
An extended abstract appears in Advances in Cryptology � Eurocrypt �� Proceedings� Lecture
Notes in Computer Science Vol� ���	� K� Nyberg ed�� Springer
Verlag� ����� This is the full
version�

Luby�Racko� Backwards� Increasing Security by

Making Block Ciphers Non�Invertible

Mihir Bellare
�

Ted Krovetz
y

Phillip Rogaway
y

October ��� ����

Abstract

We argue that the invertibility of a block cipher can reduce the security of schemes that
use it� and a better starting point for scheme design is the non�invertible analog of a block
cipher� that is� a pseudorandom function �PRF�� Since a block cipher may be viewed as a
pseudorandom permutation� we are led to investigate the reverse of the problem studied by Luby
and Racko�� and ask� 	how can one transform a PRP into a PRF in as security�preserving a way
as possible
� The solution we propose is data�dependent re�keying� As an illustrative special
case� let E � f�� gn�f�� gn � f�� gn be the block cipher� Then we can construct the PRF F
from the PRP E by setting F �k� x� � E�E�k� x�� x�� We generalize this to allow for arbitrary
block and key lengths� and to improve e�ciency� We prove strong quantitative bounds on the
value of data�dependent re�keying in the Shannon model of an ideal cipher� and take some initial
steps towards an analysis in the standard model�

Keywords� Birthday attacks� block ciphers� pseudorandom functions� symmetric encryption�

�Dept� of Computer Science � Engineering� Mail Code ����� University of California at San Diego� �	�� Gilman
Drive� La Jolla� CA �
���� USA� E�mail mihir�cs�ucsd�edu� Web page http���www�cse�ucsd�edu�users�mihir�
Supported in part by NSF CAREER Award CCR���
���� and a ���� Packard Foundation Fellowship in Science and
Engineering�

yDept� of Computer Science� Engineering II Bldg�� University of California at Davis� Davis� CA �	���� USA�
E�mail fkrovetz�rogawayg�cs�ucdavis�edu� Web page http���www�cs�ucdavis�edu��fkrovetz�rogawayg� Sup�
ported in part by NSF CAREER Award CCR���
�	�� and a MICRO grant from RSA Data Security� Inc�

Contents

� Introduction �

� The Problem �

��� Invertibility can hurt when using block ciphers An example � � � � � � � � � � � � � � 	
��� PRPs� PRFs� and their relation to block ciphers �
��	 Luby
Racko� backwards �
��� History and related work �

� The Fn Construction �

� De�nitions �

��� Complexity theoretic model �
��� Ideal block cipher model �

� Security of the Fn Construction �	

��� Security in the complexity theoretic model ��
��� Security in the ideal block cipher model ��
��	 Attacks � Lower bounds ��

� Proof of Theorem �
� ��

� Proof of Theorem �
� ��

��� Lemmas ��
��� Proof of Theorem ���� Part ��
��	 Proof of Theorem ���� Part ��

� Analysis of attacks ��

��� Proof of Proposition ��	 ��
��� Proof of Proposition ��� ��

References ��

�

� Introduction

This paper describes a transformation � turning a �pseudorandom permutation� �PRP� into a
�pseudorandom function� �PRF� using �data
dependent re
keying�� It can be applied to a block
cipher to increase the block cipher�s security in certain ways� and� in particular� the method leads
to block cipher based message encryption and authentication techniques which are approximately
as e�cient as ones in current use� but have better security�
In Section � we explain our �at �rst paradoxical sounding� thesis that invertibility of a block

cipher can be a liability� not an asset� when it comes to the security of schemes that use the cipher�
We will then explain what are PRFs and PRPs� how the former are a better starting point for
constructions but the latter a better model for block ciphers� and how all this leads us to consider
the problem of transforming PRPs into PRFs in a security
preserving way�
In Section 	 we describe our way to do the PRP to PRF transformation� We call our transform

Fn
d� where d is a parameter on which the construction depends� �The impatient reader can jump

to Section 	 to see how Fn
d works� It is very simple��

Our main result is an analysis� in the Shannon model which shows that if the block cipher is
ideal then its transform under Fnd is close to an ideal random function� The provided bounds are
strong� showing the transform is close to security preserving�
The interpretation of the above is that the Fnd transform gives good security against �generic�

attacks� To guage its strength against cryptanalytic attacks we also analyze it in the standard
complexity theoretic or �reductionist� framework� We do succeed in providing a reduction� but the
quality of the bounds is not as good as in the Shannon model� and thus we view these results as
preliminary� hopefully to be improved�
The results are presented� discussed� and displayed graphically in Section �� Just before that�

in Section �� we provide the precise de�nitions of the security notions� but these can be skipped at
�rst reading� or skipped entirely by an expert� The rest of the paper is devoted to proofs�

� The Problem

We begin with a simple example� then relate these issues to PRFs and PRPs� then describe the
problem that results� and conclude with a discussion of related work�

��� Invertibility can hurt when using block ciphers� An example

A block cipher is a function E f�� �g��f�� �gn � f�� �gn which transforms an n
bit message block
x into an n
bit string y under the control of a �
bit key k y � E�k� x�� The function is invertible
in the sense that for each key the map Ek

def

�E�k� �� is a permutation of f�� �g
n� and knowledge of k

permits computation of E��
k � Concrete examples are DES� triple
DES and RC��

Message encryption is done by using the block cipher in some mode of operation� such as �CBC��
Using even a very �good� block cipher �say triple
DES� or even an ideal cipher�� CBC encryption
becomes insecure once �n�� blocks have been encrypted� in the sense that at this point partial
information about the message begins to leak�� due to birthday attacks�� Furthermore� this is true

� All analyses in this paper are concrete and quantitative� meaning providing explicit� non�asymptotic bounds on
the success probabiilty of an adversary as a function of its resources�

� A good encryption scheme is much more than one that prevents key recovery from a ciphertext it should have
the property that even partial information about the plaintext is not revealed ��� ���

� The attacks are well known� See ��� for an analysis of their e�ectiveness relative to formal notions of security

	

for many other common modes of operation� too� Thus direct use of a ��
bit block size block cipher
usually enables one to safely encrypt no more than ��� blocks� which is quite small�
We stress that these attacks arise because the cipher is a permutation� and their cost depends

only on the block length� not the key length or the security of the block cipher� So the attacks are
just as e�ective for triple
DES� or even an ideal block cipher� as they are for DES� In summary�
block cipher based schemes are often subject to birthday attacks arising from the very nature of
block ciphers as permutations�
So how can we safely encrypt more than �n�� blocks� One answer is to use a slightly di�erent

type of primitive in an appropriate mode of operation speci�cally� a �pseudorandom function�
�PRF� in CTR �counter� mode� as discussed in ��� ��� and explained further below� This way
to encrypt is easy and has no extra overhead if a PRF of cost comparable to the block cipher is
available�
The above is only one example of an issue that arises in many places that the permutivity of

a block cipher can hinder the security of schemes which use it� To e�ectively address this we need
to explain what are PRFs and PRPs and how they relate to block ciphers�

��� PRPs� PRFs� and their relation to block ciphers

Let us �rst back up and look at how the security of a block cipher is best captured�

Security of a block cipher� PRPs� It is natural to view a real block cipher as constructed to
�approximate�� as closely as possible� an ideal block cipher �that is� a random permutation� in the
sense that if you don�t know the key k and only see input�output examples of Ek then these should
appear like input�output examples of a random permutation� The quality of a given block cipher
E as a PRP �pseudorandom permutation� is thus captured by a function SecprpE �q� t� which returns
the maximum �advantage� that one can obtain in distinguishing Ek from a random permutation if
you see q input�output examples and are allowed further computational resources bounded by t� �In
the complexity
theoretic model� t will bound computing time� in the information
theoretic model�
t will bound the number of known �k� x�Ek�x�� values� The advantage is a number between � and
� given as the di�erence of two probabilities the probability that the adversary outputs � given
a random function Ek from E� and the probability that the adversary outputs � given a random
permutation �� See Section � for more details��
Each speci�c cipher �eg� DES� will have such an associated security function� which depends on

�and to a large extent comprises� its cryptanalytic strength� Of course we won�t know for sure what
is this function� but we can work with what we know from cryptanalytic results� For example� if
the linear cryptanalysis of ��	� is the best attack on DES� we might assume SecprpDES�q� t� stays small
�close to �� until q� t reaches around ���� From now on� �block cipher� and �PRP� are synonymous�
from the security point of view�

Ciphers without invertibility� PRFs� Like a block cipher� a pseudorandom function �PRF�
is a map F f�� �g� � f�� �gn � f�� �gn� but now Fk

def

�F �k� �� is not required to be invertible� The
required security property is to approximate� as closely as possible� a random function� The quality
of a given function F is captured by SecprfF �q� t� which returns the maximum �advantage� that one
can obtain in distinguishing Fk from a random function if you see q input
output examples and are
allowed computational resources t� �This advantage is the di�erence between probability that the
adversary outputs � given a random function Fk from F and the probability that the adversary
outputs � given a random function �� See Section � for more details��

for encryption�

�

The example revisited� Counter mode encryption with a PRF F means that to encrypt an
m
block plaintext M � x� � � � xm� send

� ctr� Fk�hctr � �i��x� k � � � k Fk�hctr �mi��xm �

where hii is the binary encoding of i into n bits� � k � denotes concatenation� and where you
increment ctr by m after doing each encryption� �Notice that to decrypt you need only apply Fk�
so that you don�t need this function to be invertible�� Counter
mode encryption with a good PRF
is pretty much �ideal encryption� it is shown in ��� that an adversary�s chance of obtaining partial

information about some plaintext� after q blocks have been encrypted� is at most SecprfF �q� t�� the
strength of F as a PRF� In particular if we had a PRF F with the same numerical security as DES
but as a PRF not a PRP� namely SecprfF �q� t� � Sec

prp
DES�q� t�� then we could encrypt nearly �

��

blocks� well above the birthday bound�
In contrast� when we use a block cipher �PRP� directly in CBC �or CTR� mode� we are not able

to recoup all of the cryptographic strength captured by its SecprpE ��� �� value� because at q � �n��

�which is q � ��� for DES� birthday attacks kill the encryption scheme�
The conclusion can be put like this to get quantitatively good security� what is most useful

and convenient about F is that SecprfF �q� t� be small� not Sec
prp
F �q� t�� To make the former as low

as possible the family F must not be a family of permutations� since no family of permutation
will have a good value of SecprfF �q� t� if q � �n��� This is because of birthday attacks if F is
a family of permutations then the adversary A�q� who guesses �random function� if and only if
she sees a collision in the answers returned from q distinct but otherwise arbitrary queries already
accrues advantage of about ��e if q � �n��� The adversary�s advantage then goes quickly to � with
q � �n���

��� Luby�Racko� backwards

The above is part of an emerging view or understanding� emanating from works like ��� �� �� ����
that when it comes to designing higher
level primitives �like encryption schemes or MACs� a PRF
is a better tool than a PRP� from two points of view it permits easier and more e�ective analysis
of the designed scheme� and the resulting schemes have a greater proven quantitative security� This
leads us to suggest that for the purpose of protocol design� what we really want are PRFs� not
block ciphers �PRPs��
So the question is how to get PRF families of high security and low cost� One possibility is to

make these directly� in the same way we make block ciphers now� We suggest that this indeed be
kept in mind for the future� but at the moment is not a very pragmatic view� for two reasons� First�
we have lots of �good� block ciphers available� and we want to use them well� Second� permutivity
may be important to the design process of block ciphers� for example� using the round structure of
a Feistel
network gives rise to a permutation��

We propose instead to transform PRPs into PRFs� That is� starting with a good PRP E
�realized by a block cipher�� convert it into a good PRF F � This is e�ectively the reverse of the
problem considered by Luby and Racko� ����� who wanted to turn PRFs into PRPs�
A crucial issue is to make transformations that are as �security preserving� as possible� We want

Sec
prf
F �q� t� to remain low even for q � �n��� Ideally� SecprfF �q� t� would be close to Sec

prp
E �q� t��

Let us now discuss some related work� Following that we present our construction�

� Another possibility is to make sure that the block size n is large enough �n � �
�� that attacks of complexity

n�� are irrelevant� This too is a good idea� but the construction we give has merit which goes beyond the birthday
attacks which we have been using to motivate this problem�

�

��	 History and related work

Our construction is related to the cascade construction of �	��
The notion of a PRF was �rst de�ned in the polynomial
time framework by Goldreich� Gold

wasser and Micali ���� A concrete security treatment of PRFs� together with the idea that concretely
de�ned PRFs�PRPs can be used to model block ciphers� originates with ���� Luby and Racko� use
the term PRP to refer to a family of permutations that is a PRF family in the sense of ���� Our no

tion is di�erent in that we measure the advantage relative to random permutations� not functions�
This makes no di�erence in the polynomial
time framework� but in the concrete
security framework
the di�erence is crucial� indeed� if concrete security is ignored� the problem we are considering does
not exist�
The ideal block cipher model we use for some of our results is that of ����� used also in ��� ����
There are many natural ways to try to do the PRP
to
PRF conversion� One of the �rst to come

to mind is to de�ne Fk�x� � x�Ek�x�� This construction is of value in some contexts� but not in
ours� For if you are given an oracle for this Fk��� you e�ectively have an oracle for Ek��� for any
query x you can compute Ek�x� as x�Fk�x�� So Fk will resemble a random function no more than
Ek does�
There are many natural alternatives to the Fnd transformation� For example� truncate Ek�x��

de�ning Fk�x� to be some appropriate
length pre�x of Ek�x�� This scheme was partially analyzed
by ���� Another natural method is Fk�k��x� � Ek��x��Ek��x�� This has not been analyzed�
Aiello and Venkatesan ��� give a general construction for turning a PRF E f�� �g��f�� �gn �

f�� �gn into a PRF F f�� �g�� � f�� �g�n � f�� �g�n� But this is a di�erent problem� Although
they too want to circumvent some birthday attacks� their starting point is a random function �not
a permutation� and the problem is to double the number of bits the function can take as input�
They are bound by the original security of the starting function as a PRF birthday attacks are
only prevented in the sense that the construction does not induce such attacks itself� So if a block
cipher is the starting point� it is viewed as a PRF� meaning the security is only �n��� There is
no notion of modeling a cipher as a random permutation� In contrast� we go above the original
birthday threshold� to a security close to �n� Our construction is also more e�cient� and it yields
a map of the same key size and block length as the original one�
In constructing a Wegman
Carter message authentication code �MAC� ���� one needs to sym

metrically encrypt the universal
hash of each messageM � If a PRP is in hand for doing the encryp

tion� one could de�ne MACk��k��M� � �ctr� Ek��ctr��hk��M��� but the security would degrade by
 �q���n� compared to using a PRF� �Here q is the number of MACed messages�� Shoup ���� de

scribes an alternative with better exact security� Our methods allow the simpler and more general
�ctr� Fk��ctr��hk��M��� where F is the result of PRP
to
PRF conversion starting from E�
As we explained� Luby and Racko� consider the complementary problem of turning a PRF into

a block cipher ����� Luby and Racko� spawned much further work� including ���� ��� ��� ��� ����
and our work shares their emphasis on concrete bounds� e�ciency� and tight reductions�

� The Fn Construction

We have described in Section ��� some simple suggestions that don�t work and some related con

structions� Now we present our solution� We let E f�� �g� � f�� �gn � f�� �gn be the given block
cipher �PRP��
The values n and � vary across real block ciphers� for example� for DES we have � � �� and

n � ��� for �two
key� triple DES we have � � ��� and n � ��� We want to handle all these cases�

�

Accordingly� our construction depends on the relative values of � and n� It also depends on a
parameter d� where � 	 d � n�

Simple Case� The simplest case of our construction is when the given PRP has the property that
� � n� and we choose d � �� One then de�nes F � Fn

�E by F �k� x� � E�E�k� x�� x�� That is�
Fk�x� � Ek��x�� where k

� � Ek�x�� We call this �data
dependent re
keying� since we are applying
E to x� but using the data
dependent �derived key� k� � Ek�x�� The cost of computing F is twice
the cost of computing E� in the sense that there are two applications of E for each application
of F � The general construction includes a provision aimed at reducing this overhead�

The General Case� Let � 	 d � n be given� If x� is an n
bit string� let x��d denote x� shifted
to the right by d positions� with �
bits �lling the vacated positions� If k� is a string of length �� let
�k�����i be the string consisting of the �rst i bits of k

� �for � 	 i 	 ��� Set j � d��ne� The function
F � Fn

dE takes a �j
bit key k� � � � kj and an n
bit input x to return an n
bit output y as follows

function F �k� � � � kj � x�
begin

x�
 x�d ��Shift away low d bits

k�
 E�k�� x
��k � � � kE�kj � x

�� ��Construct the �extended� derived key

k
 �k������ ��We only need � bits of derived key

y
 E�k� x� ��Use derived key on the input

return y
end

We call x� the group selector and k the derived key� The j applications of Eki are to deal with
the possibility that � 	 n� and the truncating of k� to � bits is to handle the possibility that the
key length � might not be a multiple of the block length n� �More strange is the discarding of bits
from the x� namely the x�d� This is for e�ciency� as we will explain below�� As an example� if
E � DES� so that � � �� and n � ��� we would have j � �� so the key of F is just a ��
bit DES
key k�� the derived key k� is the �rst �� bits of DESk��x

��� and the output is DESk��x�� If E is
TDES �two
key triple
DES�� so that � � ��� and n � ��� we would have j � �� so the key for F is
a pair k�k� of TDES keys� the derived key k� is the �rst ��� bits of TDESk��x

