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Abstract

We argue that the invertibility of a block cipher can reduce the security of schemes that
use it� and a better starting point for scheme design is the non�invertible analog of a block
cipher� that is� a pseudorandom function �PRF�� Since a block cipher may be viewed as a
pseudorandom permutation� we are led to investigate the reverse of the problem studied by Luby
and Racko�� and ask� 	how can one transform a PRP into a PRF in as security�preserving a way
as possible
� The solution we propose is data�dependent re�keying� As an illustrative special
case� let E � f�� 
gn�f�� 
gn � f�� 
gn be the block cipher� Then we can construct the PRF F
from the PRP E by setting F �k� x� � E�E�k� x�� x�� We generalize this to allow for arbitrary
block and key lengths� and to improve e�ciency� We prove strong quantitative bounds on the
value of data�dependent re�keying in the Shannon model of an ideal cipher� and take some initial
steps towards an analysis in the standard model�
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� Introduction

This paper describes a transformation � turning a �pseudorandom permutation� �PRP� into a
�pseudorandom function� �PRF� using �data
dependent re
keying�� It can be applied to a block
cipher to increase the block cipher�s security in certain ways� and� in particular� the method leads
to block cipher based message encryption and authentication techniques which are approximately
as e�cient as ones in current use� but have better security�
In Section � we explain our �at �rst paradoxical sounding� thesis
 that invertibility of a block

cipher can be a liability� not an asset� when it comes to the security of schemes that use the cipher�
We will then explain what are PRFs and PRPs� how the former are a better starting point for
constructions but the latter a better model for block ciphers� and how all this leads us to consider
the problem of transforming PRPs into PRFs in a security
preserving way�
In Section 	 we describe our way to do the PRP to PRF transformation� We call our transform

Fn
d� where d is a parameter on which the construction depends� �The impatient reader can jump

to Section 	 to see how Fn
d works� It is very simple��

Our main result is an analysis� in the Shannon model which shows that if the block cipher is
ideal then its transform under Fnd is close to an ideal random function� The provided bounds are
strong� showing the transform is close to security preserving�
The interpretation of the above is that the Fnd transform gives good security against �generic�

attacks� To guage its strength against cryptanalytic attacks we also analyze it in the standard
complexity theoretic or �reductionist� framework� We do succeed in providing a reduction� but the
quality of the bounds is not as good as in the Shannon model� and thus we view these results as
preliminary� hopefully to be improved�
The results are presented� discussed� and displayed graphically in Section �� Just before that�

in Section �� we provide the precise de�nitions of the security notions� but these can be skipped at
�rst reading� or skipped entirely by an expert� The rest of the paper is devoted to proofs�

� The Problem

We begin with a simple example� then relate these issues to PRFs and PRPs� then describe the
problem that results� and conclude with a discussion of related work�

��� Invertibility can hurt when using block ciphers� An example

A block cipher is a function E
 f�� �g��f�� �gn � f�� �gn which transforms an n
bit message block
x into an n
bit string y under the control of a �
bit key k
 y � E�k� x�� The function is invertible
in the sense that for each key the map Ek

def

�E�k� �� is a permutation of f�� �g
n� and knowledge of k

permits computation of E��
k � Concrete examples are DES� triple
DES and RC��

Message encryption is done by using the block cipher in some mode of operation� such as �CBC��
Using even a very �good� block cipher �say triple
DES� or even an ideal cipher�� CBC encryption
becomes insecure once �n�� blocks have been encrypted� in the sense that at this point partial
information about the message begins to leak�� due to birthday attacks�� Furthermore� this is true

� All analyses in this paper are concrete and quantitative� meaning providing explicit� non�asymptotic bounds on
the success probabiilty of an adversary as a function of its resources�

� A good encryption scheme is much more than one that prevents key recovery from a ciphertext
 it should have
the property that even partial information about the plaintext is not revealed ��� ���

� The attacks are well known� See ��� for an analysis of their e�ectiveness relative to formal notions of security

	



for many other common modes of operation� too� Thus direct use of a ��
bit block size block cipher
usually enables one to safely encrypt no more than ��� blocks� which is quite small�
We stress that these attacks arise because the cipher is a permutation� and their cost depends

only on the block length� not the key length or the security of the block cipher� So the attacks are
just as e�ective for triple
DES� or even an ideal block cipher� as they are for DES� In summary�
block cipher based schemes are often subject to birthday attacks arising from the very nature of
block ciphers as permutations�
So how can we safely encrypt more than �n�� blocks� One answer is to use a slightly di�erent

type of primitive in an appropriate mode of operation
 speci�cally� a �pseudorandom function�
�PRF� in CTR �counter� mode� as discussed in ��� ��� and explained further below� This way
to encrypt is easy and has no extra overhead if a PRF of cost comparable to the block cipher is
available�
The above is only one example of an issue that arises in many places
 that the permutivity of

a block cipher can hinder the security of schemes which use it� To e�ectively address this we need
to explain what are PRFs and PRPs and how they relate to block ciphers�

��� PRPs� PRFs� and their relation to block ciphers

Let us �rst back up and look at how the security of a block cipher is best captured�

Security of a block cipher� PRPs� It is natural to view a real block cipher as constructed to
�approximate�� as closely as possible� an ideal block cipher �that is� a random permutation� in the
sense that if you don�t know the key k and only see input�output examples of Ek then these should
appear like input�output examples of a random permutation� The quality of a given block cipher
E as a PRP �pseudorandom permutation� is thus captured by a function SecprpE �q� t� which returns
the maximum �advantage� that one can obtain in distinguishing Ek from a random permutation if
you see q input�output examples and are allowed further computational resources bounded by t� �In
the complexity
theoretic model� t will bound computing time� in the information
theoretic model�
t will bound the number of known �k� x�Ek�x�� values� The advantage is a number between � and
� given as the di�erence of two probabilities
 the probability that the adversary outputs � given
a random function Ek from E� and the probability that the adversary outputs � given a random
permutation �� See Section � for more details��
Each speci�c cipher �eg� DES� will have such an associated security function� which depends on

�and to a large extent comprises� its cryptanalytic strength� Of course we won�t know for sure what
is this function� but we can work with what we know from cryptanalytic results� For example� if
the linear cryptanalysis of ��	� is the best attack on DES� we might assume SecprpDES�q� t� stays small
�close to �� until q� t reaches around ���� From now on� �block cipher� and �PRP� are synonymous�
from the security point of view�

Ciphers without invertibility� PRFs� Like a block cipher� a pseudorandom function �PRF�
is a map F 
 f�� �g� � f�� �gn � f�� �gn� but now Fk

def

�F �k� �� is not required to be invertible� The
required security property is to approximate� as closely as possible� a random function� The quality
of a given function F is captured by SecprfF �q� t� which returns the maximum �advantage� that one
can obtain in distinguishing Fk from a random function if you see q input
output examples and are
allowed computational resources t� �This advantage is the di�erence between probability that the
adversary outputs � given a random function Fk from F and the probability that the adversary
outputs � given a random function �� See Section � for more details��

for encryption�
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The example revisited� Counter mode encryption with a PRF F means that to encrypt an
m
block plaintext M � x� � � � xm� send

� ctr� Fk�hctr � �i��x� k � � � k Fk�hctr �mi��xm �

where hii is the binary encoding of i into n bits� � k � denotes concatenation� and where you
increment ctr by m after doing each encryption� �Notice that to decrypt you need only apply Fk�
so that you don�t need this function to be invertible�� Counter
mode encryption with a good PRF
is pretty much �ideal encryption�
 it is shown in ��� that an adversary�s chance of obtaining partial

information about some plaintext� after q blocks have been encrypted� is at most SecprfF �q� t�� the
strength of F as a PRF� In particular if we had a PRF F with the same numerical security as DES
but as a PRF not a PRP� namely SecprfF �q� t� � Sec

prp
DES�q� t�� then we could encrypt nearly �

��

blocks� well above the birthday bound�
In contrast� when we use a block cipher �PRP� directly in CBC �or CTR� mode� we are not able

to recoup all of the cryptographic strength captured by its SecprpE ��� �� value� because at q � �n��

�which is q � ��� for DES� birthday attacks kill the encryption scheme�
The conclusion can be put like this
 to get quantitatively good security� what is most useful

and convenient about F is that SecprfF �q� t� be small� not Sec
prp
F �q� t�� To make the former as low

as possible the family F must not be a family of permutations� since no family of permutation
will have a good value of SecprfF �q� t� if q � �n��� This is because of birthday attacks
 if F is
a family of permutations then the adversary A�q� who guesses �random function� if and only if
she sees a collision in the answers returned from q distinct but otherwise arbitrary queries already
accrues advantage of about ��e if q � �n��� The adversary�s advantage then goes quickly to � with
q � �n���

��� Luby�Racko� backwards

The above is part of an emerging view or understanding� emanating from works like ��� �� �� ����
that when it comes to designing higher
level primitives �like encryption schemes or MACs� a PRF
is a better tool than a PRP� from two points of view
 it permits easier and more e�ective analysis
of the designed scheme� and the resulting schemes have a greater proven quantitative security� This
leads us to suggest that for the purpose of protocol design� what we really want are PRFs� not
block ciphers �PRPs��
So the question is how to get PRF families of high security and low cost� One possibility is to

make these directly� in the same way we make block ciphers now� We suggest that this indeed be
kept in mind for the future� but at the moment is not a very pragmatic view� for two reasons� First�
we have lots of �good� block ciphers available� and we want to use them well� Second� permutivity
may be important to the design process of block ciphers� for example� using the round structure of
a Feistel
network gives rise to a permutation��

We propose instead to transform PRPs into PRFs� That is� starting with a good PRP E
�realized by a block cipher�� convert it into a good PRF F � This is e�ectively the reverse of the
problem considered by Luby and Racko� ����� who wanted to turn PRFs into PRPs�
A crucial issue is to make transformations that are as �security preserving� as possible� We want

Sec
prf
F �q� t� to remain low even for q � �n��� Ideally� SecprfF �q� t� would be close to Sec

prp
E �q� t��

Let us now discuss some related work� Following that we present our construction�

� Another possibility is to make sure that the block size n is large enough �n � �
�� that attacks of complexity

n�� are irrelevant� This too is a good idea� but the construction we give has merit which goes beyond the birthday
attacks which we have been using to motivate this problem�

�



��	 History and related work

Our construction is related to the cascade construction of �	��
The notion of a PRF was �rst de�ned in the polynomial
time framework by Goldreich� Gold


wasser and Micali ���� A concrete security treatment of PRFs� together with the idea that concretely
de�ned PRFs�PRPs can be used to model block ciphers� originates with ���� Luby and Racko� use
the term PRP to refer to a family of permutations that is a PRF family in the sense of ���� Our no

tion is di�erent in that we measure the advantage relative to random permutations� not functions�
This makes no di�erence in the polynomial
time framework� but in the concrete
security framework
the di�erence is crucial� indeed� if concrete security is ignored� the problem we are considering does
not exist�
The ideal block cipher model we use for some of our results is that of ����� used also in ��� ����
There are many natural ways to try to do the PRP
to
PRF conversion� One of the �rst to come

to mind is to de�ne Fk�x� � x�Ek�x�� This construction is of value in some contexts� but not in
ours� For if you are given an oracle for this Fk��� you e�ectively have an oracle for Ek���
 for any
query x you can compute Ek�x� as x�Fk�x�� So Fk will resemble a random function no more than
Ek does�
There are many natural alternatives to the Fnd transformation� For example� truncate Ek�x��

de�ning Fk�x� to be some appropriate
length pre�x of Ek�x�� This scheme was partially analyzed
by ���� Another natural method is Fk�k��x� � Ek��x��Ek��x�� This has not been analyzed�
Aiello and Venkatesan ��� give a general construction for turning a PRF E 
 f�� �g��f�� �gn �

f�� �gn into a PRF F 
 f�� �g�� � f�� �g�n � f�� �g�n� But this is a di�erent problem� Although
they too want to circumvent some birthday attacks� their starting point is a random function �not
a permutation� and the problem is to double the number of bits the function can take as input�
They are bound by the original security of the starting function as a PRF
 birthday attacks are
only prevented in the sense that the construction does not induce such attacks itself� So if a block
cipher is the starting point� it is viewed as a PRF� meaning the security is only �n��� There is
no notion of modeling a cipher as a random permutation� In contrast� we go above the original
birthday threshold� to a security close to �n� Our construction is also more e�cient� and it yields
a map of the same key size and block length as the original one�
In constructing a Wegman
Carter message authentication code �MAC� ���� one needs to sym


metrically encrypt the universal
hash of each messageM � If a PRP is in hand for doing the encryp

tion� one could de�ne MACk��k��M� � �ctr� Ek��ctr��hk��M��� but the security would degrade by
 �q���n� compared to using a PRF� �Here q is the number of MACed messages�� Shoup ���� de

scribes an alternative with better exact security� Our methods allow the simpler and more general
�ctr� Fk��ctr��hk��M��� where F is the result of PRP
to
PRF conversion starting from E�
As we explained� Luby and Racko� consider the complementary problem of turning a PRF into

a block cipher ����� Luby and Racko� spawned much further work� including ���� ��� ��� ��� ����
and our work shares their emphasis on concrete bounds� e�ciency� and tight reductions�

� The Fn Construction

We have described in Section ��� some simple suggestions that don�t work and some related con

structions� Now we present our solution� We let E
 f�� �g� � f�� �gn � f�� �gn be the given block
cipher �PRP��
The values n and � vary across real block ciphers� for example� for DES we have � � �� and

n � ��� for �two
key� triple DES we have � � ��� and n � ��� We want to handle all these cases�

�



Accordingly� our construction depends on the relative values of � and n� It also depends on a
parameter d� where � 	 d � n�

Simple Case� The simplest case of our construction is when the given PRP has the property that
� � n� and we choose d � �� One then de�nes F � Fn

�E by F �k� x� � E�E�k� x�� x�� That is�
Fk�x� � Ek��x�� where k

� � Ek�x�� We call this �data
dependent re
keying� since we are applying
E to x� but using the data
dependent �derived key� k� � Ek�x�� The cost of computing F is twice
the cost of computing E� in the sense that there are two applications of E for each application
of F � The general construction includes a provision aimed at reducing this overhead�

The General Case� Let � 	 d � n be given� If x� is an n
bit string� let x��d denote x� shifted
to the right by d positions� with �
bits �lling the vacated positions� If k� is a string of length �� let
�k�����i be the string consisting of the �rst i bits of k

� �for � 	 i 	 ��� Set j � d��ne� The function
F � Fn

dE takes a �j
bit key k� � � � kj and an n
bit input x to return an n
bit output y as follows


function F �k� � � � kj � x�
begin

x� 
 x�d ��Shift away low d bits

k� 
 E�k�� x
��k � � � kE�kj � x

�� ��Construct the �extended� derived key

k 
 �k������ ��We only need � bits of derived key

y 
 E�k� x� ��Use derived key on the input

return y
end

We call x� the group selector and k the derived key� The j applications of Eki are to deal with
the possibility that � 	 n� and the truncating of k� to � bits is to handle the possibility that the
key length � might not be a multiple of the block length n� �More strange is the discarding of bits
from the x� namely the x�d� This is for e�ciency� as we will explain below�� As an example� if
E � DES� so that � � �� and n � ��� we would have j � �� so the key of F is just a ��
bit DES
key k�� the derived key k� is the �rst �� bits of DESk��x

��� and the output is DESk��x�� If E is
TDES �two
key triple
DES�� so that � � ��� and n � ��� we would have j � �� so the key for F is
a pair k�k� of TDES keys� the derived key k� is the �rst ��� bits of TDESk��x

