 1}b} be an ε-AXU2 family of hash functions. Let TH denote
the time required to compute a representation of a random element h ∈ H, and let Th(q, μ) denote
the time required to compute from this representation the hash of q strings, these strings totaling
μ bits. Let F : {0, 1}κ × {0, 1}l → {0, 1}b be an ε′(t, q)-secure finite PRF. Let E be an adversary
which, in time t, making q queries, these queries totaling μ bits, forges with probability δ against
the scheme WC[H, F]. Then δ ≤ ε + ε′(t + Δt, q + 1), where Δt = O(Th(q, μ) + TH + ql + qb).

16

The value of Δt would usually be insignificant compared to t. Note that in Proposition 13 the
forging probability is independent of the number of queries (q) and the length of the queried
messages (μ). In Proposition 14 the forging probability depends on these quantities only insofar as
they are detrimental to the security of the underlying PRF.

We emphasize that the Signer is stateful in the schemes WC[H] and WC[H, F]. The Signer being
stateful improves security (compared with using a random index) and at little practical cost. Note
that the Verifier is not stateful. This is possible because our notion of MAC security (Section 5),
does not credit the adversary for “replay attacks.”

6 Toy Example, and Limitations on Bucket Hashing

In this section we describe a concrete MAC based on the ideas presented so far. This is only a “toy”
example; doing a good job at specifying a software-optimized bucket hash MAC would involve much
design, experimental, and theoretical work which we have not carried out. Still, the example helps
to illustrate the strengths of bucket hashing in making a MAC, as well as the limitations.

Toy Example. To keep things simple, suppose the strings we will MAC are of length at most
most 4096 bytes. Assume a word size of 4 bytes (32 bits). Let F : {0, 1}κ × {0, 1}64 → {0, 1}64 be
a finite PRF (defined, for example, from the compression function of MD5). Here is a way for the
Signer to MAC a string X whose length is at most 1024 words. Assume an even number of words.
The Signer and Verifier share as a MAC key (i) a random element h1 ∈ B[32, 1024, 140], (ii) a
random element h2 ∈ K[71, 64], and a (iii) a random string a ∈ {0, 1}κ. We use the construction
of Proposition 5 (slightly modified to account for length-variability). In the algorithm below, |X|
denotes the length of X, encoded as a 2-word string. The function h1 is extended to strings of
length less than 1024 words in the natural way: we stop casting words into buckets when we reach
the end of the string. (This is equivalent to 0-padding the string to 1024 words.)

Algorithm TOY-MAC(X).
if cnt = 264 − 1 then return error
σ = 〈cnt, Fa(cnt) ⊕ h2(|X| . h1(X))〉
cnt = cnt + 1
return σ

Let us count instructions for TOY-MAC to hash a 4096-byte message. If we bucket hash in 10
instructions per word (Section 3.3), hash using h2 ∈ K in 24 instruction per word ([24]), and
compute F with 600 instructions (easy to accomplish), then we will spend 10 + (142/1024) · 24 +
600/1024 = 10 + 3.3 + 0.6 = 13.9 instructions/word.

Notice that the “cryptographic” contribution to the above time (i.e., the time to compute F)
is very small. In a Wegman-Carter MAC one is afforded the luxury of conservative (and slow)
cryptography even in an aggressively speed-optimized design. This is because one arranges that
the time to compute the MAC is dominated by the non-cryptographic work.

Limitations on bucket hashing. If the strings we are MACing are short then, at some point,
it makes sense to switch strategies and stop using bucket hashing. In our TOY-MAC, we might
hash with only h2 when the input string has length less than some constant. This is an important
limitation on bucket hashing; because the output length is substantial, the technique is simply not
useful until the strings to be hashed get long enough. As a consequence, any “real” MAC which

17

employs bucket hashing would likely be a patchwork of different techniques for different message
lengths. Therefore a real bucket hash MAC is unlikely to be simple to describe or implement.

On the other hand, if the strings to be hashed are very long then, at some point, it makes sense
to break the input into blocks and independently bucket has each block, using the construction of
Proposition 2. This is because the size of the description of h ∈ B grows linearly in the maximal
length string which h can hash. We do not want hash functions with excessively long descriptions
(certainly the hash function should fit in cache). This is another limitation on the bucket hashing
technique, and something which will further complicate the definition of any real bucket hash MAC.

