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Abstract

This note describes a parallelizable block-cipher mode of operation that simultaneously provides privacy and
authenticity. It does this using only djM j=ne + 2 block cipher invocations. Here M is the plaintext (an arbitrary bit
string) and n is the block length. The scheme refines one recently suggested by Jutla [Ju00].

1 Introduction

Background When message privacy is a goal, message authenticity often is, too. The correct approach for achieving
privacy-plus-authenticity has been to encrypt the plaintext and, separately, compute a message authentication code
(MAC). Done in this way, the cost for privacy-plus-authenticity is about the cost to encrypt plus the cost to MAC.

A recent paper by Jutla gives a computationally cheaper alternative [Ju00]. Jutla’s modes of operation, IACBC
and IAPM, provide privacy-plus-authenticity at a cost lower than the cost to encrypt plus the cost to MAC. In fact, the
cost of IACBC and IAPM—at least for long messages—isn’t much more than the cost of CBC mode or CTR mode,
respectively. Jutla’s design is a lovely and timely development.

A related paper by Gligor and Donescu offers a different privacy-plus-authenticity mode of operation [GD00].
Their XCBC mode is CBC-like, like Jutla’s IACBC. As in Jutla’s scheme, blocks are offset after they are enciphered.
But [GD00] simplifies the way that offsets are computed.

OCB Mode This note builds on [Ju00]. We describe a new mode of operation, OCB mode (Offset CodeBook),
which refines Jutla’s IAPM scheme in some significant, though rather low-level, ways. Like Jutla’s IAPM, the new
mode is parallelizable: the work for computing the different ciphertext blocks can be done at the same time. We
believe this to be an important attribute in support of good hardware and software speed. Some further properties of
OCB include:

� Arbitrary domain. Any string M 2 f0; 1g
� can be encrypted; in particular, jM j need not be a multiple of the

block length n.

� Short ciphertexts. The way we extend the domain to f0; 1g� is not to pad to a multiple of n. That would lead
to a lengthening of the ciphertexts. Our ciphertexts are, instead, as short as possible.

� Fewer block-cipher calls. Our mode uses only djM j=ne+2 block-cipher invocations. Minimizing the number
of block-cipher calls is especially important when messages are short. In many domains, short messages are
quite common.

� Nonces. Our mode requires a nonce (often called an IV in this context). The nonce must be non-repeating, but
it does not have to be unpredictable. Requiring of a nonce only that it be non-repeating is less error prone for
the user, and it is often more efficient as well, since constructing an unpredictable value would usually require
making an additional block-cipher call.

1



� Stride associated to key, not to message. We generate our sequence of offset values in a computationally cheaper
way than [Ju00]. Namely, the nonceNonce is mapped to an unpredictable valueR by a single application of the
underlying block cipher. This value R forms the initial offset. The ith additional offset is obtained by adding
to R an amount iL, where the “stride” L does not depend on Nonce—it depends only on the key. As such, the
stride L need be computed only once.

� Refinements to multiplication and addition semantics. For forming the offsets +iL+R, we describe three
possible instantiations for addition and multiplication. Each refines those suggested before.

� Single underlying key. The key K used for the encryption mode is a single block-cipher key, and all block-
cipher invocations are keyed using this one key. (However, it is still convenient to store the stride L, and failing
to do so will increase the cost by one block-cipher call.)

Comparisons Neither [Ju00] nor [GD00] worry about type of low-level concerns which drove the work here,
namely: (1) aggressively minimizing the number of block-cipher calls; (2) what to do when jM j is not a positive
multiple of n; (3) avoiding multiple encryption keys; and (4) making sure that non-repeating (non-random) nonces
work fine. We maintain that if such goals are eventually to be sought, they have to be addressed from the beginning.
The reason is that these are very “fragile” schemes—tweak them a little and they usually break—making it surprisingly
difficult to achieve the listed goals. Similarly, small algorithmic changes completely invalidate any proofs.

As we have indicated, OCB mode resembles Jutla’s IAPM [Ju00]. The main differences are: (1) factoring the
offset-calculations so that much of the work is done only once; (2) further tricks for faster offset calculations; (3) deal-
ing with “short” messages in a correct and optimal way; and (4) a type of “lazy” key separation;

No parallelizable encryption scheme is given in [GD00]. But [GD00] includes the idea of offsetting ciphertext
blocks by multiples of a hidden value L, modulo 2n. A related idea, offsetting the ith block by (a+ bi) mod p (where
a and b are associated to the random value r used to encrypt the message) is mentioned, albeit briefly, in [Ju00].

