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Abstract

A �t� n��locally random reduction maps a problem instance x into a set of problem instances
y�� � � � � yn in such a way that it is easy to construct the answer to x from the answers to
y�� � � � � yn� and yet the distribution on t�element subsets of y�� � � � � yn depends only on jxj� In
this paper we formalize such reductions and give improved methods for achieving them� Then
we give a cryptographic application� showing a new way to prove in perfect zero knowledge
that committed bits x�� � � � � xm satisfy some predicate Q� Unlike previous techniques for such
perfect zero�knowledge proofs� ours uses an amount of communication that is bounded by a
�xed polynomial in m� regardless of the computational complexity of Q�

� Introduction

We develop and apply a new type of reduction� which we call a locally random reduction� We
begin with some historical motivation and context for our work� Next� we present an improved
construction of locally random reductions� Finally� we apply these reductions to zero�knowledge

proofs on committed bits�

��� Motivation and historical context

The notion of reducibility among computational problems has long had a pervasive in�uence on
the theory of computation� To analyze the average case complexity of a problem� it often su�ces
to reduce an arbitrary instance of the problem to a random instance� For example� let p be a
prime and � be a generator of Z�

p � One can reduce the problem of computing log� x mod p� where
x � Z�

p � to that of computing log� y mod p� where y is distributed uniformly over Z�
p � Simply

choose r uniformly at random from f�� � � � � p � �g� compute y � �rx mod p� and let log� x �
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�log� y	� r mod �p� �	� Thus� one can generate a 
hard� instance of x by choosing x at random�
If computing log� x were easy for a randomly chosen x� then it would be easy for any value of x�

More generally� suppose one could randomly reduce computing f�x	� where jxj � m� to com
puting g�y	� such that y is distributed according to some probability measure Rm� Then the
averagecase complexity of computing g�y	� where the average is computed with respect to Rm� is
as high as the worstcase complexity of computing f�x	�

Unfortunately� this approach is limited� because of the following result� Suppose that �P� �� �P� �
and that f is NPhard� Then there is no polynomialtime random reduction from f to any function
g such that the distribution on random instances y depends only on jxj �cf� ���	� This result holds for
a generalized notion of random reductions� known as single�oracle instance�hiding schemes� These
schemes have a probabilistic polynomialtime bounded player P and an unbounded player O that
always answers correctly� P wishes to compute f�x	 for some function f and an input x� P is
allowed to �ip coins and to interact with O for an arbitrary number of rounds but is not allowed
to reveal anything more than jxj to O� Here� 
revealing only jxj to O� means that if jx�j � jx�j�
then O�s views of the conversation when x � x� and when x � x� are identically distributed� A
more precise and general formulation of this idea may be found in ����

Rivest ���� �� proposed the more general notion of multi�oracle instance�hiding schemes� in
which P is allowed to interact with a number of oracles O�� � � � � On� P is not allowed to reveal more
than jxj to any single oracle Oi� but two or more oracles together may have enough information
to reconstruct x completely� Whereas schemes with only one oracle appear relatively weak� Beaver
and Feigenbaum proved the following theorem for multioracle schemes�

Theorem� ��� For any function f � there exists an �jxj � �	oracle instancehiding scheme that
reveals at most jxj�

Because any function f � f�� �gm �� f�� �g can be trivially reduced to a function g � f�� �gm�c ��
f�� �g�

c

� the factor of jxj� � may be reduced to a factor of jxj � c lg jxj� In fact� we will later show
how to reduce this to jxj�c lg jxj�

Lipton ���� translated the arguments of ��� into the language of multivariate polynomials and
applied them to the area of program testing� This framework is much easier to work with than the
original framework� which involved multiparty computations on shared secrets� and furthermore
allows one to prove useful programtesting results for multivariate polynomials of low degree� It
has been observed that Lipton�s programtesting reductions imply averagecase complexity results�
such as the following theorem on computing permanents over �nite �elds�

Theorem� ���� Let F be a �nite �eld with more than m � � elements� Suppose that� for some
probabilistic polynomialtime algorithm P � and for M chosen uniformly from m�m matrices�

Pr�P �M	 � perm�M	� � ��
�

��m� �	
�

Then there exists a probabilistic polynomialtime algorithm Q such that� for all m �m matrices
M �

Pr�Q�M	 � perm�M	� � �� ��m�

Taking the contrapositive� if computing permanents over large �nite �elds is di�cult in the worst
case� it must also be di�cult for an ����m	 fraction of the instances� Since the results of
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BeaverFeigenbaum ��� and Lipton ���� appeared� a number of researchers have used randomself
reducibility properties of multivariate polynomials to show� among other things� that P�P � IP
�cf� ����	� IP � PSPACE �cf� ����	� and MIP � NEXPTIME �cf� ���	� A detailed overview of the
relationship of locally random reductions to other basic concepts in complexity theory can be found
in ����

��� Our results

In this paper� we provide a formal de�nition of locally random reductions� exhibit an improved gen
eral construction of such reductions� and apply them to zeroknowledge proof systems� Informally�
a �t� n	locally random reduction from a function f to a function g works as follows� To compute
f�x	� we use x and a string r of 
random coin�ips� to generate y�� � � � � yn� Here n� as well as t� de
pends only on m � jxj� We recover f�x	 by computing simple function of x� r� and g�y�	� � � � � g�yn	�
Moreover� for any x� and x� of the same length m� for any i�� � � � � it� the distribution y�i� � � � � � y

�
it

induced by x� is identical to the distribution y�i� � � � � � y
�
it

induced by x�� We prove the following
theorem� which is stated informally here� a formal statement and proof are given in Section ��

Theorem �� For any function f � f�� �gm � f�� �g and any constant c � �� there is a function g
such that f is �t� tm�c lgm	locally random reducible to g�

This improves on the results of ��� ��� mentioned above�
We apply locally random reductions in a novel protocol for zero�knowledge proofs on committed

bits� Zeroknowledge proof systems� as originally formulated by Goldwasser� Micali� and Rack
o� ����� are twoparty protocols in which the parties have a common input x� and one party �the
prover	 convinces the other �the veri�er	 that� say� f�x	 � �� without revealing anything about x
except that f�x	 � �� We consider a related setting in which the prover publishes a commitment

to its private input x and then at some later time proves in zeroknowledge to the veri�er that
f�x	 � �� Furthermore� f may be unknown at the time x is committed�

We consider how to implement such proofs in the presence of an ideal commitment scheme� Both
prover and veri�er have unlimited computational power� no complexitytheoretic assumptions are
made� and an ideal bit commitment scheme is assumed as a primitive� A natural question to ask
is whether one can actually perform zeroknowledge proofs on committed bits in this setting� This
question has been answered in the a�rmative by several researchers �e�g�� ��� ���	� a written account
of a more recent scheme appears in ����

It is natural to ask whether an interactive proof system is at all interesting if it requires the
veri�er as well as the prover to have unlimited computational power� The answer is yes� for the
following reason� We are focusing on the communication cost of proving the value of a predicate
on a set of committed bits� It is not at all clear �and might even be counterintuitive	 that an
arbitrary predicate f can be proven in a communicatione�cient manner� even if both prover and
veri�er have enough computational power to compute f � All previous schemes for zeroknowledge
proofs on committed bits� including those of ��� �� ���� have bit complexity proportional to the
circuit complexity of f � where by 
bit complexity� we mean the total number of bits committed to
or communicated between the two players� Thus� if f is an arbitrary predicate on m bits� a zero
knowledge proof that f�x	 � � will require exponential communication if one uses the protocols
of ��� �� ���� regardless of the amount of computational power one allows the veri�er� By applying
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locally random reductions� we achieve a protocol whose total communication cost is polynomial�
even if the circuit complexity of f is exponential�

Theorem� Given an ideal commitment scheme� there exist protocols for committing and decom
mitting bits and a protocol for proving arbitrary predicates on a set of committed bits� The proof
system reveals nothing about the committed bits other than what is implied by the predicate being
true� Furthermore� the bit complexity of the proof system is polynomial in the number of input
bits to the predicate  it is independent of the predicate�s computational complexity�

A formal statement and proof of this theorem appears in Section !�
Although the fact that both prover and veri�er in our protocol have unlimited computational

power does not detract from the theoretical importance of the fact that the protocol�s commu
nication costs are polynomial� it does render the protocol impractical� With respect to practical
applicability� our protocol is not an improvement over those of ��� �� ����

The rest of the paper is organized as follows� In Section �� we formally de�ne locally random
reductions and other notions that we will use later in the paper� In Section �� we give our improved
construction of locally random reductions� In Section !� we give our communicatione�cient pro
tocol for zeroknowledge proofs on committed bits� Open questions are given in Section ��

These results �rst appeared in our Technical Memorandum �!��

� Preliminaries

��� Locally random reductions

We now formalize the intuition of Section ����

De�nition � Let f � D � f�� �g�� g � D� � f�� �g�� and t� n � N � N� We say that f is
�t� n��locally random reducible to g in time Q�m	 if there is a polynomial ��m	 and a pair of
Q�m	time computable functions �scatter � reconstruct	 such that�

� �Correctness	 For all m � N and x � D � f�� �gm� for at least ��! of all r � f�� �g��m��

f�x	 � reconstruct�x� r� g�y�	� � � � � g�yn�m�		�

where hy�� � � � � yn�m�i � scatter�x� r	�

� �Local randomness	 For all m � N and fi�� � � � � it�m�g � f�� � � � � n�m	g� if r is chosen

uniformly at random from f�� �g��m�� then� for any x�� x� � D � f�� �gm� the distribution on
hyi� � � � � � yit�m�

i induced by scatter�x�� r	 is identical to that induced by scatter�x�� r	�

More succinctly� we will write 
f is �t� n	lrr to g�� When we omit mention of Q� it means that
Q�m	 is a polynomial but that the speci�c polynomial involved is unimportant for the result under
discussion� In the special case in which f � g� we say that f is 
�t� n	locally random selfreducible��

Informally� if T is a subset of the target instances fy�� � � � � yn�m�g� and jT j 	 t�m	� then T leaks
no information about the original instance x� except its length m�
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��� Function arithmetization

A powerful technique for dealing with a Boolean function f � f�� �gm � f�� �g is to treat f as a
multivariate polynomial P over some �nite �eld F � In this way� algebraic properties of polynomials
can be directly exploited� Such arithmetization of Boolean functions is an important insight of Ben
Or� Goldwasser� and Wigderson ���� The polynomial P is sometimes referred to as a 
multilinear
extension of f over F� �e�g�� in ��� ��� ���	�

Fix a function f � f�� �gm � f�� �g and a �nite �eld F � We use �i
� to denote the polynomial xi

and �i
� to denote the polynomial � � xi� �The 
�� is the multiplicative identity of F �	 Given an

mbit string a � a� � � �am� we de�ne the polynomial �a by

�a �
mY
i��

�i
ai
�

Now let the polynomial P �x	 be given by

P �x	 �
X

a�f���gm

f�a	�a�x	 �

This is the arithmetization of f over F �
Here is an example� Let f�x�x�x�	 � x� 
 x� 
 x�� where 
 denotes exclusiveor� Then the

arithmetization of f is the polynomial

P �x�� x�� x�	 � x���� x�	��� x�	 � ��� x�	x���� x�	 � ��� x�	��� x�	x� � x�x�x��

At this point� we make two observations� First� in the de�nition of �a� each variable can appear
at most once in the product� and so �a is linear in each variable xi� Thus P is also linear in
each variable xi �being the sum of monomials that are linear in xi	� Second� for any x � f�� �gm�
P �x	 � f�x	� This identity may be veri�ed by noting that� in the sum given by the de�nition of
P �x	� all the terms are � except for one that is equal to f�x	�

Throughout this paper� we assume that the �nite �eld F has characteristic two� This allows us
to choose an element of F uniformly at random simply by �ipping coins� All of our de�nitions and
results can be stated for F of characteristic greater than two as well� Certain protocols that work
with probability one when F has characteristic two may fail with exponentially small probability
when F has higher characteristic� because a sequence of coin �ips may fail to yield an element of
F � Otherwise� everything that we present is the same for all �nite �elds�

� Improved locally random reductions

We now show how to improve the results of BeaverFeigenbaum ��� and Lipton ����� We �rst exhibit
a parameterized family of randomselfreductions for multivariate polynomials over su�ciently large
�nite �elds� We then give� for any constant c � � and anymbit function f � a �t� tbm�c lgmc	locally
random reductions from f to some other function g�

Lemma � There is a polynomial Q�m	 having the following property� Let d and t be numbers� and
let F be a �nite �eld of at least dt� � points� Let P �x�� � � � � xm	 be a polynomial in F �x�� � � � � xm�
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of total degree at most d� Then P is locally random selfreducible in time Q�m � d � t � lg jF j	�
Furthermore� there is a single pair of functions �scatter � reconstruct	 that serves as a locally random
selfreduction for any P satisfying the above conditions�

Proof� Our proof proceeds along the lines of ���� using the polynomial framework of ����� First�
we de�ne scatter�X� r	� Let X � �x�� � � � � xm	 � Fm� and regard r as a set of mt random elements
of F � denoted fci�jg� where � 	 i 	 m and � 	 j 	 t� Let ��� � � � � �dt	� denote distinct nonzero
elements of F � De�ne pi�z	 by

pi�z	 � ci�tz
t � � � �� ci��z � xi�

Finally� de�ne
scatter�X� fci�jg	 � �Y�� � � � � Ydt	�	�

where Yk � �p���k	� � � � � pm��k		�
Before describing reconstruct� we explain our de�nition of scatter � De�ne "P �z	 by

"P �z	 � P �p��z	� � � � � pm�z		�

Because P is of total degree at most d� and each pi�z	 is of degree t in z� the curve "P �z	 is of degree
at most dt� By de�nition�

P �Yk	 � "P ��k	� and

P �X	 � "P ��	 �because pi��	 � xi	�

We now de�ne reconstruct � Recall that computing P �X	 is equivalent to computing "P ��	�
Because "P is a univariate polynomial of degree at most dt� "P ��	 may be recovered from "P ���	� � � ��
"P ��dt	�	 by Lagrangian interpolation� More explicitly� we de�ne scatter by

scatter�P �Y�	� � � � � P �Ydt	�		 �
dt	�X
k��

tkYk �

where t�� � � � � tdt	� � F are constants de�ned by

tk �
Y
j ��k

��j

�k � �j

�

Thus� �scatter � reconstruct	 has the correctness property required by De�nition �� and both
scatter and reconstruct can be computed in the stated polynomial number of steps� Thus it su�ces
to show that� for anyX�� X� � Fm and any sequence �i�� � � � � it	� the distribution on �Yi� � � � � � Yit	 in
duced by scatter�X�� r	 is the same as that induced by scatter�X�� r	� i�e�� that �scatter � reconstruct	
has the local randomness property also required by De�nition �� We show this by using the fol
lowing well known fact about polynomial interpolation� Given points �x�� y�	� � � � � �xt� yt	� where
all the xi�s are distinct and nonzero� and �xing c�� there is exactly one polynomial of the form
ctz

t � � � �� c�z � c� that agrees with all of these points� Thus� the fact that the ci�j �s are chosen
independently and uniformly at random� combined with our de�nition of scatter � implies that� for
any distinct �k� � � � � � �kt � F � f�g� and any X� Yk� � � � � � Ykt � Fm� there is exactly one consistent
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value of C� Therefore� the distribution on �Yk� � � � � � Ykt	 is uniform over �Fm	t� for any value of
X � Fm�

Beaver and Feigenbaum showed that for� any mbit boolean function f � there is a function g such
that f is ��� m� �	locally random reducible to g� We now show how to reduce the total number
of queries from m� � to bm�c lgmc� for any constant c � ��

Theorem � Fix a constant c � � and a function t � N � N� Then there is a polynomial Q�m	
having the following property� For any function f � f�� �gm � f�� �g there is a function g such that
f is �t� tbm�c lgm	c	locally random reducible to g in time Q�m	�

Proof� Let F be a �nite �eld of the form GF��l	� where l � dmte� We �rst show how to reduce
the computation of the arithmetization P �x�� � � � � xm	 of f over F to the computation of another
multivariate polynomial P ��y�� � � � � yv	 over F of total degree at most bm�c lgmc� We then apply
Lemma � to complete our proof� Partition the set f�� � � � � mg into disjoint subsets S�� � � � � Sd� each
of size at most c lgm� �� For any i and any nonempty T � Si� we de�ne a new variable yT � given
by

yT �
Y
i�T

xi�

Let I � fi�� � � � � ikg be any subset of the indices f�� � � � � mg and axi� � � �xik a monomial in which
each variable appears at most once� We can transform this degree k 	 mmonomial into a monomial
of degree 	 d via the mapping

axi� � � �xik �� a
dY

i��

yI�Si �

It is easy to verify that the values of the two monomials are equal� given the above change of
variables� Because the arithmetization P of f is a sum of monomials in which each variable appears
once� transforming each monomial of P as above yields a new polynomial P � of degree at most d�
Finally� one can rename the subscripts taken by our variables yT to be integers instead of sets� This
purely syntactic transformation will sometimes be made for notational reasons� allowing us to say
y�� � � � � yv when convenient� but it is otherwise unnecessary� We can easily bound v� the number of
variables in P �� by

v 	

�
m

c lgm

�
� �c lgm	� 	

�mc	�

c lgm
�

Here is a simple example of the change of variables� with m � � and d � �� Suppose that