In our TOY-MAC, if we wanted a substantially better collision probability we could apply the
construction of Proposition 3, but this would roughly halve the rate for bucket hashing, and perhaps
other techniques might then be faster. This is a third limitation on bucket hashing: until better
constructions are found, obtaining an extremely small collision probability, say 2−50, would require
an excessive number of buckets. That is, the output length of the hash function would be very
long, and so the technique would only be useful for hashing extremely long messages.

The last limitation we will mention is the time needed to compute a description of h. In any real
MAC scheme the function h ∈ B would be determined from some underlying key k with the help of
a pseudorandom generator. Because the description of h is large and of a special form, computing h
might take a significant amount of time. In most applications of fast message authentications, a
one-time key pre-processing delay is not important. But if there is a limited amount of text to
be MACed, or if the latency of the first MAC must be minimized, than the time to compute the
description of h could be an issue. One approach is to find a version of bucket hashing that uses
a small key (ie., a short description for h). This way the underlying pseudorandom generator (if
present) is less taxed. This approach has been investigated by [16], who achieves a major reduction
in the size of the description the h.

Balanced against these limitations is the possibility of extremely high MAC throughput, at least
for long strings.

7 Extensions and Directions

Generalizing B, we call by “bucket hashing” any scheme in which the hash function h is a given by
a list h1 · · ·hn of “small” subsets of {1, . . . , N} and the hash of X = X1 · · ·Xn, where |Xi| = w, is:

for j ← 1 to N do Yj ← 0w

for i← 1 to n do
for each k ∈ hi do

Yk ← Yk ⊕Xi

return Y1 ‖ Y2 ‖ · · · ‖ YN

In the general case the distribution on h-values is arbitrary. So B is just the special case in which
we use the uniform distribution on distinct triples in {1, . . . , N}.

One could imagine many alternative distributions, some of which will give rise to faster-to-
compute hash functions or better bounds on the collision probability. As an example, suppose
h ∈ H is chosen by randomly re-ordering a list h1 · · ·hn of triples which are chosen so that for all
sets I ⊆ {1, . . . , n} of cardinality 2 or 4, it is not the case that the multiset ∪h∈Ih has an even
number of each point 1, . . . , N . This new family of hash functions may have substantially smaller
collision probability than B for a given n, N .

18

The bucket hash scheme of a graph. Hash family B would have been more efficient had each
word gone into two buckets instead of three. One way to specify a scheme where each word lands
in two buckets is with a graph G whose N vertices comprise the N buckets and whose m edges
{1, . . . , m} indicate the pairs of buckets into which a word may fall. A random hash function from
the family is given by a random permutation π on {1, . . . , m}. To hash a string X1 . . . Xn using
π, where |Xi| = w and n ≤ m, each word Xi is dropped into the two buckets at the endpoints of
edge π(i). As before, we xor the contents of each bucket and output their concatenation in some
canonical order. We call the above scheme the bucket hash of the graph G.

For a graph G to be “good” we want a small number of vertices N , a large number of edges m,
and such that for all k where 1 ≤ k ≤ n ≤ m, if k distinct edges are selected at random from G,
then the probability that their union (with multiplicities) comprises a union of cycles is at most
some tiny number ε.

One possible choice of graphs in this regard are the (d, g)-cages (see [8]). A (d, g)-cage is
a smallest d-regular graph whose shortest cycle has g edges. These graphs have been explicitly
constructed for various values of (d, g). Though (d, g)-cages are rather large (for even g they have
at least (2(d−1)g/2−2)/(d−2) nodes) and the definition of a (d, g)-cage does not exactly correspond
to having small collision probability, we conjecture that some (d, g)-cages may still give rise to useful
hash families. For example, assume d − 1 is a prime power. Let C[d, 6] be the (d, 6)-cage. This
is the the point-line incidence graph of the projective plane of order d − 1. Bucket hashing with
C[10, 6] may be a good way to hash 909 words down to 182 words.

