
Fast Universal Hashing with Small Keys
and No Preprocessing: The PolyR Construction

January 4, 2001

Abstract

We describe a universal hash-function family, PolyR, which hashes messages of effectively arbi-
trary lengths in 3.9–6.9 cycles/byte (cpb) on a Pentium II (achieving a collision probability in
the range 2−16–2−50). Unlike most proposals, PolyR actually hashes short messages faster (per
byte) than long ones. At the same time, its key is only a few bytes, the output is only a few
bytes, and no “preprocessing” is needed to achieve maximal efficiency. Our designs have been
strongly influenced by low-level considerations relevant to software speed, and experimental
results are given throughout.

Keywords: Universal hashing, software-optimized hashing, message authentication.

1 Introduction

Ever since its introduction by Carter and Wegman in 1979 [6], universal hashing has been an im-
portant tool in computer science. Recent attention has been paid to universal hashing as a method
to authenticate messages, an idea also proposed by these authors [12]. Its use in authentication has
resulted in several very fast universal hash functions with low collision probabilities. But the imple-
mentations of these fastest universal hash functions tend to require either significant precomputed
data, long keys or special-purpose hardware to achieve their impressive speeds.

Our contribution is a polynomial-based hash function we call PolyR. This hash function is not
as fast as the fastest hash functions which have been designed for message authentication—speed
is about 3.9–6.9 cpb. But that is still very fast, and, compared to the fastest of hash functions,
PolyR has some different and desirable characteristics. First, it hashes messages of essentially any
length (and varying lengths are fine). The key is short (say 28 bytes), independent of the message
length. The key requires no preprocessing: the natural representation of the key is the desirable
one for achieving good efficiency. Quite pleasantly, the hash function is fastest, per byte, on short
messages—it actually gets slower, per byte, as the message gets longer (the rates are constant until
particular threshold lengths are crossed, like 211 and 233 bytes). This is the exact reverse of most
optimized hash functions having short output lengths: they do better as the message gets longer. If
used for authentication, working best for short messages is desirable insofar as most network traffic
is short. Finally, implementation of our hash function family is simple and requires no special
hardware (like floating-point units or multimedia execution units) to do well.

The hash function family PolyR was designed for use in a multi-layer hashing construction, to
be used for fast message authentication. In such constructions a very fast first layer of hashing
is applied to an incoming message to compress it to a small fraction of its original length. This
compressed message is then passed to PolyR. When used as a second hash-layer in this manner, it

1

Hash Function Collision Bound Code + Data Size Speed (cpb) Output (bits)
This paper n2−28 (124 + 8) bytes 3.9 32
This paper n2−49 (409 + 16) bytes 6.9 64

Division Hash [10] n2−59 ∼ (? + 8) KB 7.5 64
UHASH-16 [3] 2−60 ∼ (7 + 2) KB 1.0 64
UHASH-32 [3] 2−60 ∼ (8 + 2) KB 2.0 64

hash127 [2] n2−127 ∼ (4 + 1.5) KB 4.3 127
MD5 unknown 1.7 KB 5.3 128

SHA-1 unknown 4.3 KB 13.1 160

Table 1: Comparing the new constructions with some other hash families. Sizes marked with “∼”
are conservative estimates. All timings are for the fastest Pentium/Pentium II timings reported.
To obtain smaller collision bounds one can hash twice or use the methods of this paper with p(96)
or p(128).

can be expected that the vast majority of messages fed to PolyR will be short, since messages must
be quite huge indeed before the second-layer compressed message gets long.

