
Authenticated Key Exchange Secure Against

Dictionary Attacks

Mihir Bellare�� David Pointcheval�� and Phillip Rogaway�

� Dept� of Computer Science � Engineering� University of California at San Diego�
���� Gilman Drive� La Jolla� CA ����	� USA� mihir�cs�ucsd�edu�

WWW home page
 http���www�cse�ucsd�edu�users�mihir
� D�ept� d�InformatiqueCNRS� �Ecole Normale Sup�erieure� �� rue d�Ulm� ���	� Paris

Cedex ��� France� david�pointcheval�ens�fr� WWW home page

http���www�dmi�ens�fr��pointche

� Dept� of Computer Science� University of California at Davis� Davis� CA ������
USA� rogaway�cs�ucdavis�edu� WWW home page

http���www�cs�ucdavis�edu��rogaway

Appears in Advances in Cryptology � Eurocrypt ���� Lecture Notes in Computer Science Vol� ����� B� Preneel
ed�� Springer�Verlag� ����� This version corrects a few minor typos�

Abstract� Password�based protocols for authenticated key exchange
�AKE� are designed to work despite the use of passwords drawn from
a space so small that an adversary might well enumerate� o� line� all
possible passwords� While several such protocols have been suggested�
the underlying theory has been lagging� We begin by de�ning a model
for this problem� one rich enough to deal with password guessing� for�
ward secrecy� server compromise� and loss of session keys� The one model
can be used to de�ne various goals� We take AKE �with �implicit� au�
thentication� as the �basic� goal� and we give de�nitions for it� and for
entity�authentication goals as well� Then we prove correctness for the
idea at the center of the Encrypted Key�Exchange �EKE� protocol of
Bellovin and Merritt
 we prove security� in an ideal�cipher model� of the
two��ow protocol at the core of EKE�

� Introduction

The problem� This paper continues the study of password�based protocols for
authenticated key exchange �AKE�� We consider the scenario in which there are
two entities�a client A and a server B�where A holds a password pw and B
holds a key related to this� The parties would like to engage in a conversation
at the end of which each holds a session key� sk � which is known to nobody
but the two of them� There is present an active adversary A whose capabilities
include enumerating� o��line� the words in a dictionary D� this dictionary being
rather likely to include pw � In a protocol we deem 	good
 the adversary�s chance
to defeat protocol goals will depend on how much she interacts with protocol
participants�it won�t signi�cantly depend on her o��line computing time�
The above protocol problem was �rst suggested by Bellovin and Merritt ���

who also o�er a protocol� Encrypted Key Exchange �EKE�� and some informal

security analysis� This protocol problem has become quite popular� with further
papers suggesting solutions including �� ��������� ��� ��� ��� ���� The reason for
this interest is simple� password�guessing attacks are a common avenue for break�
ing into systems� and here is a domain where good cryptographic protocols can
help�

Contributions� Our �rst goal was to �nd an approach to help manage the
complexity of de�nitions and proofs in this domain� We start with the model
and de�nitions of Bellare and Rogaway �� and modify or extend them appropri�
ately� The model can be used to de�ne the execution of authentication and key�
exchange protocols in many di�erent settings� We specify the model in pseudo�
code� not only in English� so as to provide succinct and unambiguous execution
semantics� The model is used to de�ne the ideas of proper partnering� fresh�
ness of session keys� and measures of security for authenticated key exchange�
unilateral authentication� and mutual authentication� Some speci�c features of
our approach are� partnering via session IDs �an old idea of Bellare� Petrank�
Racko�� and Rogaway�see Remark ��� a distinction between accepting a key
and terminating� incorporation of a technical correction to �� concerning Test

queries �this arose from a counter�example by Racko��see Remark ��� provid�
ing the adversary a separate capability to obtain honest protocol executions
�important to measure security against dictionary attacks�� and providing the
adversary corruption capabilities which enable a treatment of forward secrecy�

We focus on AKE �with no explicit authentication�� Philosophically� AKE is
more 	basic
 than a goal like mutual authentication �MA�� Pragmatically� AKE
is simpler and takes fewer �ows �two instead of three�� Earlier work �� began by
de�ning MA and then embellishing the de�nition to handle an associated key
exchange� Protocol development followed the same course� That approach gets
complicated when one adds in the concern for password�guessing security�

Under our approach resistance to dictionary attacks is just a question of
advantage vs� resource expenditure� It shows up in theorems� not de�nitions
�once the model is adequately re�ned�� A theorem asserting security of some
protocol makes quantitative how much computation helps and just how much
interaction does� One sees whether or not one has security against dictionary
attacks by looking to see if maximal adversarial advantage grows primarily with
the ratio of interaction to the size of the password space�

In Section � we de�ne EKE�� which is essentially the pair of �ows at the
center of Bellovin and Merritt�s Di�e�Hellman based Encrypted Key Exchange
protocol ��� We show that EKE� is a secure AKE protocol� in the ideal�cipher
model� Security here entails forward secrecy�

Related work� Recently people have been trying to get this area onto �rmer
foundations� The approach has been to build on the ideas of Bellare and Rog�
away �� ��� extending their de�nitions to deal with dictionary attacks� Lucks ���
was the �rst work in this vein� Halevi and Krawczyk ��� provide de�nitions and
protocols for password�based unilateral authentication �UA� in the model in
which the client holds the public key for the server� a problem which is di�erent

from� but related to� the one we are considering� Some critiques of ��� are made
by ��� who also give their own� simulation�based notion for password�based UA�
In contemporaneous work to ours MacKenzie and Swaminathan ���� build�

ing on �� ���� give de�nitions and proofs for a password�based MA protocol� and
then a protocol that combines MA and AKE� Boyko� MacKenzie and Patel ����
building on �� ���� give de�nitions and a proof for a Di�e�Hellman based pro�
tocol� In both papers the authors� motivation is fundamentally the same as our
own� to have practical and provably secure password�based protocols�

Ongoing work� In �� we provide a simple AKE protocol for the asymmetric
trust model� the client holds pw and the server holds f�pw�� where f is a one�
way function� If the adversary corrupts the server she must still expend time
proportional to the quality of the password� We are working on the analysis�
We are also investigating the security of EKE� when its encryption function
E is instantiated by Epw�x� � x � H�pw� where H is a random oracle and the
arithmetic is in the underlying group�

� Model

The model described in this section is based on that of �� ��� In particular we
take from there the idea of modeling instances of principals via oracles available
to the adversary� modeling various kinds of attacks by appropriate queries to
these oracles� having some notion of partnering� and requiring semantic security
of the session key via Test queries�

Protocol participants�We �x a nonempty set ID of principals � Each princi�
pal is either a client or a server � ID is the union of the �nite� disjoint� nonempty
sets Client and Server � Each principal U � ID is named by a string� and that
string has some �xed length� When U � ID appears in a protocol �ow or as an
argument to a function� we mean to the string which names the principal�

Long�lived keys� Each principal A � Client holds some password� pwA� Each
server B � Server holds a vector pwB � hpwB A�iA�Client which contains an
entry per client� Entry pwB A� is called the transformed�password� In a protocol
for the symmetric model pwA � pwB A�� that is� the client and server share the
same password� In a protocol for the asymmetric model� pwB A� will typically
be chosen so that it is hard to compute pwA from A� B� and pwB A�� The
password pwA �and therefore the transformed password pwB A�� might be a
poor one� Probably some human chose it himself� and then installed pwB A� at
the server� We call the pwA and pwB long�lived keys �LL�keys��
Figure � speci�es how a protocol is run� It is in Initialization that pwA and

pwB arise� everybody�s LL�key is determined by running a LL�key generator�
PW � A simple possibility for PW is that the password for client A is determined

by pwA
R

� PWA� for some �nite set PWA� and pwB A� is set to pwA� Notice
that� in Figure �� PW takes a superscript h� which is chosen from space ��
This lets PW �s behavior depend on an idealized hash function� Di�erent LL�key
generators can be used to capture other settings� like a public�key one�

Initialization h
R

��� hpwA� pwBiA�Client� B�Server

R

� PW h��
for i � N and U � ID do

state iU � ready� acciU � termi
U � used iU � false

sid iU � pid iU � sk iU � undef

Send �U� i� M� used iU � true� if termi
U then return invalid

hmsg�out� acc� term i
U � sid � pid � sk � state

i
U i �

P h�hU� pwU � state
i
U �Mi�

if acc and �acciU then

sid iU � sid � pid iU � pid � sk iU � sk � acciU � true

return hmsg�out� sid � pid � acc� term i
U i

Reveal �U� i� return sk iU

Corrupt �U� pw� if U � Client and pw �� dontChange then

for B � Server do pwB �U � � pw �B�
return hpwU � fstate

i
Ugi�Ni

Execute �A� i� B� j� if A �� Client or B �� Server or used iA or used
j
B

then return invalid

msg�in�B

for t� � to � do

hmsg�out� sid � pid � acc� termAi
R

� Send �A� i� msg�in��
�t �hmsg�out� sid � pid � acc� termAi
if termA and termB then return h��� ��� ��� ��� � � � � �ti

hmsg�out� sid � pid � acc� termBi
R

� Send �B� j� msg�in��
�t � hmsg�out� sid � pid � acc� termBi
if termA and termB then return h��� ��� ��� ��� � � � � �t� �ti

Test �U� i� sk
R

� SK � b
R

�f�� �g� if �term i
U then return invalid

if b � � then return sk iU else return sk

Oracle �M� return h�M�

Fig� �� The model� The protocol is P � the LL�key generator is PW � and the session�key
space is SK � Probablity space � depends on the model of computation�

Executing the protocol� Formally� a protocol is just a probabilistic algo�
rithm taking strings to strings� This algorithm determines how instances of the
principals behave in response to signals �messages� from their enviornment� It
is the adversary who sends these signals� As with the LL�key generator� P may
depend on h�

Adversary A is a probabilistic algorithm with a distinguished query tape�
Queries written on this tape are answered as speci�ed in Figure �� The following
English�language description may clarify what is happening�

During the exeuction there may be running many instances of each princi�
pal U � ID � We call instance i of principal U an oracle� and we denote it � i

U �
Each instance of a principal might be embodied as a process �running on some
machine� which is controlled by that principal�

A client�instance speaks �rst� producing some �rst message� Flow�� A server�
instance responds with a message of its own� Flow�� intended for the client�
instance which sent Flow�� This process is intended to continue for some �xed
number of �ows �usually ����� until both instances have terminated� By that
time each instance should have accepted� holding a particular session key �SK��
session id �SID�� and partner id �PID�� Let us describe these more fully�
At any point in time an oracle may accept� When an oracle accepts it holds

a session key sk � a session id sid � and a partner id pid � Think of these values
as having been written on a write�only tape� The SK is what the instance was
aiming to get� It can be used to protect an ensuing conversation� The SID is an
identi�er which can be used to uniquely name the ensuing session� It is also useful
de�nitionally� The PID names the principal with which the instance believes it
has just exchanged a key� The SID and PID aren�t secret�indeed we will hand
them to the adversary�but the SK certainly is� A client�instance and a server�
instance can accept at most once�

Remark �� In this paper we use session IDs as our approach to de�ning partner�
ing� This idea springs from discussions in ���� among Bellare� Petrank� Racko��
and Rogaway� In �� the authors de�ne partnering via 	matching conversations�

while in �� the authors de�ne partnering by way of an existentially guaran�
teed partnering function� Though all three approaches are reasonable� the use of
matching�conversations can be criticized as focussing on a syntactic element that
is ultimately irrelevant� while partnering via an existentially�guarateed partner�
ing function allows for some unintuitive partnering functions� An explicit SID
seems an elegant way to go� Speci�cation document de�ning 	real
 protocols
�eg�� SSL and IPSec� typically do have SIDs� and in cases where an SID was
not made explicit one can readilly de�ne one �eg�� by the concatenation of all
protocol �ows�� �

Remark �� We emphasize that accepting is di�erent from terminating� When
an instance terminates� it is done�it has what it wants� and won�t send out
any further messages� But an instance may wish to accept now� and terminate
later� This typically happens when an instance believes it is now holding a good
session key� but� prior to using that key� the instance wants con�rmation that
its desired communication partner really exists� and is also holding that same
session key� The instance can accomplish this by accepting now� but waiting for
a con�rmation message to terminate� The distinction between terminating and
accepting may at �rst seem arti�cial� but the distinction is convenient and it is
typical of real MA protocols� It can be seen as an 	asymmetry�breaking device

for dealing with the well�known issue that the party who sends the last �ow is
never sure if it was received� �

Our communications model places the adversary at the center of the universe�
The adversary A can make queries to any instance� she has an endless supply of
� i
U oracles �U � ID and i � N�� There are all together six types of queries that

A can make� The responses to these queries are speci�ed in Figure �� We now
explain the capability that each kind of query captures�

��� Send �U� i� M� � This sends messageM to oracle� i
U � The oracle computes

what the protocol says to� and sends back the response� Should the oracle accept�
this fact� as well as the SID and PID� will be made visible to the adversary� Should
the oracle terminate� this too will be made visible to the adversary� To initiate
the protocol with client A trying to enter into an exchange with server B the
adversary should send messageM � B to an unused instance of A� A Send�query
models the real�world possibility of an adversary A causing an instance to come
into existence� for that instance to receive communications fabricated by A� and
for that instance to respond in the manner prescribed by the protocol�

��� Reveal �U� i� � If oracle � i
U has accepted� holding some session key sk � then

this query returns sk to the adversary� This query models the idea �going back
to Denning and Sacco ���� that loss of a session key shouldn�t be damaging to
other sessions� A session key might be lost for a variety of reasons� including
hacking� cryptanalysis� and the prescribed�release of that session key when the
session is torn down�

��� Corrupt �U� pw� � The adversary obtains pwU and the states of all instances
of U �but see Remark ��� This query models the possibility of subverting a
principal by� for example� witnessing a user type in his password� installing a
	Trojan horse
 on his machine� or hacking into a machine� Obviously this is a
very damaging type of query� Allowing it lets us deal with forward secrecy and
the extent of damage which can be done by breaking into a server� A Corrupt

query directed against a client U may also be used to replace the value of pwB U �
used by server B� This is the role of the second argument to Corrupt� Including
this capability allows a dishonest client A to try to defeat protocol aims by
installing a strange string as a server B�s transformed password pwB A��

��� Execute �A� i� B� j� � Assuming that client oracle � i
A and server oracle �

j
B

have not been used� this call carries out an honest execution of the protocol be�
tween these oracles� returning a transcript of that execution� This query may at
�rst seem useless since� using Send queries� the adversary already has the ability
to carry out an honest execution between two oracles� Yet the query is essential
for properly dealing with dictionary attacks� In modeling such attacks the ad�
versary should be granted access to plenty of honest executions� since collecting
these involves just passive eavesdropping� The adversary is comparatively con�
strained in its ability to actively manipulate �ows to the principals� since bogus
�ows can be auditied and punative measures taken should there be too many�

��� Test �U� i� � If� i
U has accepted� holding a session key sk � then the following

happens� A coin b is �ipped� If it lands b � �� then sk is returned to the adversary�
If it lands b � �� then a random session key� drawn from the distribution from
which session keys are supposed to be drawn� is returned� This type of query is
only used to measure adversarial success�it does not correspond to any actual
adversarial ability� You should think of the adversary asking this query just once�

��� Oracle �M� � Finally� we give the adversary oracle access to a function h�
which is selected at random from some probability space�� As already remarked�

not only the adversary� but the protocol and the LL�key generator may depend
on h� The choice of � determines if we are woking in the standard model� ideal�
hash model� or ideal�cipher model� See the discussion below�

Remark �� As described in Figure �� a Corrupt query directed against U releases
the LL�key pwU and also the current state of all instances of U � We call this
the 	strong�corruption model�
 A weaker type of Corrupt query returns only the
LL�key of that principal� We call this the 	weak�corruption model�
 The weak�
corruption model corresponds to acquiring a principal�s password by coaxing it
out of him� as opposed to completely compromising his machine� �

Remark �� Notice that a Corrupt query to U does not result in the release of the
session keys owned by U � The adversary already has the ability to obtain session
keys through Reveal queries� and releasing those keys by a Corrupt query would
make forward secrecy impossible� �

Remark �� Soon after the appearance of ��� Racko� ��� came up with an ex�
ample showing how the de�nition given in that paper was not strong enough to
guarantee security for certain applications using the distributed session key� The
authors of �� traced the problem to a simple issue� they had wrongly made the
restriction that the Test query be the adversary�s last� Removal of this restriction
solved the problem� This minor but important change in the de�nition of ���
made in ����� has since been folklore in the community of researchers in this
area� and is explicitly incorporated into our current work� �

Standard model� ideal�hash model� ideal�cipher model� Figure � refers
to probability space �� We consider three possiblities for �� giving rise to three
di�erent models of computation�
In the standard model � is the distribution which puts all the probability

mass on one function� the constant function which returns the empty�string� ��
for any query M � So in the standard model� all mention of h can be ignored�
Fix a �nite set of strings C� In the ideal�hash model �also called the random�

oracle model� choosing a random function from � means choosing a random
function h from f�� �g� to C� This models the use of a cryptographic hash function
which is so good that� for purposes of analysis� one prefers to think of it as a
public random function�
Fix �nite sets of strings G and C where jGj � jCj� In the ideal�cipher model

choosing a random function h from � amounts to giving the protocol �and the
adversary� a perfect way to encipher strings in G� namely� for K � f�� �g�� we
set EK � G � C to be a random bijective function� and we let EK � f�� �g

� � G
be de�ned by DK �y� is the value x such that EK �x� � y� if y � C� and bad
otherwise� We let h�encrypt�K�M� � EK �M� and h�decrypt�K�C� � DK �C��
The capabilities of the ideal�hash model further include those of the ideal�cipher
model� by means of a query h�hash� x� which� for shorthand� we denote H�x��
The ideal�cipher model is very strong �even stronger than the ideal�hash

model� and yet there are natural and apparently�good ways to instantiate an

The basic notion of freshess �no requirement for forward secrecy�

if �RevealTo �U� i�� or �RevealToPartnerOf �U� i�� or
�SomebodyWasCorrupted� then unfresh else fresh

A notion of freshness the incorporates a requirement for forward secrecy

if �RevealTo �U� i�� or �RevealToPartnerOf �U� i�� or
�SomebodyWasCorruptedBeforeTheTestQuery and Manipulated�U� i��
then fs�unfresh else fs�fresh

Fig� �� Session�key freshness� A Test query is made to oracle �i
U � The chart speci�es

how� at the end of the execution� the session key of that oracle should be regarded �fresh
or unfresh� and fs�fresh or fs�unfresh�� Notation is described in the accompanying text�

ideal cipher for use in practical protocols� See ��� Working in this model does
not render trivial the goals that this paper is interested in� and it helps make
for protocols that don�t waste any bits� A protocol will always have a clearly�
indicated model of computation for which it is intended so� when the protocol
is �xed� we do not make explicit mention of the model of compuation�

Remark 	� The ideal�cipher model is richer than the RO�model� and you can�t
just say 	apply the Feistel construction to your random oracle to make the
cipher�
 While this may be an approach to instantiating an ideal�cipher� there is
no formal sense we know in which you can simulate the ideal�cipher model using
only the RO�model� �

� De�nitions

Our de�nitional approach is from ��� but adaptations must be made since
partnering is de�ned in a di�erent manner than in �� �as discussed in Section ���
and since we now consider forward secrecy as one of our goals�

Partnering using SIDs� Fix a protocol P � adversary A� LL�key generator
PW � and session�key space SK � Run P in the manner speci�ed in Section �� In
this execution� we say that oracles � i

U and �
i�

U � are partnered �and each oracle
is said to be a partner of the other� if both oracles accept� holding �sk � sid � pid �
and �sk �� sid �� pid �� respectively� and the following hold�

��� sid � sid � and sk � sk � and pid � U � and pid � � U �

��� U � Client and U � � Server � or U � Server and U � � Client �

��� No oracle besides � i
U and �

i�

U � accepts with a PID of pid �

The above de�nition of partnering is quite strict� For two oracles to be partners
with one another they should have the same SID and the same SK� one should
be a client and the other a server� each should think itself partnered with the
other� and� �nally� no third oracle should have the same SID� Thus an oracle
that has accepted will have a single partner� if it has any partner at all�

Two flavors of freshness� Once again� run a protocol with its adversary�
Suppose that the adversary made exactly one Test query� and it was to � i

U �

Intuitively� the oracle � i
U should be considered unfresh if the adversary may

know the SK contained within it�
In Figure � we de�ne two notions of freshness�with and witout forward se�

crecy �fs�� Here is the notation used in that �gure� We say 	RevealTo �U� i�

is true i� there was� at some point in time� a query Reveal �U� i�� We say
	RevealToPartnerOf �U� i�
 is true i� there was� at some point in time� a query
Reveal �U �� i�� and � i�

U � is a partner to � i
U � We say 	SomebodyWasCorrupted

is true i� there was� at some point in time� a query Corrupt �U �� pw� for some
U �� pw � We say 	SomebodyWasCorruptedBeforeTheTestQuery
 is true i� there
was a Corrupt �U �� pw� query and this query was made before the Test �U� i�
query� We say that 	Manipulated�U� i�
 is true i� there was� at some point in
time� a Send �U� i� M� query� for some string M �

Explanation� In our de�nition of security we will be 	giving credit
 to the
adversary A if she speci�es a fresh �or fs�fresh� oracle and then correctly iden�
ti�es if she is provided the SK from that oracle or else a random SK� We make
two cases� according to whether or not 	forward secrecy
 is expected� Recall
that forward secrecy entails that loss of a long�lived key should not compromise
already�distributed session keys�
Certainly an adversary can know the SK contained within an oracle� i

U if she
did a Reveal query to � i

U � or if she did a Reveal query to a partner of �
i
U � This

accounts for the �rst two disjuncts in each condition of Figure �� The question is
whether or not a Corrupt query may divulges the SK� Remember that a Corrupt
query does not return the SK� but it does return the LL�key� For the 	basic

notion of security �fresh�unfresh� we pessimistically assume that a Corrupt query
does reveal the session key� so any Corrupt query makes all oracles unfresh� �One
could tighten this a little� if desired�� For the version of the de�nition with
forward secrecy a Corrupt query may reveal a SK only if the Corrupt query was
made before the Test query� We also require that the Test query was to an oracle
that was the target of a Send query �as opposed to an oracle that was used in
an Execute query�� �Again� this can be tightened up a little�� This acts to build
in the following requirement� that even after the Corrupt query� session keys
exchanged by principals who behave honestly are still fs�fresh� This is a nice
property� and since it seems to always be achieved in protocols which achieve
forward secrecy� we have lumped it into that notion� It amounts to saying that
an 	honest
 oracle�one that is used only for an Execute call�is always fs�fresh�
even if there is a Corrupt query� �Of course you still have to exclude the the
possiblity that the oracle was the target of a Reveal query� or that its partner
was��

Remark
� Forward secrecy� in the strong�corruption model� is not achievable by
two��ow protocols� The di�culty is the following� A two��ow protocol is client�
to�server then server�to�client� If the client oracle is corrupted after the server
oracle has terminated but before the client oracle has received the response� then
the server oracle will be fs�fresh but the adversary can necessarilly compute the
shared SK since the adversary has the exact same information that the client
oracle would have had the client oracle received the server oracle�s �ow�

One way around this is to go to the weak�corruption model� A second way
around this is to add a third �ow to the protocol� A �nal way around this is to
de�ne a slightly weaker notion of forward secrecy� weak forward�secrecy� in which
an oracle is regarded as 	wfs�unfresh
 if it fs�unfresh� or the test query is to a
manipulated oracle� that oracle is unpartnered at termination� and somebody
gets corrupted� Otherwise the oracle is wfs�fresh� �

AKE security �with and without forward secrecy�� In a protocol exe�
cution of P�PW �SK �A we say that A wins� in the AKE sense� if she asks a single
Test�query� Test �U� i�� where � i

U has terminated and is fresh� and A outputs
a single bit� b�� and b� � b �where b is the bit selected during the Test query��
The ake advantage of A in attacking �P�PW �SK � is twice the probability that
A wins� minus one� �The adversay can trivially win with probability ���� Multi�
plying by two and subtracting one simply rescales this probability�� We denote
the ake advantage by AdvakeP�PW �SK �A��

We similarly de�ne the ake�fs advantage� Advake�fsP�PW �SK �A�� where now one

insists that the oracle � i
U to which the Test�query is directed be fs�fresh�

Authentication� In a protocol execution of P�PW �SK �A� we say that an
adversary violates client�to�server authentication if some server oracle terminates
but has no partner oracle� We let the c�s advantage be the probablity of this
event� and denote it by Advc�sP�PW �SK �A�� We say that an adversary violates
server�to�client authentication if some client oracle terminates but has no partner
oracle� We let the s�c advantage be the probability of this event� and denote
it by Advs�cP�PW �SK �A�� We say that an adversary violates mutual authentication
if some oracle terminates� but has no partner oracle� We let the ma advantage

denote the probablity of this event� and denote it by Advma

P�PW �SK �A��

Measuring adversarial resources� We are interested in an adversary�s
maximal advantage in attacking some protocol as a function of her resources�
The resources of interest are�

� t � the adversary�s running time� By convention� this includes the amount
of space it takes to describe the adversary�

� qse� qre� qco� qex� qor � these count the number of Send� Reveal� Corrupt�
Execute� and Oracle queries� respectively�

When we write AdvakeP�PW �SK �resources�� overloading the Adv�notation� it means

the maximal possible value of AdvakeP�PW �SK �A� among all adversaries that expend
at most the speci�ed resources� By convention� the time to sample in PW �one
time� and to sample in SK �one time� are included in AdvP�PW �SK �resources�
�for each type of advantage��

Diffie�Hellman assumption�We will prove security under the computational
Di�e�Hellman assumption� The concrete version of relevance to us is the follow�
ing� Let G � hgi be a �nite group� We assume some �xed representation for
group elements� and implicitly switch between group elements and their string
representations� Let A be an adversary that outputs a list of group elements�

A
pw

B
pw

x
R

�f�� � � � � jGjg A k Epw �g
x�

�

y
R

�f�� � � � � jGjgEpw �g
y�

�

Fig� �� The protocol EKE�� Depicted are �ows of an honest execution� The shared
session key is sk � H�A k B k gx k gy k gxy� and shared session ID is sid �
A k Epw �g

x� k B k Epw �g
y�� The partner ID for A is pidA � B and the partner ID

for B is pidB � A�

z�� � � � � zq � Then we de�ne

AdvdhG �A� � Prx� y�f�� � � � � jGjg � gxy � A�gx� gy��� and

AdvdhG �t� q� � max
A

f AdvdhG�g�A� g �

where the maximum is over all adversaries that run in time at most t and output a
list of q group elements� As before� t includes the description size of adversary A�

� Secure AKE� Protocol EKE�

In this section we prove the security of the two �ows at the center of Bellovin
and Merritt�s EKE protocol ��� Here we de�ne the �slightly modi�ed� 	piece

of EKE that we are interested in�

Description of EKE�� This is a Di�e�Hellman key exchange in which each
�ow is enciphered by the password� the SK is sk � H�A k B k gx k gy k gxy��
and the SID and PID are appropriately de�ned� The name of the sender also
accompanies the �rst �ow� See Figures � and ��
Arithmetic is in a �nite cyclic group G � hgi� This group could be G � Z�p�

or it could be a prime�order subgroup of this group� or it could be an elliptic
curve group� We denote the group operation multiplicatively� The protocol uses
a cipher E � Password � G � C� where pwA � Password for all A � Client �
There are many concrete constructions that could be used to instantiate such
an object� see ��� In the analysis this is treated as an ideal cipher� Besides the
cipher we use a hash function H � It outputs ��bits� where � is the length of the
session key we are trying to distribute� Accordingly� the session�key space SK
associated to this protocol is f�� �g� equipped with a uniform distribution�

Security theorem� The following indicates that the security of EKE� is about
as good as one could hope for� We consider the simple case where Password has
size N and all client passwords are chosen uniformly �and independently� at
random from this space� Formally this initialization is captured by de�ning the

appropriate LL�key generator PW � It picks pwA
R

� Password for each A � Client

if state � ready and U � Client then �� A sends the first flow

hAi � U hBi �msg�in� where B � Server

x
R

�f�� � � � � jGjg X� gx X� �Epw �X� msg�out�A k X�

sid � pid � sk � � acc� term � false state � hx�Bi
return �msg�out� acc� term � sid � pid � sk � state�

else if state � ready and U � Server then �� B sends the second flow

hBi � U hA�X�i�msg�in� where A � Client and X� is a ciphertext

y
R

�f�� � � � � jGjg Y � gy Y � �Epw �Y �
X �Dpw �X

�� K�Xy msg�out� Y �

sid �A k X� k B k Y � pid �A sk �H�A k B k X k Y k K�
acc � term � true state � done

return �msg�out� acc� term � sid � pid � sk � state�

else if state � hx�Bi and U � Client then �� A receives the second flow

hY �i �msg�in� where Y � is a ciphertext
Y �Dpw �Y

�� K� Y x

sid �A k X� k B k Y � pid �B sk �H�A k B k X k Y k K�
acc � term � true state � done

return �msg�out� acc� term � sid � pid � sk � state�

Fig� �� De�nition of EKE�� The above de�nes both client and server behavior�
P h�hU� pw� state �msg�ini��

and sets pwB A� � pwA for each B � Server and A � Client � It then sets
pwB � hpwB A�iA�Client and outputs hpwA� pwBiA�Client� B�Server � The theorem
below assumes that the space Password is known in the sense that it is possible
to sample from it e�ciently�

Theorem �� Let qse� qre� qco� qex� qor be integers and let q � qse qre qco
qex qor� Let Password be a �nite set of size N and assume � � N �

p
jGj�q�

Let PW be the associated LL�key generator as discussed above� Let P be the

EKE� protocol and let SK be the associated session�key space� Assume the weak�

corruption model� Then

Advake�fsP�PW �SK �t� qse� qre� qco� qex� qor�

�
qse
N
 qse � qor � Adv

dh

G�g�t
�� qor�

O�q��

jGj

O���
p
jGj

where t� � t O�qse qor�� �

Remark �� Since EKE� is a two��ow protocol� Remark � implies that it cannot
achieve forward secrecy in the strong�corruption model� Accordingly the above
theorem considers the weak�corruption model with regard to forward secrecy�
The resistance to dictionary attacks is captured by the �rst term which is the
number of send queries divided by the size of the password space� The other
terms can be made negligible by an appropriate choice of parameters for the
group G� �

Remark � The upper bound imposed in the theorem on the size N of the pass�
word space is not a restriction because if the password space were larger the
question of dictionary attacks becomes moot� the adversary cannot exhaust the
password space o��line anyway� Nonetheless it may be unclear why we require
such a restriction� Intuitively� as long as the password space is not too large the
adversary can probably eliminate at most one candidate password from consid�
eration per Send query� but for a larger password space it might in principle be
able to eliminate more at a time� This doesn�t damage the success probability
because although it eliminates more passwords at a time� there are also more
passwords to consider� �

The proof of Theorem � is omitted due to lack of space and can be found in the
full version of this paper ��� We try however to provide a brief sketch of the
main ideas in the analysis�

Assume for simplicity there is just one client A and one server B� Consider
some adversary A attacking the protocol� We view A as trying to guess A�s
password� We consider at any point in time a set of 	remaining candidates�

At �rst this equals Password � and as time goes on it contains those candidate
passwords that the adversary has not been able to eliminate from consideration
as values of the actual password held by A� We also de�ne a certain 	bad
 event
in the execution of the protocol with this adversary� and show that as long as
this event does not occur� two things are true�

��� A�s password� from the adversary�s point of view� is equally likely to be any
one from the set of remaining passwords� and

��� The size of the set of remaining passwords decreases by at most one with
each oracle query� and the only queries for which a decrease occurs are
reveal or test queries to manipulated oracles�

The second condition implies that the number of queries for which the decrease
of size in the set of remaining candidates occurs is bounded by qse� We then show
that the probability of the bad event can be bounded in terms of the advantage
function of the DH problem over G�

Making this work requires isolating a bad event with two properties� First�
whenever it happens we have a way to 	embed
 instances of the DH problem
into the protocol so that adversarial success leads to our obtaining a solution to
the DH problem� Second� absence of the bad event leads to an inability of the
adversary to obtain information about the password at a better rate than elimi�
nating one password per reveal or test query to a manipulated oracle� Bounding
the probability of the bad event involves a 	simulation
 argument as we attempt
to 	plant
 DH problem instances in the protocol� Bounding adversarial success
under the assumption the bad event does not happen is an information�theoretic
argument� Indeed� the di�culty of the proof is in choosing the bad event so that
one can split the analysis into an information�theoretic component and a com�
putational component in this way�

� Adding Authentication

In this section we sketch generic transformations for turning an AKE proto�
col P � into a protocol P that provides client�to�server authentication� server�to�
client authentication� or both� The basic approach is well�known in folklore�use
the distributed session key to construct a simple 	authenticator
 for the other
party�but one has to be careful in the details� and people often get them wrong�
The ease with which an AKE protocol can be modi�ed to provide authenti�

cation is one of the reasons for using AKE as a starting point�
In what follows we assume that the AKE protocol P � is designed to distribute

session keys from a space SK � U�� the uniform distribution on ��bit strings�
While a pseudorandom function is su�cient for adding authentication to an

AKE protocol� for simplicity �and since one likely assumes it anyway� in any
practical password�based AKE construction� we assume �at least� the random�
oracle model� The random hash function is denoted H � Its argument �in our
construction� will look like sk � k i� where sk � is an ��bit string and i is a �xed�
length string encoding one of the numbers �� �� or �� We require that the AKE
protocol P never evaluates H at any point of the form sk � k �� sk� k �� or sk � k ��
where sk � � f�� �g��

The transformations� The transformation AddCSA �add client�to�server au�
thentication� works as follows� Suppose that in protocol P � the client A has
accepted sk �A� sid

�
A� pid

�
A� and suppose that A then terminates� In protocol

P � AddCSA�P �� have A send one additional �ow� authA � H�sk �A k ��� have
A accept skA � H�sk �A k ��� sidA � sid �A� pidA � pid �A� and have A terminate�
saving no state� On the server side� suppose that in P � the server B accepts sk �B �
sid �B � pid

�
B � and B terminates� In protocol P haveB receive one more �ow� auth

�
A�

Have B check if auth �A � H�sk �B k ��� If so� then B accepts skB � H�sk �B k ���
sidB � sid �B � pidB � pid �B � and then B terminates� without saving any state�
Otherwise� B terminates �rejecting�� saving no state�
Transformations AddSCA �add server�to�client authentication� and AddMA

�add mutual authentication� are analogous� The latter is illustrated in Figure ��
In all of these transformation� when a party ends up sending two consecutive
�ows� one can always collapse them into one�

Remark ��� It is crucial in these transformations that the SK produced by P �

is not used both to produce an authenticator and as the �nal session key� if
one does this� the protocol is easily seen to be insecure under our de�nitions�
This is a common 	error
 in the design of authentication protocols� It was �rst
discussed ��� �

Properties� Several theorems can be pursued about how the security of P �

relates to that of AddCSA�P ��� AddSCA�P ��� and AddMA�P ��� These capture
the following� If P � is good in the sense of Advake then AddCSA�P �� is good in the
sense of Advake and Advc�s� If P � is good in the sense of Advake then AddSCA�P ��
is good in the sense of Advake and Advs�c� If P � is good in the sense of Advake then
AddMA�P �� is good in the sense of Advake� Advs�c� and Advc�s� The weak form

A
pw

B
pw

x
R

�f�� � � � � jGjg
A k Epw �g

x�
�

y
R

�f�� � � � � jGjg
sk � �H�AkBkgxkgykgxy�

Epw �g
y� k H�sk �k��

�

sk � �H�AkBkgxkgykgxy�

H�sk �k��
�

Fig� �� Flows of an honest execution of AddMA�EKE��� The shared SK is sk �
H�sk � k �� and the shared SID is sid � A k Epw �g

x� k B k Epw �g
y�� The PID for A

is B and the PID for B is A�

of forward secrecy mentioned in Remark � is also interesting in connection with
AddCSA and AddMA� since these transformations apparently 	upgrade
 good
weak forward secrecy� Advake�wfs� to good ordinary forward secrecy� Advake�fs�

Simplifications� The generic transformations given by AddCSA� AddSCA and
AddMA do not always give rise to the most e�cient method for the �nal goal�
Consider the protocol AddMA�EKE�� of Figure �� It would seem that the en�
cryption in the second �ow can be eliminated and one still has a good protocol
for AKE with MA� However� we know of no approach towards showing such a
protocol secure short of taking the �rst two �ows of that protocol and showing
that they comprise a good AKE protocol with server�to�client authentication�
and then applying AddCSA transformation�

Given the complexity of proofs in this domain and the tremendous variety of
simple and plausibly correct protocol variants� it is a major open problem in this
area to �nd techniques which will let us deal with the myriad of possibilities�
proving the correct ones correct� without necessitating an investment of months
of e�ort to construct a 	rigid
 proof for each and every possibility�

Acknowledgments

We thank Charlie Racko� for extensive discussions on the subject of session�key
exchange over the last �ve years� and for his corrections to our earlier works� We
thank Victor Shoup for useful comments and criticisms on this subject� We thank
the Eurocrypt ���� committee for their excellent feedback and suggestions�

Mihir Bellare is supported in part by NSF CAREER Award CCR��������
and a ���� Packard Foundation Fellowship in Science and Engineering� Phillip
Rogaway is supported in part by NSF CAREER Award CCR��������� Much of
Phil�s work on this paper was carried out while on sabbatical in the Dept� of
Computer Science� Faculty of Science� Chiang Mai University� Thailand�

References

�� M� Bellare� R� Canetti� and H� Krawczyk� A Modular Approach to the Design and
Analysis of Authentication and Key Exchange Protocols� Proc� of the ��th STOC�
ACM Press� New York� �����

�� M� Bellare� D� Pointcheval� and P� Rogaway� Authenticated Key Exchange Secure
Against Dictionary Attacks� Full version of this paper� available from http���

www�cse�ucsd�edu�users�mihir

	� M� Bellare and P� Rogaway� Entity Authentication and Key Distribution� CRYPTO
���� LNCS ��	� pages �	����� Springer�Verlag� Berlin� �����

�� M� Bellare and P� Rogaway� Provably Secure Session Key Distribution
 the Three
Party Case� Proc� of the �	th STOC� ACM Press� New York� �����

�� M� Bellare and P� Rogaway� work in progress�
�� S� Bellovin and M� Merritt� Encrypted Key Exchange
 Password�Based Proto�

cols Secure against Dictionary Attacks� Proc� of the Symposium on Security and

Privacy� pages ����� IEEE� �����
�� S� Bellovin and M� Merritt� Augmented Encrypted Key Exchange
 A Password�

Based Protocol Secure against Dictionary Attacks and Password File Compromise�
Proceedings of the �st Annual Conference on Computer and Communications Se�

curity� ACM� ���	�
�� J� Black and P� Rogaway� Ciphers with Arbitrary Finite Domains� Manuscript�

�����
�� M� Boyarsky� Public�Key Cryptography and Password Protocols
 The Multi�User

Case� Proceedings of the �th Annual Conference on Computer and Communica�

tions Security� ACM� �����
��� V� Boyko� P� MacKenzie� and S� Patel� Provably Secure Password Authenticated

Key Exchange Using Di�e Hellman� Eurocrypt �����
��� P� Buhler� T� Eirich� M� Steiner� and M� Waidner� Secure Password�Based Ci�

pher Suite for TLS� Proceedings of Network and Distributed Systems Security
Symposium� February �����

��� D� Denning and G� Sacco� Timestamps in Key Distribution Protocols� Communi�

cations of the ACM� ��� ����� pp �		�	��
�	� L� Gong� M� Lomas� R� Needham� and J� Saltzer� Protecting Poorly Chosen Se�

crets from Guessing Attacks� IEEE Journal on Selected Areas in Communications�
�����
������� June ���	�

��� S� Halevi and H� Krawczyk� Public�Key Cryptography and Password Protocols�
ACM Transactions on Information and System Security� Vol� �� No� 	� pp� �	�����
August ����� Earlier version in Proc� of the
th CCS conference� ACM Press� New
York� �����

��� D� Jablon� Strong Password�Only Authenticated Key Exchange� ACM Computer

Communications Review� October �����
��� D� Jablon� Extended Password Key Exchange Protocols Immune to Dictionary

Attacks� Proc� of WET�ICE ��	� pp� ������� IEEE Computer Society� June �����
��� S� Lucks� Open Key Exchange
 How to Defeat Dictionary Attacks Without En�

crypting Public Keys� Proc� of the Security Protocols Workshop� LNCS �	���
Springer�Verlag� Berlin� �����

��� P� MacKenzie and R� Swaminathan� Secure Authentication with a Short Secret�
Manuscript� November �� ����� Earlier version as Secure Network Authentication
with Password Identi�cation� Submission to IEEE P�	�	a� August �����
Available from http���grouper�ieee�org�groups���	��addendum�html

��� C� Racko�� private communication� �����
��� V� Shoup� On Formal Models for Secure Key Exchange� Theory of Cryptography

Library Record ������ http���philby�ucsd�edu�cryptolib� and invited talk at
ACM Computer and Communications Security conference� �����

��� M� Roe� B� Christianson� and D�Wheeler� Secure Sessions from Weak Secrets�
Technical report from University of Cambridge and University of Hertfordshire�
Manuscript� �����

��� T� Wu� The Secure Remote Password Protocol� Proceedings of the Internet Society
Symposium on Network and Distributed System Security� pp� ������ �����

