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Abstract. There is a foundational problem involving collision-resistant hash-functions: com-
mon constructions are keyless, but formal definitions are keyed. The discrepancy stems from the
fact that a function H: {0,1}" — {0,1}" always admits an efficient collision-finding algorithm,
it’s just that us human beings might be unable to write the program down. We explain a simple
way to sidestep this difficulty that avoids having to key our hash functions. The idea is to state
theorems in a way that prescribes an explicitly-given reduction, normally a black-box one. We
illustrate this approach using well-known examples involving digital signatures, pseudorandom
functions, and the Merkle-Damgard construction.
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1 Introduction

FOUNDATIONS-OF-HASHING DILEMMA. In cryptographic practice, a collision-resistant hash-function
(also called a collision-free or collision-intractable hash-function) maps arbitrary-length strings to
fixed-length ones; it’s an algorithm H: {0,1}" — {0,1}" for some fixed n (we momentarily assume
a message space of {0,1}*). But in cryptographic theory, a collision-resistant hash-function is al-
ways keyed; now H: K x {0,1}" — {0,1}" where each K € K names a function Hg(-) = H(K, ).
(This formalization assumes a concrete-security framework.) In this case H can be thought of as a
collection or family of hash functions H = {Hg: K € K}, each key (or indez) K € K naming one.
(Note that we call K a key but it is not secret; it will be chosen from I and then made public.)

Why should theoretical treatments be keyed when practical constructions are not? The tradi-
tional answer is that a rigorous treatment of collision resistance for unkeyed hash-functions just
doesn’t work. At issue is the fact that for any function H: {0,1}* — {0,1}" there is always a
simple and compact algorithm that outputs a collision: the algorithm that has one “hardwired in.”
That is, by the pigeonhole principle there must be distinct strings X and X’ of length at most n
such that H(X) = H(X'), and so there’s a short and fast program that outputs such an X, X’.
The difficulty, of course, is that us human beings might not know any such pair X, X’, so no one
can actually write the program down.



Because of the above, what is meant when someone says that a hash function H: {0,1}" —
{0,1}" is collision resistant cannot be that there is no efficient adversary that outputs a collision
in H. What is meant is that there is no efficient algorithm known to man that outputs a collision
in H. But such a statement would seem to be unformalizable—outside the realm of mathematics.
One cannot hope to construct a meaningful theory based on what humankind currently does or
does not know. Regarding a hash function like SHA-1 [22] as a random element from a family of
hash functions has been the traditional way out of this quandary.

Let us call the problem we’ve been discussing the foundations-of-hashing dilemma. The question
is how to state definitions and theorems dealing with collision-resistant hashing in a way that makes
sense mathematically, yet accurately reflects cryptographic practice. The treatment should respect
our understanding that what makes a hash function collision resistant is humanity’s inability to
find a collision, not the computational complexity of printing one.

OUR CONTRIBUTIONS. First, we bring the foundations-of-hashing dilemma out into the open.
To the best of our knowledge, the problem has never received more than passing mention in any
paper. Second, we resolve the dilemma. We claim that an answer has always been sitting right
in front of us, that there’s never been any real difficulty with providing a rigorous treatment of
unkeyed collision-resistant hash-functions. Finally, we reformulate in a significantly new way three
fundamental results dealing with collision-resistant hashing.

Suppose a protocol IT uses a collision-resistant hash-function H. Conventionally, a theorem
would be given to capture the idea that the existence of an effective adversary A against II implies
the existence of an effective adversary C against H. But this won’t work when we have an un-
keyed H: {0,1}" — {0,1}" because such an adversary C will always exist. So, instead, the theorem
statement will say that there is an explicitly given reduction: given an adversary A against II there
is a corresponding, explicitly-specified adversary C, as efficient as A, for finding collisions in H. So
if someone knows how to break the higher-level protocol II then they know how to find collisions
in H; and if nobody can find collisions in H then nobody can break II. In brief, our solution to
the foundations-of-hashing dilemma is to recast results so as to assert the existence of an explicitly
given reduction. We call this the human-ignorance (or explicit-reduction) approach.

We illustrate the approach with three well-known examples. The first is the hash-then-sign
paradigm, where a signature scheme is constructed by hashing a message and then applying an
“inner” signature to the result. Our second example is the construction of an arbitrary-input-length
PRF by hashing and then applying a fixed-input-length PRF. Our third example is the Merkle-
Damgard construction, where a collision-resistant compression-function is turned into a collision-
resistant hash-function. In all cases we will give a simple theorem that captures the security of the
construction despite the use of an unkeyed formalization for the underlying hash function.

We provide a concrete-security treatment for all the above. Giving our hash functions a security
parameter and then looking at things asymptotically would only distance us, we feel, from widely-
deployed, real-world hash-functions. That said, we will also point out that unkeyed hash-functions
work fine in the asymptotic setting for the case of uniform adversaries. One eliminates keys but
not the security parameter, making it the length of the hash-function’s output.

RELATED WORK. The rigorous treatment of collision-resistant hash-functions begins with Damgard
[7]. A concrete-security treatment of these objects is given by Bellare, Rogaway, and Shrimpton [3,
27]. Practical and widely-deployed cryptographic hash-functions were first developed by Rivest [26],
and later constructions, like SHA-1 [22], have followed his approach. Bellare et al.’s [1, Theorem 4.2]
is an early example of an explicitly constructive provable-security theorem-statement. Using a
simulator to model what an adversary must know or be able to do is from Goldwasser, Micali, and
Rackoff [14], while black-box reductions come from Goldreich, Krawczyk, and Oren [11,12,23].