The hash function PolyR is a refinement to the classical suggestion of Carter and Wegman
where one treats the message as specifying the coefficients of a polynomial, and one evaluates that
polynomial at a point which is the key. Our refinements involve: (1) choosing the base field to be
a prime just smaller than a power of 232, 264, or 2128 (this is a common trick); (2) using a simple
“translation” trick to take care of the problem that some messages will now give rise to coefficients
not in the field (because our field is just smaller than a power of two); (3) limiting the key space to
a particular “convenient” subset of all the field points; and (4) using a “ramping-up” trick so that
we don’t have to pay in efficiency for short messages in order that the method can handle long ones.
The result is a simple, flexible, fast-to-compute hash function. These various tricks, individually
rather modest, work together to rise to a quite a nice hash-function family.

1.1 Related Work

Carter and Wegman introduced the ideas of universal hashing and using polynomials in universal
hashing in 1979 [6]. Since that time polynomials have been used for fast hashing in many other
works. In his “Cryptographic CRC”, Krawczyk views messages to be hashed as polynomials over
GF(2) which are divided modulo a random irreducible polynomial [8]. The division can be done
quickly in hardware using linear feedback shift registers. Shoup describes several variants of poly-
nomial hashing and provides implementation results [10]. His “generalized division hash”, which
bounds collisions between 64n-bit messages as no more than n2−59, views messages as polynomials
over GF(264), uses an 8 KB precomputed table, and has a throughput of 7.5 cpb on a Pentium
[10]. Afanassiev, Gehrmann and Smeets discuss fast polynomial hashing modulo random 3-, 4- and
5-nomials [1]. Their methods use small keys, but no implementation results are provided. Bern-
stein defines hash127, a polynomial hash defined over a large prime field, Zp(127) [2]. Over 32n-bit
messages it has a collision probability of no more than n2−127. Bernstein’s implementation uses
floating-point operations and a 1.5 KB precomputed table to achieve a throughput of 4.3 cpb on a
Pentium II.

Other software efficient universal hash functions include Rogaway’s bucket hash [9]; the MMH
function of Halevi and Krawczyk [7]; and the NH function of Black, Halevi, Krawczyk, Krovetz and
Rogaway [4]. The last is the current speed champion, providing collision probabilities of 2−60 with

2

4 KB of precomputed data and achieving throughput of 1.0 cpb on a Pentium II. using Pentium
MMX instructions, and 1.9 cpb without MMX.

If one does not require the combinatoric certainties of universal hashing, one could employ
cryptographic hashing to construct hash functions with short output lengths, short keys and lit-
tle preprocessing. Bosselaers, Govaerts and Vandewalle report on optimized Pentium timing for
several cryptographic hash functions: MD4 (3.8 cpb), MD5 (5.3 cpb) and SHA-1 (13.1 cpb) [5].
Simple methods can be used to convert these function into universal hash functions by, for exam-
ple, keying their initial values [11]. We do not know what the collision probability would be for
such constructions; for such a transformation to result in a good universal hash function, certain
unproved assumptions must be made about the cryptographic hash function.

1.2 Notation

The algorithms described in this paper manipulate both bit-strings and integers. The i-th bit of
string M is denoted M [i] (bit-indices begin with 1). The substring consisting of the i-th through
j-th bits of M is denoted M [i . . . j]. The concatenation of string M1 followed by string M2 is
denoted M1 ‖M2. The length in bits of string M is |M |. The string of n zero-bits is denoted 0n.

Given b > 1, the constant p(b) is the largest prime smaller than 2b. Given string M and b > 0,
padonezero(M, b) returns the string M ‖ 1 ‖ 0n, where n is the smallest number that makes the
length of M ‖ 1 ‖ 0n divisible by b. Given a string M , the function str2num(M) returns the integer
that results when M is interpreted as an unsigned binary number. Similarly, num2str(n, b) produces
the unique b-bit string which is the binary representation for the non-negative number n.

The number of elements in a set S is denoted |S|.

1.3 Organization

In the next few sections we develop a fast polynomial hash function. We build up to it in a couple of
stages. In the appendix we generalize the hash function using arbitrary parameters. Theorems are
given in both cases, but proven only for the concrete case. Proofs for the parameterized cases are
straightforward adaptations of the ones for the concrete version, so they are omitted. Understanding
the algorithms, theorems and proofs is easier in the concrete examples.