Open questions. The generalized notion of bucket hashing amounts to saying that hashing
is achieved for each bit position 1 . . . w by matrix multiplication with a sparse Boolean ma-
trix H. Expressing the method in this generality raises questions like the following: for a given
N , n and k, for what distributions D of binary N × n matrices H having k ones per column is
maxx∈{0,1}n−{0n} Pr

H∈D
[Hx = 0] minimized? What if we also demand that each row has a fixed

number of ones? What if, instead of saying that there are k ones per column, we cap the density
of the matrix at some value ρ? Answers to such questions may lead to faster bucket hash schemes.

Acknowledgments

Many thanks to the two anonymous referees for their careful reviews. Thanks also to Mihir Bellare,
Don Coppersmith, Hugo Krawczyk, and David Zuckerman for their comments and suggestions.

This work was supported in part by NSF CCR-9624560.

References

[1] N. Alon, O. Goldreich, J. H̊astad and R. Peralta, Simple constructions of almost k-wise
independent random variables, 31st Annual Symposium on Foundations of Computer Science,
IEEE Computer Society, 1990, pp. 544–553.

[2] R. Arnold and D. Coppersmith, An alternative to perfect hashing, IBM RC 10332 (1984).

[3] M. Bellare, R. Canetti and H. Krawczyk, Keying hash functions for message authentica-
tion, Advances in Cryptology – CRYPTO ’96, Lecture Notes in Computer Science, vol. 1109,
Springer-Verlag, 1996, pp. 1–15.

19

[4] M. Bellare, O. Goldreich and S. Goldwasser, Incremental cryptography: the case of hashing
and signing, Advances in Cryptology – CRYPTO ’94, Lecture Notes in Computer Science,
vol. 839, Springer-Verlag, 1994, pp. 216–233.

[5] M. Bellare, J. Kilian and P. Rogaway, The security of cipher block chaining, Advances in
Cryptology – CRYPTO ’94, Lecture Notes in Computer Science, vol. 839, Springer-Verlag,
1994, pp. 341–358.

[6] J. Bierbrauer, T. Johansson, G. Kabatianskii and B. Smeets, On families of hash functions via
geometric codes and concatenation, Advances in Cryptology – CRYPTO ’93, Lecture Notes
in Computer Science, vol. 773, Springer-Verlag, 1994, pp. 331–342.

[7] A. Bosselaers, R. Govaerts and J. Vandewalle, Fast hashing on the Pentium, Advances in
Cryptology – CRYPTO 96, Lecture Notes in Computer Science, vol. 1109, Springer-Verlag,
1996, pp. 298–312.

[8] J. Bondy and U. Murty, Graph theory with Applications, North Holland, 1976.

[9] G. Brassard, On computationally secure authentication tags requiring short secret shared
keys, Advances in Cryptology – CRYPTO ’82, Springer-Verlag, 1983, pp. 79–86.

[10] L. Carter and M. Wegman, Universal hash functions, J. of Computer and System Sciences 18,
1979, pp. 143–154.

[11] Y. Desmedt, Unconditionally secure authentication schemes and practical and theoretical
consequences, Advances in Cryptology – CRYPTO ’85, Lecture Notes in Computer Science,
vol. 218, Springer-Verlag, 1985, pp. 42–45.

[12] P. Gemmell and M. Naor, Codes for interactive authentication, Advances in Cryptology –
CRYPTO ’93, Lecture Notes in Computer Science, vol. 773, Springer-Verlag, 1994, pp. 355–
367.

[13] O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions, Journal of
the ACM, Vol. 33, No. 4, 1986, pp. 210–217.

[14] S. Goldwasser, S. Micali and R. Rivest, A digital signature scheme secure against adaptive
chosen-message attacks, SIAM Journal of Computing, vol. 17, no. 2 (April 1988), pp. 281–308.

[15] S. Halevi and H. Krawczyk, MMH: Message authentication in software in the Gbit/second
rates, Proceedings of the 4th Workshop on Fast Software Encryption, Springer-Verlag, 1997.

[16] T. Johansson, Bucket hashing with small key size, Advances in Cryptology – EURO-
CRYPT ’97, Lecture Notes in Computer Science, Springer-Verlag, 1997.