��TDESk��x
��� and

the output is TDESk��x��
Notice that for �xed k� � � � kj � if two n
bit strings determine the same group selector then they

generate the same derived key� and this happens if the two strings agree in the �rst n � d bits�
Accordingly� we cluster together all points that have the same group selector into what we call a
common key group� Thus there are a total of �n�d common key groups� For any
 � f�� �gn�d we
de�ne ckg� � fx �x�����n�d �
g as the

th common key group� Identifying strings with integers
in the natural way� the i
th common key group consists of the integers �i� ���d� ���� i�d � ��

Efficiency� Recall that the nominal way to encrypt using F � Fn
dE involves applying F to a

single key k and successive ctr
values� By dropping the least signi�cant d bits of this counter� one
needs to recompute k� only once every �d invocations of F � Of course an implementation would
need to to record the last derived key and refrain from re
computing it� Doing this makes the
amortized cost to compute F just ��� j��d� times the cost of computing E� For many ciphers this
is an underestimate because of additional cost associated to changing the key� In fact� the cost of
changing the key for some block ciphers is high� which is why we don�t want to do it very often�

Variations� How exactly one drops bits of x is not so important� For example� instead of shifting
to the right one could zero
out the least signi�cant d bits� This makes no di�erence in the analysis�

�

We have constructed F � Fn
dE to be a map F f�� �gj� � f�� �gn � f�� �gn� If one prefers�

let F k�x� � Ek��x� where k
� is the �rst � bits of Ek��x�d� k � � � k Ekj �x�d� and ki is de�ned as

Ek�hii�� Now F uses a �
bit key� just like F � The analysis of F lifts to F with just a tiny loss in
quantitative security�

� De�nitions

Here we give the more precise de�nitions of security in the two models in which we will be analyzing
our construction� namely the �standard� �complexity theoretic� model and the Shannon model�

Recall that in Section � we discussed the security of F and E by way of functions SecprfF �q� t�
and SecprpE �q� t�� Their meaning changes according to the model in a simple way

 In the complexity theoretic model they are CSecprfF �q� t� andCSec
prp
E �q� t�� respectively� these

quantities being de�ned in Section ��� below� and

 In the ideal cipher model� they are ISecprf
F
�q� t� and ISecprp��n�q� t�� respectively� these quantities

being de�ned in Section ��� below� where F refers to the transformation that takes E into F �
�In our case� F � Fn

d��

Preliminaries� If S is a probability space then g
 S denotes the operation of selecting g at
random according to the distribution speci�ed by S� If S is a set it is viewed as endowed with
the uniform distribution� so that g
 S means that g is selected uniformly at random from set
S� If y is not a set then g
 y is a simple assignment statement� assigning g the value y� �It is
thus equivalent to g
 fyg�� Let Permn denote the set of all permutations � f�� �g

n � f�� �gn�
Let Randn denote the set of all functions � f�� �g

n � f�� �gn� Let BC��n be the set of all maps
E f�� �g� � f�� �gn � f�� �gn such that E�k� �� � Permn for all k � f�� �g�� Let RF��n be the set
of all maps R f�� �g� � f�� �gn � f�� �gn�
A family of functions with key length � and block length n is a map G f�� �g� � f�� �gn �

f�� �gn� that is� G � RF��n� Each �
bit key k speci�es the map Gk
def

�G�k� �� � Randn� This map is
not necessarily a permutation� If Gk is a permutation for each k � f�� �g� �ie�� G � BC��n� then we
call G a family of permutations� or a block cipher� We view G as a probability space over Randn
given by choosing functions via a uniform choice of the underlying key� that is� g
 G is the same
as k
 f�� �g� � g
 Gk�
Given a block cipher E� the block cipher E�� f�� �g��f�� �gn � f�� �gn is de�ned by E���k� y�

being the unique point x such that E�k� x� � y� We interchangeably write E��
k �y� and E���k� y��

An adversary is an algorithm A with access to some number of oracles� Oracles are denoted as
superscripts to A� as in AE�E���F � An oracle responds to its query in unit time�

	�� Complexity theoretic model

We will have two measures of security the strength of G as a PRF and the strength of G as a
PRP� We follow ��� in the manner in which the basic notion of ��� is �concretized��
First� we need the concept of advantage� which for emphasis we call the �computational advan

tage� and write CAdv� Let D be an algorithm �a �distinguisher�� taking an oracle for a function
g� and let G�� G� be two families of functions with the same block length� We de�ne

CAdvG��G�
�D� � Pr � g
 G� D

g � � �� Pr � g
 G� D
g � � � �

�

Now� suppose F is a family of functions� and E is a family of permutations� We let

CAdv
prf
F �D� � CAdvF�Randn�D�

CSec
prf
F �q� t� � maxD fCAdvprfF �D�g

CAdv
prp
E �D� � CAdvE�Permn�D�

CSec
prp
E �q� t� � maxD fCAdvprpE �D�g

Here the �rst quantity measures the advantage D has in distinguishing random members of F
�resp� E� from truly random functions �resp� permutations� of the same block length� The second
quantity is the maximum advantage attainable using some amount of resources� in this case the
number q of oracle queries and the running time t� For simplicity� when we speak of an adversary�s
time we mean the adversary�s actual running time plus the size of the encoding of the adversary
�relative to some �xed encoding scheme�� so we have a single parameter t to capture time plus
description size� The maximum here is over all distinguishers D that make up to q oracle queries
and have running time bounded by t�

	�� Ideal block cipher model

The Shannon model ���� treats E as a random block cipher� This means that each Ek is taken to be
random permutation on n
bit strings� Let FE be some operator on E which returns a new family of
functions� and say the new family has key length �� but the block length is still n� �For us� F � Fn

d

and �� � j� where j � d��ne�� As modeled by ���� the adversary that attacks F is given oracles
for E��� �� and E����� �� � as well as an oracle f where either f��� � F �k�� �� for F � FE and k�

a randomly chosen key in f�� �g�
�
� or else f��� � ����� for a random function � f�� �gn � f�� �gn�

We investigate the adversary�s advantage in determining what type of oracle f is� This is de�ned
as

IAdv
prf
F
�A� � Pr

h
E
 BC��n � k

�
 f�� �g�
�

� f
 �FE�k� A
E�E���f � �

i

� Pr
h
E
 BC��n � f
 Randn A

E�E���f � �
i
�

The advantage A gains depends� in part� on the number of queries q she asks of f and the total
number of queries t she asks of E and E��� We are interested in

ISec
prf
F
�q� t� � maxA fIAdv

prf
F
�A�g �

the maximum being over all adversaries that make up to q queries to the f oracle and up to t
queries to the E and E�� oracles�
This is an information
theoretic setting the adversary has unlimited computational power�

If we think of E as a concrete block cipher� and not an idealized one� then attacks in this model
correspond to attacks in which the adversary exploits no characteristics speci�c to the block cipher�
only �generic� features of the construction F we are analyzing� Thus� security guarantees from
results in this model are weaker than those from results in the model above� yet they do have some
meaning� We use the Shannon model when technical di�culties prevent us from getting bounds as
good as we would like in the complexity theoretic model�

Note� The goal will be to upper bound ISecprf
F
�q� t� as a function of t� q� �� n� As such we don�t

really need any notion of ISecprp��n�q� t�� the security of the block cipher� because the latter is assumed
ideal� but there are two reasons to de�ne it anyway� First� to maintain a uniform security treatment
across the models� and in particular be consistent with Section �� second� because it is indeed the
quantity with which we wish to compare ISecprf

F
�q� t��

We de�ne ISecprp��n�q� t� as the maximum� over all adversaries A of the speci�ed resources� of the
quantity

Pr
h
E
 BC��n � k
 f�� �g� � f
 Ek A

E�E���f � �
i

�

� Pr
h
E
 BC��n � f
 Permn A

E�E���f � �
i
�

Notice that this quantity is not zero� For q 	 � and large n we would expect it to be about t � ����
corresponding to an exhaustive key search attack�

� Security of the Fn Construction

We summarize both proven security guarantees and attacks that indicate the tightness of the bounds
in them�

�� Security in the complexity theoretic model

Here we refer to the notions of security of Section ���� We assume E is a PRP family and show our
construction is a PRF family� via a reduction� We do this only for the case where the key length�
�� is identical to the block length� n� and we drop no bits� namely d � ��

Theorem �
� Let � � n be a positive integer and let E f�� �g� � f�� �gn � f�� �gn be a family
of permutations whose security as a PRP family is described by security function CSec

prp
E ��� ���

Let F f�� �g� � f�� �gn � f�� �gn be our construction for the case of no bit dropping� namely