2 Carter-Wegman Polynomial Hashing: PolyCW

We begin by reviewing the “standard” approach for polynomial hashing. Let F be a finite field, let
k ∈ F be a point in that field (the “key”) and let m = (m0, . . . ,mn) be a vector of points in F that
we want to hash (the “message”). We can hash message m to a point y in F (the “hash value”)
by computing y = m0k

n + · · · + mn−1k
1 + mnk0, where all arithmetic is done in F. We denote

this family of hash functions as PolyCW [F]. The computation of this hash function (with n + 1
multiplications in the field and n + 1 additions in the field) is described in Figure 1.1

PolyCW [F] is one of the most well-known universal hash-function families. It was described by
Carter and Wegman in the paper that introduced that notion [6]. The main property it has is as
follows. If m = (mn, . . . ,m0) and m′ = (m′

n, . . . ,m′
0) are distinct vectors with the same number

of components then Pr[H ← PolyCW [F] ; k
R← F : Hk(m) = Hk(m′)] ≤ n

|F| . This result is due to
the Fundamental Theorem of Algebra which states that a nonzero polynomial of degree at most

1All algorithms depicted in this paper which evaluate polynomials do so by using Horner’s Rule which says that
polynomial m0k

n + · · ·+mn−1k
1 +mnk0 can be rewritten as mn + k(mn−1 + k(mn−2 + k(mn−3 + · · ·))). This allows

for simple iteration with one multiplication and one addition for each element of the message.

3

algorithm PolyCW [F](k,m)
// Parameter: F is a finite field.
// Input: k ∈ F and m = (m0, . . . ,mn) where mi ∈ F for 0 ≤ i ≤ n.
// Output: y ∈ F.
Let n be the number of elements in m
y = 0
for i← 0 to n do

y ← ky + mi // Arithmetic in F

return y

Figure 1: The basic polynomial-hashing method of Carter and Wegman on which we build. The
message m = (m0, . . . ,mn) is hashed to

∑n
i=0 mik

n−i.

algorithm PolyP32(k,m)
// Input: k ∈ K32 and m = (m1, . . . ,mn) where mi ∈ Zp(32) for 1 ≤ i ≤ n.
// Output: y ∈ Zp(32).
Let n be the number of elements in m
p← 232 − 5 // The largest prime smaller than 232

y = 0
for i← 1 to n do

y ← ky + mi mod p
return y

Figure 2: The PolyP32 algorithm. A variant of the PolyCW hash, accelerated by choosing a field
Zp(32) in which calculations can be performed quickly and choosing a key-set K32 which reduces
arithmetic overflow on 32-bit processors. The for loop could be rewritten as the polynomial: y =∑n

i=1(mik
n−i) mod p.

n can have at most n roots. Rewriting the above probability as Pr[k R← F :
∑n

i=0 mik
n−i =∑n

i=0 mik
n−i] = Pr[k R← F :

∑n
i=0(mi −m′

i)k
n−i = 0], and applying the Fundamental Theorem,

we see that there can be at most n values for k which cause
∑n

i=0(mi−m′
i)k

n−i to evaluate to zero.

3 Making PolyCW [F] Fast

Care must be taken in the implementation of PolyCW [F]. A naive implementation is unlikely to
perform well. Many choices of F and the set from which the hash-key is chosen can result in sub-
optimal performance. We investigate the effect that shrewd choices for F and the key-set have on
performance.

Field Selection. To make an efficient and practical hash function out of PolyCW [F] we should
carefully choose the finite field F. Fields like GF[264] make natural candidates, because we are
ultimately interested in hashing bit strings which are easily partitioned into 64-bit substrings. But

4

arithmetic in GF[2w] turns out to be less convenient for contemporary CPUs than a well-chosen
alternative. In this paper we will do better by using prime fields in which the prime is just smaller
than a power of two.

