
Constructing Cryptographic Definitions

Phillip Rogaway∗

March 11, 2012

Abstract

This paper mirrors an invited talk to ISCISC 2011.
It is not a conventional paper so much as an es-
say summarizing thoughts on a little-talked-about
subject. My goal is to intermix some introspection
about definitions with examples of them, these ex-
amples drawn mostly from cryptography. Underpin-
ning our discussion are two themes. The first is
that definitions are constructed . They are invented
by man, not unearthed from the maws of scientific
reality. The second theme is that definitions matter .
They have been instrumental in changing the char-
acter of modern cryptography, and, I suspect, have
the potential to change the character of other fields
as well.

1 Introduction

Let me first try to clarify what I mean when I speak
of a definition. First, a definition here is something
that embodies an important concept in a field. If I
say “let m = d

√
x e”, that’s not the kind of defini-

tion I have in mind. Second, I insist that definitions
be mathematically rigorous. If I say “a message au-
thentication code allows the recipient of a message to
verify the claimed identity of its sender,” I’ve given a
description, not a definition.

What do I mean when I say that definitions are
constructed? I am using the term here as it is used in
sociology. When we say that some thing, C, is con-
structed, or socially constructed, we are emphasizing
that C need not be the way that it currently is. It
is not inevitable. Instead, C is contingent on social
forces, or it springs from aspects of our disciplinary
culture. I mean that, in short, that C was invented.

Those from an engineering background might im-
plicitly assume that all of cryptography is con-
structed. But there is an alternative viewpoint, and

∗Department of Computer Science, University of Califor-
nia, Davis, California, USA. Email: rogaway@cs.ucdavis.edu.
WWW: http://www.cs.ucdavis.edu/∼rogaway

one that, I suspect, is quite popular among those
who work on the more rigorous side of cryptogra-
phy. This alternative viewpoint is what might be
called scientific realism. Here we say that C is the
way it is because that is the nature or mathemati-
cal or physical reality. In order to have a successful
theory involving C, it pretty much has to be as it is
now. If C is shaped by the disciplinary culture, this
happens in a superficial way. In short, C is discov-
ered, either through reasoning or the exercise of the
scientific methodology.

Nobody would contest the claim that a concrete
protocol or primitive, something like AES or TLS,
is constructed. What is at issue is whether or not
our basic notions in cryptography—things like a one-
way function or a secure encryption scheme—whether
these are invented or discovered. Constructionism or
scientific realism.

The thesis here is that all of cryptography’s notions
are highly constructed. As a consequence, the field
can move in very different ways from the way that it
has moved.

2 NP-completeness

Let me now give you a first example of a definition,
this one not from cryptography, but from complexity
theory. Hopefully most readers have seen the notion
of NP-completeness, due, independently, to S. Cook
and L. Levin circa 1971. We speak of a language L
being NP-complete if two conditions hold: L is in
the set we call NP, and for any language A in NP,
the language A polynomial-time reduces to L. Said
differently, L is a hardest language in NP.

You’ve just seen an example of a definition—indeed
a wonderful definition. I haven’t defined all of its
constituent parts—I didn’t define NP or tell you what
it means for one language to polynomial-time reduce
to another. Let me skip over that.

Why do I say that this is a wonderful definition?
There are a couple different senses in which I could
justify such a claim. One is an a priori assessment of

1

the definition’s value. We could say that the notion
of NP-completeness is good because it is particularly
elegant, simple, or potentially useful. We could argue
that it captures strong intuition, or has various nice
properties. You could make this kind of argument.

An alternative is to take an a posteriori view.
You would say that a definition is good if it comes
to spawn lots of work that you hold to be inter-
esting. It is in this second sense that a definition
like NP-completeness really shines. Back in 1995,
C. Papadimitriou did a literature survey and found
that, already, there were more than 6000 papers per
year having the term NP-complete—more than the
number of papers with the word compiler, database,
or operating system. Today, more than five million
web pages contain the term NP-complete, and more
than 137,000 Google-Scholar articles.