Moving closer in, it is well-understood that one can rephrase provable-security results as asser-
tions about explicitly given reductions, and several researchers have noted, with varying degrees
of explicitness, that this can be used to make formal sense of unkeyed hash-functions. The most
explicit work in this direction is from Stinson [29,30]. Given a fixed hash-function f: X — Y and a
subroutine FindPreimage for inverting f, Stinson constructs a collision-finding adversary C for f,
and he gives theorems specifying the effectiveness of C' in terms of the effectiveness of FindPreimage.
Stinson explains [30, page 268] that there seems to be no satisfactory formalization of the idea of
collision resistance for a fized hash function, because there always exists an algorithm that simply
outputs a collision (if one exists). Alternatively, one can talk about infeasibility of problems in an
asymptotic context, but this requires having an infinite “keyed” family of functions .... We prefer to
instead study reductions among the different problems. We can study reductions without worrying
about having to define terms such as “hard to solve” or “infeasible”, even if the hash function un-
der consideration is fized. Following Stinson [29], Laccetti and Schmid similarly state their related
hash-function results in reduction-based terms [17].

More implicit examples of using reductions to deal with unkeyed collision-resistant hash-function
can be found in Brown [5, see footnote 10] and Devanbu et al. [10], both of which prove the security
of a protocol that employs an unkeyed hash-function by constructively transforming a successful
adversary against it into a successful collision-finding one. Indeed using such a transformation
to evidence a hash-function-based protocol’s security goes back to Merkle [18,20]. The option of
speaking about reductions as a way of not having to key a hash function is also hinted at in recent
work of Halevi and Krawczyk [16, footnote 5].

In summary, elements of our approach can be found scattered in the literature, but nowhere are
the ideas carefully developed and explained. (Even Stinson sometimes falls back to the problematic
language of “if (something) then (there exists an efficient collision-finding algorithm)” [30, Theo-
rem 4.1] and [29, Theorems 3.1 and 4.1].) In this current paper we attempt to clear up these ideas.
We aim to illustrate and articulate the power and applicability of the human-ignorance approach.

2 Keyed Hash-Functions

We first give a conventional definition, in the concrete-security setting, for a (keyed) collision-
resistant hash-function. Beginning with the syntax, a keyed hash-function is a pair of algo-
rithms (K, H), the first probabilistic and the second deterministic. Algorithm /C, the key-generation
algorithm, takes no input and produces a string K, the key. As a special case, K uniformly samples
from a finite set, the key space, also denoted K. Algorithm H takes as input a string K, the key,
and a string X, the message, and it outputs a string of some fixed length n, the output length, or
the distinguished value L. We write Hx (X) for H(K, X). We assume there is a set X, the message
space, such that Hi(X) = L iff X ¢ X. We assume that X contains some string of length greater
than n and that X € X implies every string of length |X| is in X. We write a hash function as
H: Kx X — {0,1}" instead of saying “the keyed hash-function (K, H) with message space X and
output length n.” Hash functions and all other algorithms in this paper are given by code relative
to some fixed and reasonable encoding.

We define hash functions as algorithms, not functions, to enable providing them as input to
other algorithms and speaking of their computational complexity. But a hash function H: Kx X —
{0,1}" induces a function H from Kx X to {0,1}", where K is now the support of the key-generation
algorithm, and usually it is fine to regard the hash function as being this function.

To measure the collision-resistance of hash function H: K x X — {0,1}" let C (for collision-
finder) be an adversary, meaning, in this case, an algorithm that takes in one string (the key) and



outputs a pair of strings (the purported collision). We let the advantage of C in finding collisions
in H be the real number

AdvP(C) = PrKEK; (X, X)EC(K): X#£X and Hi(X)=Hp (X')]

that measures the chance that C finds a collision in Hx = H (K, ) if a random key K is provided
to it. Above and henceforth we assume that an adversary will never output a string outside the
message space X of the hash function it is attacking (that is, Hx(X) = Hg(X') = L never counts
as a collision).

As usual, an advantage of 1 means that C' does a great job (it always finds a collision) while
an advantage of 0 means that C' does a terrible job (it never finds a collision). Since we are in the
concrete-security setting we do not define any absolute (yes-or-no) notion for H being coll-secure;
instead, we regard a hash function H as good only to the extent that reasonable adversaries C
can obtain only small advantage Adv$!'(C)). In order to obtain a useful theory, “reasonable” and

“small” need never be defined.

TRYING TO REGARD FUNCTIONS LIKE SHA-1 AS KEYED. How can a real-world hash-function like
SHA-1 be seen as fitting into the framework above? One possibility is that the intended key is the
initial chaining vector; the constant K = 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0
can be regarded as the key. In this case the key space is £ = {0, 1}160 and what NIST did in
choosing SHA-1 was to randomly sample from this set. The problem with this viewpoint is that,
first of all, NIST never indicated that they did any such thing. Indeed the constant K above does
not “look” random (whatever that might mean), and it seems as though the specific constant should
hardly matter: likely any method that would let one construct collisions in SHA-1 with respect to
the actual K-value would work for other K-values, too.

A second way one might regard SHA-1 as keyed is to say that NIST, in designing SHA-1,
considered some universe of hash functions {Hg : K € K} and randomly selected this one hash
function, SHA-1, from it. But, once again, NIST never indicated that they did any such thing; all
we know is that they selected this one hash function. And it’s not clear what I would even be in
this case, or what Hx would be for “other” functions in the family.

Fundamentally, both explanations are unappealing. They make random sampling a crucial
element to a definition when no random sampling ostensibly took place. They disregard the basic
intuition about what SHA-1 is supposed to be: a fixed map that people shouldn’t be able to find
collisions in. And they distance the definition from the elegantly simple goal of the cryptanalyst:
publish a collision for the (one) function specified by NIST.

3 Unkeyed Hash-Functions

An unkeyed hash-function is a deterministic algorithm H that takes as input a string X, the
message, and outputs a string of some fixed length n, the output length, or the distinguished
value L. The message space of H is the set X = {X € {0,1}" : H(X) # L}. We assume that X
contains some string of length greater than n and that X € X implies every string of length | X|
is in X. We will write a hash function as H: X — {0,1}", or simply H, instead of saying “the
unkeyed hash-function H with message space X and output length n.”