Consider first the use of the prime p(32) = 232 − 5, which is the largest prime less than 232.
To implement PolyCW [Zp(32)] efficiently, we need a good way to calculate y ← ky + m mod p(32),
where y, k,m ∈ Zp(32). There are several options. One’s first instinct is to use the native “mod”
operand of a high-level programming language (like “%” in C), or to use a corresponding operator
in the hardware architecture. But these choices are usually slow. For example, PolyCW [Zp(32)],
implemented in assembly using the native mod operator runs in 12.4 cpb (cycles/byte) on a Pen-
tium II.

A faster method exploits the fact that since p(32) = 232−5, the numbers 232 and 5 are equivalent
in the field Zp(32), so 233 = 10, 234 = 20 and, more generally, a232 = 5a in Zp(32). So, to calculate
ky mod p(32), first compute the 64-bit product z = ky and separate z into a 32-bit high-word a
and a 32-bit low-word b so that z = a232 + b. We can then use the observation just made and
rewrite z mod p(32) as 5a + b. This means that the calculation y = ky + m mod p(32) can be done
by computing y = 5a+ b+m mod p(32), which can be implemented more cheaply than the original
approach because it does not require division to perform the modular reduction.

Key-Set Selection. When implemented on a 32-bit architecture, the values a, b and m just dis-
cussed fit conveniently into 32-bit registers, making these quantities easy to manipulate. On most
such architectures, the calculation of y is going to be fastest if it is done with minimal register over-
flow. To calculate y = 5a+b+m mod p(32) using only 32-bit registers, we need one multiplication,
two additions and then some additional instructions to handle register overflow. Each operation
that can result in register overflow requires several instructions, including a conditional move or
branch, to check and deal with the potential overflow event. To accelerate the calculation of y we
reduce the number of potential overflows. Little can be done about overflow from the additions
because both b and m can be nearly 232, but overflow from the multiplication can be eliminated.
Only if a is larger than b232/5c ≈ 229.7 can the term 5a overflow a 32-bit register. We can restrict
a to safe values by restricting k to values less than 229. This allows for a faster implementation.
The expense for this optimization is a higher collision probability because the key is chosen from a
set of 229 elements instead of a set of 232 elements.

Divisionless modular reduction. Another optimization over a naive implementation is the
elimination of division to calculate modular reductions. This technique is not new. In calculating
y = 5a + b + m mod p(32), each of the 5a, b and m terms are less than 232. As we sum them
using computer arithmetic with 32-bit registers, we can easily detect 32-bit overflows. Each such
overflow indicates a 232 term which is not accounted for in the resulting register. But, because
232 ≡ 5, these overflows are easily accounted for by adding 5 for each overflow to the resulting
register. Done carefully, this observation results in a number y, derived without any division,
which is representable in 32-bits (ie. 0 ≤ y < 232). See Figure 3 for implementation details. Do we
then need to reduce y to a number in Zp(32)? No. All of the discussion so far requires only that y
be representable in a 32-bit register. Instead of reducing y to be in Zp(32) after every intermediate
calculation, we defer all such reductions until the end, when a final single reduction is performed.

Speed. Taken together, the selection of a convenient prime field and the restriction of the key-set
to keys which eliminate some register overflows allows a nice speed-up over a naive implementation
of PolyCW. Figure 2 shows a version of polynomial hash based upon PolyCW which hashes over
the field Zp(32) and restricts key selection to the set K32 = {a : 0 ≤ a < 229}. Our implementation
of the core y = ky + m mod p(32) calculation uses just 8 lines of Pentium II assembly (Figure 3)