F � Fn
�E� Its security as a PRF is described by function CSecprfF ��� �� which for any number of

queries q 	 �n�� and time t can be bounded as follows�

CSec
prf
F �q� t� 	 CSec

prp
E �q� t�� � q �CSecprpE �	� t�� �

q�

��n

where t� � t�O�q� � ��� n�TimeE��

Proof� See Section ��

The bound here looks good at �rst glance� The �rst term� namely CSecprpE �q� t��� is saying
the security of F as a PRF is related to that of E as a PRP for essentially the same resources
we can�t ask better� The last term� namely q����n� is negligible� What about the middle term�
namely q � CSecprpE �	� t��� Intuitively� CSecprpE �	� t�� is small what can you do in three queries�
This view is deceptive because one should not forget the time t�� One can spend it in exhaustive
key search� and thus CSecprpE �	� t�� can be !�t������ But �dropping constants� this is at least q���

so the second term in our bound looks like q����� Since � � n this is q���n�
So these bounds are not proof that the security of F goes beyond the birthday bound� It would

be nice to improve the above result� However� even the proof of the above is not exactly trivial�
and this is one reason we include the result in this paper we hope its ideas are food for thought
towards an extension�
As far as we can tell� the di�culties in extending the above result are techncial rather than

arising from any weakness in the construction� �We could be wrong�� Is there any other way we
can give some meaningful evidence of the strength of the construction� We do this by analyzing it
in the Shannon model�

�� Security in the ideal block cipher model

The theorem below looks at the most general version of the F � Fn
dE construction� when the num

ber d of bits dropped is arbitrary and no restrictions are made on �� n� in the model of Section ����

��

0

0.2

0.4

0.6

0.8

1

8 16 24 32 40 48 56 64

A
dv

an
ta

ge

lg Q

k = 128, d = 8, n = 64
Birthday Bound, n = 64

Figure � Right curve� Illustrating Theorem ���� our upper bound on the adversary�s advantage
in distinguishing F � Fn

dE from a random function� assuming n � ��� � � ���� and d � �� Here
E is a random permutation and the horizontal axis Q � max�q� t� is the maximum of the number
of consecutive f 	queries and the total number of E�E�� queries� Left curve� The birthday bound
for the same choice of parameters�

where E is an ideal cipher� We obtain very strong results� showing security not only beyond the
birthday bound� but nearly as good as one could hope for�
As we noted in Section �� an important mode of operation for our construction will be when the

values to which Fk����kj are being applied are successive counter values� Indeed� the bit dropping
is done precisely to have maximum e�ciency in this mode as explained in Section 	� in this case�
the amortized cost of computing F is just �� � j��d� times that of computing E� a negligible
overhead� Accordingly� this is the case to which the following security analysis pertains� �Though
later analyses are more general��

Theorem �
� Let n� � be positive integers and d� q� t� "t be non	negative integers with � 	 d � n
and let F � Fn

d� Let A be an adversary with three oracles� E��� ��� E����� ��� and f���� who asks the
numbers �� � � � � q � � of its f 	oracle
so that these refer to "q � dq��de common key groups�� and
asks at most t total queries of its E	 and E��	oracles� these referring to no more than "t common
key groups� Let j � d��ne� Then IAdvprf

F
�A� 	

"q� � "t�

���
� ���� �

�
j� � �j"q � tj � t

�
� ��� � "q��d�n�� � t"t�d�n���� �

Proof� See Section ��

The �rst term bounding IAdvprf
F
�A� remains low until q � ����� or t � ������ We speculate

that these conditions can be further improved to �	���
� �and they are already very small in their

current form�� so a reasonable summary of IAdvprf
F
�A� is to say that the construction is good until

q � minf��� �n�dg or t � minf��� �	n��
��g�
In Figure � we illustrate our bound for the case of a block cipher with parameters n � ���

� � ���� and dropping d � � bits� The bound indicates that one must ask about ��� queries before
one can hope to distinguish Fk from a random function with advantage ��e� �This ��e
convention
is a convenient way to summarize security�� For comparison� if you let F � E you get the usual
birthday
attack curve� which indicates that it takes but ��� queries before an adversary can get like
advantage at distinguishing Ek from a random function�

��

0

0.2

0.4

0.6

0.8

1

8 16 24 32 40 48 56 64

A
d

v
a

n
ta

g
e

lg Q

k = 128, d = 0, n = 64
k = 64, d = 0, n = 64
k = 56, d = 0, n = 64

0

0.2

0.4

0.6

0.8

1

8 16 24 32 40 48 56 64

A
d

v
a

n
ta

g
e

lg Q

k = 64, d = 0, n = 64
k = 64, d = 4, n = 64
k = 64, d = 8, n = 64
k = 64, d = 12, n = 64
k = 64, d = 16, n = 64

Figure � Varying the parameters of Theorem ��� � our upper bound on the adversary�s advantage
in distinguishing F � Fn

dE from a random function� with the horizontal axis Q � max�q� t� as in
the previous gure� Left� Varying key length �� Right� Varying bits dropped d� For both pictures
n � ���

In Figure � we illustrate our bound by showing the e�ect on advantage of changing either the
key length �left
hand plot� or the value of d �right
hand plot�� We assume a block size of n � ��
bits� The adversary�s maximum advantage decreases with increasing key length� but this e�ect
soon saturates� The construction has worse demonstrated security for larger values of d� but the
e�ect is not that dramatic� and there is little reason to select a very large value of d� anyway�
It is important to understand the di�erence between the results here and those of Section ����

The �type� of security guarantee is better in the latter� since we are saying that security in the
sense of a PRP �using the standard notion of a PRP� translates into security in the sense of a
PRF �using the standard notion of a PRF�� The results here are only about ideal ciphers� which
only guarantees security against generic attacks� Yet� generic attacks are an important and easy to
mount class of attacks� and a proof of security against them� especially with such strong bounds�
is certainly meaningful� Eventually we hope strong results will emerge in the other model �as well
as for other PRP
to
PRF constructions��

�� Attacks � Lower bounds

In Propositions ��	 and ��� we present the best attacks that we know on our construction� These
translate into lower bounds on the security of FndE� We present two adversaries one which
becomes successful when q � �n�d� and one which becomes successful when t � ��� This is done
in the Shannon model� but in this case �of attacks� this is not a restriction� if we can attack ideal
ciphers we can certainly attack real ones� Thus� the results here should be viewed as complementing
Theorem ���� telling us how close to tight is the analysis in the latter�

Proposition �
� Let n� � be positive integers and d� q non	negative integers with � 	 d � n� and
let F � Fn

d� Then there is an adversary CS which asks at most q queries of an f oracle� no queries
of the E or E�� oracles� and achieves advantage

IAdv
prf
F
�CS � � �� e�bq��dc�	�d��
��d�n��

�

Proof� See Section ��	�

��

0

0.2

0.4

0.6

0.8

1

8 16 24 32 40 48 56 64

A
dv

an
ta

ge

lg Q

Upper Bound, k = 64, d = 7, n = 64
Lower Bound, k = 64, d = 7, n = 64

Figure 	 With typical parameters our bounds are tight� Illustrating Propositions ��� and ��� and
Theorem ��� for n � ��� � � ��� d � �� The horizontal axis Q is the same as in the previous
gures�

Proposition �
� Let n� � be positive integers and t� d� c be non	negative integers with � 	 d � n�
let F � Fn

d� and let j � d��ne� Then there is an adversary KS which asks c queries of her f oracle�
t queries of her E oracle� and achieves advantage

IAdv
prf
F
�KS � � minf�� bt��cj � c�c � ��j�g � t��cn �

Proof� See Section ��	�

The �rst lower bound is around �� e�q�
d�n��

� while the second one is around t��j�� These become
signi�cant when q � �n�d or t � �j�� The point of giving these lower bounds is to see how tight is
Theorem ���� As Figure 	 illustrates� the bounds are quite close for realistic parameters� On the
same plot we graph our upper and lower bound for � � ��� n � ��� and d � �� The curves almost
coincide�

� Proof of Theorem �	�

Refer to Section ��� for the theorem statement and to Section ��� for the de�nitions of security�
We now provide the proof�
Since the oracles we provide our adversaries are deterministic� we assume throughout and with

out loss of generality that no adversary ever repeats an oracle query� By TimeE we mean the
worst
case amount of time required to calculate function E in our underlying ��xed� model of
computation�
We use the notion of multi�oracles as in �	�� to provide a framework in which to reason about

intermediate constructions that arise in our analysis� A multi�oracle ! is simply a sequence of
oracles� with some rules as to how queries to the multi
oracle are answered by the individual oracles�
In our setting� an adversary making q queries will be provided with a multi
oracle consisting of q
functions� f�� � � � � fq� each mapping n bits to n bits� The adversary�s j
th query to the multi
oracle
will be answered by fj� for j � �� � � � � q� �That is� if the j
th query to ! is xj then the response
is fj�xj��� Note that in this game it is not possible to ask two queries of a single oracle� nor to
ask queries in some di�erent order the adversary is e�ectively restricted to sequentially querying

�	

f�� � � � � fq in that order� with exactly one query to each function� Furthermore� all queries x�� � � � � xq
are distinct strings�
We will consider various possible multi
oracles� The �rst� represented pictorially� is