��TDESk��x
��� and

the output is TDESk��x��
Notice that for �xed k� � � � kj � if two n
bit strings determine the same group selector then they

generate the same derived key� and this happens if the two strings agree in the �rst n � d bits�
Accordingly� we cluster together all points that have the same group selector into what we call a
common key group� Thus there are a total of �n�d common key groups� For any 
 � f�� �gn�d we
de�ne ckg� � fx 
 �x�����n�d � 
g as the 

th common key group� Identifying strings with integers
in the natural way� the i
th common key group consists of the integers �i� ���d� ���� i�d � ��

Efficiency� Recall that the nominal way to encrypt using F � Fn
dE involves applying F to a

single key k and successive ctr
values� By dropping the least signi�cant d bits of this counter� one
needs to recompute k� only once every �d invocations of F � Of course an implementation would
need to to record the last derived key and refrain from re
computing it� Doing this makes the
amortized cost to compute F just ��� j��d� times the cost of computing E� For many ciphers this
is an underestimate because of additional cost associated to changing the key� In fact� the cost of
changing the key for some block ciphers is high� which is why we don�t want to do it very often�

Variations� How exactly one drops bits of x is not so important� For example� instead of shifting
to the right one could zero
out the least signi�cant d bits� This makes no di�erence in the analysis�

�



We have constructed F � Fn
dE to be a map F 
 f�� �gj� � f�� �gn � f�� �gn� If one prefers�

let F k�x� � Ek��x� where k
� is the �rst � bits of Ek��x�d� k � � � k Ekj �x�d� and ki is de�ned as

Ek�hii�� Now F uses a �
bit key� just like F � The analysis of F lifts to F with just a tiny loss in
quantitative security�

� De�nitions

Here we give the more precise de�nitions of security in the two models in which we will be analyzing
our construction� namely the �standard� �complexity theoretic� model and the Shannon model�

Recall that in Section � we discussed the security of F and E by way of functions SecprfF �q� t�
and SecprpE �q� t�� Their meaning changes according to the model in a simple way



 In the complexity theoretic model they are CSecprfF �q� t� andCSec
prp
E �q� t�� respectively� these

quantities being de�ned in Section ��� below� and


 In the ideal cipher model� they are ISecprf
F
�q� t� and ISecprp��n�q� t�� respectively� these quantities

being de�ned in Section ��� below� where F refers to the transformation that takes E into F �
�In our case� F � Fn

d��

Preliminaries� If S is a probability space then g 
 S denotes the operation of selecting g at
random according to the distribution speci�ed by S� If S is a set it is viewed as endowed with
the uniform distribution� so that g 
 S means that g is selected uniformly at random from set
S� If y is not a set then g 
 y is a simple assignment statement� assigning g the value y� �It is
thus equivalent to g 
 fyg�� Let Permn denote the set of all permutations � 
 f�� �g

n � f�� �gn�
Let Randn denote the set of all functions � 
 f�� �g

n � f�� �gn� Let BC��n be the set of all maps
E 
 f�� �g� � f�� �gn � f�� �gn such that E�k� �� � Permn for all k � f�� �g�� Let RF��n be the set
of all maps R 
 f�� �g� � f�� �gn � f�� �gn�
A family of functions with key length � and block length n is a map G 
 f�� �g� � f�� �gn �

f�� �gn� that is� G � RF��n� Each �
bit key k speci�es the map Gk
def

�G�k� �� � Randn� This map is
not necessarily a permutation� If Gk is a permutation for each k � f�� �g� �ie�� G � BC��n� then we
call G a family of permutations� or a block cipher� We view G as a probability space over Randn
given by choosing functions via a uniform choice of the underlying key� that is� g 
 G is the same
as k 
 f�� �g� � g 
 Gk�
Given a block cipher E� the block cipher E�� 
 f�� �g��f�� �gn � f�� �gn is de�ned by E���k� y�

being the unique point x such that E�k� x� � y� We interchangeably write E��
k �y� and E���k� y��

An adversary is an algorithm A with access to some number of oracles� Oracles are denoted as
superscripts to A� as in AE�E���F � An oracle responds to its query in unit time�

	�� Complexity theoretic model

We will have two measures of security
 the strength of G as a PRF and the strength of G as a
PRP� We follow ��� in the manner in which the basic notion of ��� is �concretized��
First� we need the concept of advantage� which for emphasis we call the �computational advan


tage� and write CAdv� Let D be an algorithm �a �distinguisher�� taking an oracle for a function
g� and let G�� G� be two families of functions with the same block length� We de�ne

CAdvG��G�
�D� � Pr � g 
 G� 
 D

g � � �� Pr � g 
 G� 
 D
g � � � �

�



Now� suppose F is a family of functions� and E is a family of permutations� We let

CAdv
prf
F �D� � CAdvF�Randn�D�

CSec
prf
F �q� t� � maxD fCAdvprfF �D�g

CAdv
prp
E �D� � CAdvE�Permn�D�

CSec
prp
E �q� t� � maxD fCAdvprpE �D�g

Here the �rst quantity measures the advantage D has in distinguishing random members of F
�resp� E� from truly random functions �resp� permutations� of the same block length� The second
quantity is the maximum advantage attainable using some amount of resources� in this case the
number q of oracle queries and the running time t� For simplicity� when we speak of an adversary�s
time we mean the adversary�s actual running time plus the size of the encoding of the adversary
�relative to some �xed encoding scheme�� so we have a single parameter t to capture time plus
description size� The maximum here is over all distinguishers D that make up to q oracle queries
and have running time bounded by t�

	�� Ideal block cipher model

The Shannon model ���� treats E as a random block cipher� This means that each Ek is taken to be
random permutation on n
bit strings� Let FE be some operator on E which returns a new family of
functions� and say the new family has key length �� but the block length is still n� �For us� F � Fn

d

and �� � j� where j � d��ne�� As modeled by ���� the adversary that attacks F is given oracles
for E��� �� and E����� �� � as well as an oracle f where either f��� � F �k�� �� for F � FE and k�

a randomly chosen key in f�� �g�
�
� or else f��� � ����� for a random function � 
 f�� �gn � f�� �gn�

We investigate the adversary�s advantage in determining what type of oracle f is� This is de�ned
as


IAdv
prf
F
�A� � Pr

h
E 
 BC��n � k

� 
 f�� �g�
�

� f 
 �FE�k� 
 A
E�E���f � �

i

� Pr
h
E 
 BC��n � f 
 Randn 
 A

E�E���f � �
i
�

The advantage A gains depends� in part� on the number of queries q she asks of f and the total
number of queries t she asks of E and E��� We are interested in

ISec
prf
F
�q� t� � maxA fIAdv

prf
F
�A�g �

the maximum being over all adversaries that make up to q queries to the f oracle and up to t
queries to the E and E�� oracles�
This is an information
theoretic setting
 the adversary has unlimited computational power�

If we think of E as a concrete block cipher� and not an idealized one� then attacks in this model
correspond to attacks in which the adversary exploits no characteristics speci�c to the block cipher�
only �generic� features of the construction F we are analyzing� Thus� security guarantees from
results in this model are weaker than those from results in the model above� yet they do have some
meaning� We use the Shannon model when technical di�culties prevent us from getting bounds as
good as we would like in the complexity theoretic model�

Note� The goal will be to upper bound ISecprf
F
�q� t� as a function of t� q� �� n� As such we don�t

really need any notion of ISecprp��n�q� t�� the security of the block cipher� because the latter is assumed
ideal� but there are two reasons to de�ne it anyway� First� to maintain a uniform security treatment
across the models� and in particular be consistent with Section �� second� because it is indeed the
quantity with which we wish to compare ISecprf

F
�q� t��

We de�ne ISecprp��n�q� t� as the maximum� over all adversaries A of the speci�ed resources� of the
quantity

Pr
h
E 
 BC��n � k 
 f�� �g� � f 
 Ek 
 A

E�E���f � �
i

�



� Pr
h
E 
 BC��n � f 
 Permn 
 A

E�E���f � �
i
�

Notice that this quantity is not zero� For q 	 � and large n we would expect it to be about t � ����
corresponding to an exhaustive key search attack�

� Security of the Fn Construction

We summarize both proven security guarantees and attacks that indicate the tightness of the bounds
in them�


�� Security in the complexity theoretic model

Here we refer to the notions of security of Section ���� We assume E is a PRP family and show our
construction is a PRF family� via a reduction� We do this only for the case where the key length�
�� is identical to the block length� n� and we drop no bits� namely d � ��

Theorem �
� Let � � n be a positive integer and let E
 f�� �g� � f�� �gn � f�� �gn be a family
of permutations whose security as a PRP family is described by security function CSec

prp
E ��� ���

Let F 
 f�� �g� � f�� �gn � f�� �gn be our construction for the case of no bit dropping� namely

F � Fn
�E� Its security as a PRF is described by function CSecprfF ��� �� which for any number of

queries q 	 �n�� and time t can be bounded as follows�

CSec
prf
F �q� t� 	 CSec

prp
E �q� t�� � q �CSecprpE �	� t�� �

q�

��n

where t� � t�O�q� � ��� n�TimeE��

Proof� See Section ��

The bound here looks good at �rst glance� The �rst term� namely CSecprpE �q� t��� is saying
the security of F as a PRF is related to that of E as a PRP for essentially the same resources

we can�t ask better� The last term� namely q����n� is negligible� What about the middle term�
namely q � CSecprpE �	� t��� Intuitively� CSecprpE �	� t�� is small
 what can you do in three queries�
This view is deceptive because one should not forget the time t�� One can spend it in exhaustive
key search� and thus CSecprpE �	� t�� can be !�t������ But �dropping constants� this is at least q���

so the second term in our bound looks like q����� Since � � n this is q���n�
So these bounds are not proof that the security of F goes beyond the birthday bound� It would

be nice to improve the above result� However� even the proof of the above is not exactly trivial�
and this is one reason we include the result in this paper
 we hope its ideas are food for thought
towards an extension�
As far as we can tell� the di�culties in extending the above result are techncial rather than

arising from any weakness in the construction� �We could be wrong�� Is there any other way we
can give some meaningful evidence of the strength of the construction� We do this by analyzing it
in the Shannon model�


�� Security in the ideal block cipher model

The theorem below looks at the most general version of the F � Fn
dE construction� when the num


ber d of bits dropped is arbitrary and no restrictions are made on �� n� in the model of Section ����

��
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Figure �
 Right curve� Illustrating Theorem ���� our upper bound on the adversary�s advantage
in distinguishing F � Fn

dE from a random function� assuming n � ��� � � ���� and d � �� Here
E is a random permutation and the horizontal axis Q � max�q� t� is the maximum of the number
of consecutive f 	queries and the total number of E�E�� queries� Left curve� The birthday bound
for the same choice of parameters�

where E is an ideal cipher� We obtain very strong results� showing security not only beyond the
birthday bound� but nearly as good as one could hope for�
As we noted in Section �� an important mode of operation for our construction will be when the

values to which Fk����kj are being applied are successive counter values� Indeed� the bit dropping
is done precisely to have maximum e�ciency in this mode
 as explained in Section 	� in this case�
the amortized cost of computing F is just �� � j��d� times that of computing E� a negligible
overhead� Accordingly� this is the case to which the following security analysis pertains� �Though
later analyses are more general��

Theorem �
� Let n� � be positive integers and d� q� t� "t be non	negative integers with � 	 d � n
and let F � Fn

d� Let A be an adversary with three oracles� E��� ��� E����� ��� and f���� who asks the
numbers �� � � � � q � � of its f 	oracle 
so that these refer to "q � dq��de common key groups�� and
asks at most t total queries of its E	 and E��	oracles� these referring to no more than "t common
key groups� Let j � d��ne� Then IAdvprf

F
�A� 	

"q� � "t�

���
� ���� �

�
j� � �j"q � tj � t

�
� ��� � "q��d�n�� � t"t�d�n���� �

Proof� See Section ��

The �rst term bounding IAdvprf
F
�A� remains low until q � ����� or t � ������ We speculate

that these conditions can be further improved to �	���
� �and they are already very small in their

current form�� so a reasonable summary of IAdvprf
F
�A� is to say that the construction is good until

q � minf��� �n�dg or t � minf��� �	n��
��g�
In Figure � we illustrate our bound for the case of a block cipher with parameters n � ���

� � ���� and dropping d � � bits� The bound indicates that one must ask about ��� queries before
one can hope to distinguish Fk from a random function with advantage ��e� �This ��e
convention
is a convenient way to summarize security�� For comparison� if you let F � E you get the usual
birthday
attack curve� which indicates that it takes but ��� queries before an adversary can get like
advantage at distinguishing Ek from a random function�

��
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Figure �
 Varying the parameters of Theorem ��� � our upper bound on the adversary�s advantage
in distinguishing F � Fn

dE from a random function� with the horizontal axis Q � max�q� t� as in
the previous 
gure� Left� Varying key length �� Right� Varying bits dropped d� For both pictures
n � ���

In Figure � we illustrate our bound by showing the e�ect on advantage of changing either the
key length �left
hand plot� or the value of d �right
hand plot�� We assume a block size of n � ��
bits� The adversary�s maximum advantage decreases with increasing key length� but this e�ect
soon saturates� The construction has worse demonstrated security for larger values of d� but the
e�ect is not that dramatic� and there is little reason to select a very large value of d� anyway�
It is important to understand the di�erence between the results here and those of Section ����

The �type� of security guarantee is better in the latter� since we are saying that security in the
sense of a PRP �using the standard notion of a PRP� translates into security in the sense of a
PRF �using the standard notion of a PRF�� The results here are only about ideal ciphers� which
only guarantees security against generic attacks� Yet� generic attacks are an important and easy to
mount class of attacks� and a proof of security against them� especially with such strong bounds�
is certainly meaningful� Eventually we hope strong results will emerge in the other model �as well
as for other PRP
to
PRF constructions��


�� Attacks � Lower bounds

In Propositions ��	 and ��� we present the best attacks that we know on our construction� These
translate into lower bounds on the security of FndE� We present two adversaries
 one which
becomes successful when q � �n�d� and one which becomes successful when t � ��� This is done
in the Shannon model� but in this case �of attacks� this is not a restriction� if we can attack ideal
ciphers we can certainly attack real ones� Thus� the results here should be viewed as complementing
Theorem ���� telling us how close to tight is the analysis in the latter�

Proposition �
� Let n� � be positive integers and d� q non	negative integers with � 	 d � n� and
let F � Fn

d� Then there is an adversary CS which asks at most q queries of an f oracle� no queries
of the E or E�� oracles� and achieves advantage

IAdv
prf
F
�CS � � �� e�bq��dc�	�d��
��d�n��

�

Proof� See Section ��	�

��
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Figure 	
 With typical parameters our bounds are tight� Illustrating Propositions ��� and ��� and
Theorem ��� for n � ��� � � ��� d � �� The horizontal axis Q is the same as in the previous

gures�

Proposition �
� Let n� � be positive integers and t� d� c be non	negative integers with � 	 d � n�
let F � Fn

d� and let j � d��ne� Then there is an adversary KS which asks c queries of her f oracle�
t queries of her E oracle� and achieves advantage

IAdv
prf
F
�KS � � minf�� bt��cj � c�c � ��j�g � t��cn �

Proof� See Section ��	�

The �rst lower bound is around �� e�q�
d�n��

� while the second one is around t��j�� These become
signi�cant when q � �n�d or t � �j�� The point of giving these lower bounds is to see how tight is
Theorem ���� As Figure 	 illustrates� the bounds are quite close for realistic parameters� On the
same plot we graph our upper and lower bound for � � ��� n � ��� and d � �� The curves almost
coincide�

� Proof of Theorem �	�

Refer to Section ��� for the theorem statement and to Section ��� for the de�nitions of security�
We now provide the proof�
Since the oracles we provide our adversaries are deterministic� we assume throughout and with


out loss of generality that no adversary ever repeats an oracle query� By TimeE we mean the
worst
case amount of time required to calculate function E in our underlying ��xed� model of
computation�
We use the notion of multi�oracles as in �	�� to provide a framework in which to reason about

intermediate constructions that arise in our analysis� A multi�oracle ! is simply a sequence of
oracles� with some rules as to how queries to the multi
oracle are answered by the individual oracles�
In our setting� an adversary making q queries will be provided with a multi
oracle consisting of q
functions� f�� � � � � fq� each mapping n bits to n bits� The adversary�s j
th query to the multi
oracle
will be answered by fj� for j � �� � � � � q� �That is� if the j
th query to ! is xj then the response
is fj�xj��� Note that in this game it is not possible to ask two queries of a single oracle� nor to
ask queries in some di�erent order
 the adversary is e�ectively restricted to sequentially querying

�	



f�� � � � � fq in that order� with exactly one query to each function� Furthermore� all queries x�� � � � � xq
are distinct strings�
We will consider various possible multi
oracles� The �rst� represented pictorially� is

!��� 
 EEk
� � � � � � EEk

�

where k 
 f�� �g� is a random key and there is a total of q instances of EEk
above� Next come two

classes� or types� of multi
oracles� and in each type there are q � � di�erent multi
oracles� so that
we have !�s� i� for i � �� � � � � q and s � �� �� We typically want to visualize and compare the i
th
members of each class� These are represented pictorially below� In each case �i��� � � � � �q 
 Permn

are randomly and independently chosen permutations� and k�� � � � � ki�� are random� distinct �
bit
keys�

!��� i� 
 Ek� � � � Eki��
Eki �i�� � � � �q ki 
 f�� �g� � fk�� � � � � ki��g

!��� i� 
 Ek� � � � Eki��
�i �i�� � � � �q �i 
 Permn

In other words� in !��� i�� the i
th oracle is encryption under a key ki distinct from those of the
previous oracles� In !��� i� the i
th oracle is a random permutation independent of anything else�
Observe that !��� i� � !��� i � �� for i � �� � � � � q� this is something we will use later� Now� for
s � �� �� � and i � �� � � � � q we let

��s� i� � Pr
h
A�	s�i
 � �

i
and ���� � Pr

h
A�	�
 � �

i
be the probability that A outputs � in the game where it is provided with the corresponding multi

oracle� the probability being over the choice of the multi
oracle as discussed above� and over the
coins of A� if any� We now claim that

���� � Pr � k 
 f�� �g� � g 
 EEk

 Ag � � �

���� �� � Pr � g 
 Randn 
 A
g � � � �

The �rst equality follows from the de�nition of !���� For the second� observe that !��� �� consists
of q random� independent permutations� ��� � � � � �q� The adversary is making exactly one query to
each of these� so the responses are independently and uniformly distributed over f�� �gn� Thus the
equality is true�
Thus our goal is to bound ���� � ���� ��� We will do so by comparing both to ���� q�� The

proofs of the following lemmas appear later�

Lemma �
� ����� ���� q� 	 CSec
prp
E �q� t���

Lemma �
� ���� q�� ���� �� 	 q �CSecprpE �	� t�� �
q�

��n
�

Now we can write

����� ���� �� � ������ ���� q�� � ����� q� � ���� ���

And then apply the two lemmas above to obtain the bound in the theorem� So to complete the
proof of the theorem we need to prove the two lemmas� The �rst is quite straightforward� the
second will take work�

Proof of Lemma �
�� We bound the quantity in question via the advantage of a distinguisher
D �for E versus Permn� that we will construct below� It gets an oracle for a function g which is
either Ek for a random k or is � 
 Permn and wants to tell which� It uses A as a subroutine and
will respond to oracle queries in such a way that A is working with multi
oracle Eg� Eg� � � � � Eg�
The code for D is as follows


��



Algorithm Dg

Run A� replying to the j
th oracle query xj of A by Eg	xj
�xj�

Output whatever A outputs and halt

We now claim that

Pr � k 
 f�� �g� � g 
 Ek 
 D
g � � � � ����

Pr � g 
 Permn 
 D
g � � � � ���� q� �

The �rst is clear� For the second� note the sequence of auxiliary keys used to answer the queries
when g 
 Permn will be outputs of g on distinct points� hence random� distinct keys� which
matches the de�nition of !��� q��

Now� note that D makes q oracle queries and has a running time bounded by that of A plus q �TimeE
plus overhead� making it at most t�� Thus� we know that its advantage is at most CSecprpE �q� t���

Proof of Lemma �
�� We bound the quantity in question via the advantage of a distinguisher
D �for E versus Permn� that we will construct below� It gets an oracle for a function g which is
either Ek for a random k or is � 
 Permn and wants to tell which� It uses A as a subroutine�
Before specifying the code and analysis let us try to give an idea of the issues�

D will try to respond to oracle queries of A in such a way that A is working with multi
oracle

Ek� � � � Eki��
g �i�� � � � �q ���

where k�� � � � � ki�� are random but distinct keys� and �i��� � � � � �q are random� independent permu

tations� D can �simulate� the �rst k� � oracles by choosing random but distinct keys k�� � � � � ki��
and responding to a query to the j
th oracle �j � �� � � � � i��� via Ekj ���� Simulation of the �i���
th
to q
th oracles is even easier
 since each is called exactly once� D can just return a random number
in response to each query� Now� we would like that if g 
 Ek for a random k then the oracle provide
to A in the simulation looks like !��� i�� and if g 
 � for a random permutation � then it looks like
!��� i�� However� neither of these wishes is easily realizable� Consider the �rst� namely the case
where g � Ek for a random k� For the oracle provided to A in the simulation to be !��� i� it must
be that k �� fk�� � � � � ki��g� Although this happens with some probability� namely �� �i� ����

�� D
does not know whether or not this happens� �And we can�t just neglect this� because then it turns
out the bound would not be of good quality�� Therefore the idea is to have D try to �gure this out

it will run a certain test whose purpose is to accept if k � fk�� � � � � ki��g and reject otherwise� The
test is to compute g on m values� where m is some parameter whose value in#uences the analysis�
and compare this to Ekj evaluated on the same values� for j � �� � � � � i � �� Now the problem is
that this test might accept even though k is not in fact one of k�� � � � � ki��� and the analysis must
take that into account�

Let us now specify the code� We will then give the analysis� Below� m 	 � is an integer parameter
whose value we will specify later and hli is the n
bit binary representation of integer l�

Algorithm Dg

Let i
 f�� � � � � qg
Let k�� � � � � ki�� be random but distinct �
bit strings
Let ri��� � � � � rq 
 f�� �gn

��



For l � � to m� � do
yl 
 g�hli�

end for

j 
 �
While �j 	 i� �� do

If �Ekj �h�i� � y� and � � � and Ekj �hm� �i� � ym���

then return � �and halt�
j 
 j � �

end while

Run A� replying to the j
th oracle query xj of A as follows

if j � i then reply by Ekj �xj�

if j � i then reply by g�xj�
if j 	 i then reply by rj

Return whatever A outputs �and halt�

We refer to �Ekj �h�i� � y� and � � � and Ekj �hm� �i� � ym��� as the �equality test for key kj��
For the analysis� let


��� � Pr � k 
 f�� �g� � g 
 Ek 
 D
g � � �


��� � Pr � g 
 Permn 
 D
g � � � �

We now claim a certain lower bound on 
��� which will be justi�ed below
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q

qX
i��

���� i� � �	�

The second inequality is just arithmetic� but we do have to justify the �rst� In particular� it would
appear that we have not accounted for the equality test at all� but in fact we have�

Equation ��� is justi�ed like this� With probability �i � ����� it will be the case that k �
fk�� � � � � ki��g� �The probability is exactly this because k�� � � � � ki�� are distinct�� In this case�
the appropriate equality test �namely the one for kj where kj � k� is sure to return true and D
will certainly output �� This accounts for the second term in Equation ���� Now� with probability
� � �i � ������ k �� fk�� � � � � ki��g� In this case� we would like to have the equality tests fail so
that we are providing A with the multi
oracle of Equation ���� If this would happen� we would
have Equation ��� with an equality� not an inequality� But some test may succeed� In fact for any
key k �� fk�� � � � � ki��g there is a certain probability p�k� that the test succeeds� and this means
that each key reaches the simulation part of the code with a di�erent probability� However� the
key observation is that if the test succeeds in these bad cases� D will output �� So the overall
probability of outputting one cannot decrease relative to the case where the tests do not succeed�
so what we have written is indeed a lower bound�

Now� we upper bound 
��� as follows



��� 	
�

q

qX
i��

�
���� i� � �i� �� �

m��Y
l��

�

�n � l

�
���

��



	

�
�

q

qX
i��

���� i � ��

	
�
q � �

�
�
�

�n
�

�	m��
	n��

� ���

Equation ��� is justi�ed by observing that the chance of an equality test for a particular key kj
succeeding when g is a random permutation is at most the product above� and there are i� � keys
tested� On the other hand� the probability of reaching the simulation is certainly only decreased� so
the probability of D outputting � via A can�t exceed ���� i�� To get Equation ��� we are �rst using
the observation made above that !��� i� is just !��� i � ��� On the other hand we are simplifying
the second term� using our assumption that q 	 �n���

We can now lower bound the di�erence �namely the advantage of D�


CAdv
prp
E �D� � 
���� 
���

�

�
�

q

qX
i��

���� i� � ���� i � ��
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q � �

�n��
�

�	m��
	n��


�
�

q
����� q� � ���� ��� �

q � �

�n��
�

�	m��
	n��

�

The simpli�cation came about because the sum �telescoped�� Now� multiply both sides of the
above by q and transpose terms to get

���� q�� ���� �� 	 q �CAdvprpE �D� �
q�q � ��

�n��
�

�	m��
	n��

�

The second term can be made arbitrarily small by increasing the parameter m� Let us decide to
set m � �� Now� notice that D makes m � � � 	 queries to its oracle g� and its running time is
bounded by t�� so that CAdvprpE �D� 	 CSec

prp
E �m� t��� Thus we conclude that

���� q� � ���� �� 	 q �CSecprpE �	� t�� �
q�

��n
�

This completes the proof of Lemma ����


 Proof of Theorem �	�

Refer to Section ��� for the theorem statement� We now provide the proof�
Since the oracles we provide our adversaries are deterministic� we assume throughout and with


out loss of generality that no adversary ever repeats an oracle query� Sometimes we regard a block
cipher as a two
dimensional table with �� rows and �n columns� where E�k� x� is the value in the
cell of the k
th row and x
th column�
Given a partial function f from �a subset of� f�� �gn to �a subset of� f�� �gn� we denote the

domain and range of f �the points where f has been de�ned and the values those domain points map
to� by Dom�f� and Range�f�� respectively� De�ne Dom�f� � f�� �gn � Dom�f� and Range�f� �
f�� �gn �Range�f��
When an oracle�s algorithm is speci�ed in pseudo
code having a Boolean variable bad i� BADi is

the event that #ag bad i is set true and is the �rst such bad #ag to be set by the algorithm�

��



��� Lemmas

The proofs in this section use two lemmas which are independent of the rest of the section� We
give them here�
The �rst lemma bounds the ability of an adversary to distinguish the output from two nearly

identical programs� When we write two algorithms which simulate two oracles� we specify the
algorithms to be syntactically identical for as much of their speci�cation as possible� Where their
speci�cations diverge� a #ag is set� and we bound the advantage of an adversary based on her ability
to set one of these #ags� See Figures � and � for examples� The basis for this approach is founded
on Lemma ����
The second standard lemma gives upper and lower bounds for the birthday phenomena in

Lemma ��	�

Distinguishing Nearly Identical Programs� Consider an adversary A and her oracle f � and
assume A is de�ned to output either � or �� Say that f is set to either program P� or P�� and that
the advantage A has in distinguishing which is the case is AdvA � Pr��A � ��� Pr��A � ��� Now
consider the case where P� and P� are syntactically identical except for some if 
guarded instructions
in P� which� if executed� set a boolean #ag bad� Let BAD be the event in P� that bad is set�

Lemma �
� AdvA 	 Pr��BAD��

Proof� Let C be the set of all in�nite strings representing the coins used in the experiment� Classify
the elements of C into four non
overlapping sets� C��� C
��� C�
� and C
�
�� where the elements of C��

cause �AP� � � �AP� � ��� and the elements of C
�� cause �A
P� � � �AP� � ��� etc� Then�

AdvA � Pr
C
�AP� � ��� Pr

C
�AP� � ��

�
jC��j� jC�
�j

jCj
�
jC��j� jC
��j

jCj

�
jC�
�j � jC
��j

jCj

	
jC�
�j� jC
��j

jCj

� Pr
C
�AP� �� AP� �

	 Pr��BAD�

To see the last step� if a set of coins does not cause the bad #ag to be marked� then only shared
code is executed� and P� and P� have identical output� Therefore� A can only have advantage on
the coins selected which set bad�

Corollary �
� If P� and P� are identical except for some if 	guarded instructions in P� which
if executed set bad � and some if 	guarded instructions in P� which if executed set bad �� then
AdvA 	 Pr��BAD�� � Pr��BAD���

Proof� Let program P� be identical to the common parts of P� and P�� Then� Pr��A � ���Pr��A �
�� 	 �Pr��A � ��� Pr��A � ��� � �Pr��A � ��� Pr��A � ��� 	 Pr��BAD�� � Pr��BAD��

��



Lemma �
� �Birthday Phenomenon� Given n balls tossed independently and randomly into m
bins� the probability that at least one bin has more than one ball� C�n�m�� satis
es ��e�n	n��
��m 	
C�n�m� 	 n���m�

��� Proof of Theorem 
��� Part �

In the ideal model the adversary has access to E� E��� and �FndE��k� �� oracles� However� we
initially envision an adversary with access only to the last of these� Later we correct for this
simplifying assumption� Modularizing the proof in this way makes this already
complex argument
easier to follow�

Lemma �
� Let n� � be positive integers and d� "q be non	negative integers� Let j � d��ne� Let A
be an adversary with a single oracle� f � and suppose A asks f queries referring to no more than "q
common key groups� Then Adv�A

def

�

Pr
h
E 
 BC��n� k 
 f�� �gj�� f��� def

� Fn
dE�k� �� 
 Af � �

i
� Pr � �
 Randn 
 A

� � � �

	 j������ �
"q�

���
� ���� � "q��d�n�� � "qj��� �

Note that if an adversary is restricted to referring to no more than "q common key groups� implicitly
she is restricted to no more than "q�d total queries�

Proof� To prove the bound we devise an algorithm to simulate an oracle for the adversary� Actually�
there are two algorithms developed� Both are indicated in Figure �� the di�erence being whether
or not we set the #ag Game� � We call �Game �� the result of running the speci�ed algorithm with
the #ag Game� set to false� and we call �Game �� the result of running the speci�ed algorithm
with the #ag Game� set to true�

The idea of these games is to simulate one of two experiments �the exact two experiments used in
the de�nition of Adv�A� and to structure these simulations so that they are �identical� until this
can be maintained no longer� Game � simulates the experiment used to de�ne the second addend
of the adversary�s advantage� Game � simulates the experiment used to de�ne the �rst addend
of the adversary�s advantage� When Games � and � �diverge�� a #ag will be set� Bounding the
probability that any of the game�s #ags get set will serve to bound Adv�A�

Let p� � Pr
h
E 
 BC��n� k 
 f�� �gj�� f��� def

� Fn
dE�k� �� 
 Af � �

i
denote the �rst addend of the

adversary�s advantage in Lemma ���� Similarly� let p� � Pr � �
 Randn 
 A
� � � � denote the

second addend� Let Pri�E� denote the probability of event E with respect to the probability space
induced by Game i� Our de�nitions of an oracle F in Game � and Game � �Figure �� make the
following clear�

Claim �
� Pr�
h
AF � �

i
� p��

Claim �
� Pr�
h
AF � �

i
� p��

To bound jp� � p�j we bound an adversary�s advantage in di�erentiating between Game � and
Game �� The following claim is a direct result of Lemma ����

��



On initialization�

E��� �� is unde�ned
bad�� bad �� bad� � false

k�� � � � � kj � f�� 
g�

ukey� fk�
�
g � � � � � fk�j g

if Game� and jukeyj � j then
bad� � true

for i� 
� � � � � j do
E�ki� ��� Permn

On oracle query F �x��

y � f�� 
gn

x� � x�d
k� � �E�k�� x

��k � � � kE�kj � x
���

����

if Game� and k� � ukey then

bad � � true

return E�k�� x�
if Game� and y � Range�E�k�� ��� then
bad � � true

y � Range�E�k�� ���
de�ne E�k�� x� � y
return y

Figure �
 Game �
when Game� � false� and Game � 
otherwise��

Claim �
� jPr�
h
AF � �

i
� Pr�

h
AF � �

i
j 	

P�
i�� Pr� �BADi ��

As a result of this claim� we need only bound the three events BAD�� BAD� and BAD� in Game ��

Bounding BAD�� The values k� � � � � kj are uniformly sampled and their collision probability is
upper bounded with the birthday bound� giving Pr��BAD� � 	 j�������

Bounding BAD�� Recall that� by our convention� the event BADI can only occur when BADi

does not occur for all i � I� Event BADI is the event that bad I is the �rst bad #ag to be set�
Therefore� Pr��BAD� � 	 Pr��BAD�jBAD� �� and we analyze BAD� in the context that k�� � � � � kj are
random but distinct values� It is clear that each distinct set of keys k�� � � � � kj gives rise to the same

distribution on derived keys
 the value of the underlying key is not signi�cant� it is only a �name�
for referring to one of the permutations� Thus we could just as well have �rst choosen the derived
keys from the appropriate distribution� and only then chosen the underlying keys k�� � � � � kj �all
of them distinct�� Conducting the experiment in this way makes it clear that the chance that an
underlying key and a derived key coincide �given that the underlying keys are distinct� is at most
"qj���� since there are at most "q derived keys out of the �� possible ones� and whatever the derived
keys are� we subsequently choose j random distinct keys and look to see if there is a collision�

Bounding BAD�� Let BAD
� be the event in Game � that some collection of more than � common

key groups all map to the same k� value� �We choose the number � to be concrete� the proof works
with other numbers� but � yields a good result and simpli�es the exposition�� We bound Pr��BAD� �
by

Pr��BAD� � � Pr��BAD�jBAD
� � � Pr��BAD

� � � Pr��BAD�jBAD
� � � Pr��BAD

� �

	 Pr��BAD
� � � Pr��BAD�jBAD

� �

We now bound each summand�

Bounding Pr��BAD
� �� If � � n� then Pr��BAD

� � � � because the �rst n bits of each k� will be the
result of a permutation on di�ering group selector x� values� hence these values will be di�erent for
each common key group� In the case where � � n� each k� is generated by a single n
bit permutation�

��



with the trailing n�� bits deleted� This results in as many as min��n�d� �n��� common key groups
mapping to each k�
value� For some � common key groups x��� � � � � x

�
� to map to the same derived

key� the permuted values of x��� � � � � x
�
� must agree in the �rst � bits� The probability of this is no

more than ����� The adversary is restricted to "q common key groups� so given

�q
�

�
ways of grouping

the common key groups into groups of size �� Pr��BAD
� � 	


�q
�

�
� ���� 	 �q�

�� � �
����

Bounding Pr��BAD�jBAD
� �� Each k� has no more than � common key groups mapped to it�

each of size �d� Also� no more than "q di�erent k� values are mapped to� Using a birthday bound
�Lemma ��	�� Pr��BAD�jBAD

� � 	 "q � C�� � �d� �n� � "q��d�n���

��� Proof of Theorem 
��� Part �

We now include the oracles E�E��� Clearly we can give our adversary A from the previous section
a block cipher G�G�� unrelated to �FndE��k� �� and her advantage will not be increased by querying
G�G��� So another way to express Adv�A is

Adv�A �
���Pr hE 
 BC��n�G
 BC��n� k 
 f�� �gj�� fdef

��Fn
dE��k� �� 


AG�G���f � �
i
� Pr

h
E 
 BC��n� �
 Randn 
 A

E�E���� � �
i���

Recall that we aim to bound

AdvA �
���Pr hE 
 BC��n� k 
 f�� �gj�� fdef

��Fn
dE��k� �� 
 AE�E���f � �

i
�

Pr
h
E 
 BC��n� �
 Randn 
 A

E�E���� � �
i��� �

The second summand for each of the above two expressions are identical� so the next goal is to
bound the the di�erence of the �rst summands� In summary� the idea is to show that there is very
little di�erence in adding oracles G�G�� unrelated to �FndE��k� �� and adding the �real� oracles
E�E���

Lemma �
� Let n� � be positive integers and d� q� t� "t be non	negative integers� Let j � d��ne
and "q � dq��de� Let A be an adversary with three oracles� E��� ��� E����� ��� and f���� who asks
the numbers �� � � � � q � � of its f 	oracle� and at most t total queries� referring to no more than "t
common key groups� of its E	 and E��	oracles� Then

Adv�A
def

�

���Pr hE 
 BC��n� k 
 f�� �gj�� fdef

��Fn
dE��k� �� 
 AE�E���f � �

i
�

Pr
h
E 
 BC��n�G
 BC��n� k 
 f�� �gj�� fdef

��Fn
dE��k� �� 
 AG�G���f � �

i���
	

�
j�

�
� "qj � tj � t

�
� ��� �

"t�

���
� ���� � t"t�d�n���� �

Proof� To prove the bound we devise an algorithm to simulate a triple of oracles hE�E��� F i for
the adversary� Actually� there are two algorithms developed� Both are indicated in Figure �� the
di�erence being whether or not we set the #ag Game� � We call �Game 	� the result of running the

��



On initialization�

bad �� � � � � bad � � false

F�HE �HF � unde�ned
k�
�
� � � � � k�j � f�� 
g�

ukey� fk�
�
g � � � � � fk�j g

if Game� and jukeyj � j then
bad � � true

HF �k�
�
� ��� � � � �HF �k�j � ��� Permn

On oracle query F �x��

x� � x�d
k� � �E�k�� x

��k � � � kE�kj � x
���

����

if HF �k�� x� de�ned then

return HF �k�� x�
if Game� and HE �k�� x� de�ned then

bad � � true

return HE �k�� x�
y � Range�HF �k�� ���
if Game� and y � Range�HE �k�� ��� then
bad � � true

y � Range�HE �k� ��� 	Range�HF �k� ���
de�ne HF �k�� x� � y
return y

On oracle query E�k� x��

if k � ukey then

bad� � true

if HE �k� x� de�ned then

return HE �k� x�
if Game� and HF �k� x� de�ned then

bad� � true

return HF �k� x�
y � Range�HE �k� ���
if Game� and y � Range�HF �k� ��� then
bad� � true

y � Range�HE �k� ��� 	 Range�HF �k� ���
de�ne HE �k� x� � y
return y

On oracle query E���k� y��

if k � ukey then

bad� � true

if HE���k� y� de�ned then

return HE���k� y�
if Game� and y � Range�HF �k� ��� then
bad� � true

return HF���k� y�
x� Dom�HE �k� ���
if Game� and x � Dom�HF �k� ��� then
bad	 � true

x� Dom�HE �k� ��� 	 Dom�HF �k� ���
de�ne HE �k� x� � y
return x

Figure �
 Game 	 �when Game� � true� and Game � �otherwise��

speci�ed algorithm with the #ag Game� set to true� and we call �Game �� the result of running
the speci�ed algorithm with the #ag Game� set to false�

The idea of these games is to simulate one of two experiments �the exact two experiments used
in the de�nition of Adv�A� and to structure these simulations so that they are �identical� until
this can be maintained no longer� Game 	 will simulate the �rst experiment in the expression for
Adv�A� that is� the experiment associated to

p�
def

�Pr
h
E 
 BC��n� k 
 f�� �gj�� fdef

��Fn
dE��k� �� 
 AE�E���f � �

i
Game � will simulate the second experiment in the expression for Adv�A� that is� the experiment
associated to p�

def

�

Pr
h
E 
 BC��n�G
 BC��n� k 
 f�� �gj�� fdef

��Fn
dE��k� �� 
 AG�G���f � �

i
�

When Games 	 and � �diverge�� a #ag will be set� Bounding the probability that this #ag gets set
will serve to bound Adv�A�

Games 	 and � were designed to make the following two claims clear


��



Claim �

 Pr�
h
AE�E���F � �

i
� p��

Claim �
�	 Pr�
h
AE�E���F � �

i
� p��

Combining these claims and Lemma ���� the advantage adversary A can achieve is bounded


Claim �
�� jp� � p�j 	
P�

i�� Pr��BADi ��

Therefore� instead of directly considering adversaries who try to maximize jp��p�j� we may consider
adversaries whose goal it is to set the bad i #ags in Game 	� Claim ���� tells us that jp� � p�j is no
larger than the maximum probability an adversary can achieve in setting the #ags in Game 	� For
the remainder of this section� we consider in turn the maximum probability an adversary D has in
setting each of the bad i #ags� The overall bound we wish to prove� jp� � p�j� is no larger than the
sum of these maximum probabilities� We now bound the maximum probability that an adversary
has in causing each event BADi in Game 	� Recall our convention that BADi is the event that bad i
is the �rst #ag to get set�

Bounding BAD�� The underlying keys are uniformly distributed and so we bound their collision
probability with a birthday bound� So� Pr��BAD� � 	 j�������

Bounding BAD��BAD��BAD�� Each common key group shares a single derived key� The elements
of the common key group along with their associated derived key together de�ne a contiguous set of
entries in the HF 
table which we call distinguished boxes� The locations of these distinguished boxes
are �xed during initialization by the �xing of HF �k�� � ��� � � � �HF �k

�
j � ��� The adversary is allowed F

queries to no more than "q common key groups� so there will never be more than "q distinguished
boxes with entries in them� �Any distinguished boxes which have derived keys which coincide with
any of the underlying keys in ukey will also have their entries �lled� but we do not consider those
here because BAD events associated with them are subsumed by BAD� and BAD��� Furthermore�
the distribution on the location of the "q occupied distinguished boxes is una�ected by the ordering
or content of the adversary�s queries� We therefore consider an adversary who asks her F queries
�rst�

If we consider the the projection onto the HE 
table of the "q occupied distinguished boxes from the
HF 
table� then the ability of of the adversary to ask her E
oracle a query which intersects one of
the projected distinguished boxes serves as a bound on the three events BAD� �BAD� �BAD�� Let
BAD

� be the event in Game 	 that such an intersection ocurrs� Event BAD��BAD��BAD� cannot
occur without such an intersection� And so�

Pr��BAD� � BAD� � BAD� � � Pr��BAD� � BAD� � BAD�jBAD
� �Pr��BAD

� � �

Pr��BAD� � BAD� � BAD�jBAD
� �Pr��BAD

� �

	 � � Pr��BAD
� � � � � Pr��BAD

� �

� Pr��BAD
� �

Event BAD� is really the union of "q events
 That the adversary asks a query of E which intersects
projected distinguished box dboxi� for � 	 i 	 "q� By the principle of incusion�exclusion we thus

�	



bound BAD� by a sum� Pr��BAD
� � � Pr���

�q
i��dboxi � 	

P�q
i�� Pr�� dboxi �� But� notice that each

column of the HE 
table has at most one distinguished box and that its derived key is uniformly
distributed� and so Pr�� dboxi � � qi�

��� where qi is the number of queries the adversary asks in

the column where the i
th distinguished box is projected� Finally� we have
P�q

i�� Pr�� dboxi � �P�q
i�� qi�

�� � q����

Bounding BAD��BAD��BAD�� None of the events comprising BAD��BAD��BAD� occur unless
an entry in HF �k� �� is also in HE�k� ��� for any k� We therefore bound BAD��BAD��BAD� on the
adversary�s ability to cause such a collision in the same manner we did in the previous paragraphs�
Let BAD� be the event that such a collison occurs� then Pr��BAD� � BAD� � BAD� � 	 Pr��BAD

� ��

As in the proof of Lemma ���� we assume that no � common key groups map to the same derived
key �see that proof for details�� Thus� we consider the case where no HF �k� �� has more than
� � �d de�ned elements� and they are all random and distinct by de�nition� �Again� those entries
associated witht the elements of ukey are bounded separately�� So� given that qi E
oracle queries
are made of the form E�i� ��� no matter what their distribution� the chance of colliding with at

least one of the � � �d random distinct values from HF �i� �� is � � �� � �qi���
� � � � �d������

d
� We

sum over all qi� The sum is maximized when qi � q for a single value of i� Adding the term which
compensates for our assumption that no � common key groups map to the same derived key� and

we arrive at our bound� �� ��� �q���� � � � �d������
d
� �q�

�� � �
���

Bounding BAD� � BAD�� The underlying keys k�� � � � � kj are uniformly distributed on f�� �g��
Furthermore� The value of each underlying key is not signi�cant� it is only a �name� for referring
to one of the permutations� j����

The summation of these terms completes the bound of Lemma ����

By the triangle inequality� AdvA 	 Adv�A �Adv
�
A� which concludes the proof of Theorem ����

Remark �
�� If � � n then we can improve our bound to


AdvA 	 "q��d�n�� � j���� � j"q����� � td��ne��� � t��� � t"t�d�n�� �

Proof� If � � n� then Pr��BAD� � 	 "q��d�n�� and Pr��BAD� � � Pr��BAD� � 	 t"t�d�n��� Each
common key group will be mapped to a di�erent derived key k�� When � � n� the keys are generated
by a function which is the concatenation of j � � permutations� ensuring than no two inputs map
to the same output�

� Analysis of attacks

Here we prove the lower bounds� namely the results of Section ��	�


�� Proof of Proposition 
��

Adversary CS looks for collisions within common key groups in the output of f � The attacks are
speci�ed in Figure ��

Proof� If f��� � �FndE��k� �� then each common key group is answered by a single permutation�

and so Pr�E 
 BC��n� k 
 f�� �gj� 
 CSFn
dE	k��
 � �� � �� Thus� advantage IAdvprf

F
�CS � is exactly

��



function CS f �q� d�
for i � � � � � bq��dc 
 
 do
if jff�i�d�� f�i�d � 
�� � � � �

f�i�d � �d 
 
�gj � �d

then return 

return �

function KS f�E�t� d� j� c�
Choose K � f�� 
gj� where

jKj � minfbt��c�j � 
��c� �j�g
for each k� � � � kj � K do

k� � �E�k�� i�k � � � kE�kj � i�������
if f�i�d� � E�k�� i�d� for all � � i � c
 


then return 

return �

Figure �
 Naive attacks� Left� collision	search adversary� Right� key	search adversary�
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 Randn 
 CS
�	�
 � ��� This is easily bounded using Lemma ��	� Let Q � bq��dc�
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�� Proof of Proposition 
�	

Adversary KS makes a small number �c� of f 
queries and a large number �t� of E
queries� �With
typical values of ��n� imagine c � � or c � 	�� The adversary simply guesses a key and then tries
to con�rm that guess� The attack is again speci�ed in Figure ��

Proof� If f is a random function then there is a small chance thatKS will incorrectly identify it as an
instance of FndE� For this to happen some k�� � � � � kj must collide with f �s output� This occurs with

chance only ��nc for each of the t queries� and so Pr
h
E 
 BC��n� f 
 Randn 
 KS

f�E�t� d� j� c� � �
i

is no more than t��nc�

If f is an instance of FndE� then the chance that the algorithm outputs � is at least as much as the
probability that the algorithm guesses the random key set correctly� We try minfbt��c�j����c� �j�g
out of a total �j� possible keys� from which the result now follows�
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