5

; Calculate y = y * k + m mod p(32)
; Assume y is in register eax before and after code segment.
mul k ; edx:eax = k * y
lea edx, [edx*4+edx] ; edx = 5 * edx
add eax, edx ; eax = edx + eax
lea edx, [eax+5] ; edx = eax + 5
cmovc eax, edx ; if (carried) then eax = edx
add eax, m ; eax = eax + m
lea edx, [eax+5] ; edx = eax + 5
cmovc eax, edx ; if (carried) then eax = edx

Figure 3: The y = ky + m calculation of the PolyP32 algorithm written in Pentium II assembly.
The flag “carried” is true only if the previous add instruction causes a register overflow. The
conditional-move instruction (cmovc) is used to avoid any branches during execution of the routine,
and the load-effective-address instruction (lea) is used for addition and multiplication of small
constants. The result of the routine could possibly be in the range p ≤ y < 232, which is outside of
the field Zp(32), but this is easily fixed with a single subtraction after hashing the final word of the
entire message.

and achieves a peak throughput of 3.69 cpb.
We state here the (simple) proposition establishing the collision bound of the PolyP32 hash

function.

Proposition 3.1 For any positive integer n and any distinct messages m = (m0, . . . ,mn) and m′ =
(m′

0, . . . ,m
′
n), consisting of elements from Zp(32), Pr[k ← K32 : PolyP32(k,m) = PolyP32(k,m′)] ≤

n/|K32| = n2−29.

64-Bit Hashing and Key Restriction. We also implemented an analogous PolyP64 hash
function whose core calculation is y = ky + m mod p(64) where p(64) = 264 − 59 and k, y and m
are all elements of Zp(64). As in the 32-bit case, it is cheapest to calculate the result without using
division. If we let 232kh + k` represent k and 232yh + y` represent y, then ky can be calculated
as ky = 264khyh + 232(khy` + k`yh) + k`y`. Again, restricting the set of values that k can take on
allows for faster implementations by eliminating some 32-bit register overflows. We define key-set
K64 = {a232 + b : 0 ≤ a, b < 225}. This restriction allows an implementation of PolyP64 which has
a collision probability of (n/250), uses 40 lines of assembly and has a peak throughput of 6.86 cpb.

4 Expanding the Domain to Arbitrary Strings

The hash function PolyP32 is not generally useful. It only works on same-length messages, and
those messages must be made of elements from the field Zp(32). We now remove these limitations
and develop PolyQ32. The result, depicted in Figure 4, hashes most messages at a rate of 3.86
cpb.

Allowing Variations in Length. It is a trivial exercise to produce two different-length messages
which collide when hashed with PolyP32 using any key: under PolyP32, the hash of a message
m = (m0, . . . ,mn) using key k is simply h(k,m) = m0k

n + · · ·+ mnk0 mod p(32), so prepending 0

6

algorithm PolyQ32(k,M)
// Input: k ∈ K32 and M ∈ ({0, 1}32)+.
// Output: y ∈ Zp(32).
p← 232 − 5 // The largest prime smaller than 232

offset ← 5 // Constant for translating out-of-range words
marker ← 232 − 6 // Constant for indicating out-of-range words
n← |M |/32
M1 ‖ . . . ‖Mn ←M , // Break M into 32-bit chunks

where |M1| = · · · = |Mn| = 32
y ← 1 // Set highest coefficient to 1
for i← 1 to n do

m← str2num(Mi)
if (m ≥ p− 1) then // If word is not in range, then

y ← ky + marker mod p // Marker indicates out-of-range
y ← ky + (m− offset) mod p // Offset m back into range

else
y ← ky + m mod p // Otherwise hash in-range word

return y

Figure 4: The PolyQ32 algorithm. The PolyP32 hash extended to hash strings instead of vectors
of field elements and to allow good collision probabilities over two strings which differ in length.