!��� EEk
� � � � � � EEk

�

where k
 f�� �g� is a random key and there is a total of q instances of EEk
above� Next come two

classes� or types� of multi
oracles� and in each type there are q � � di�erent multi
oracles� so that
we have !�s� i� for i � �� � � � � q and s � �� �� We typically want to visualize and compare the i
th
members of each class� These are represented pictorially below� In each case �i��� � � � � �q
 Permn

are randomly and independently chosen permutations� and k�� � � � � ki�� are random� distinct �
bit
keys�

!��� i� Ek� � � � Eki��
Eki �i�� � � � �q ki
 f�� �g� � fk�� � � � � ki��g

!��� i� Ek� � � � Eki��
�i �i�� � � � �q �i
 Permn

In other words� in !��� i�� the i
th oracle is encryption under a key ki distinct from those of the
previous oracles� In !��� i� the i
th oracle is a random permutation independent of anything else�
Observe that !��� i� � !��� i � �� for i � �� � � � � q� this is something we will use later� Now� for
s � �� �� � and i � �� � � � � q we let

��s� i� � Pr
h
A�	s�i
 � �

i
and ���� � Pr

h
A�	�
 � �

i
be the probability that A outputs � in the game where it is provided with the corresponding multi

oracle� the probability being over the choice of the multi
oracle as discussed above� and over the
coins of A� if any� We now claim that

���� � Pr � k
 f�� �g� � g
 EEk
 Ag � � �

���� �� � Pr � g
 Randn A
g � � � �

The �rst equality follows from the de�nition of !���� For the second� observe that !��� �� consists
of q random� independent permutations� ��� � � � � �q� The adversary is making exactly one query to
each of these� so the responses are independently and uniformly distributed over f�� �gn� Thus the
equality is true�
Thus our goal is to bound ���� � ���� ��� We will do so by comparing both to ���� q�� The

proofs of the following lemmas appear later�

Lemma �
� ����� ���� q� 	 CSec
prp
E �q� t���

Lemma �
� ���� q�� ���� �� 	 q �CSecprpE �	� t�� �
q�

��n
�

Now we can write

����� ���� �� � ������ ���� q�� � ����� q� � ���� ���

And then apply the two lemmas above to obtain the bound in the theorem� So to complete the
proof of the theorem we need to prove the two lemmas� The �rst is quite straightforward� the
second will take work�

Proof of Lemma �
�� We bound the quantity in question via the advantage of a distinguisher
D �for E versus Permn� that we will construct below� It gets an oracle for a function g which is
either Ek for a random k or is �
 Permn and wants to tell which� It uses A as a subroutine and
will respond to oracle queries in such a way that A is working with multi
oracle Eg� Eg� � � � � Eg�
The code for D is as follows

��

Algorithm Dg

Run A� replying to the j
th oracle query xj of A by Eg	xj
�xj�

Output whatever A outputs and halt

We now claim that

Pr � k
 f�� �g� � g
 Ek D
g � � � � ����

Pr � g
 Permn D
g � � � � ���� q� �

The �rst is clear� For the second� note the sequence of auxiliary keys used to answer the queries
when g
 Permn will be outputs of g on distinct points� hence random� distinct keys� which
matches the de�nition of !��� q��

Now� note that D makes q oracle queries and has a running time bounded by that of A plus q �TimeE
plus overhead� making it at most t�� Thus� we know that its advantage is at most CSecprpE �q� t���

Proof of Lemma �
�� We bound the quantity in question via the advantage of a distinguisher
D �for E versus Permn� that we will construct below� It gets an oracle for a function g which is
either Ek for a random k or is �
 Permn and wants to tell which� It uses A as a subroutine�
Before specifying the code and analysis let us try to give an idea of the issues�

D will try to respond to oracle queries of A in such a way that A is working with multi
oracle

Ek� � � � Eki��
g �i�� � � � �q ���

where k�� � � � � ki�� are random but distinct keys� and �i��� � � � � �q are random� independent permu

tations� D can �simulate� the �rst k� � oracles by choosing random but distinct keys k�� � � � � ki��
and responding to a query to the j
th oracle �j � �� � � � � i��� via Ekj ���� Simulation of the �i���
th
to q
th oracles is even easier since each is called exactly once� D can just return a random number
in response to each query� Now� we would like that if g
 Ek for a random k then the oracle provide
to A in the simulation looks like !��� i�� and if g
 � for a random permutation � then it looks like
!��� i�� However� neither of these wishes is easily realizable� Consider the �rst� namely the case
where g � Ek for a random k� For the oracle provided to A in the simulation to be !��� i� it must
be that k �� fk�� � � � � ki��g� Although this happens with some probability� namely �� �i� ����

�� D
does not know whether or not this happens� �And we can�t just neglect this� because then it turns
out the bound would not be of good quality�� Therefore the idea is to have D try to �gure this out
it will run a certain test whose purpose is to accept if k � fk�� � � � � ki��g and reject otherwise� The
test is to compute g on m values� where m is some parameter whose value in#uences the analysis�
and compare this to Ekj evaluated on the same values� for j � �� � � � � i � �� Now the problem is
that this test might accept even though k is not in fact one of k�� � � � � ki��� and the analysis must
take that into account�

Let us now specify the code� We will then give the analysis� Below� m 	 � is an integer parameter
whose value we will specify later and hli is the n
bit binary representation of integer l�

Algorithm Dg

Let i
 f�� � � � � qg
Let k�� � � � � ki�� be random but distinct �
bit strings
Let ri��� � � � � rq
 f�� �gn

��

For l � � to m� � do
yl
 g�hli�

end for

j
 �
While �j 	 i� �� do

If �Ekj �h�i� � y� and � � � and Ekj �hm� �i� � ym���

then return � �and halt�
j
 j � �

end while

Run A� replying to the j
th oracle query xj of A as follows
if j � i then reply by Ekj �xj�

if j � i then reply by g�xj�
if j 	 i then reply by rj

Return whatever A outputs �and halt�

We refer to �Ekj �h�i� � y� and � � � and Ekj �hm� �i� � ym��� as the �equality test for key kj��
For the analysis� let

��� � Pr � k
 f�� �g� � g
 Ek D
g � � �

��� � Pr � g
 Permn D
g � � � �

We now claim a certain lower bound on ��� which will be justi�ed below

��� �
�

q

qX
i��

�
��

i� �

��

�
���� i� �

i� �

��
���

�
�

q

qX
i��

���� i� � �	�

The second inequality is just arithmetic� but we do have to justify the �rst� In particular� it would
appear that we have not accounted for the equality test at all� but in fact we have�

Equation ��� is justi�ed like this� With probability �i � ����� it will be the case that k �
fk�� � � � � ki��g� �The probability is exactly this because k�� � � � � ki�� are distinct�� In this case�
the appropriate equality test �namely the one for kj where kj � k� is sure to return true and D
will certainly output �� This accounts for the second term in Equation ���� Now� with probability
� � �i � ������ k �� fk�� � � � � ki��g� In this case� we would like to have the equality tests fail so
that we are providing A with the multi
oracle of Equation ���� If this would happen� we would
have Equation ��� with an equality� not an inequality� But some test may succeed� In fact for any
key k �� fk�� � � � � ki��g there is a certain probability p�k� that the test succeeds� and this means
that each key reaches the simulation part of the code with a di�erent probability� However� the
key observation is that if the test succeeds in these bad cases� D will output �� So the overall
probability of outputting one cannot decrease relative to the case where the tests do not succeed�
so what we have written is indeed a lower bound�

Now� we upper bound ��� as follows

��� 	
�

q

qX
i��

�
���� i� � �i� �� �

m��Y
l��

�

�n � l

�
���

��

	

�
�

q

qX
i��

���� i � ��

	
�
q � �

�
�
�

�n
�

�	m��
	n��

� ���

Equation ��� is justi�ed by observing that the chance of an equality test for a particular key kj
succeeding when g is a random permutation is at most the product above� and there are i� � keys
tested� On the other hand� the probability of reaching the simulation is certainly only decreased� so
the probability of D outputting � via A can�t exceed ���� i�� To get Equation ��� we are �rst using
the observation made above that !��� i� is just !��� i � ��� On the other hand we are simplifying
the second term� using our assumption that q 	 �n���

We can now lower bound the di�erence �namely the advantage of D�

CAdv
prp
E �D� � ���� ���

�

�
�

q

qX
i��

���� i� � ���� i � ��

	
�
q � �

�n��
�

�	m��
	n��

�
�

q
����� q� � ���� ��� �

q � �

�n��
�

�	m��
	n��

�

The simpli�cation came about because the sum �telescoped�� Now� multiply both sides of the
above by q and transpose terms to get