Let C' be an adversary for attacking H: X — {0,1}", meaning an algorithm that, with no
input, outputs a pair of strings X and X’ in X. We let the advantage of C in finding collisions in
H be the real number

Adv(C) = Pr[(X,X)<C: X # X and H(X) = H(X')
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that measures the chance that C finds a collision. Note the spelling of superscript col verses the
earlier coll (the number of I’s is the number of arguments to H).

Following the discussion in the Introduction, we observe that for any unkeyed hash-function H
there is an efficient algorithm C' (it runs in cn time and takes cn bits to write down, for some
small ¢) for which Adv$!(C) = 1. We're not going to let that bother us.

4 Three Styles of Provable-Security Statements

PROVABLE-SECURITY FORMULATIONS. Let II be a cryptographic protocol that employs a (keyed
or unkeyed) hash function H. Imagine, for now, that H is the only cryptographic primitive that IT
employs. To prove security of Il using a reduction-based approach and assuming the collision-
resistance of H one would typically make a theorem statement that could be paraphrased like
this:

existential form (CO0): If there’s an effective algorithm A for attacking protocol II then there’s
an effective algorithm C' for finding collisions in H.

When cryptographic reductions were first introduced [13], theorems were stated with this kind of
existential-only guarantee. To this day, people almost always state their provable-security results
in such a manner.

Formalizing statement CO works fine in the keyed setting but not in the unkeyed one, because,
there, the conclusion vacuously holds. But in the unkeyed setting we can switch to a theorem
statement that could be paraphrased as:

code-constructive form (C1): If you know an effective algorithm A for attacking protocol II then
you know an effective algorithm C for finding collisions in H.

We are asserting the existence of a known “compiler” that turns A into C. Now your belief in
the security of II stems from the fact that if some human being can break II then he can exhibit
collisions in H. Statement C1 can be regarded as a constructive version of C0. Continuing on this
trajectory, we could say that it’s enough to have access to A’s functionality, you don’t actually need
the code:

blackbox-constructive form (C2): If you possess effective means A for attacking protocol IT then
you possess effective means C' for finding collisions in H.

Here, “possessing effective means” might mean owning a tamper-resistant device, or being able to
run some big executable program, or it might even mean having a brain in your head that does
some task well. Possessing effective means does not imply knowing the internal structure of those
means; I might not know what happens within the tamper-resistant device, the big program, or in
my own brain. Statement C2 is stronger than C1 because knowledge of an algorithm implies access
to its functionality, but having access to an algorithm’s functionality does not imply knowing how
it works.

The main observation in this paper is that, in the concrete-security setting, it’s easy to give
provable-security results involving unkeyed hash-functions as long as you state your results in the
code-constructive (C1) or blackbox-constructive (C2) format. In the asymptotic setting, all three
formats work fine as long as you stick to uniform adversaries.

In high-level expositions, provable-security results are often summarized in what would appear
to be a code-constructive or blackbox-constructive manner; people say things like “our result shows
that if someone could break this signature scheme then he could factor large composite numbers.”



But when we write out our theorem statements, it has been traditional to adopt the existential
format. Usually the proof is constructive but the theorem statement is not.

FORMALIZING C1 AND C2. In the next section we’ll formalize C1, in an example setting, by asking
for an explicitly given algorithm C that, given the code for A (and also H and II) provides us our
collision finder C. We likewise formalize C2, in three example settings, by asking for an explicitly
given algorithm C that, given black-box access to A (and also H and II) is itself our collision finder.

When an algorithm C has black-box access to an algorithm F' we write the latter as a subscript
or superscript, Cr or CF. (Oracles are conventionally written as superscripts, but writing all of
an algorithm’s oracles this way is less readable when the algorithm’s job is, say, to distinguish one
particular oracle from another.) We do not allow for C' to see or control the internal coins of F;
when C runs F', the latter’s coins are random and externally provided. We do not object to C
resetting F', so long as fresh (secret) coins are issued to it each time that it is run.

RESOURCE ACCOUNTING. Let F' be an algorithm (possibly stateful, probabilistic, and itself oracle-
querying). The algorithm F' might be provided as an oracle to some other algorithm. Let ¢z () be
the maximum amount of time (in a conventional, non-blackbox model) to compute F' on strings
that total £ or fewer bits (but count the empty string € as having length 1). We simplify to ¢z for an
overall maximum. Let £z be the maximum of the total number of bits read or written by F' (over
F’s input, output, oracle queries, and their responses) (but regard ¢ as having length 1). Let ¢ be
the maximum number of queries made by F' before it halts (but no less than 2, to simplify theorem
statements). We assume that all algorithms halt after some bounded amount of time. When an
algorithm A calls out to an oracle for F', we charge to A the time to compute F' (even though the
internal computation of F' seems, to the caller, unit time).

As an example of the above, for a keyless hash-function H: {0,1}* — {0,1}" we have that ¢z (¢)
is the maximal amount of time to compute H on any sequence of inputs Xi, ..., X, comprising ¢
total bits (where X; = ¢ counts as 1-bit). As a second example, for an adversary A attacking a
signature scheme, the number ¢4 includes the length of the public-key provided to A, the length
of the signing queries that A asks, the length of the signatures A gets in response, and the length
of A’s forgery attempt. Since we insisted that A is bounded-time, if it is provided an overly-long
input or oracle response, it should only read (and is only charged for) a bounded-length prefix.