to the vector m results in a message m′ = (0,m0, . . . ,mn) which is hashed as h(k,m′) = 0kn+1 +
m0k

n + · · ·+mnk0 mod p(32) and is equal to h(k,m) because the additional zero-term has no effect
on the hash value. For the Fundamental Theorem of Algebra to guarantee a low number of roots
(and hence a low collision probability), it is essential that the difference between m and m′ be
non-zero. This means that if the two vectors differ only in length, then at least one of the initial
elements of the longer vector must be non-zero. To guarantee this we employ a standard trick and
implicitly prepend a “1” to the vectors being hashed. Thus, the hash of m = (m0, . . . ,mn) implicitly
becomes the hash of m = (1,m0, . . . ,mn), and the hash of m′ = (0,m0, . . . ,mn) implicitly becomes
the hash of m′ = (1, 0,m0, . . . ,mn). The difference between these two vectors is non-zero. The
following theorem assures that augmenting PolyP32 in this way results in a hash with nearly the
same collision probability as PolyP32, but works over messages of different lengths.

Proposition 4.1 Let ` < n be positive integers. Let m = (m0, . . . ,m`) and m′ = (m′
0, . . . ,m

′
n)

be any two vectors of elements from the field F. Then there are at most n+1 values for k ∈ F such
that k`+1 +

∑`
i=0 mik

`−i = kn+1 +
∑n

i=0 m′
ik

n−i.

Proof. Beginning with k`+1 +
∑`

i=0 mik
`−i = kn+1 +

∑n
i=0 m′

ik
n−i, and moving all of its terms to

the right side of the equation we get 0 = kn+1− k`+1 +
∑n

i=0 m′
ik

n−i−∑`
i=0 mik

`−i. But, the right
side of this equations is now a non-zero polynomial, is of degree n + 1, and therefore has at most
n + 1 roots. ♦
Alternative Method. Another method of augmenting PolyP32 to allow variable length messages
is to use a second key k′ ∈ Zp(32) and add it to each element of the message being hashed. Thus,

7

h(k, k′,m) would be computed as
∑`

i=0(mi + k′)k`−i. This method requires an extra addition per
message word being hashed and so the first method seems favorable.

Allowing Bit-Strings. To make the function PolyP32 of Figure 2 more useful, it must be
adapted to allow bit-strings rather than only vectors from Zp(32). The field Zp(32) was chosen
because it contains nearly all the numbers representable as 32-bit strings. Thus, when we desire to
hash a bit-string, we may partition the string into 32-bit words and treat the partition as a vector
of 32-bit numbers. PolyP32 can then hash the vast majority of the vector’s elements without any
modification. But, some of the 32-bit numbers may be in the range p(32) . . . 232− 1, outside Zp(32).
What should be done with them?

One approach is to transform a vector of 32-bit numbers, which may have some elements outside
of Zp(32), into a vector which does not. The transformation must map distinct vectors into distinct
vectors.

We solve this problem by examining a vector of 32-bit numbers and replacing each vector
element mi that is greater than p(32) − 2 with two numbers, p(32) − 1 and mi − 5. Note that
both of these numbers are in Zp(32). Each such replacement lengthens the resulting vector by one
element. Thus, the vector m = (4, 232 − 3, 10), whose second element is greater than p(32) − 2,
would be transformed into the vector m′ = (4, 232 − 6, 232 − 8, 10). We call this transformation
DoubleTransform : (Z232)+ → (Zp(32))+. The following proposition assures that DoubleTransform is
correct.

Proposition 4.2 For positive integers ` and n, and distinct messages m = (m0, . . . ,m`) and m′ =
(m′

0, . . . ,m
′
n) made of elements from Z232 , the vectors DoubleTransform(m) and DoubleTransform(m′)

consist of elements from Zp(32) and are distinct.

Proof. Let ` and n be positive integers and let m = (m0, . . . ,m`) and m′ = (m′
0, . . . ,m

′
n)

be distinct vectors consisting of elements from Z232 . Let t = DomainTransform(m) and t′ =
DomainTransform(m′). Let i be the smallest number such that mi 6= m′

i. If such an i does not
exist then one of m or m′ must be a proper prefix of the other. In this case, any lengthening of
the shorter vector by DoubleTransform must be mirrored by the transformation of the longer vector
ensuring that the two remain different lengths after transformation.