���� q�� ���� �� 	 q �CAdvprpE �D� �
q�q � ��

�n��
�

�	m��
	n��

�

The second term can be made arbitrarily small by increasing the parameter m� Let us decide to
set m � �� Now� notice that D makes m � � � 	 queries to its oracle g� and its running time is
bounded by t�� so that CAdvprpE �D� 	 CSec

prp
E �m� t��� Thus we conclude that

���� q� � ���� �� 	 q �CSecprpE �	� t�� �
q�

��n
�

This completes the proof of Lemma ����

 Proof of Theorem �	�

Refer to Section ��� for the theorem statement� We now provide the proof�
Since the oracles we provide our adversaries are deterministic� we assume throughout and with

out loss of generality that no adversary ever repeats an oracle query� Sometimes we regard a block
cipher as a two
dimensional table with �� rows and �n columns� where E�k� x� is the value in the
cell of the k
th row and x
th column�
Given a partial function f from �a subset of� f�� �gn to �a subset of� f�� �gn� we denote the

domain and range of f �the points where f has been de�ned and the values those domain points map
to� by Dom�f� and Range�f�� respectively� De�ne Dom�f� � f�� �gn � Dom�f� and Range�f� �
f�� �gn �Range�f��
When an oracle�s algorithm is speci�ed in pseudo
code having a Boolean variable bad i� BADi is

the event that #ag bad i is set true and is the �rst such bad #ag to be set by the algorithm�

��

��� Lemmas

The proofs in this section use two lemmas which are independent of the rest of the section� We
give them here�
The �rst lemma bounds the ability of an adversary to distinguish the output from two nearly

identical programs� When we write two algorithms which simulate two oracles� we specify the
algorithms to be syntactically identical for as much of their speci�cation as possible� Where their
speci�cations diverge� a #ag is set� and we bound the advantage of an adversary based on her ability
to set one of these #ags� See Figures � and � for examples� The basis for this approach is founded
on Lemma ����
The second standard lemma gives upper and lower bounds for the birthday phenomena in

Lemma ��	�

Distinguishing Nearly Identical Programs� Consider an adversary A and her oracle f � and
assume A is de�ned to output either � or �� Say that f is set to either program P� or P�� and that
the advantage A has in distinguishing which is the case is AdvA � Pr��A � ��� Pr��A � ��� Now
consider the case where P� and P� are syntactically identical except for some if
guarded instructions
in P� which� if executed� set a boolean #ag bad� Let BAD be the event in P� that bad is set�

Lemma �
� AdvA 	 Pr��BAD��

Proof� Let C be the set of all in�nite strings representing the coins used in the experiment� Classify
the elements of C into four non
overlapping sets� C��� C��� C�� and C��� where the elements of C��

cause �AP� � � �AP� � ��� and the elements of C�� cause �A
P� � � �AP� � ��� etc� Then�

AdvA � Pr
C
�AP� � ��� Pr

C
�AP� � ��

�
jC��j� jC��j

jCj
�
jC��j� jC��j

jCj

�
jC��j � jC��j

jCj

	
jC��j� jC��j

jCj

� Pr
C
�AP� �� AP� �

	 Pr��BAD�

To see the last step� if a set of coins does not cause the bad #ag to be marked� then only shared
code is executed� and P� and P� have identical output� Therefore� A can only have advantage on
the coins selected which set bad�

Corollary �
� If P� and P� are identical except for some if 	guarded instructions in P� which
if executed set bad � and some if 	guarded instructions in P� which if executed set bad �� then
AdvA 	 Pr��BAD�� � Pr��BAD���

Proof� Let program P� be identical to the common parts of P� and P�� Then� Pr��A � ���Pr��A �
�� 	 �Pr��A � ��� Pr��A � ��� � �Pr��A � ��� Pr��A � ��� 	 Pr��BAD�� � Pr��BAD��

��

Lemma �
� �Birthday Phenomenon� Given n balls tossed independently and randomly into m
bins� the probability that at least one bin has more than one ball� C�n�m�� satises ��e�n	n��
��m 	
C�n�m� 	 n���m�

��� Proof of Theorem
��� Part �

In the ideal model the adversary has access to E� E��� and �FndE��k� �� oracles� However� we
initially envision an adversary with access only to the last of these� Later we correct for this
simplifying assumption� Modularizing the proof in this way makes this already
complex argument
easier to follow�

Lemma �
� Let n� � be positive integers and d� "q be non	negative integers� Let j � d��ne� Let A
be an adversary with a single oracle� f � and suppose A asks f queries referring to no more than "q
common key groups� Then Adv�A

def

�

Pr
h
E
 BC��n� k
 f�� �gj�� f��� def

� Fn
dE�k� �� Af � �

i
� Pr � �
 Randn A

� � � �

	 j������ �
"q�

���
� ���� � "q��d�n�� � "qj��� �

Note that if an adversary is restricted to referring to no more than "q common key groups� implicitly
she is restricted to no more than "q�d total queries�

Proof� To prove the bound we devise an algorithm to simulate an oracle for the adversary� Actually�
there are two algorithms developed� Both are indicated in Figure �� the di�erence being whether
or not we set the #ag Game� � We call �Game �� the result of running the speci�ed algorithm with
the #ag Game� set to false� and we call �Game �� the result of running the speci�ed algorithm
with the #ag Game� set to true�

The idea of these games is to simulate one of two experiments �the exact two experiments used in
the de�nition of Adv�A� and to structure these simulations so that they are �identical� until this
can be maintained no longer� Game � simulates the experiment used to de�ne the second addend
of the adversary�s advantage� Game � simulates the experiment used to de�ne the �rst addend
of the adversary�s advantage� When Games � and � �diverge�� a #ag will be set� Bounding the
probability that any of the game�s #ags get set will serve to bound Adv�A�

Let p� � Pr
h
E
 BC��n� k
 f�� �gj�� f��� def

� Fn
dE�k� �� Af � �

i
denote the �rst addend of the

adversary�s advantage in Lemma ���� Similarly� let p� � Pr � �
 Randn A
� � � � denote the

second addend� Let Pri�E� denote the probability of event E with respect to the probability space
induced by Game i� Our de�nitions of an oracle F in Game � and Game � �Figure �� make the
following clear�

Claim �
� Pr�
h
AF � �

i
� p��

Claim �
� Pr�
h
AF � �

i
� p��

To bound jp� � p�j we bound an adversary�s advantage in di�erentiating between Game � and
Game �� The following claim is a direct result of Lemma ����

��

On initialization�

E��� �� is unde�ned
bad�� bad �� bad� � false

k�� � � � � kj � f�� g�

ukey� fk�
�
g � � � � � fk�j g

if Game� and jukeyj � j then
bad� � true

for i� � � � � � j do
E�ki� ��� Permn

On oracle query F �x��

y � f�� gn

x� � x�d
k� � �E�k�� x

��k � � � kE�kj � x
���

����

if Game� and k� � ukey then

bad � � true

return E�k�� x�
if Game� and y � Range�E�k�� ��� then
bad � � true

y � Range�E�k�� ���
de�ne E�k�� x� � y
return y

Figure � Game �
when Game� � false� and Game �
otherwise��

Claim �
� jPr�
h
AF � �

i
� Pr�

h
AF � �

i
j 	

P�
i�� Pr� �BADi ��

As a result of this claim� we need only bound the three events BAD�� BAD� and BAD� in Game ��

Bounding BAD�� The values k� � � � � kj are uniformly sampled and their collision probability is
upper bounded with the birthday bound� giving Pr��BAD� � 	 j�������

Bounding BAD�� Recall that� by our convention� the event BADI can only occur when BADi

does not occur for all i � I� Event BADI is the event that bad I is the �rst bad #ag to be set�
Therefore� Pr��BAD� � 	 Pr��BAD�jBAD� �� and we analyze BAD� in the context that k�� � � � � kj are
random but distinct values� It is clear that each distinct set of keys k�� � � � � kj gives rise to the same

distribution on derived keys the value of the underlying key is not signi�cant� it is only a �name�
for referring to one of the permutations� Thus we could just as well have �rst choosen the derived
keys from the appropriate distribution� and only then chosen the underlying keys k�� � � � � kj �all
of them distinct�� Conducting the experiment in this way makes it clear that the chance that an
underlying key and a derived key coincide �given that the underlying keys are distinct� is at most
"qj���� since there are at most "q derived keys out of the �� possible ones� and whatever the derived
keys are� we subsequently choose j random distinct keys and look to see if there is a collision�

Bounding BAD�� Let BAD
� be the event in Game � that some collection of more than � common

key groups all map to the same k� value� �We choose the number � to be concrete� the proof works
with other numbers� but � yields a good result and simpli�es the exposition�� We bound Pr��BAD� �
by

Pr��BAD� � � Pr��BAD�jBAD
� � � Pr��BAD

� � � Pr��BAD�jBAD
� � � Pr��BAD

� �

	 Pr��BAD
� � � Pr��BAD�jBAD

� �

We now bound each summand�

Bounding Pr��BAD
� �� If � � n� then Pr��BAD

� � � � because the �rst n bits of each k� will be the
result of a permutation on di�ering group selector x� values� hence these values will be di�erent for
each common key group� In the case where � � n� each k� is generated by a single n
bit permutation�

��

with the trailing n�� bits deleted� This results in as many as min��n�d� �n��� common key groups
mapping to each k�
value� For some � common key groups x��� � � � � x