5 Hash-then-Sign Signatures

The usual approach for digital signatures, going back to Rabin [24], is to sign a message by first
hashing it and then calling an underlying signature scheme. The purpose of this hash-then-sign
approach is two-fold. First, it extends the domain of the “inner” signature scheme from {0,1}" to
{0,1}" (where the hash-function’s output is n bits). Second, it may improve security by obscuring
the algebraic structure of the inner signature scheme. We focus only on the first of these intents,
establishing the folklore result that the hash-then-sign paradigm securely extends the domain of a
signature scheme from {0,1}" to {0,1}". Our purpose is not only to prove this (admittedly simple)
result, but also to illustrate the human-ignorance approach for dealing with collision-resistant hash-
functions.

First we establish the notation, using concrete-security definitions. A signature scheme is a
three-tuple of algorithms II = (Gen, Sign, Verify). Algorithm Gen is a probabilistic algorithm that,
with no input, outputs a pair of strings (PK, SK). (One could, alternatively, assume that Gen takes
input of a security parameter k.) Algorithm Sign is a probabilistic algorithm that, on input (SK, X),

outputs either a string o & Sign(SK, X) or the distinguished value L. We require the existence of a



message space X C {0,1}" such that, for any SK, we have that o & Sign(SK, X) is a string exactly
when X € X. We insist that X contain all strings of a given length if it contains any string of that
length. Algorithm Verify is a deterministic algorithm that, on input (PK, X, o), outputs a bit. We
require that if (PK, SK) <~ Gen and X € X and o < Sign(SK, X) then Verify(PK,X,0) = 1. We
sometimes write Sign gy (X) and Verify py (X, o) instead of Sign(SK,X) and Verify(PK,X, o).

Let B be an adversary and II = (Gen, Sign, Verify) a signature scheme. Define Advy#(B) =

Pr[(PK,SK) < Gen: B59"sk()(PK) forges| where B is said to forge if it outputs a pair (X, o)
such that Verifypi (X,0) =1 and B never asked a query X during its attack.

We now define the hash-then-sign construction. Let H: {0,1}" — {0,1}" be an unkeyed hash-
function and let II = (Gen, Sign, Verify) be a signature scheme with message space of at least
{0,1}". Define from these primitives the signature scheme I = (Gen, Sign™, Verify) by setting
Signt (X) = Signgr (H(X)) and Verifyl (X, 0) = Verifypg (H(X), o). The message space for
I is {0, 1}*.

We are now ready to state a first theorem that describes the security of the hash-then-sign
paradigm.

Theorem 1 [hash-then-sign, unkeyed, concrete, Cl-form| There exist algorithms B and C, explic-
itly given in the proof of this theorem, such that for any unkeyed hash-function H: {0,1}* —
{0,1}", signature scheme 11 = (Gen, Sign, Verify) with message space at least {0,1}", and adver-
sary A, adversaries B = B((A, H)) and C = C((A, H,1I)) satisfy

AdViE(B) + Advy'(C) > Advi%(A).

Adversary B runs in time at most ta + tg(£a) + tsign(nga) + c(fa + nga) and asks at most gy
queries entailing at most ¢4 + n bits. Adversary C runs in time at most tg + tgen + tg(fa) +
tsign(nga+n)+c(fa+mnqa)lg(ga). Functions B and C run in time ¢ times the length of their input.
The value c is an absolute constant implicit in the proof of this theorem. <

The theorem says that if you know the code for A, H, and II then you know the code for B and C.
You know that code because it’s given by reduction functions B and C. These reduction functions
are explicitly specified in the proof of the theorem. Reduction function B takes in an encoding of A
and H and outputs the code for adversary B. Reduction function C takes in an encoding of A, H,
and IT = (Gen, Sign, Verify) and outputs the code for adversary C.

One might argue that we don’t really care that B is constructively given—we might have
demanded only that it exist whenever A does. But it seems simpler and more natural to demand
that both adversaries B and C be constructively given when we are demanding that one adversary
be. Besides, it is nicer to conclude you know a good algorithm to break Il than to conclude there
exrists a good algorithm to break 1I; it would, in fact, be an unsatisfying proof that actually gave
rise to a nonconstructive attack on the inner signature scheme II.

Theorem 1 does not capture statement C2 because access to the functionality of adversary A
might be more limited than possessing its code. To capture the intent of statement C2, we can
strengthen our theorem as follows:

Theorem 2 [hash-then-sign, unkeyed, concrete, C2-form| There exist adversaries B and C, ex-
plicitly given in the proof of this theorem, such that for any unkeyed hash-function H: {0,1}" —
{0,1}", signature scheme 11 = (Gen, Sign, Verify) with message space at least {0,1}", and adver-
sary A, we have that

AdVYE(Bay) + AV (Camn) > AdvIS(A). (1)
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Adversary B runs in time at most t4 + tg(€a) + tsign(nga) + c(fa + nga) and asks at most ga
queries entailing at most {4 + n bits. Adversary C runs in time at most tg4 + tgen + tg(€a) +
tsign(nga+mn) + c(fa+nga)lg(qa). The value c is an absolute constant implicit in the proof of this
theorem. <

The theorem asserts the existence of an explicitly known forging adversary B (for attacking IT) and
an explicitly known collision-finding adversary C' (for attacking H), at least one of which must do
well if the original adversary A does well (in attacking II¥). Algorithm C' employs A, as well as H,
Gen, Sign, and Verify, in a black-box manner. (Writing Il = (Gen, Sign, Verify) as a subscript
to C' means giving each component algorithm as an oracle.) We may not care that the dependency
on H, Gen, Sign, and Verify is black-box, for there is no question there about having access to the
code, but it seems simpler to demand that all dependencies be black-box when we require one to be.
As with Theorem 1, the final set of lines in Theorem 2 explain that the time and communications
complexity of algorithms B and C' is insignificantly more than that of A.

Proof of of Theorem 2 and then Theorem 1: In the following exposition, computations of A,
H, Gen, Sign, and Verify are done via oracle queries.