If mi and m′
i are both less than p(32)−1, then after transformation ti = mi and t′i = m′

i, ensuring
that t 6= t′. If only one of mi and m′

i is less than p(32) − 1, say mi, then after transformation
ti = mi and t′i = p(32)− 1, again ensuring that t 6= t′. Finally, if both mi and m′

i are greater than
p(32)− 2, then after transformation ti+1 = mi− 5 and t′i+1 = mi− 5′ again ensuring that t 6= t′. ♦
Alternative Method. There are many ways to patch PolyP32 to allow out-of-range elements.
One probabilistic alternative is to offset every out-of-range number by a randomly chosen k′ ∈
{5, . . . , 232 − 5}. All out-of-range numbers are in {232 − 5, . . . , 232 − 1}, so k′, when subtracted
from an out-of-range number, will always yield a number in Zp(32). This method has the advantage
of not increasing message length upon transformation, but requires an extra key element, and in
practice does not speed hashing with respect to the method of Proposition 4.2.

Together, Propositions 4.1 and 4.2 prove the following corollary.

Corollary 4.3 For any positive integers ` ≤ n and distinct messages M ∈ {0, 1}32l and M ′ ∈
{0, 1}32n, Prk∈K32[PolyQ32(k,M) = PolyQ32(k,M ′)] ≤ 2n/|K32| = n2−28.

The discussion so far has focussed on PolyQ32, a hash function defined on 32-bit words. An
analogous 64-bit variant, PolyQ64, yields the following bound.

8

algorithm PolyR32 64(k,M)
// Input: k = (k1, k2) with k1 ∈ K32 and k2 ∈ K64, and M ∈ {0, 1}∗.
// Output: Y ∈ {0, 1}64.
if (|M | ≤ 214) then // 29 32-bit words

M ← padonezero(M, 32)
y ← PolyQ32(k1,M) // Hash in Zp(32)

else if (|M | ≤ 236) then // 230 64-bit words
M1 ←M [1 . . . 214]
M2 ←M [214 + 1 . . . |M |]
M2 ← padonezero(M2, 64)
y ← PolyQ32(k1,M1) // Hash in Zp(32)

y ← PolyQ64(k2, num2str(y, 64) ‖M2) // Hash in Zp(64), prepending y

else
return Error // Message too long

Y ← num2str(y, 64) // Convert to string
return Y

Figure 5: The PolyR32 64 algorithm. Combining the PolyP32 and PolyP64 hashes into a hash
function which is fast on short messages but also performs well on long ones. PolyR32 64 also
extends the domain to messages which are not a multiple of the constituent hashes word-lengths.

Corollary 4.4 For any positive integers ` ≤ n and distinct messages M ∈ {0, 1}64l and M ′ ∈
{0, 1}64n, Prk∈K64[PolyQ64(k,M) = PolyQ64(k,M ′)] ≤ 2n/|K64| = n2−49.

Two things are worth noting. First, the factor of two introduced in the 2n/|K32| term is due to
the potential doubling of message length by the DoubleTransform function. And, second, standard
message padding techniques are not addressed in this paper. It is assumed that messages being
hashed have been properly padded to a 32-bit boundary.

It should also be noted that the probability that PolyQ32 or PolyQ64 hash any message to
a particular result is also low. Consider a message made of n 32-bit words x = (x1, . . . , xn)
and a constant c. If c ≥ p(32) then PolyQ32(k,x) cannot hash to c, and if c < p(32), then
PolyQ32(k,x) will hash to c only if PolyQ32(k,x′) hashes to zero where x′ = (x1, . . . , xn− c). After
the DoubleTransform transformation of x′, the Fundamental Theorem tells us that there are no
more than 2n keys which allow this to happen.