[17] T. Johansson, G. Kabatianskii and B. Smeets, On the relation between A-codes and codes
correcting independent errors. Advances in Cryptology – EUROCRYPT ’93, Lecture Notes in
Computer Science, vol. 765, Springer-Verlag, 1994, pp. 1–11.

[18] H. Krawczyk, LFSR-based hashing and authentication, Advances in Cryptology –
CRYPTO ’94, Lecture Notes in Computer Science, vol. 839, Springer-Verlag, 1994, pp. 129–
139.

20

[19] X. Lai, R. Rueppel and J. Woollven, A fast cryptographic checksum algorithm based on stream
ciphers, Advances in Cryptology, Proceedings of AUSCRYPT 92, Lecture Notes in Computer
Science, vol. 718, Springer-Verlag, 1992, pp. 339–348.

[20] M. Luby and C. Rackoff, How to construct pseudorandom permutations from pseudorandom
functions,” SIAM J. Comput, vol. 17, no. 2 (April 1988).

[21] P. Pearson, Fast hashing of variable-length text strings, Communications of the ACM, vol. 33,
no. 6 (1990), pp. 677–680.

[22] R. Rivest, The MD5 message digest algorithm, IETF RFC-1321, 1992.

[23] P. Rogaway, Bucket hashing and its application to fast message authentication, Advances in
Cryptology – CRYPTO ’95, Lecture Notes in Computer Science, vol. 963, Springer-Verlag,
1995, pp. 313–328.

[24] V. Shoup, On fast and provably secure message authentication based on universal hashing, Ad-
vances in Cryptology – CRYPTO ’96, Lecture Notes in Computer Science, vol. 1109, Springer-
Verlag, 1996, pp. 74–85.

[25] A. Siegel, On universal classes of fast high performance hash functions, their time-space trade-
off, and their applications, 30th Annual Symposium on Foundations of Computer Science,
IEEE Computer Society, 1989, pp. 20–25.

[26] G. Simmons, A survey of information authentication, in Contemporary Cryptography, The
Science of Information Integrity, G. Simmons, editor, IEEE Press, New York, 1992.

[27] D. Stinson, Universal hashing and authentication codes, Designs, Codes and Cryptography,
vol. 4 (1994), pp. 369–380.

[28] R. Taylor, An integrity check value algorithm for stream ciphers, Advances in Cryptology –
CRYPTO ‘93, Lecture Notes in Computer Science, vol. 773, Springer-Verlag, 1994, 40–48.

[29] J. Touch, Performance analysis of MD5, Proc. Sigcomm ’95, ACM, 1995, pp. 77–86.

[30] G. Tsudik, Message authentication with one-way hash functions, Proceedings of Infocom 92,
IEEE Press, 1992.

[31] U. Vazirani, Efficiency considerations in using semi-random sources, Proceedings of the Nine-
teenth Annual ACM Symposium on Theory of Computing, ACM Press, 1987, pp. 160–168.

[32] M. Wegman and L. Carter, New hash functions and their use in authentication and set equality,
J. of Computer and System Sciences, vol. 22, 1981, pp. 265–279.

[33] A. Zobrist, A new hashing method with applications for game playing, University of Wisconsin,
Dept. of Computer Science, TR #88 (April 1970).

21

0

3

6

1

24

R

N

(N−1) .
 (N−2) .
 (N−3)

15 (N−5) (N−6) +
 126 (N−7) +
 504 60 (N−5) + 210

6(N−2)3(N−1)(N−2)

6(N−2)(N−3)

18(N−3)

36(N−4)

9(N−3)(N−4)
120

6

60

24

(N−3)(N−4)(N−5)

Figure 3: A view of the Markov chain M , where, for purposes of analysis, we have lumped together all
states other than 0, 1, 2, 3, 4, 6. Divide the number labeling each arc i→ j by N = N(N − 1)(N − 2)
to get the transition probability Pij .