Construct collision-finding adversary Ca g as follows. First it calls Gen to determine an output

(PK, SK) & Gen. Then it calls adversary A on input PK. When A makes its i*" query, X;, a
request to sign the string X;, algorithm C' calls H to compute x; = H(X;), it calls Sign on input z;
to compute o; & Signgy (;), and it returns o; in answer to A’s query. When A halts with output
(X4, 04) algorithm C invokes H to compute x, = H(X,). If x, is equal to z; for some prior i, and
X, # X, then algorithm C outputs the collision (z;, z,) and halts. Otherwise, algorithm C fails; it
outputs an arbitrary pair of strings. The reader can check that C has the claimed time complexity.
The log-term accounts for using a binary search tree, say, to lookup if z, is equal to some prior ;.

Construct forging-adversary Bflf%b (PK) as follows. Algorithm B, which is provided a string PK,
runs black-box adversary A on input of PK. When A makes its i*® query, X;, a request for a
signature of X;, algorithm B uses its oracle H to compute z; = H(X;). It then uses its Sign-
oracle to compute o; < Sign(z;). It returns o; in answer to the adversary A. When A halts with
output (X, o,) algorithm B uses its H-oracle to compute x, = H(X,). Algorithm B halts with
output (x,0,). The reader can check that B has the claimed time and communications complexity.
(The tg;gn term is because of our convention to consistently charge algorithms for their oracle calls.)

We must show (1). Let a be the probability that A, in carrying out its attack in the experiment
defining Adv}5 (A), outputs a valid forgery (X.,0.) where H(X,) = H(X;) for some 4. Let b be

the probability that A, in carrying out its attack in the experiment defining Adv;i% (A), outputs
a valid forgery (X, o) where H(X,) # H(X;) for all i. Then a +b = Adv}%(A). We also have
that Adv%}’l(CAH,H) > q and Advﬁg(BAH) > b, establishing Theorem 2.

As for Theorem 1, the reduction functions B and C are what is spelled out in the definition of B
and C, above, except that computation by code replaces oracle invocations. (One can now see why
we have selected our earlier conventions about how to charge-out oracle calls: it is convenient that
it has no impact on the running time if one imagines calling an oracle for H, say, verses running
that code oneself.) It is a simple, linear-time algorithm that takes in A and H (which are code)
and outputs B (which is also code), or that produces C from A, H and each component of IT. |

For the remainder of our examples we will use the stronger, black-box style of theorem statement
corresponding to Statement C2 and Theorem 2.



6 Hash-then-PRF

As a second example of using our framework we consider a symmetric-key analog of hash-then-sign,
where now we aim to extend the domain of a pseudorandom function (PRF) from {0, 1}" to {0,1}".
The algorithm, which we consider to be folklore, is to hash the message X and then apply a PRF,
setting F(X) = Fr(H(X)) where H: {0,1}* — {0,1}" is the hash function and F: Kx {0,1}" —
{0,1}™ is the PRF. A special case of this construction is using a hash function H: {0,1}" — {0,1}"
and an n-bit blockcipher to make an arbitrary-input-length message authentication code (MAC).
A second special-case is using a hash function H: {0,1}* — {0,1}*" and the two-fold CBC MAC
of an n-bit blockcipher to make an arbitrary-input-length MAC.

First the definitions, following works like [2]. An (m-bit output) pseudorandom function (PRF)
is an algorithm F: I x X — {0,1}" where K and X are sets of strings. We assume that there
is an algorithm associated to F', which we also call I, that outputs a random element of K.
For X,Y C {0,1}" and Y finite, let Func(X,)) be the set of all functions from X to Y. We
endow this set with a distribution by saying that, for each x € X, the value of f(x) is uniformly
sampled from Y. For a PRF F: K x X — {0,1}"™ let Adv2(B) = Pr[K < K: BFx() = 1] —
Pr[f & Func(X,{0,1}™): B0 = 1]. The following quantifies the security of the hash-then-PRF
construction Ff.

Theorem 3 [hash-then-PRF, unkeyed, concrete, C2-form| There exist adversaries B and C, ex-
plicitly given in the proof of this theorem, such that for any unkeyed hash-function H: {0,1}" —
{0,1}", pseudorandom function F: K x {0,1}" — {0,1}", and adversary A,

AdVY (Bap) + Adv (Camr) > Advi(A). (2)

Adversary B runs in time at most t4 +tg(€a) +trp(nga) +c(fa +nga +mqa) and asks at most g4
queries entailing at most £ bits. Adversary C runs in time at most t4 + tg(£4) + c(fa + nga +
mqa + ti)1g(ga). The value c is an absolute constant implicit in the proof of this theorem.

Proof: Construct collision-finding algorithm C4 g r as follows. The algorithm runs adversary A,
which is given by an oracle. When A makes its i*! oracle query, X;, algorithm C' uses its H oracle to
compute x; = H(X;) and then, if z; # x; for all j <4, adversary C returns a random y; & {0,1}™
in response to A’s query. If z; = x; for some j < 4, adversary C returns y; = y;. When A finally
halts, outputting a bit a, algorithm C' ignores a and looks to see if there were distinct queries X;
and X; made by A such that x; = x;. If there is such a pair, algorithm C outputs an arbitrary such
pair (X;, X;) and halts. Otherwise, algorithm C' fails and outputs an arbitrary pair of strings. The
time of C' is at most that which is stated in the theorem. Note that C' does not actually depend
on F' beyond employing the values n and m.

Construct distinguishing algorithm Bfl’ g as follows. It begins by running algorithm A, which is
given by an oracle. When A makes its i query, X;, algorithm B computes x; = H(X;) and then
asks its f oracle x;, obtaining return value y; = f(z;). Algorithm B returns y; to A. When A
finally halts, outputting a bit a, algorithm B halts without output a. The resources of B are as
given by the theorem statement.