It is my view that this after-the-fact evaluation of
a definition is the preferred way to understand how
good a job a definition has done. Definitions are cre-
ated to benefit some community, so the insightful in-
ventor of a definition has foreseen what it is that this
community needs, and he has provided a foundation
to help it move in that direction. That is what good
definitions in cryptography manage to do.

3 The emergence cryptographic definitions

Definitions are not very old in cryptography. They
emerged rather suddenly, around 1982, in a paper of
S. Goldwasser and S. Micali. Before this, the “classi-
cal” approach in cryptography consisted of recogniz-
ing some problem, devising some scheme that aimed
to solve it, and waiting to see if any interesting at-
tacks emerged. When they did, one would revise the
scheme and try again. Goldwasser and Micali sug-
gested a way to do better. In the framework they put
forward, one does not begin with a protocol; one be-
gins with a definition. Once it has been carefully laid
out, then one devises a protocol. Ideally, you would
now prove that your protocol satisfies the definition.
In practice, we usually give proofs that take the form
of a reduction. The proof establishes that some pro-
tocol Π meets its definition D as long as some other
protocol π meets its definition d. If you’re confident
that π is good in sense of definition d, you’ll have to
believe that Π is good in the sense of definition D.

The above idea of provable security utterly trans-
formed the field. Cryptography went from being an
ad hoc set of techniques to a scientifically rich area
well connected to complexity theory, mathematics,

and computer security. Nowadays, I would say that
about half of all work in cryptography falls within the
provable-security tradition. While initially there was
minimal impact of this line of work on cryptographic
practice, this has changed. Provable security has now
come to interact synergistically with the classical ap-
proach to doing cryptography and has given rise to
many practical and high-assurance techniques.

The emergence of a definition-based paradigm can
usher in an enormous transformation in a field. If you
want to change the character of a field, providing it
with “the right” definitions is probably one of the
most effective routes to take.

From what I’ve laid out, you might infer that the
overarching purpose of definitions is to enable theo-
rems and proofs. And it is true that definitions are
essential for these activities. But I think that defi-
nitions would be important in cryptography even if
we never used them to give a proof. First, defini-
tions lead to attacks. When you carefully define the
goal you are after, you can quite often use that un-
derstanding to break a protocol that was supposed to
meet its formerly-undefined aim. Second, definitions
are essential for productive discourse. In cryptogra-
phy, it seems like a lot that is said doesn’t make a
whole lot of sense. Only when the definitions are
clearly articulated can you really know what it is
you’re talking about. Finally, definitions seem to be
essential for fostering our ability to think and under-
stand. Thinking in complex domains involves build-
ing up abstraction boundaries, and, in many fields,
these are embodied by definitions.

4 Pseudorandom generators

So far we have given a single example of a definition
(NP-completeness). My remaining examples will all
be cryptographic. I will start with the notion of a
pseudorandom generator. The informal goal here is to
create bits that look random (uniformly distributed),
even if they are not.

In trying to give a definition for this goal it is im-
portant not to think in terms of anticipated solu-
tions. Instead, one tries to understand what it is that
the question means, what it is to generate random-
looking bits.

The first thing one might imagine is that one can
look at two strings and see that one looks more ran-
dom than the other. For example, most would claim
that the string

Y = 0010111010000100111010110111101101110

2

appears to be more random than the string

Z = 0000000000000000000000000000000000000.

And there is such an approach for dealing with
randomness, Kolmogorov complexity, that dates to
1960’s. But this is not the approach that has had
much cryptographic significance. Instead, what Blum
and Micali, and Yao suggested, in the early 1980’s,
was that pseudorandomness is a property not of a
string but of a probability distribution.

We begin with syntax. The object we are interested
in studying, a pseudorandom generator (PRG), is a
function that maps a “short seed”—a binary string—
into a longer string. In other words, a PRG is a map
G : {0, 1}n → {0, 1}N where n < N are constants.