P �x�� � � � � x
	 � x�x�x�x�x�x
 � x�x�x
 � �x�x�x�x
�

First� let S� � f�� �g� S� � f�� !g� and S� � f�� �g� yielding variables

yf�g� yf�g� yf���g� yf�g� yf�g� yf���g� yf�g� yf
g� yf��
g�

The polynomial P � is given by

P ��yf�g� � � � � yf��
g	 � yf���gyf���gyf��
g� yf�gyf�gyf
g � �yf���gyf�gyf
g�
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Note that it may be infeasible to write down P or P �� because the number of terms in one of both
may be exponential in m� However the reduction from P to P � only requires computing the new
variables fyTg� which can be done with a small number of multiplications in our �eld� For example�
yf���g is computed by multiplying x� and x��

We now de�ne our reduction �scatter � reconstruct	� On input X � x�� � � � � xm� scatter�X� r	 �rst
computes x�� � � � � xm � F � where boolean ��s are transformed into the � element in F � and boolean
��s are transformed into the � element in F � This trivial transformation e�ects the reduction from
f to P � Next� scatter computes the variables fyTg� e�ecting the reduction from P to P �� Note that
P ��y�� � � � � yv	 � f�x�� � � � � xm	� where � and � �eld elements are identi�ed with � and � boolean
values� Finally� scatter performs the mapping used by the �t� dt� �	locally random selfreduction
given in Lemma �� for vvariable polynomials over F of degree d � bm�c lgmc�

We de�ne reconstruct to be the same as in Lemma �� except that it interprets � and � �eld
elements as their boolean equivalents�

By Lemma �� our reduction �scatter � reconstruct	 always give the correct answer� Furthermore�
the number of algebraic operations performed by reconstruct and scatter is bounded by some
polynomial in v and t� Because v is bounded by some polynomial in m �depending on c	� and the
requisite �eld operations can be implemented in time polynomial in m and t� the total number of
bit operations performed by reconstruct and scatter is polynomial in m and t�

� Zero�knowledge proofs on committed bits

In this section� we formally de�ne ideal bit commitment schemes and review the notion of zero
knowledge proofs on committed bits� In the protocols we will describe� there is one party �the

prover�	 who commits to a set of bits and later proves assertions about these committed bits� and
there is another party �the 
veri�er�	 who veri�es the proofs on the committed bits�

Intuitively� we think of an ideal commitment scheme as having physical envelopes that the
prover can �ll with information and place on the table� If the prover later opens an envelope� the
veri�er knows its contents have not been changed�

We are interested in the notion of zero�knowledge proofs on committed bits� Such commitments
have also been referred to as notarized envelopes� That is� one would like to commit to a set of
bits b�� � � � � bm and at some later time prove some predicate Q�b�� � � � � bm	 on these bits� without
revealing the values of b�� � � � � bm or other information not implied by Q�b�� � � � � bm	�

Ideal commitment schemes were used in the construction of zeroknowledge proofs for predicates
in NP �cf� ����	 and IP �cf� ��!�	� Zeroknowledge proofs on committed bits were �rst used in the
study of multiparty secure computation ���� and were based on complexity theoretic assumptions�
Simple schemes for basing zeroknowledge proofs on committed bits on ideal commitment schemes
were developed not long thereafter �e�g�� ��� ���	 but did not appear in the literature until ����
These schemes allowed one to prove arbitrary predicates on k committed bits using a total amount
of communication that was potentially exponential in k�

This exponential communication cost is sometimes acceptable� For example� one can transform
any NP predicate Q�b�� � � � � bm	 into a predicate of the form

�y�� � � � � yl	Q
��b�� � � � � bm� y�� � � � � yl	�

where� Q� � �i Q
�
i and each Q�

i is a predicate on just three variables� then prove Q�b�� � � � � bm	 in
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zero knowledge by committing to suitable values for y�� � � � � yl and proving each of the predicates
Q�

i in zeroknowledge� However� such a transformation cannot be applied to arbitrary predicates
and can be very unwieldy even for NP predicates� This technique also leaves open the question of
whether the communication cost of zeroknowledge proofs on committed bits depends intrinsically
on the computational complexity of the predicate to be proven� In the remainder of this section�
we answer this fundamental question in the negative�

��� Formal de�nitions

In this section we describe the model of computation for interactive proofs in the presence of an
ideal commitment scheme� We then go on to de�ne �perfect	 zeroknowledge proofs in this model�


���� Ideal commitment schemes

An ideal commitment scheme �ICS	 can be thought of as a special type of channel that connects
the prover P to the veri�er V � When we run the protocol speci�ed by P and V � any string that
V writes down for P will be delivered �unmodi�ed	 to P � but messages sent from P to V are
transmitted in the following way� Initialize S � � and then�

�� When P transmits on its channel to V a message

commit�x� t	�

if there is no ordered pair �x�� t	 � S� then we set S � S � f�x� t	g and deliver to V the
message t� If there is already an �x�� t	 � S then the empty string is delivered to V �

�� When P transmits on its channel to V a message

decommit�t	�

if there is some pair �x� t	 � S then we deliver to V the message �x� t	� If there is no such
pair �x� t	 � S� then the empty string is delivered to V �

We could have provided P a 
direct� channel to V � but this is trivially simulated with the channel
above�

We say that P commits to x � x� � � � xm if P transmits in the course of the protocol�

commit�x�� x�bit��	� � � � � commit�xm� x�bit�m	� ��� length�x�m	 �

We say that P reveals x if it sends the corresponding decommitments�
We will use the notation ChannelSP	V �x	 to denote the message delivered when x is transmitted

on the P � V channel� which is currently in state S� Note that this operation has a side e�ect
on S�

�



��� ICS protocol execution

We model players P and V as f�� �g�valued functions on initial input s � f�� �g�� �veri�er	 view
z � f�� ��#g�� and coins �ips r � f�� �g
� An R�m	round execution �P �s�	� V �s�		 is de�ned by
the following experiment� set z � 	� set S � �� choose random strings r�� r� � f�� �g
� then�

for i� � to R�jxj	 do
z � z # ChannelSP	V �P �s�� z� r�		
z � z # V �s�� z� r�	

We say that an execution of �P �s�	� V �s�		 accepts �or simply V accepts	 if the last bit of the �nal
value of z is �� else we say it rejects� The �veri�er�s	 view is the random variable that gives s�� r��
and the �nal value of z� The communication complexity of an execution is the length of the �nal
value of z�


���� Zero�knowledge proofs on committed bits

A zeroknowledge proof that predicate Q holds on committed bits x�� � � � � xm is a like a neutral
third party that does nothing but check that Q�x�� � � � � xm	 � �� reporting the answer back to V �
Nothing else is revealed�

As in the more customary setting of Goldwasser� Micali and Racko� ����� we can formalize this
idea by using a simulator� We require of any �possibly cheating	 veri�er that there be an algorithm
that produces a distribution on �fake	 views that coincides with the distribution on �real	 views
received by that veri�er �when interacting with the prover who has initial input x� where Q�x	 � �	�
By e�ectively demonstrating that the veri�er could have computed its view on its own �knowing
nothing but Q�x	 � �	� the existence of the simulator assures us that the veri�er learns no more
than it should�

Another way to model potential information leakage follows the notion of 
witness indistin
guishability� of Feige and Shamir ���� In particular� for any equal length x and x� that satisfy
predicate Q� the views that the veri�er gets in these cases should be identical� This approach
concerns itself more with hiding the input than with leaking extraneous information�

In the formalization we now give� we follow the second approach� Equivalent de�nitions can be
formulated using simulators�

De�nition � An R�m	round� 
�m	error ICS proof system for predicate Q is a pair of players
�P� V 	 such that�

� �Completeness	 For any x such that Q�x	 � �� an R�jxj	round execution �P �x	� V �jxj		
accepts� and in it P commits to x�

� �Soundness	 For any player $P that commits to its initial input x� if Q�x	 � �� then the
R�jxj	round execution � $P �x	� V �jxj		 accepts with probability at most 
�jxj	�

When R�m	 is polynomial and 
�m	 � ��� is constant we omit mention of these parameters� If the
communication complexity is bounded by a polynomial in m� we say that �P� V 	 is communication�

e�cient�

��



De�nition  An ICS proof system �P� V 	 for predicate Q is zero�knowledge if� for all $V and all
x�� x� such that jx�j � jx�j and Q�x�	 � Q�x�	 � �� the view of �P �x�	� $V �jx�j		 is identical to the
view of �P �x�	� $V �jx�j		�

��� A communication�e�cient protocol for proofs on committed bits

We now present a new protocol� based on an ICS� for performing zeroknowledge proofs on com
mitted bits� In our protocol� a computationally unbounded prover P can prove arbitrary predicates
in zeroknowledge to a computationally unbounded veri�er V � Unlike the previous protocols� our
protocol requires communication that is only polynomial in the number of committed bits� re
gardless of the circuit complexity of the predicate being proven� Note that the veri�er must be
computationally unbounded� because it must verify arbitrary predicates�

For our discussion� we will often blur the distinction between boolean values and the � and �
elements of a �nite �eld� First� we use a standard trick of representing each bit to be committed as
a random exclusiveor of two bits �equivalently� a random sum over GF ��		� The following simple
protocols are used to commit and reveal bits�

Protocol commit�x�� � � � � xm	 For � 	 i 	 m� P uniformly chooses x�i � x
�
i � f�� �g� subject to

xi � x�i 
 x�i � and commits to x�i and x�i using the ICS�

Protocol reveal�i	 The prover reveals x�i and x�i using the ICS� V computes xi � x�i 
 x�i �

It is easy to veri�er that the value of a bit recovered during the reveal protocol must be the same
as that during the commit protocol� Furthermore� as soon as P has committed to x�i and x�i � he
has implicitly committed to a bit xi that is guaranteed to be well de�ned� The issue of committed
bits� being well de�ned will arise later but can be safely ignored at this point�

Our protocol for performing zeroknowledge proofs on a set of committed bits is based on the
reduction given in the proof of Lemma �� where t � �� In order to prove the boolean predicate
Q�x�� � � � � xm	� P and V �rst arithmetize Q� as in the proof of Theorem � �treating Q�X	 as a
boolean function that is � i� Q�X	 is true	� For the rest of the protocol� P must show that
Q��x�� � � � � xm	 � �� where Q� is a degree 	 m multivariate polynomial over a �nite �eld F � F

must have at least m� � distinct nonzero elements� denoted ��� � � � � �m	��
The zeroknowledge proof proceeds in two phases� In the commitment phase� P generates a

run of the ��� m� �	locally random selfreduction on Q�� 
breaks� the computation into random
pieces� and commits to these pieces� In the challenge phase� V randomly chooses to see certain
pieces of the reduction and uses this glimpse to verify probabilistically that the selfreduction was
honest�

In the commitment phase� P uniformly generates fci � Fg and then follows the reduction in
Lemma � to generate fyi�jg� He then computes

Yj � �y��j� � � � � ym�j	

zj � Q��Yj	�

and �nally reconstructs the �nal answer�

w �
m	�X
j��

tjzj �

��



Protocol prove�x�� � � � � xm� Q� �Commitment Stage	
Let F be a �nite �eld with at least m 
 � element� and let Q� be the arithme�
tization of Q over F � Let ��� � � � � �m�� � F be distinct and nonzero� De�ne

t�� � � � � tm�� � F by tj �
Y
i��j

��i

�j � �i

�

�� For  � i � m and  � j � m 
 � P uniformly chooses ci � F � and
computes�

yi�j � xi 
 ci�j�

Yj � �y��j � � � � ym�j��

zj � Q��Yj�� and�

w �
m��X
j��

tjzj �

�� P uniformly chooses c�i � c
�
i � F � subject to ci � c�i 
 c�i � and z�j � z

�
j � F �

subject to zj � z�j 
 z�j � P then computes�

ybi�j � xbi 
 cbi�j� and�

wb �
m��X
j��

tjz
b
j �

where b � f�� g� Note that yi�j � y�i�j 
 y�i�j and w � w� 
w��

�� For b � f�� g�  � i � m� and  � j � m 
 � P commits to cbi � y
b
i�j� z

b
j

and wb using the ICS�

Figure �� Commitment stage of the zeroknowledge proof system�

where tj �
Y
i��j

��i

�j � �i

� After generating this run of the reduction� P breaks up each ci� yi�j � zj and

w into two halves whose sum �over F 	 is equal to the original and then commits to each half� Thus�
we have ci � c�i � c�i � w � w��w�� etc� We give the commitment stage of the protocol in Figure ��

In the challenge phase of the protocol� V makes one of three general requests� He can ask P to
reveal the 
� half� or the 
� half� of the selfreduction and verify a number of linear constraints� He
can ask P to reveal Yj and zj for some j �by revealing both halves of all their relevant components	
and verify that zj � Q��Yj	� Or he can ask P to reveal w �by revealing w� and w�	 and verify that
w � �� We give the challenge stage of the protocol in Figure ��

��� Properties of our proof system

In this section� we argue that our protocols have the properties of a zeroknowledge proof system�
We �rst show that our protocol is complete� If both parties behave properly� then V always accepts

��



Protocol prove�x�� � � � � xm� Q� �Challenge Stage	
V makes one of the following m 
 � challenges� each with equal probability�

� �For b either � or 	 For  � i � m and  � j � m
 � V asks P to reveal

xbi � c
b
i � y

b
i�j� z

b
j and wb� V accepts i� ybi�j � xbi 
 cbi�j and wb �

Pm��

j�� tjz
b
j �

�� �For  � j � m
 	 For b � f�� g and  � i � m� V asks P to reveal ybi�j
and zbj � V then computes �Yj � �y���j
y���j � � � � y

�
m�j
y�m�j� and �zj � z�j
z�j

and accepts i� �zj � Q�� �Yj��

�� V asks P to reveal w� and w� and accepts i� w� 
w� � �

Figure �� Challenge stage of the zeroknowledge proof system�

a correct assertion� Next� we show that our protocol is weakly sound� V rejects a false assertion
with probability at least ��poly�m	� Finally� we show that our protocol is zeroknowledge� A proof
that Q�x�� � � � � xm	 � � conveys no extra information about x�� � � � � xm�

Lemma � If Q�x�� � � � � xm	 � �� and P and V follow prove�x�� � � � � xm� Q	� then V always accepts�

Proof� It su�ces to show that V accepts for each of the � types of challenges he might make�
The �rst challenge is trivially satis�ed� by the de�nition of ybi�j and wb� To show that the second

challenge is satis�ed� it su�ces to show that the values for "zj and "Yj reconstructed by V are truly
equal to those given by P � By construction� zj � z�j � z�j � The case for Yj follows from the identity
yi�j � y�i�j � y�i�j � which may be veri�ed by�

y�i�j � y�i�j �
�
x�i � c�i�j

�
�
�
x�i � c�i�j

�

�
�
x�i � x�i

�
�
�
c�i � c�i

�
�j

� xi � ci�j

� yi�j �

To show that the third challenge is satis�ed� it su�ces to show that w � � and w � w��w�� That
w � � follows from the fact that Q��x�� � � � � xm	 � � and the fact the construction of Lemma �
always gives the correct answer� To see that w � w� � w�� note that

w� � w� �

�
�m	�X

j��

tjz
�
j

�
A�

�
�m	�X

j��

tjz
�
j

�
A

�
m	�X
j��

tj
�
z�j � z�j

�

�
m	�X
j��

tjzj

� w�

��



Lemma  Suppose that Q�x�� � � � � xm	 � �� Then for any �possibly malicious	 "P � if V obeys the
protocol� he rejects with probability at least ���m� !	� regardless of "P �s strategy�

Proof� Given committed values for cbi � y
b
i�j� z

b
j � and wb� de�ne ci � c�i � c�i � yi�j � y�i�j � y�i�j �

zj � z�j � z�j � and w � w� � w�� Suppose that� for all i and j�

yi�j � xi � ci�j �

zj � Q��y��j � � � � � ym�j	� and

w �
m	�X
j��

tjzj �

Then� by the proof of Lemma �� w � Q��x�� � � � � xm	 �� �� and V rejects if he asks to see w� and
w� �a Type � of challenge	� If yi�j �� xi � ci�j for some i� j� then for some b � f�� �g it must hold
that ybi�j �� xbi � cbi�j � and V rejects if he makes a Type � challenge� for the appropriate value of b�

Similarly� if w ��
Pm	�

j�� tjzj � for some j� then for some b � f�� �g� wb ��
Pm	�

j�� tjz
b
j � and V again

rejects if he makes the appropriate Type � challenge� Finally� if for some j� zj �� Q��y��j � � � � � ym�j	�
then V rejects if he makes a Type � challenge� with that value of j� Thus� in all cases� there must
be at least one challenge that causes V to reject� and that challenge is chosen with probability at
least ���m� !	�

Lemmas � and � show that the protocol is a �round� ��� �
m	� 	error proof system� We next

show that the protocol is zeroknowledge and then discuss how to reduce the probability that a
false statement is accepted�

Lemma 
 Suppose that Q�x�� � � � � xm	 � Q�%x�� � � � � %xm	 � � and that� for some set T � f�� � � � �
mg� xt � %xt for t � T � Let "V be an arbitrary computationally unbounded party� Then the distribu
tion on "V �s view induced by running commit�x�� � � � � xm	� prove�x�� � � � � xm� Q	� and reveal�t	
for t � T is identical to that induced by running commit�%x�� � � � � %xm	� prove�%x�� � � � � %xm� Q	� and
reveal�t	 for t � T �

Proof� The bulk of the proof consists of analyzing the information revealed to "V during the exe
cution of the prove protocol� Suppose P commits to x�� � � � � xm by committing to �x��� x

�
�	� � � � � �x

�
m�

x�m	� We �rst show that� for each possible challenge "V can make� there exists b � f�� �g such that
his view can be generated from xb�� � � � � x

b
m and in no way depends on x��b� � � � � � x��bm � Indeed� for

Type � and Type � queries� one can generate "V �s view without looking at �x��� x
�
�	� � � � � �x

�
m� x

�
m	 at

all�
If "V makes a Type � challenge� for either value of b� his view consists of xbi � c

b
i � y

b
i�j � z

b
j and wb�

for � 	 i 	 m and � 	 j 	 m � �� The values of cbi and zbj are uniform over F � Furthermore� ybi�j
and wb are functions of only xb�� � � � � x

b
m� c

b
�� � � � � c

b
m� and zb�� � � � � z

b
m	� �ignoring the �i�s� which are

publicly known	� Thus� his view from a Type � challenge �with value b	 can be generated from
only xb�� � � � � x

b
m�

If "V makes a Type � challenge� with a given value of j� his view consists of ybi�j and zbj �
for b � f�� �g� and � 	 i 	 m� First note that the distribution induced on �z�j � z

�
j 	 depends

�!



only on the distribution of Yj � �y��j� � � � � ym�j	� By the properties of our locally random reduc
tion� y��j � � � � � ym�j are independently and uniformly distributed over F � regardless of the values of
�x��� x

�
�	� � � � � �x

�
m� x

�
m	� We have the identities

ybi�j � xbi � cbi�j �

yi�j � xi � ci�j � and

xi � x�i � x�i �

Furthermore� the cbi �s are distributed uniformly and independently� subject to ci � c�i � c�i � and
�j �� �� By a simple probability argument� the distribution on

y���j � y
�
��j� � � � � y

�
m�j� y

�
m�j

is uniform� subject to yi�j � y���j � y���j � Hence� if "V makes a Type � challenge� his view from this
challenge does not depend on the values of x��� x

�
�� � � � � x

�
m� x

�
m�

Finally� if "V makes a Type � challenge� then his view consists of w� and w�� We claim that w�

and w� are uniformly distributed subject to w� � w� � �� and thus "V �s view does not depend on
�x��� x

�
�	� � � � � �x

�
m� x

�
m	� First� note that w � � � w� � w�� Because w� �

Pm	�
j�� tjz

�
j � z

�
�� � � � � z

�
m	�

are uniformly and independently distributed� and at least one value of ftjg is nonzero �in fact�
every tj is nonzero	� it follows that w� is uniformly distributed�

Now� recall that the commit protocol reveals nothing about the values of x�� � � � � xm and that
the reveal�t	 protocol releases the values of x�t and x�t � Hence� one can always generate "V �s view
by looking at f�x�t � x

�
t 	jt � Tg and xb�� � � � � x

b
m� for some value of b that depends only on the type of

"V �s challenge� However� if x�� � � � � xm and %x�� � � � � %xm are as in the statement of the lemma� then�
for either value of b� the induced distribution on

f�x�t � x
�
t 	jt � Tg� xb�� � � � � x

b
m� and f�%x�t � %x

�
t 	jt � Tg� %xb�� � � � � %x

b
m

is identical� and hence "V �s view is also identical�

We can view the above argument as an algorithm for simulating "V �s view� knowing only xt
for t � T � During the proof process� the simulator simply talks to "V � generating its responses
according to the algorithm given in the proof� At some point� it may need to know xb�� � � � � x

b
m for

some b � f�� �g� at which point the simulator uniformly generates xb�� � � � � x
b
m and continues� When

it comes time to simulate the revelation of xt for t � T � the simulator learns these values� computes
x��bt � xt � xbt for t � T �choosing xb�� � � � � x

b
m uniformly if they have not been chosen before	� and

outputs the appropriate values�
One drawback to the scheme given above is the low probability that a veri�er will catch an

incorrect proof� This problem has been dealt with in previous protocols for zeroknowledge proofs
on committed bits� the ideas used there carry over to our protocol without any conceptual alteration�
and thus we simply state without proof the stronger results that we obtain using thses standard
techniques�

The basic idea is to run several independent copies of the protocols� Instead of breaking each
xi into a single pair� �x�i � x

�
i 	� P will break each xi into a sequence of independent pairs�

�x�i ���� x
�
i ���	� � � � � �x

�
i �l�� x

�
i �l�	�

��



Similarly� P reveals xi by revealing all l pairs that he previously committed� When P is honest�
x�i �j�
x�i �j� will have the same value� xi� for all values of j� With a malicious prover "P � there is no
such guarantee� In this case� we de�ne xi to be the majority of x�i �j�
 x�i �j�� for � 	 j 	 l� Under
this interpretation� even a malicious prover is guaranteed to be committing to some unambiguous
value�

More precisely� recall the following standard protocol that is used in earlier work on zero
knowledge proofs� e�g�� in those of Bennett ��� and Rudich ����� Given two pairs� �x�i �j�� x

�
i �j�	 and

�x�i �k�� x
�
i �k�	� we wish to give a zeroknowledge proof that

x�i �j�
 x�i �j� � x�i �k�
 x�i �k��

This is accomplished by using protocol prove�equal on the four committed bits�
Protocol prove�equal�x��� x

�
�� x

�
�� x

�
�	 &' Prove that x�� 
 x�� � x�� 
 x�� '&

�� P sends V the value of x�� 
 x���

�� V uniformly chooses b � f�� �g and sends b to P �

� P reveals xb� and xb� to V � who accepts i� xb� 
 xb� is equal to the value sent in Step ��

The prove�equal protocol is known to have the following properties�

Property �� If x�� 
 x�� �� x�� 
 x��� then V rejects with probability at least �
� � regardless of "P �s

strategy�

Property �� Let x � f�� �g and x��� x
�
�� x

�
�� x

�
� be chosen uniformly subject to

x � x�� 
 x�� � x�� 
 x���

Then� for any "V � the induced distribution on "V �s view of

prove�equal�x��� x
�
�� x

�
�� x

�
�	�

followed by the revelation of x��� x
�
�� x

�
�� x

�
�� may be generated by the following algorithm�

�� Choose v � f�� �g at random and choose y�� y� � f�� �g uniformly subject to v � y� 
 y��

�� Send v to "V � On receipt of b from "V � set xb� � y� and xb� � y�� and send xb� and xb� to "V �

�� Set x��b� � x
 xb� and x��b� � x
 xb�� and send x��� x
�
�� x

�
� and x�� to "V �

In particular� Property � implies that "V �s view through the prove�equal protocol is indepen
dent of x�

In the protocol of Figure �� a pair �x�i �j�� x
�
i �j�	 is called used if it has been chosen in some previous

iteration of the repeat loop and unused if it has not� Straightforward probabilistic arguments
�which we omit	 show that the protocol has the following desired properties�

Lemma � Suppose that Q�x�� � � � � xm	 is false and that l � �k� Then� during each iteration of the
repeat loop in the Prove�Many protocol� V rejects with probability at least

��

	
��

�

��m� �	


k
�

��



Protocol prove�many�x� � � � � � xm� Q� k�
I� repeat k times

�� V chooses j�� � � � � jm such that� for  � d � m� �x�i �jd	� x
�
i �jd	� is unused�

and b � f�� g uniformly�

�� If b � � then V and P run prove�x�� � � � � xm� Q�� where the pair
�x�i �ji	� x

�
i �ji	� is used to represent xi�

�� If b � �� then V chooses j��� � � � � j
�
m such that �x�i �j

�
d	� x

�
i �j

�
d	� is unused for

 � d � m� Then� for each d� P and V run

prove�equal

�
x�i �ji	� x

�
i �ji	� x

�
i �j

�
d	� x

�
i �j

�
d	
�
�

II� V rejects i� V ever rejected during Steps � or � of the loop� P aborts the
protocol if ever asked to �reuse� a pair�

Figure �� Protocol for decreasing the probability of error�

Lemma � Suppose that Q�x�� � � � � xm	 � Q�%x�� � � � � %xm	 � �� and that� for some set T �
f�� � � � � mg� xt � %xt for t � T � Let "V be an arbitrary computationally unbounded party� Then the
distribution on "V �s view induced by running commit�x�� � � � � xm	� prove�many�x�� � � � � xm� Q� k	�
and reveal�t	 for t � T is identical to that induced by running commit�%x�� � � � � %xm	� prove�
many�%x�� � � � � %xm� Q� k	� and reveal�t	 for t � T �

Together Lemmas � through � give the following�

Theorem � Every predicate Q�x�� � � � � xm	 has a �round� ��merror zeroknowledge ICS proof
system�

� Open Questions

Open questions abound� including�
Question �� Can Theorem � be improved so that fewer than tbm�c lgmc random instances are
needed( Alternatively� can a lower bound on the required number of random instances be proven(

Currently� it is not even known whether there is a function f that is not ��� �	locally random
reducible to any function g� Fortnow and Szegedy ���� show that there is an f that is not ��� �	
locally random reducible to a pair of functions �g�� g�	� if one insists that the functions gi be boolean
and that the reduction have � error probability�

Question �� Is there a protocol for zeroknowledge proofs of arbitrary predicates on committed
bits that is even more communicatione�cient than the one we have presented(

Question � Is there a �xed polynomial mc with the following property� For any polynomial
time predicate Q�x�� � � � � xm	� there is a zeroknowledge protocol that proves the value of Q on

��



committed bits� has bit complexity mc� and has a prover and veri�er that both run in polynomial
time( That is� if we restrict attention to polytime Q�s� is there a protocol that shares with the
protocol presented in this paper the property that the �polynomial	 communication complexity
does not depend on the computational complexity of Q and has the additional property that the
prover and veri�er are polytime(
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