We have that AdvPT; (A)— Advy (B4 ) = Pr[ATK =1]—Pr[AR=1]-Pr[BYS,=1]+P1[B, ;=1]
where p < Func(n,m) and R < Func({0,1}*,m) and K < K. Now, from our definition of B, the
first and third addend are equal, Pr[Af% =1] = Pr[Bif}I:H], and so Adv%rfl (A)—AdvY (Bay) =
Pr[Bf = 1] — Pr[Af = 1].



Let C be the event that, during B’s attack, there are distinct queries X; and X; made by B such
that H(X;) = H(Xj). Let ¢ = Pr[C] where the probability is taken over B’s oracle being a random

function p <~ Func(n,m). Observe that, from C’s definition, ¢ = Adv$®(C4 g r). Now note that

Pr[BY ;; = 1] — Pr[A® = 1] < ¢ because in the second experiment a random m-bit value is returned
for each new X; and in the first experiment a random m-bit value is returned for each new Xj;
except when z; = H(X;) is identical to a prior x; = H(X;). This establishes Equation (2). 1

A result similar to Theorem 3, but for MACs instead of PRF's, can easily be established. That is, if
H: {0,1}* — {0,1}" is an unkeyed hash-function and MAC: {0,1}" — {0,1}" is a good MAC [2]
then MACH is a good MAC. Here, as before, MAC! is defined by MACE (M) = MACx (H(M)).
The weaker assumption (F is a good MAC instead of a good PRF) suffices to get the weaker
conclusion (FH is a good MAC).

7 Merkle-Damgard without the Keys

We adapt the Merkle-Damgard paradigm [8,19] to the unkeyed hash-function setting. To get a
message space of {0,1}" and keep things simple we adopt the length-annotation technique known
as Merkle-Damgard strengthening. There are actually several variants of this; for a fixed-key,
reduction-based treatment, up until the actual theorem statement, for a different version of Merkle-
Damgard strengthening, see Stinson [29, Section 4].

First we define the mechanism. Let H: {0,1}*™ — {0,1}" be an unkeyed hash-function,
called a compression function, and define from it the unkeyed hash-function H*: {0,1}* — {0,1}"
as follows. On input X € {0,1}", algorithm H* partitions pad(X) = X || 07 || [| X|], into b-bit
strings X --- X,, where p > 0 is the least nonnegative number such that |X| + p is a multiple
of b and where [|X|]p is |X| mod 2° encoded as a b-bit binary number. Then, letting Yo = 0", say,
define Y; = H(X; || Y;_1) for each i € [1..m] and let H*(X) return Y;,. Note that Adv$(C) =
Pr[(X,X) & C: X # X' and H(X) = H(X')] where C must output X, X’ € {0,1}*™. We
now show that if H is a collision-resistant compression-function then H* is a collision-resistant
hash-function.

Theorem 4 [Merkle-Damgard, unkeyed, concrete, C2-form| Fix positive numbers b and n. There
exists an adversary C, explicitly given in the proof of this theorem, such that for any unkeyed
hash-function H: {0,1}*™™ — {0,1}" and any adversary A that outputs a pair of strings each of
length less than 2°,

Adv (Cap) > Advii(A). (3)

Adversary C runs in time at most t4 + (£4/b+ 4)tg + ¢(£4 + b+ n). The value c is an absolute
constant implicit in the proof of this theorem. <

Proof: Construct the collision-finding adversary C4 g as follows. It runs the adversary A, which
requires no inputs and halts with and output X, X’ each string having fewer than 2° bits. Swap X
and X', if necessary, so that X is at least as long as X’. Adversary C then computes Xi--- X, =
pad(X) and X{---X], = pad(X') where each X; and X is b-bits long. Using its H-oracle,
adversary C' computes Y;-values by way of Yy = 0" and, for each i € [1..m], Y; = H(X; || Yi—1).
It similarly computes Y;-values, defining Yy = 0" and Y] = H(X] || Y/_;) for each j € [1.m/].
Now if X = X" or Y, # Y, then adversary C fails, outputting an arbitrary pair of strings.
Otherwise, adversary C' computes the largest value ¢ € [1..m] such that Y; =Y/ \ but X; || Y;_; #
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X! ANY) {_5 where A = m —m/. (We prove in a moment that such an ¢ exists.) Adversary C
outputs the pair of strings (X; || Yi—1, X/ A || Y/ ;_A), which collide under H.

We must show that this value of i, above, is well defined. To do so, distinguish two cases in which
the adversary might succeed in finding a collision. For the first case, |X| # |X’|. In this case the
definition of pad (together with the requirement that | X|,|X’| < 2°) ensures that X,, # X/, and so
we will have i = m as the index for a collision. In the second case, | X| = |X'| and so, in particular,
m =m' and A = 0. Because X # X' there is a largest value j € [1..m] such that X; # X}. It
must be the case that Y; = Yj’ because the messages X and X', being identical on later blocks,
would otherwise yield Y;, =Y. But X; # X} and Y; = Y] and so j = i satisfies the definition
above.

We have shown that whenever A outputs a collision of H*, adversary C'4 i outputs a collision of H.
The running time of Cy g is as claimed (the +4 accounts for 0-padding and length annotation in
the scheme), so we are done. |

8 Asymptotic Treatment of Unkeyed Hash Functions

DEFINITION. The traditional treatment of cryptographic hash-functions [7] is asymptotic. In this
section we show that as long as one is willing to ask for security only against uniform adversaries,
we don’t need the keys in the asymptotic formalization of collision-resistant hash-functions either.

An asymptotic-and-unkeyed hash-function is a deterministic, polynomial-time algorithm H that
takes as input an integer n, the output length, encoded in unary, and a string X, the message. It
outputs either a string of length n or the distinguished value L. When we say that H is polynomial-
time we mean that it is polynomial-time in its first input. We write H,, for the induced function
H(1",-). Define the message space of H, as X, = {X € {0,1}" : H,(X) # L} and that of H as
the indexed family of sets (X,,: n € N). We assume X € X, implies every string of length |X| is
in X,,, and we assume that X, contains a string of length exceeding n.