We want to measure the measure the “quality” of
a PRG. If you realize a PRG G by G(S) = S ‖ S,
for example, this doesn’t seem like a good PRG, even
though it does comply with our syntax.

Let’s suppose n = 100 and N = 200—we aim to
stretch 100-bit strings to 200-bit ones. If you take
a random string S ∈ {0, 1}100 that is truly random,
and compute Y = G(S) ∈ {0, 1}200, you’ll now have
an induced distribution on 200-bit outputs. There is
probability mass on at most 2100 points of our size-
2200 space of possible outputs. So it’s actually a very
sparse subset of the 200-bit strings that could ever
arise as pseudorandom outputs. The idea for our def-
inition of a PRG’s quality is to say that it doesn’t ac-
tually matter. If you give an adversary a string that
is formed by taking a random 100-bit string S and ap-
plying G, or if, instead, you give the adversary a truly
random 200-bit string, our poor adversary won’t be
able to tell the difference.

More precisely, an adversary A is imagined to pos-
sess one of two kinds of oracles. One possibility: the
adversary hits a button and, in response, a random
100-bit string S is selected and the adversary is pre-
sented the 200-bit G(S). She can hit the button as
many times as she likes, each time a random S being
chosen afresh. Call this “first” world. Alternatively,
the adversary hits the button and, in response, gets a
random 200-bit string. She can again hit the button
as many times as she likes. Call this the “second”
world. We understand our PRG G as good if for
any reasonable adversary A, its ability to distinguish
if it is in the first world or in the second world is
small. To make this precise, we associate to A and G
a real number Advprg

G (A) that captures the adver-
sary’s ability to distinguish its two possible worlds:

Advprg
G (A) = Pr[AG($) ⇒ 1]− Pr[A$ ⇒ 1]

This is the probability that A outputs “1” if we an-
swer its button-pressing with pseudorandom bits mi-
nus the probability that it outputs “1” if we answer
its button-pressing with truly random bits. Advan-
tage 0 means the adversary does terribly. Advantage
near 1 means the adversary does great.

We have now given a cryptographic definition. The
definition is a way of associating to a cryptographic
primitive (the PRG G) and an adversary (the algo-
rithm A) a real number, the number telling us how
well the adversary is doing in attacking the primitive.

5 Asymptotic vs. concrete security

We still haven’t made a firm distinction between a
good and a not good PRG. The traditional approach
to drawing this distinction is to say that G is secure
if it’s computable in polynomial time (in n) and for
every probabilistic polynomial time adversary A, the
advantage Advprg

G (A) that A gets in attacking G is
a negligible function. The technical definition for the
last term: ε(n) is negligible if it vanishes faster than
the inverse of any polynomial: for every c > 0 there
exists an Nc such that ε(n) < n−c for all n ≥ Nc.

The above asymptotic approach lets us draw a
rigorous distinction between secure and not secure
PRGs. We have, in the process, quietly changed our
notion of a PRG: n and N are no longer constants
but, rather, the PRG should operate on strings of
any length n, returning outputs of length N(n) > n.
The value n is now called the security parameter.

There’s an alternative approach for defining secu-
rity. It says: don’t try to make binary distinctions.
Once we have said how to associate an advantage
Advprg

G (A) to eachA andG, we have defined security.
At this point one can already state theorems relating
the advantage that a first adversary can obtain at
attacking a first goal to the advantage that a second
adversary can obtain in attacking a second goal. This
is the concrete-security approach that M. Bellare and
I helped popularize.

I’d like to ask if this distinction between asymptotic
and concrete security is important, if it’s a significant
difference. The asymptotic approach came first, and
somehow it took a long time until people started to
supplement this with concrete security.

One answer you can reasonably give is to say that
the difference between asymptotic and concrete secu-
rity is not significant because, first, asymptotic se-
curity definitions and theorem can almost always be
converted into concrete-security ones. The essential

3

ideas of a definition, theorem, or proof almost always
transcend this concrete vs. asymptotic distinction. In
general, I think it’s fair to say that good definitions,
in cryptography and beyond, are quite robust, in the
sense that diverse elaborations of definitional choices
leave an intact definitional core.