A Proof of Lemma 11

Here we prove Lemma 11, giving a suitable upper bound on f0(6). We do this by direct cal-
culation, paying attention to the states 0, 1, 2, 3, 4, 6 and “everything else.” To that end, let
R = {5, 7, 8, . . . , N} (i.e., “everything else”) and define fR(t) to be the maximum, over all ini-
tial states s, of the probability that we arrive at a state r ∈ R in exactly t transitions, given that
we start in state s. Let us write PRj for

∑
r∈R Prj . Keep in mind that R is not a state of any

Markov chain we have defined; this is just a convenient shorthand.
We will establish the bounds indicated in Figure 4, where row t, column i is the upper bound

we show for fi(t). To see how these bounds are computed, refer to Figure 3, which depicts the
relevant transition probabilities of M .

We start with the trivial bounds: f1(1) ≤ 1, f3(1) ≤ 1, fR(1) ≤ 1, f4(2) ≤ 1, and f2(6) ≤ 1.
These are obvious, since each fi(t) represents a probability. Now refer to Figure 3 and calcu-
late. Some of the mundane arithmetic is omitted. In cases such as the calculation of f6(4), the
final inequality is easily seen to hold for sufficiently large N ; the crossover point was determined
numerically.

f0(2) = f3(1) · P30

≤ 1 · 6
N

=
6
N

f2(2) ≤ f1(1) · P12 + f3(1) · P32 + fR(1)PR2

≤ 1 · 3(N−1)(N−2)
N + 1 · 18(N−3)

N + 1 · 60
N

22

0 1 2 3 4 6 R

t = 1 1 1 1

t = 2 6
N

3N2+10N
N 1 1

t = 3 42N3

N 2
54N4

N 2 1

t = 4 324N4

N 2
60
N + 1098N5

N 3
60N
N + 438N6

N 3
15N2

N + 25N4

N 2

t = 5 4320N8+25680N7

N 4

t = 6 25920N8+154080N7

N 5

Figure 4: Row t, column i gives our bound on fi(t). The only value needed is f0(6); we need that
2f0(6) ≤ B(N).

≤ 3N2 + 10N

N (N ≥ 12)

f1(3) = f2(2) · P21 + f4(2) · P41

≤ 3N2 + 10N

N · 6(N−2)
N + 1 · 24

N
=

(3N2 + 10N)(6N − 12) + 24N(N−1)(N−2)
N 2

≤ 42N3

N 2

f3(3) = f0(2) · P03 + f2(2) · P23 + f4(2) · P43 + f6(2) · P63

≤ 6
N · 1 +

3N2 + 10N

N · 6(N−2)(N−3)
N + 1 · 36(N−4)

N + 1 · 120
N

≤ 54N4

N 2

f0(4) = f3(3) · P30

≤ 54N4

N 3
· 6
N

≤ 324N4

N 3

f2(4) ≤ f1(3) · P12 + f3(3) · P32 + fR(3)PR2

≤ 42N3

N 2
· 3(N−1)(N−2)

N +
54N4

N 2
· 18(N−3)

N + 1 · 60
N

≤ 60
N +

1098N5

N 3
(N ≥ 3)

f4(4) ≤ f1(3) · P14 + f3(3) · P34 + fR(3) · PR4

23

≤ 42N3

N 2
· 1 +

54N4

N 2
· 9(N−3)(N−4)

N + 1 · 60(N−5) + 210
N

≤ 60
N +

438N6

N 3

f6(4) ≤ f3(3) · P36 + fR(3) · PR6

≤ 54N4

N 2
· 1 + 1 · 15(N−5)(N−6) + 126(N−7) + 504

N
=

15N2

N +
15N4 + 189N3 − 294N2 − 144N

N 2

≤ 15N4

N 2
+

25N2

N (N ≥ 18)

f3(5) = f0(4) · P03 + f2(4) · P23 + f4(4) · P43 + f6(4) · P63

≤ 324N4

N 3
· 1 +

(
60
N +

1098N5

N 3

)
· 6(N−2)(N−3)

N +
(

60N

N +
438N6

N 3

)
· 36(N−4)

N +
(

15N2

N +
25N4

N 2

)
· 120
N

≤ 4320N8 + 25680N7

N 4

f0(6) = f3(5) · 6
N

≤ 4320N8 + 25680N7

N 4
· 6
N

=
25920N8 + 154080N7

N 5

This completes the proof of the lemma. ♦

24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