Let C be an adversary for attacking asymptotic-and-unkeyed hash-function H, meaning that C
is an algorithm (not a family of circuits; we are in the uniform setting) that, on input 1", outputs
a pair of strings X, X’ € X,,. We let the advantage of C in finding collisions in H be the function
(of n) defined by

Adve(C,n) = Pr[(X,X) ﬁC’(l") : X # X' and H,(X) = H,(X')]

measuring, for each n, the probability that C'(1™) finds a collision in H,,. We say that H is collision-
resistant if for every polynomial-time adversary C, the function Adv%‘}l(C, n) is negligible. As usual,

function €(n) is negligible if for all ¢ > 0 there exists an N such that e(n) < n™¢ for all n > N.

AN ASYMPTOTIC TREATMENT OF HASH-THEN-SIGN. With a definition in hand it is easy to give
an asymptotic counterpart for hash-then-sign, say. The existential (CO-style) statement would
say that if IT is a secure signature scheme with message space ({0,1}" : n € N) and H is a
collision-resistant asymptotic-and-unkeyed hash-function with message space (X,,) then I17, the
hash-then-sign construction using H and II, is a secure signature scheme with message space (Xp,).
Details follow, beginning with the requisite definitions.

Now in the asymptotic setting [15], a signature scheme is a three-tuple of algorithms IT =
(Gen, Sign, Verify). Algorithm Gen is a probabilistic polynomial-time (PPT) algorithm that, on
input 1", outputs a pair of strings (PK, SK). Algorithm Sign is a PPT algorithm that, on input
(SK, X), outputs either a string o <~ Sign(SK, X) or the distinguished value L. For each n € N we
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require the existence of a message spaces X,, C {0,1}" such that, for any SK that may be output

by Gen(1™), we have that o <~ Sign(SK, X) is a string exactly when X € X,. We insist that X,
contains all strings of a given length if it contains any string of that length. Algorithm Verify is
a deterministic polynomial-time algorithm that, on input (PK, X, o), outputs a bit. We require
that if (PK,SK) < Gen(1") and X € X, and o < Sign(SK, X) then Verify(PK,X,o) = 1. We
sometimes write Signgy (X) and Verifypy (X, o) instead of Sign(SK,X) and Verify(PK, X, o).
The message space of II is the collection (X, : n € N). Throughout, an algorithm is poly-
nomial time if it is polynomial time in the length of its first input. Now let B be an adver-
sary for a signature scheme II = (Gen, Sign, Verify) as above. Then define Advy®(B,n)) =
Pr[(PK, SK) < Gen(1") : BSiomsk()(PK) forges] where B is said to forge if it outputs a pair (X, o)
such that Verifypx(X,0) = 1 and B never asked a query X during its attack. We say that IT is
secure (in the sense of existential unforgeability under an adaptive chosen-message attack) if for
any polynomial-time adversary B the function Adv}®(B,n) is negligible.

Let II = (Gen, Sign, Verify) be a signature scheme (for the asymptotic setting) with mes-
sage space (M) where M,, D {0,1}". In this case we say that the message space of II is “at
least” ({0,1}"). Let H be an asymptotic-and-unkeyed hash-function with message space (X,).
Then define the hash-then-sign construction II¥ = (Gen, Sign'?, Verify™) by setting Signth(X) =
Signgr (H(X)) and Verify® (X, o) = Verify p (H(X), o). The message space for II” is the mes-
sage space for H. The security of the construction is captured by the following theorem. We omit a
proof because it only involves writing down the asymptotic counterpart to the proof of Theorem 2.

Theorem 5 [hash-then-sign, unkeyed, asymptotic, CO-form] IfII is a secure signature scheme with
message space at least ({0,1}") and H is a collision-resistant asymptotic-and-unkeyed hash-function
having message space (Xy,) then 117 is a secure signature scheme with message space (X,). <

Comparing Theorem 5 with Theorem 1 or 2, note that in stepping back to the asymptotic setting
we also reverted to the existential style of theorem statement. But these choices are independent;
one can give explicitly constructive (C1- or C2-style) theorem statements for the asymptotic setting.

EXISTENCE AND CONSTRUCTIONS. We do not investigate the complexity assumption necessary to
construct a collision-resistant asymptotic-and-unkeyed hash-function, but we do regard this as an
interesting question. Natural constructions and cryptographic assumptions would seem to present
themselves by adapting prior work like that in [7,28].

9 Discussion

Using unkeyed hash-functions is no more complex than using keyed ones. For ease of comparison,
we recall Damgard’s definition of a collection of collision-free hash-functions [7] in Appendix A, and
we provide a keyed treatment of hash-then-sign, in the concrete-security setting, in Appendix B.
Some readers may instinctively feel that there is something fishy about the approach advocated
in this paper. One possible source of uneasiness is that, under our concrete-security treatment,
no actual definition was offered for when an unkeyed hash-function is collision-resistant. But
concrete-security treatments of cryptographic goals never define an absolute notion for when a
cryptographic object is secure. Similarly, it might seem fishy that, in the asymptotic setting,
we restricted attention to uniform adversaries. We proffer that collision-resistance of an unkeyed
output-length-parameterized hash-function makes intuitive sense, but only in the uniform setting.
Regardless, we suspect that the greater part of any sense of unease stems from our community
having internalized the belief that an unkeyed treatment of collision-resistance just cannot work.
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In Damgard’s words, Instead of considering just one hash function, we will consider families of
them, in order to make a complezity theoretic treatment possible [7]. This refrain has been repeated
often enough to have become undisputed fact. But Damgard was thinking in terms of asymptotic
complexity and nonuniform adversaries; when one moves away from this, and makes a modest shift
in viewpoint about what our theorem statements should say, what was formerly impossible becomes
not just possible, but easy.