�
� to map to the same derived

key� the permuted values of x��� � � � � x
�
� must agree in the �rst � bits� The probability of this is no

more than ����� The adversary is restricted to "q common key groups� so given

�q
�

�
ways of grouping

the common key groups into groups of size �� Pr��BAD
� � 	

�q
�

�
� ���� 	 �q�

�� � �
����

Bounding Pr��BAD�jBAD
� �� Each k� has no more than � common key groups mapped to it�

each of size �d� Also� no more than "q di�erent k� values are mapped to� Using a birthday bound
�Lemma ��	�� Pr��BAD�jBAD

� � 	 "q � C�� � �d� �n� � "q��d�n���

��� Proof of Theorem
��� Part �

We now include the oracles E�E��� Clearly we can give our adversary A from the previous section
a block cipher G�G�� unrelated to �FndE��k� �� and her advantage will not be increased by querying
G�G��� So another way to express Adv�A is

Adv�A �
���Pr hE
 BC��n�G
 BC��n� k
 f�� �gj�� fdef

��Fn
dE��k� ��

AG�G���f � �
i
� Pr

h
E
 BC��n� �
 Randn A

E�E���� � �
i���

Recall that we aim to bound

AdvA �
���Pr hE
 BC��n� k
 f�� �gj�� fdef

��Fn
dE��k� �� AE�E���f � �

i
�

Pr
h
E
 BC��n� �
 Randn A

E�E���� � �
i��� �

The second summand for each of the above two expressions are identical� so the next goal is to
bound the the di�erence of the �rst summands� In summary� the idea is to show that there is very
little di�erence in adding oracles G�G�� unrelated to �FndE��k� �� and adding the �real� oracles
E�E���

Lemma �
� Let n� � be positive integers and d� q� t� "t be non	negative integers� Let j � d��ne
and "q � dq��de� Let A be an adversary with three oracles� E��� ��� E����� ��� and f���� who asks
the numbers �� � � � � q � � of its f 	oracle� and at most t total queries� referring to no more than "t
common key groups� of its E	 and E��	oracles� Then

Adv�A
def

�

���Pr hE
 BC��n� k
 f�� �gj�� fdef

��Fn
dE��k� �� AE�E���f � �

i
�

Pr
h
E
 BC��n�G
 BC��n� k
 f�� �gj�� fdef

��Fn
dE��k� �� AG�G���f � �

i���
	

�
j�

�
� "qj � tj � t

�
� ��� �

"t�

���
� ���� � t"t�d�n���� �

Proof� To prove the bound we devise an algorithm to simulate a triple of oracles hE�E��� F i for
the adversary� Actually� there are two algorithms developed� Both are indicated in Figure �� the
di�erence being whether or not we set the #ag Game� � We call �Game 	� the result of running the

��

On initialization�

bad �� � � � � bad � � false

F�HE �HF � unde�ned
k�
�
� � � � � k�j � f�� g�

ukey� fk�
�
g � � � � � fk�j g

if Game� and jukeyj � j then
bad � � true

HF �k�
�
� ��� � � � �HF �k�j � ��� Permn

On oracle query F �x��

x� � x�d
k� � �E�k�� x

��k � � � kE�kj � x
���

����

if HF �k�� x� de�ned then

return HF �k�� x�
if Game� and HE �k�� x� de�ned then

bad � � true

return HE �k�� x�
y � Range�HF �k�� ���
if Game� and y � Range�HE �k�� ��� then
bad � � true

y � Range�HE �k� ��� 	Range�HF �k� ���
de�ne HF �k�� x� � y
return y

On oracle query E�k� x��

if k � ukey then

bad� � true

if HE �k� x� de�ned then

return HE �k� x�
if Game� and HF �k� x� de�ned then

bad� � true

return HF �k� x�
y � Range�HE �k� ���
if Game� and y � Range�HF �k� ��� then
bad� � true

y � Range�HE �k� ��� 	 Range�HF �k� ���
de�ne HE �k� x� � y
return y

On oracle query E���k� y��

if k � ukey then

bad� � true

if HE���k� y� de�ned then

return HE���k� y�
if Game� and y � Range�HF �k� ��� then
bad� � true

return HF���k� y�
x� Dom�HE �k� ���
if Game� and x � Dom�HF �k� ��� then
bad	 � true

x� Dom�HE �k� ��� 	 Dom�HF �k� ���
de�ne HE �k� x� � y
return x

Figure � Game 	 �when Game� � true� and Game � �otherwise��

speci�ed algorithm with the #ag Game� set to true� and we call �Game �� the result of running
the speci�ed algorithm with the #ag Game� set to false�

The idea of these games is to simulate one of two experiments �the exact two experiments used
in the de�nition of Adv�A� and to structure these simulations so that they are �identical� until
this can be maintained no longer� Game 	 will simulate the �rst experiment in the expression for
Adv�A� that is� the experiment associated to

p�
def

�Pr
h
E
 BC��n� k
 f�� �gj�� fdef

��Fn
dE��k� �� AE�E���f � �

i
Game � will simulate the second experiment in the expression for Adv�A� that is� the experiment
associated to p�

def

�

Pr
h
E
 BC��n�G
 BC��n� k
 f�� �gj�� fdef

��Fn
dE��k� �� AG�G���f � �

i
�

When Games 	 and � �diverge�� a #ag will be set� Bounding the probability that this #ag gets set
will serve to bound Adv�A�

Games 	 and � were designed to make the following two claims clear

��

Claim �
 Pr�
h
AE�E���F � �

i
� p��

Claim �
�	 Pr�
h
AE�E���F � �

i
� p��

Combining these claims and Lemma ���� the advantage adversary A can achieve is bounded

Claim �
�� jp� � p�j 	
P�

i�� Pr��BADi ��

Therefore� instead of directly considering adversaries who try to maximize jp��p�j� we may consider
adversaries whose goal it is to set the bad i #ags in Game 	� Claim ���� tells us that jp� � p�j is no
larger than the maximum probability an adversary can achieve in setting the #ags in Game 	� For
the remainder of this section� we consider in turn the maximum probability an adversary D has in
setting each of the bad i #ags� The overall bound we wish to prove� jp� � p�j� is no larger than the
sum of these maximum probabilities� We now bound the maximum probability that an adversary
has in causing each event BADi in Game 	� Recall our convention that BADi is the event that bad i
is the �rst #ag to get set�

Bounding BAD�� The underlying keys are uniformly distributed and so we bound their collision
probability with a birthday bound� So� Pr��BAD� � 	 j�������

Bounding BAD��BAD��BAD�� Each common key group shares a single derived key� The elements
of the common key group along with their associated derived key together de�ne a contiguous set of
entries in the HF
table which we call distinguished boxes� The locations of these distinguished boxes
are �xed during initialization by the �xing of HF �k�� � ��� � � � �HF �k

�
j � ��� The adversary is allowed F

queries to no more than "q common key groups� so there will never be more than "q distinguished
boxes with entries in them� �Any distinguished boxes which have derived keys which coincide with
any of the underlying keys in ukey will also have their entries �lled� but we do not consider those
here because BAD events associated with them are subsumed by BAD� and BAD��� Furthermore�
the distribution on the location of the "q occupied distinguished boxes is una�ected by the ordering
or content of the adversary�s queries� We therefore consider an adversary who asks her F queries
�rst�

If we consider the the projection onto the HE
table of the "q occupied distinguished boxes from the
HF
table� then the ability of of the adversary to ask her E
oracle a query which intersects one of
the projected distinguished boxes serves as a bound on the three events BAD� �BAD� �BAD�� Let
BAD

� be the event in Game 	 that such an intersection ocurrs� Event BAD��BAD��BAD� cannot
occur without such an intersection� And so�

Pr��BAD� � BAD� � BAD� � � Pr��BAD� � BAD� � BAD�jBAD
� �Pr��BAD

� � �

Pr��BAD� � BAD� � BAD�jBAD
� �Pr��BAD

� �

	 � � Pr��BAD
� � � � � Pr��BAD

� �

� Pr��BAD
� �

Event BAD� is really the union of "q events That the adversary asks a query of E which intersects
projected distinguished box dboxi� for � 	 i 	 "q� By the principle of incusion�exclusion we thus

�	

bound BAD� by a sum� Pr��BAD
� � � Pr���

�q
i��dboxi � 	

P�q
i�� Pr�� dboxi �� But� notice that each

column of the HE
table has at most one distinguished box and that its derived key is uniformly
distributed� and so Pr�� dboxi � � qi�

��� where qi is the number of queries the adversary asks in

the column where the i
th distinguished box is projected� Finally� we have
P�q

i�� Pr�� dboxi � �P�q
i�� qi�

�� � q����

Bounding BAD��BAD��BAD�� None of the events comprising BAD��BAD��BAD� occur unless
an entry in HF �k� �� is also in HE�k� ��� for any k� We therefore bound BAD��BAD��BAD� on the
adversary�s ability to cause such a collision in the same manner we did in the previous paragraphs�
Let BAD� be the event that such a collison occurs� then Pr��BAD� � BAD� � BAD� � 	 Pr��BAD