But you can also make the case that the asymp-
totic vs. concrete definitional choice is quite signifi-
cant. In particular, the early character of cryptog-
raphy was profoundly influenced by the early choice
of an asymptotic approach. Because this approach
hides “low-level” efficiency matters, effectively treat-
ing all polynomials, and all negligible functions, as
equivalent, people focused on broad, abstract rela-
tions among cryptographic primitives. There was lit-
tle interest in efficiency. There was also a focus on
public-key cryptography, with shared-key cryptogra-
phy being essentially denigrated. One reason for this
is the need for a security parameter in the asymptotic
approach, something prevalent in public-key schemes,
but not in symmetric schemes. Overall, I think that
the asymptotic approach helped give rise to a social
phenomenon in my community wherein practitioners
tended to ignore theorists, and theorists tended to
ignore practitioners, as they drifted into working on
very different kinds of problems.

The character of cryptography changed in consort
with the popularization of concrete security. Theo-
rem statements became more precise, and with that
one started to attend to lower-level relationships be-
tween the security of primitives. New questions be-
came visible, things that you simply do not see if you
describe everything in terms of asymptotic security.
Symmetric cryptography joined that ranks of topics
having legitimate scientific credentials.

I would conclude from this example that specific
definitional choices dramatically affect the way a the-
ory develops, and what it is good for. Definitional
choices impact the types of questions that will be
asked, and the types of questions that will be ren-
dered invisible. I would also conclude that defini-
tions arise within a particular disciplinary culture. It
makes sense, in retrospect, that definitions in cryp-
tography would initially have been asymptotic, be-
cause the founders of the field were coming from a
community that had recently mastered the idea of
NP-completeness, and other complexity classes, a tra-
dition that was already steeped in reductions, polyno-
miality, and asymptotics. Making the simplest tran-
sition from this world to cryptography meant that we
were going to create cryptographic foundations that

were asymptotic and that that would emphasize the
kind of high-level questions that complexity theory
had also come to focus on.

Definitional choices do more than reflect our disci-
plinary culture and sensibilities. Once those choices
have been made, they effectively reinforce that cul-
ture and those sensibilities, distancing us from other
and outside concerns. It is a feedback phenomenon.
As Marshall McLuhan has colorfully explained, we
shape our tools, and thereafter our tools shape us.

6 Blockciphers

Let’s move on to another example, blockciphers.
These are a basic building block of symmetric cryp-
tography, and I suspect that everyone reading this es-
say knows some example blockciphers, like DES and
AES. The question I want to ask here is what a block-
cipher is. In answer, a blockcipher is a function that
takes in a key K from some finite set K of possible
keys, and it takes in an n-bit plaintext block for some
constant n > 1. It produces a corresponding cipher-
text block, again of length n. We require that each
EK(·) = E(K, ·) be a permutation, a one-to-one and
onto function.

The above is the syntax of a blockcipher; as with
our treatment of PRGs, I’ve begun without specifying
anything about security. There are lots of approaches
to trying to define security. For example, you might
create a definition out of the intuition that a blockci-
pher is good if it is hard to recover the key from wit-
nessing the input/output behavior of the blockcipher.
Or you might try to capture the property that it is
difficult to recover the plaintext given the ciphertext.
Or you might focus on the unpredictability of cipher-
texts for unknown plaintexts. All of these notions can
be built up into definitions—we can come up with
a rigorous Adv-notion for each. But none of these
ideas really work to give us a convenient primitive.
The winning approach is to capture that a blockci-
pher should behave like a random permutation.