Security The security claims about OCB encryption are semantic security under adaptive chosen-plaintext attack
(CPA) [BDJR97, GM84], and integrity of ciphertexts, in the sense of [BN00, BR00, KY00]. Proving security is on-
going work, being done jointly with Mihir Bellare and John Black. As the proofs are technical and not yet complete,
it is possible that some unforeseen issue will arise; the current algorithms should be considered provisional.

We point out that, by a result of [BN00], semantic security under CPA, coupled with authenticity of ciphertexts, im-
plies semantic security under chosen-ciphertext attack (CCA). This, in turn, implies non-malleability. We believe that
non-cryptographers implicitly assume properties like non-malleability when designing their higher level-protocols,
and so a scheme which is CCA-secure is less likely to be misused.

2 Notation

Fix a block cipher E which enciphers an n-bit string X using a k-bit key K, obtaining ciphertext block Y = EK(X).
For E = AES we have n = 128 and k 2 f128; 192; 256g.

The authentication tag which each ciphertext includes can have any number of bits, tagLen, from 1 to n; one uses
the tagLen-bit prefix of an n-bit string. A standard should allow such tag-truncation since tags in excess of 80 bits,
say, utilize extra bits but provide no meaningful increment to security. A default value of tagLen = 64 is probably
good.

By 0i and 1i we means strings of i 0’s and 1’s, respectively. For A a string of length less than n, by pad
n
(A) we

mean the string 0n�jAj�11 A: that is, prepend 0-bits and then a 1-bit so as to get to length n. (Appending a 1-bit and
then 0-bits would also be fine.)

If A is a binary string then jAj denotes its length, in bits. If A and B are strings then AB denotes their concatena-
tion. IfA andB are strings of equal length thenA�B is their bitwise XOR andA_B is their bitwise OR andA^B is
their bitwise AND. ByA[bit i] we mean the i-th bit ofA (regarded, where necessary, as the number 0 or the number 1),
where characters are numbered left-to-right, starting at 1. By A[bits ` to r] we mean A[bit `]A[bit `+ 1] � � �A[bit r].
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3 OCB Encryption (in general, and OCB/add)

Addition and multiplication We assume two operations: an addition operator + : f0; 1g
n

� f0; 1g
n

! f0; 1g
n

and a multiplication operator denoted � : N� f0; 1g
n

! f0; 1g
n, where N = f1; 2; 3; � � �g. Henceforth we omit the

multiplication symbol. For concreteness, we now give these two operators a particular instantiation. Later we will
revise this meaning to demonstrate a couple of further possibilities.

OCB/add For the addition modulo 2n version of OCB, instantiate + by computer addition of n-bit words (ignoring
any carry) and instantiate iL, for i � 1, by repeated addition.

(A more formal definition follows. Let A;B 2 f0; 1g
n. By str2num(A) we mean the nonnegative integer that is

represented by A, that is,
P

n

i=1
2n�iA[bit i]. If a is an integer then num2strn(a) is the unique n-bit string A such

that str2num(A) = a mod 2n. By A + B we denote num2strn(str2num(A) + str2num(B)). By iA, where i is an
integer, we mean the string num2strn(i � str2num(A)). The � symbol in the last expression means multiplication in
the integers.)

Given a k-bit key K, derive from it a key L by way of L = EK(1
n) _ 0n�11. This forces L to be odd.

Nonces Encryption under OCB mode requires a nonce, Nonce. The nonce would typically be a counter (maintained
by the sender) or a random value. One particular nonce value, Nonce = 1n, is prohibited. Security is maintained even
if the adversary can control the nonce (subject to the constraint that, during the adversary’s chosen-plaintext attack, no
nonce may be repeating and no nonce may be 1n).

Definition of OCB We now define OCB. When addition and multiplication are as just given, we are defining
OCB/add. Let M be the message we wish to encrypt using OCB mode. Let Nonce be the nonce, a string of length n.
The stride L is defined from K in the manner we have specified. OCB encryption is given by the following algorithm.
See Figure 1 as well.