� ��

As in the proof of Lemma ���� we assume that no � common key groups map to the same derived
key �see that proof for details�� Thus� we consider the case where no HF �k� �� has more than
� � �d de�ned elements� and they are all random and distinct by de�nition� �Again� those entries
associated witht the elements of ukey are bounded separately�� So� given that qi E
oracle queries
are made of the form E�i� ��� no matter what their distribution� the chance of colliding with at

least one of the � � �d random distinct values from HF �i� �� is � � �� � �qi���
� � � � �d������

d
� We

sum over all qi� The sum is maximized when qi � q for a single value of i� Adding the term which
compensates for our assumption that no � common key groups map to the same derived key� and

we arrive at our bound� �� ��� �q���� � � � �d������
d
� �q�

�� � �
���

Bounding BAD� � BAD�� The underlying keys k�� � � � � kj are uniformly distributed on f�� �g��
Furthermore� The value of each underlying key is not signi�cant� it is only a �name� for referring
to one of the permutations� j����

The summation of these terms completes the bound of Lemma ����

By the triangle inequality� AdvA 	 Adv�A �Adv
�
A� which concludes the proof of Theorem ����

Remark �
�� If � � n then we can improve our bound to

AdvA 	 "q��d�n�� � j���� � j"q����� � td��ne��� � t��� � t"t�d�n�� �

Proof� If � � n� then Pr��BAD� � 	 "q��d�n�� and Pr��BAD� � � Pr��BAD� � 	 t"t�d�n��� Each
common key group will be mapped to a di�erent derived key k�� When � � n� the keys are generated
by a function which is the concatenation of j � � permutations� ensuring than no two inputs map
to the same output�

� Analysis of attacks

Here we prove the lower bounds� namely the results of Section ��	�

�� Proof of Proposition
��

Adversary CS looks for collisions within common key groups in the output of f � The attacks are
speci�ed in Figure ��

Proof� If f��� � �FndE��k� �� then each common key group is answered by a single permutation�

and so Pr�E
 BC��n� k
 f�� �gj� CSFn
dE	k��
 � �� � �� Thus� advantage IAdvprf

F
�CS � is exactly

��

function CS f �q� d�
for i � � � � � bq��dc
 do
if jff�i�d�� f�i�d � �� � � � �

f�i�d � �d
 �gj � �d

then return
return �

function KS f�E�t� d� j� c�
Choose K � f�� gj� where

jKj � minfbt��c�j � ��c� �j�g
for each k� � � � kj � K do

k� � �E�k�� i�k � � � kE�kj � i�������
if f�i�d� � E�k�� i�d� for all � � i � c

then return
return �

Figure � Naive attacks� Left� collision	search adversary� Right� key	search adversary�

Pr��
 Randn CS
�	�
 � ��� This is easily bounded using Lemma ��	� Let Q � bq��dc�

IAdv
prf
F
�CS � � Pr

h
�
 Randn CS

�	�
 � �
i

� Pr
h
�
 Randn

WQ
i��

h
�l� j �i� ���d 	 l � j 	 i�d � � ��l� � ��j�

i i

� �� Pr
h
�
 Randn

VQ
i��

h
�l� j �i� ���d 	 l � j 	 i�d � � ��l� �� ��j�

i i

� ��
QY
i��

Pr
h
�
 Randn

h
�l� j � 	 l � j 	 �d � � ��l� �� ��j�

i i

� �� e�Q	�
d��
�d�n��

�� Proof of Proposition
�	

Adversary KS makes a small number �c� of f
queries and a large number �t� of E
queries� �With
typical values of ��n� imagine c � � or c � 	�� The adversary simply guesses a key and then tries
to con�rm that guess� The attack is again speci�ed in Figure ��

Proof� If f is a random function then there is a small chance thatKS will incorrectly identify it as an
instance of FndE� For this to happen some k�� � � � � kj must collide with f �s output� This occurs with

chance only ��nc for each of the t queries� and so Pr
h
E
 BC��n� f
 Randn KS

f�E�t� d� j� c� � �
i

is no more than t��nc�

If f is an instance of FndE� then the chance that the algorithm outputs � is at least as much as the
probability that the algorithm guesses the random key set correctly� We try minfbt��c�j����c� �j�g
out of a total �j� possible keys� from which the result now follows�

References

��� W� Aiello and R� Vanketesan� �Foiling birthday attacks in output
doubling transfor

mations�� Advances in Cryptology � Eurocrypt �� Proceedings� Lecture Notes in Computer
Science Vol� ����� U� Maurer ed�� Springer
Verlag� �����

��� M� Bellare� O� Goldreich and H� Krawczyk� personal communications� �����

��

�	� M� Bellare� R� Canetti and H� Krawczyk� �Pseudorandom functions revisited The
cascade construction and its concrete security�� Proceedings of the 	�th Symposium on Foun	
dations of Computer Science� IEEE� �����

��� M� Bellare� A� Desai� E� Jokipii and P� Rogaway� �A concrete security treatment of
symmetric encryption�� Proceedings of the 	�th Symposium on Foundations of Computer
Science� IEEE� �����

��� M� Bellare� R� Gu�erin and P� Rogaway� �XOR MACs New methods for message
authentication using a �nite pseudorandom function�� Advances in Cryptology � Crypto ��
Proceedings� Lecture Notes in Computer Science Vol� ��	� D� Coppersmith ed�� Springer

Verlag� �����

��� M� Bellare� J� Kilian and P� Rogaway� �The security of cipher block chaining�� Ad	
vances in Cryptology � Crypto �� Proceedings� Lecture Notes in Computer Science Vol� �	��
Y� Desmedt ed�� Springer
Verlag� �����

��� S� Even and Y� Mansour� �A construction of a cipher from a single pseudorandom permu

tation�� Advances in Cryptology � ASIACRYPT �� Proceedings� Lecture Notes in Computer
Science Vol� �	�� H� Imai� R� Rivest and T� Matsumoto ed�� Springer
Verlag� �����

��� O� Goldreich� S� Goldwasser and S� Micali� �How to construct random functions��
Journal of the ACM� Vol� 		� No� �� ����� pp� ���$����

��� S� Goldwasser and S� Micali� �Probabilistic encryption�� J� of Computer and System
Sciences� Vol� ��� April ����� pp� ���$����

���� J� Kilian and P� Rogaway� �How to protect DES against exhaustive key search�� Ad	
vances in Cryptology � Crypto �� Proceedings� Lecture Notes in Computer Science Vol� �����
N� Koblitz ed�� Springer
Verlag� �����

���� M� Luby� Pseudorandomness and Crpyptographic Applications� Princeton University Press�
�����

���� M� Luby and C� Rackoff� �How to construct pseudorandom permutations from pseudo

random functions�� SIAM J� Comput� Vol� ��� No� �� April �����

��	� M� Matsui� �The �rst experimental cryptanalysis of the Data Encryption Standard�� Ad	
vances in Cryptology � Crypto �� Proceedings� Lecture Notes in Computer Science Vol� �	��
Y� Desmedt ed�� Springer
Verlag� ����� pp� �$���

���� U� Maurer� �A simpli�ed and generalized treatment of Luby
Racko� pseudorandom per

mutation generators�� Advances in Cryptology � Eurocrypt �� Proceedings� Lecture Notes in
Computer Science Vol� ���� R� Rueppel ed�� Springer
Verlag� ����� pp� �	�$����

���� M� Naor and O� Reingold� �On the construction of pseudo
random permutations Luby

Racko� revisited�� Proceedings of the ��th Annual Symposium on Theory of Computing�
ACM� �����

���� J� Patarin� �Improved security bounds for pseudorandom permutations�� Fourth ACM Con

ference on Computer and Communications Security� �����

��

���� J� Patarin� �About Feistel schemes with six �or more� rounds�� To appear in Fast Software
Encryption �FSE��� March �����

���� J� Pieprzyk� �How to construct pseudorandom permutations from single pseudorandom
functions�� Advances in Cryptology � Eurocrypt �� Proceedings� Lecture Notes in Computer
Science Vol� ��	� I� Damg%ard ed�� Springer
Verlag� ���� pp� ���$����

���� C� Shannon� �Communication theory of secrecy systems�� Bell Systems Technical Journal�
������ ���$��� �������

���� V� Shoup� �On fast and provably secure message authentication based on universal hash

ing�� Advances in Cryptology � Crypto �� Proceedings� Lecture Notes in Computer Science
Vol� ����� N� Koblitz ed�� Springer
Verlag� �����

���� M� Wegman and L� Carter� �New hash functions and their use in authentication and set
equality�� J� of Computer and System Sciences ��� ���$��� �������

���� Y� Zheng� T� Matsumoto and H� Imai� �Impossibility and optimality results on construct

ing pseudorandom permutations�� Advances in Cryptology � Crypto �� Proceedings� Lecture
Notes in Computer Science Vol� �	�� A� J� Menezes and S� Vanstone ed�� Springer
Verlag�
����� pp� ���
����

��

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