Here I will sketch the pseudorandom permutation
(PRP) notion for blockcipher security. As in the
pseudorandom generator setting, we imagine an ad-
versary dropped into one of two possible worlds. In
the first of these worlds, the adversary, A, is given
access to a box that computes the blockcipher E
for a randomly chosen key K. At the beginning of
the game, a random key K is selected from the key
spaceK and you give the adversary blackbox access to
the function EK(·). The adversary can query what-

4

ever plaintext blocks it likes, getting, in response to
each X ∈ {0, 1}n, the output Y = EK(X). Each
query the adversary asks can be based on the prior
outputs it has learned. In the second world, the ad-
versary A, in response to each query X, gets the im-
age of a random permutation π (again from n bits
to n bits) applied to X. In other words, to each new
query X ∈ {0, 1}n we return a new, uniformly chosen
Y ∈ {0, 1}n. If any query is repeated, we answer as
we did before. We measure the adversary’s advantage
by

Advprp
E (A) = Pr[AEK ⇒ 1]− Pr[Aπ ⇒ 1].

This is the probability that the adversary outputs 1
when we drop it into the first world, minus the prob-
ability that it outputs 1 when we drop it into the
second world.

This is the second cryptographic definition we’ve
described. Informally, blockcipher E is secure as
long for every reasonable adversary A—adversaries
that don’t spend too much time computing, have de-
scription size that’s too big, and don’t ask too many
queries—the advantage Advprp

E (A) is small—it’s a
number close to zero.

The PRP definition has been enormously produc-
tive. Nowadays, when we speak of a blockcipher, the-
orists usually mean something that does well with
respect to the definition just described. Even crypt-
analysts have come to accept these notions, no longer
viewing key recovery as the one and only property to
violate to have a convincing attack.

I would draw a few conclusions from our account of
blockciphers. First, as with PRGs, we separated the
syntax of the object from its security notion. I believe
that this is always the right thing to do. Second, sim-
ple, pessimistic definitions—meaning that they give
the adversary credit quite generously—are often bet-
ter choices than more complex and faithful ones. Our
definition was only a thought experiment for defining
security; in making a definition like this we are not
trying here to faithfully capture an adversary’s ca-
pabilities in some usage environment; we are seeking
a simple definition that pessimistically measures the
worth of the primitive. Finally, I would say that def-
initions can, in fact, be wrong. The examples I gave
earlier of definitional routes not taken are wrong in
the sense that they do not give rise to nearly as useful
a primitive.

7 Symmetric encryption

Next I would like to look at what a symmetric en-
cryption scheme is. Symmetric, or shared key, en-
cryption is the well-known problem where Alice and
Bob want to send messages to each the other pro-
tected by a shared key, K. When we formalize what
an encryption scheme is, the approach, going back
to Goldwasser and Micali (1982) and then adapted
to the symmetric setting by Bellare, Desai, Jokipii,
and me (1997), is this. The encryption algorithm
takes in a key K and a plaintext M . It produces
a ciphertext C. The encryption algorithm may be
probabilistic—it can exploit internal “coins” (ran-
domness) if it so wishes. Correspondingly, the ci-
phertext may be longer than the ciphertext. Of
course there should be a corresponding decryption
algorithm. It takes in the key and ciphertext and
produces a plaintext. Decryption must reverse en-
cryption: DK(C) must be M whenever C ← EK(M).
Our security notion captures an adversary’s inability
to distinguish the encryptions of equal-length strings.

The question I would like to ask is whether or not
it was necessary to formalize symmetric encryption
in roughly this way. The thesis I expressed in the In-
troduction would suggest an answer of no. But I can
tell you that, when I was working on this problem in
the late 1990’s, as I saw it then, there really was only
one reasonable approach. We had already learned,
from Goldwasser and Micali, what was the “right”
way for defining public-key encryption. What was
needed now a thoughtful adaptation of this notion to
the shared-key setting.