Going further, one could make the argument that it is historical tradition that has made our
hash functions keyed more than the specious argument from Section 1 about the infeasibility of
formalizing what human beings do not know. When Damgard defined collision-resistance [7] we
already had well-entrenched traditions favoring asymptotic notions, non-uniform security, number-
theoretic constructions, assumptions like claw-free pairs, and existential-format (CO-style) theorem
statements. These traditions point away from the human-ignorance approach. Besides, it was
never Damgard’s goal to demonstrate how to do provable-security cryptography with an unkeyed
hash-function H: {0,1}" — {0,1}". While such hash functions were known (eg, [21, 24, 31]), they
probably were not looked upon as suitable starting points for doing rigorous cryptographic work.

Protocols that use cryptographic hash-functions are often proved secure in the random-oracle
(RO) model [4]. In such a case, when one replaces the RO-modeled hash-function H by some
concrete function one would like to preserve the function’s domain and range, H: X — Y for
X,Y C {0,1}*. So replacing a RO by a concrete hash-function always takes you away from the
keyed-hash-function setting. Concretely, one can prove security for hash-then-sign in the RO model
but one cannot instantiate the RO with a keyed hash-function without changing the protocol first.

One could argue that mandating an explicitly-specified reduction is a sensible way to state
provable-security results in general. After all, if a reduction actually were nonconstructive it would
provide a less useful guarantee. That’s because a constructive reduction says something meaningful
about cryptographic practice now, independent of mathematical truth. A constructive statement
along the lines of “if you know how to break this signature scheme then you know how to factor
huge numbers” tells us that, right now, he who can do the one task can already do the other. If
it takes 100 years until anyone can factor huge numbers then signature schemes that enjoy the
constructive provable-security guarantee are guaranteed to protect against forgeries for all those
intervening years.

The human-ignorance approach can be used for cryptographic goals beyond collision resistance.
For example, one might assume of a blockcipher E: {0,1}*x {0,1}" — {0,1}" that nobody can find
a point (K, X) such that Fx(X) = X. Unlike the ideal-cipher model, the assumption is meaningful
for a concretely instantiated blockcipher.

The topic of this paper is largely about language: how, exactly, to express provable-security
results. Some may interpret this to mean that the topic is insignificant, being only an issue
of language. But language is key. In a case like this, language shapes our basic ideas, their
development, and their utility.

In recent years, MD4-family hash functions (MD4, MD5, SHA-0, SHA-1, RIPEMD) have suf-
fered an onslaught of successful attacks. This paper provides no guidance in how to recognize or
build unkeyed hash-functions for which mankind will not find collisions. It only illustrates how,
when you do have such a hash function in hand, you can formulate the security of a higher-level
protocol that uses it, obtaining the usual benefits of provable-security cryptography.
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A The Traditional Definition of Collision Resistance

In this section we recall, for comparison, the traditional definition for a collision-resistant hash
function, as given by Damgard [7]. The notion is keyed (meaning that the hash functions have an
indez) and asymptotic. Our wording and low-level choices are basically from [28].

A collection of collision-free hash-functions is a set of maps {hx: K € I} where Z C {0,1}"
and hg: {0, 1}‘K‘Jrl — {0, 1}‘K| and where:

1. There is an EPT algorithm IC that, on input 17, outputs an n-bit string K & K(1™) in Z.

2. There is an EPT algorithm H that, on input K € 7 and X € {O,I}‘K‘H7 computes
H(K,X) = hg(X).
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3. For any EPT adversary A, e(n) = Pr[K < K(17); (X, X') & A(K): X # X’ and Hg(X) =
Hg (X)) is negligible.

Above, EPT stands for expected polynomial time, and a function e(n) is negligible if for every ¢ > 0
there exists an N such that €(n) < n~¢ for all n > N. For simplicity, we assumed that the domain
of each hy is {0, 1}|K|+1. This can be relaxed in various ways.

B Hash-then-Sign with a Keyed Hash-Function

In this section we provide a concrete-security treatment of the hash-then-sign paradigm using a
keyed hash-function instead of an unkeyed one. Our purpose is to facilitate easy comparison between
the keyed and unkeyed form of a theorem.

First we must modify our formalization of the hash-then-sign construction to account for the
differing syntax of a keyed and unkeyed hash function. Let H: Kx{0,1}* — {0,1}" be a keyed hash-
function. Let IT = (Gen, Sign, Verify) be a signature scheme with message space of at least {0,1}".
Define from these the signature scheme IT# = (GenH , Sign®!, Verify™ ) by saying that Gen® samples
K < K and (PK,SK) < Gen and then outputs ((PK,K), (SK,K)); define Sign{§y (M) =
Signgx (Hg(M)); and define Verifyg;K’m(M, o) = Verifypx (Hg(M),o). The message space for
7 is {0,1}*. We have reused the notation IT¥ and Sign® and Verify™ because the “type” of the
hash function H makes unambiguous what construction is intended.

The proof of the following, little changed from Theorem 2, is omitted.

Theorem 6 [hash-then-sign, keyed, concrete, CO | Let H: K x {0,1}* — {0,1}" be a keyed hash-
function, let I1 = (Gen, Sign, Verify) be a signature scheme with message space at least {0,1}",
and let A be an adversary. Then there exist adversaries B and C such that

AdviE(B) + Adv'(C) > Advi%(A).

Adversary B runs in time at most t4 +tx +tg(€a) + tsign(nga) + c(€a +nqa) and asks at most qa
queries entailing at most {4 +n bits. Adversary C' runs in time at most t4 + tgen +tc +tr(€a) +
tsign(nga+n) + c(fa +nga)lg(qa). The value c is an absolute constant implicit in the proof of this
theorem. <
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