Algorithm OCB-Enc // Encrypt M using (K;L) and Nonce, and block cipher E

R = EK(Nonce)

Let m = maxf1; djM j=neg

Let M [1]; : : : ;M [m] be strings s.t. M [1] � � �M [m] =M and jM [i]j = n for 1 � i < m

for i = 1 to m� 1 do
C[i] = EK(M [i] + (iL+R)) + (iL+R)

if jM [m]j = n then Mask = EK(mL+R) + (mL+R)

C[m] =M [m]�Mask

PreTag = (M [1]� � � � �M [m� 1]�M [m]) + ((m+ 1)L+R)

Tag = EK(PreTag)

else W = pad
n
(M [m])

Mask = EK(mL+R) + (mL+R)

C[m] =M [m]�Mask[bits n� jM [m]j+ 1 to n]

PreTag = (M [1]� � � � �M [m� 1]�W ) + ((m+ 1)L+R)

Tag = EK(PreTag) + ((m+ 2)L+R)

C = C[1] � � �C[m]

T = Tag[1::tagLen]

return ( Nonce; C; T )

The description above is a functional one; in an implementation, no multiplications would be performed—repeated
additions would be used instead, as in:

O�set = R

for i = 1 to m� 1 do
O�set = O�set + L

C[i] = EK(M [i] + O�set) + O�set
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Figure 1: OCB Encryption of a four-block message M = M [1]M [2]M [3]M [4]. The top half shows what happens
when all four blocks are full n-bit blocks. The bottom half shows what happens when the final block has length
less than n. In either case, Nonce as a non-repeating value. The stride L is determined from the underlying key K.
Calculate C = C[1]C[2]C[3]C[4] and Tag as shown, and transmit Nonce, C, and a prefix T of Tag. Addition and
mulitplication can be given several different meanings, as discussed in the text.
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Scheme Meaning of A+B Meaning of iL Definition of L

OCB/add Add 128-bit numbers.
Ignore any carry

Repeated addition (as de-
fined in the prior column)

EK(1
128) _ 1

OCB/mod Add 128-bit numbers
mod p.

Repeated addition (as de-
fined in the prior column)

EK(1
128)

OCB/xor XOR Multiply (i) by L in
GF(2128), where (i) is
the ith word in canonical
Gray-code ordering

EK(1
128) ^Const

Figure 2: Three instantiation possiblities for OCB. Here A;B 2 f0; 1g
128 and i 2 f1; 2; 3; : : :g. The underlying key

is K and L is derived from K as specified in the rightmost column.

Because of the chain of additions used to make the O�set-values, the description above might seem to imply that OCB
(without multiplies) is sequential. This is not correct. To illustrate what goes on in a parallel implementation, suppose
one has two processors, P1 and P2, and one wants to OCB-encrypt M = M [1] � � �M [m]. Start processor P1 with
O�set = Nonce, and start processor P2 with O�set = Nonce +L. Processor P1 will be responsible for odd-indexed
words while P2 will handle even-indexed ones. Each increments its own O�set by 2L, not by L. While enciphering
its blocks processor P1 computes its contribution to the authentication tag, as does P2. One of the processors will
compute the final tag.

Decryption (with authentication check) of a ciphertext (Nonce; C[1] � � �C[m]; T ) is the obvious algorithm:
compute M [1] � � �M [m] from C[1] � � �C[M ] and Nonce, recompute the T , and see if it matches the tag received. If
the full tag is available then process can be defined by a “depth 1” circuit in E: compute E�1

K
for the tag.

4 OCB/mod: Trading the Ring Z=2nZ for the Field Zp
In this section we expand upon a suggestion made by [Ju00] and compute the offsets modulo a prime p. We are not
suggesting that multiple authenticated encryption schemes should be standardized—rather, we are admitting that a bit
more work (experimental and theoretical) is needed in order to make a well-informed choice.

Fix a prime p = 2n�Æ just smaller than 2n (e.g., choose the largest prime less than 2n). Jutla suggests [Ju00, p. 4]
that, when it is time to encrypt a message, a random value r is selected and r is then mapped, using the underlying
block cipher, into IV 1 and IV 2. One presumes these to be numbers in [0::p� 1] or [0::2n � 1]. The ith offset is then
calculated as (IV 1 + iIV 2) mod p. This can be implemented with repeated additions, each modulo p.

As an optimization, the value IV 2 need not vary with each message. It plays the same role as the stride L, and can
be computed in a way that depends only on the underlying key K. Doing this saves one block-cipher invocation with
every message encrypted. The stride L should no longer be chosen to be an odd number; set L = EK(1

n) instead.
See Figure 2.

This OCB/mod approach approach is still efficient, but it is less efficient and more involved than OCB/add. What
has been gained? The security bound will be a little better, nothing more. Details will be in the full paper.

A second trick can be used, but at some small cost, it would appear, to the security bound. Instead of reducing all
sums modulo p, redefine the semantics of addition by saying thatA+B is the n-bit sum where, whenever you generate
a carry, you must increment the sum by Æ, where p = 2n � Æ. A few points in the field now have two representations.

5 OCB/xor: A Gray-Code Trick and the Field GF(2n)

In this section we describe yet another method of offsetting the blocks M [1];M [2]; : : : ;M [m� 1]: we will change
the semantics of + to be XOR (that is, addition in GF(2n)) and we will change the semantics of iL as well. When
mod 2128 additions are inconvenient, this approach may be preferred. We assume in this section that n = 128.

5



Notation If i is a positive integer then ntz(i) is the number of trailing 0’s in the binary representation of i. So, for
example, ntz(1) = ntz(3) = 0, ntz(2) = 1, and ntz(24) = 3. If L is an n-bit string, then L<<1 means a left shift of L
by one bit (msb disappearing, and a zero coming into the lsb). Similarly, L>>1 means a right shift of L by one bit (lsb
disappearing, and a zero coming into the msb).

Algorithm Given a keyK forE derive from it an n-bit keyL by way ofL = EK(1
n)^02130021300213002130. This

ensures that the top two bits of every 32-bit word are zero, allowing for some pleasant implementation optimizations.
Now define L(0) = L and, for i � 0, define

L(i+ 1) =

�
L(i)<<1 if msb(L(i)) = 0

(L(i)<<1)� 012010413 if msb(L(i)) = 1

Now given a string M , the OCB algorithm proceeds as we have defined already, but with addition being defined as
bitwise XOR, and iL being defined by

iL =

�
0n if i = 0

(i� 1)L� L(ntz(i)) if i � 1

Note that each offset is obtained from the previous one by XORing it with the appropriate L(i). The L(i) values can
be computed once, in advance, or they can be computed on the fly with the specified bit twiddling.

Explanation The following explanation assumes more mathematical background than the rest of this document.
Understanding this explanation is not needed for understanding the algorithm’s definition.

The algorithm just given is identical to the earlier ones except that (1) addition is done in the field GF(2128); and
(2) the ith offset is (i) � L, where  is a particular (convenient) permutation on f1; 2; 3; : : : ; 2n � 1g and j � L is
the number j, treated as a field element, multiplied (in this field) by L. Let us elaborate.

We have constructed the L(i) values in such a manner that L(i) is the string that represents 2i � L, where 2i and
L are regarded as points in the field GF(2128) and � refers to multiplication in the field. Here we are are representing
points using the irreducible polynomial p(x) = x128 + x7 + x2 + x + 1. A string a127 � � � a1a0 corresponds to the
formal polynomial a127x127 + � � �+ a1x+ a0.

A Gray code on f0; 1g
n is a permutation of f0; 1gn, say (g0; g1; : : : ; g2n�1), such that gi and gi+1 differ (in

the Hamming sense) by just one bit. Also, g0 and g2n�1 differ in just one bit. We implicitly make use of the
Gray code G(n) constructed as follows: G(1) = (0; 1), and, for i � 0, if G(i) = (g0; : : : ; g2i�1) then Gi+1 =

(0g0; 0g1; : : : ; 0g2i�2; 0g2i�1; 1g2i�1; 1g2i�2; : : : ; 1g1; 1g0). This is easily seen to be a Gray code, and it is not hard
to prove that, in this code, gi+1 = gi � 1<<ntz(i). Thus it is easy to compute the successive words of this code.

Moving from strings to numbers, the Gray code that we are using is (1) = 1, (2) = 3, (3) = 2, (4) = 6,
(5) = 7, (6) = 5, (7) = 4, (8) = 12, and so forth. The ith offset has been defined as iL = (i)� L.

Comments The Gray-code trick can also be used, all by itself, in Jutla’s construction, where one wants to XOR
different subsets of vectors L(1); L(2); : : : ; L(t). In [Ju00] the L(i)-values would be obtained afresh with each mes-
sage encrypted. What we have suggested is better in two ways. First, the L(i)-values are fixed—they don’t have to
be recomputed with each message. And second, they don’t have to be computed by using the block cipher lots of
different times: they can be computed by applying the block cipher once, and then doing some shifting and XORing
to get successive values. The shifting and XORing is minimal; the key-setup cost would be much lower than invoking
the block cipher for each L(i).

One further trick was built into the definition of L. We defined L in a way that ensures that the top two bits of
every 32-bit word are 0-bits. This means that one can change L to 2L, or change L to 4L, or change 4L to 2L, and
so forth, using either two or four shift operations (on a 64-bit machine or a 32-bit machine, respectively). This means
that only one time in eight does one have to obtain a new L(i) value by going to memory or doing bit twiddling; the
rest of the time one shifts the current �L-value to get the �0L value that you want. The more zero-bits one sets aside
at the beginning of each word the fewer times one has to go to memory or do bit-twiddling. But one quickly gets a
diminishing return, and the security bound degrades with the number of forced zero-bits. So two or three 0-bits on the
top of each word is probably a good choice.
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