I realize now that there are a variety of ways to
go. Here’s an alternative I now favor—it’s usually
called authenticated encryption with associated data
(AEAD). The long name conceals that this is another
way to formalize what an encryption scheme ought
to be and do. Again focusing on the syntax, an en-
cryption algorithm will now be understood to take
in a key K and a message M , but, also, an initial-
ization vector, IV, and a header, A. From these four
inputs the encryption algorithm will produce the ci-
phertext. It will do so deterministically—no coins
allowed. We may assume this time that the length
of the ciphertext is the length of the plaintext. As
before, there must be a corresponding decryption al-
gorithm. It takes in the key, the IV, the header, and
the ciphertext, and it produces the plaintext or else
a distinguished symbol ⊥, which is used to indicate
that the provided ciphertext does not correspond to
a valid plaintext. The security notion captures an

5

adversary’s inability to distinguish the encryptions of
equal-length strings and, also, its inability to produce
a new ciphertext having a valid associated plaintext.

The two notions I’ve sketched are very different
views about what an encryption scheme is. It is the
second approach that leads, I believe, to mechanisms
that are easier to correctly use. First, we do not have
to ask our encryption algorithm to generate good ran-
dom bits; in fact, we forbid them from generating any
random bits. The source of “newness” for each mes-
sage is embodied by the IV. Second, the provisioning
of authenticity makes for a scheme that is easier to
correctly use. There is a long history of protocol de-
signers implicitly assuming more of their encryption
schemes than what the constructions actually pro-
vide. Third, in the absence of an explicit header,
one could not do something as simple as authenti-
cate the source address in a networking packet. The
predictable consequence is to turn users of encryption
schemes, those designing networking protocols, into
unwitting designers of cryptographic schemes.

It is only since 2004 that we have shared-key en-
cryption schemes architected to the AEAD abstrac-
tion boundary. Two of these schemes—CCM and
GCM—were quickly standardized by the U.S. Na-
tional Institute of Standards and Technology (NIST),
and others. These modes have already eclipsed tradi-
tional modes of operation like CBC as the preferred
way to encrypt in higher-level protocols. CCM is the
method by which one nowadays encrypts in WiFi net-
works, while GCM is one of the permitted methods
for IPSec.

I would again like to draw some conclusions. First,
we have evidenced that questions utterly basic to
a field—like the question “what is symmetric en-
cryption?” for cryptography—are highly constructed.
The classical definition is as it is because of inessen-
tial choices made when the community addressed its
initial challenges. Second, I would emphasize that
definitions are not written in stone. They emerge,
change, and die out far more often than people imag-
ine. They are part of a dialectic within a commu-
nity. Third, I would conclude that how we define
something—simple things like how many arguments
get fed into an encryption scheme—can have a pro-
found effect on how useful that object will be.

Smart people can mess up when they don’t under-
stand the underlying definition. In 2001, a number
of authors put forward fast authenticated-encryption
schemes: Jutla; Gligor and Donescu; and myself, Bel-
lare, Black, and Krovetz. The U.S. National Security

Agency (NSA) then put out their own proposal for
authenticated encryption, which they called “Dual
Counter Mode.” But I myself broke the proposal
within a couple of hours. Others quickly broke it, too.
I am not skilled at attacking things, but I understood
the definition of what an authenticated-encryption
scheme was supposed to do. The folks at the NSA
who designed the mode must not have.

I would conclude, finally, that practice that has
not yet met theory is an excellent place to be craft-
ing definitions. The definition for AEAD might have
emerged ten or even twenty year earlier if theo-
rists had simply reverse-engineering what practition-
ers were already trying to do. Many theorists seem
to believe that that theory invariably precedes prac-
tice. My own experience suggests that the converse
holds at least as often—that practice routinely leads
theory, and that it can take a long time for the theory
to catch up.

8 Collision-resistant hashing

My next example is a collision-resistant hash func-
tion. Such an object H map takes in a string of ar-
bitrary length and gives a message digest of, say, 160
bits: H : {0, 1}∗ → {0, 1}160. Examples include MD5
and SHA-1.

The first property that people speak of in trying to
understand what one of these functions is supposed
to do is collision resistance. You will see “definitions”
in the literature of the sort:

H is collision resistant if it is computa-
tionally infeasible to find distinct strings X
and X ′ such that H(X) = H(X ′).

We know that there are lots of such collisions—if
H : {0, 1}∗ → {0, 1}160 there will already be numer-
ous pairs of 161-bit strings that hash to the same
value. The difficulty is in finding such a collision.

To formalize the security goal we can define
Advcol

H (A) as the probability that adversary A out-
puts distinct X and X such that H(X) = H(X ′). We
compare Advcol

H (A) to the computational resources
used by A. Informally, we regard H as secure if ev-
ery “reasonable” adversary A gets “small” advantage
measure Advcol

H (A).
The problem with the above is that it is, well, kind

of bogus. No matter what H may be, there will al-
ways be an efficient algorithm A that outputs a colli-
sion for it—namely, the efficient algorithm that knows
a collision X,X ′ for H and outputs it.

6

I will say it again. Specify any hash function
H : {0, 1}∗ → {0, 1}160. There will always exist an al-
gorithm A that prints out H-colliding 161-bit strings
X,X ′. The algorithm is as efficient as can be—just
a couple lines of code—and it gets advantage 1.

At some level, the above reasoning is clearly
specious: of course the collision-printing algorithm
exists; the difficulty is our inability to explicitly spec-
ify it. So we can try it again, saying that a hash func-
tion H is collision-resistant if there is no person—no
living human being—who can write a collision down.

But the above should seem even more silly: if we
are trying to come up with a mathematically rigorous
treatment of hash functions, certainly you can’t base
it on what human beings do or do not know. No
definitions in mathematics have such a character.

What is the solution to this foundational dilemma?
The way that theorists have usually addressed this
issue is to say that a cryptographic hash function
oughtn’t have a signature H : {0, 1}∗ → {0, 1}n. In-
stead, we should consider a family of hash func-
tions, our hash-function family having signature
H : K × {0, 1}∗ → {0, 1}n. Each key K ∈ K names
a hash function HK(·) from the family. The user of
the hash-function family selects a K and publishes
it. The foundational problem vanishes because we
will demand the inexistence of an efficient algorithm
that, given K, finds collisions for HK(·). While, true,
there will be an efficient collision-finding adversary
for each K, there might not be an efficient collision-
finding adversary that works for a random K.

The problem with the above move is its fundamen-
tal dishonesty with respect to modeling real-world
hash functions. Objects like SHA-1 were not de-
scribed as having a key, and reinterpreting them as
elements of a hash-function family is inherently a
stretch.

In a paper a few years ago (2006), I pointed out
that this entire dilemma is all a bit of a misunder-
standing. There was never a need to key hash func-
tions to have sensible security notion. All you have to
do is to change the way that you state your theorems.
We won’t write an “existential” claim like

If there is an effective algorithm A for at-
tacking the H-using protocol Π then there
is an effective algorithm C for finding a col-
lision in H.

We can’t state meaningful theorems in this way be-
cause the conclusion is always true. Instead, we will
make an “explicit-reduction” claim like

There is an (explicitly given) algorithm R
such that when A does well at attacking the
H-using protocol Π then C = RA does well
at finding a collision in H.

Now, ones ability to break Π does imply ones ability
to break H, exactly what we want.

From where did this entire confusion arise? The
first rigorous paper on cryptographic hash functions,
by I. Damg̊ard (1987), already explained that

Instead of considering just one hash func-
tion, we [must] consider families of them, in
order to make a complexity-theoretic treat-
ment possible.

When I read this statement as a graduate student,
I took the claim to be true, even incontrovertible.
Years later, I can look back and identify some of
the implicit assumptions that made this seem so.
First, the statement implicitly assumes an asymp-
totic treatment of our goals. Even more, it as-
sumes that we want our security notions to hold for
non-uniform adversaries—those that can have some
security-parameter-dependent advice. Finally, we as-
sume existential-format theorem statements. When
you abandon this set of assumptions, moving to hash-
function families no longer seems so right.

I conclude from all of this that implicit and un-
recognized assumptions can determine a good deal
of what we think and do. Deeply embedded dis-
ciplinary assumptions can come to assume almost
doctrinal unassailability. The assumptions can ef-
fectively vanish from our view. In the words of
L. Fleck (1935/1979), “Once a structurally complete
and closed system of opinions consisting of many de-
tails and relations has been formed, it offers enduring
resistance to anything that contradicts it. . . . What
does not fit into the system remains unseen.” It is not
that we see alternatives to how we are doing things,
and, carefully considering, reject these possibilities.
It is, more, that we never see the alternatives—even
things that, later, seem obvious and compelling.

9 Zero-knowledge

The beautiful idea of zero-knowledge proofs was mo-
tivated by simple protocols like the one I’ll describe
right now. A prover would like to convince a verifier
that a pair of graphs G0 and G1 are isomorphic. (Re-
member that two graphs are isomorphic if they are
the same up to the naming of their vertices.) In or-
der to show this the prover could exhibit the isomor-

7

phism: he could provide a permutation that serves to
map the vertices of the first graph into the vertices of
the second graph, and the verifier would check that
the proposed isomorphism really does preserve adja-
cency. The “problem” with this proof, from a crypto-
graphic standpoint, is that it reveals everything; the
verifier now knows the isomorphism. The question
I’d like to ask is if you can prove that two graphs
are isomorphic without revealing the isomorphism—
indeed without revealing anything beyond that fact
that the graphs are isomorphic.

The problem and its solution, invented by S. Gold-
wasser, S. Micali, and C. Rackoff (GMR) (1985), be-
gins by having the prover select a random isomor-
phic copy of G0. A random isomorphic copy of G0 is
also a random isomorphic copy of G1 (isomorphism
of graphs is an equivalence relation). The prover
sends his graph H to the verifier. The verifier now
flips a coin b ∈ {0, 1} and challenges the prover to
demonstrate that Gb actually is isomorphic to H.
The prover obliges by exhibiting the requested iso-
morphism, which the verifier checks.

I claim that when the verifier interacts with the
prover I’ve described, he really does get some evi-
dence that G0 is isomorphic to G1. If the two graphs
are isomorphic, the prover will be able to provide the
specified evidence. But if the two graphs are not iso-
morphic, then H can be isomorphic to at most one
of the two graphs. The verifier, who choose b at ran-
dom, has at least a 50% chance of catching the prover
in his lie. If the prover and verifier repeat this game
100 times and then the prover will be able to trick
the verifier with probability at most 2−100. For all
practical purposes, this number is zero.

Intuitively, the prover manages to establish that G0

and G1 are isomorphic without revealing anything
about the isomorphism. GMR make this formal with
the idea of a simulator. The simulator is used to
concretize the intuition that the prover leaks zero in-
formation in an interaction if that which a verifier
obtains is nothing but a sample from a distribution
that the verifier itself could generate.

The definition of zero knowledge, and the ideas
behind it, have been profoundly influential. More
than 17,000 Google Scholar articles, and 149,000 web
pages, refer to zero-knowledge proofs. And yet I
think it’s fair to say that zero-knowledge, at least
in the traditional form that I’ve described, has had
little impact on cryptographic practice. It somehow
hasn’t mattered. I conclude that if a notion is elegant
enough, real-world applications may not be needed.

I would also comment that names can be important.
When you have a good notion, and you have a good
name for it as well, that is an unbeatable package.
The phrase zero knowledge manages to capture, in
just these two words, a wonderful paradox: how can
something be knowledge if it is also zero? The name
itself already inspires the imagination. Good defi-
nitions excite the imagination and aspirations of a
community.

10 Conclusion

People have come to think of cryptography as a field
that’s all about schemes, attacks, and proofs. And
all of these things are vital aspects of cryptography.
And yet, missing from this picture are definitions.
Less well noticed, they are, just the same, at least as
important for determining the character of modern
cryptography.

Acknowledgments

I would like to cordially thank Rasool Jalili, Mohsen
Kahani, and everyone else involved in inviting my
participation at ISCISC 2011.

This work has been supported by NSF CNS
0904380. Many thanks to the NSF for their continu-
ing support of my research.

8