Claim 4.5 Let n and c be numbers, and message M ∈ {0, 1}32`, Prk∈K32 [PolyQ32(k,M) = c] ≤
2n/|K32|.

5 PolyR: Overcoming Polynomial Hash Length Limitations

Taking a closer look at the bounds established for each of the polynomial hash functions, one can
see that the collision bounds degrade linearly along with the length of the messages being hashed.
This is a byproduct of the use of polynomials in hashing: As messages get longer, so do the degrees
of the polynomials get higher, resulting in more potential collision-causing roots. This introduces

9

a trade-off in application design. If one wants to guarantee some maximum collision probability ε
and the hash-key is chosen from a set of k elements, then the length of messages to be hashed must
be limited to around kε words. The larger the key-set size k used in the hashing polynomial, the
more words can be hashed before reaching the allowable collision probability q. But, to make the
key-set size significantly larger requires the polynomial to be computed over a larger prime-field,
and in general, as the prime p is increased, so is the time needed to evaluate the polynomials in Zp.
As one can see by examining the timing results for PolyQ32 and PolyQ64, the move from a prime
close to 232 to one close to 264 increases the number of cycles-per-byte required to hash a message
by nearly 50%.2

Can we have the best of both worlds: a hash function which is as fast as PolyQ32 but can hash
messages as long as PolyQ64, without having intollerably high collision probability? This is the
goal which motivates this section. We approach the problem with the belief that most strings being
hashed are short, but that a generalized hash function should be able to handle well long messages
too.

Our idea is to hash short messages (up to some fixed number of bits `) directly with PolyQ32,
but hash messages longer than ` bits with a hybrid scheme. Let us say that message M is longer
than ` bits. To hash M we first partition it into its ` bit prefix M1 and the remainder M2, so that
M1 ‖M2 = M . The hash of M under our hybrid scheme is then PolyQ64(k2,PolyQ32(k1,M1) ‖M2).
In this manner, the first ` bits of M is hashed with a fast hash function (which cannot safely hash
long messages), and if there is any of the string left after hashing its prefix, the remainder is hashed
with a slower hash function (which can safely hash longer messages). The parameter ` depends
on the maximum desirable collision bound and how long a message can be before the fast hash
function approaches this bound.

As an example, let us say that we want to hash messages and have a collision bound of no
more than 2−16. If we were to hash solely with PolyQ32, then we could hash no messages longer
than around 217 bits. Alternatively, we could hash with only PolyQ64 and would then be able to
hash strings as long as 239 bits before allowing 2−16 collision probability, but at a much slower
rate than PolyQ32. Under our scheme, if a message M is shorter than 217 bits, then the hash
result is simply PolyQ32(M); whereas if M is longer than 217 bits, then the hash is calculated
as PolyQ64(PolyQ32(M1) ‖M2) where M1 is the 217-bit prefix of M . Such a construction is fast
on short messages, but handles well long messages too. If messages were anticipated to be longer
than 239, then a function PolyQ96, employing a 96-bit prime modulus, could be defined analogously
and be employed as a third-stage polynomial. This ramping-up of the prime modulus used in the
polynomial evaluations gives the construction its name: Ramped polynomial hashing.

One might expect the collision bound of such a hybrid approach to be approximately the sum
of the collision bounds of each of its constituent functions, but as the following theorem shows, the
overall collision bound is instead only the maximum of the functions.

The following theorem and proof address PolyR32 64, the ramped polynomial hash of Figure 5.
This concrete hash function hashes up to 214 bits (equivalent to 29 32-bit words) using the fast
PolyQ32 function, and allows a total message length of up to 236 bits (or 230 64-bit words). In the
following theorem and proof, for increased generality, we use parameters ` and m instead of the
numbers of words 29 and 230.

Theorem 5.1 Let ` = 29 and m = 230. Let M 6= M ′ be messages no longer than 64m bits. Then
Pr[k1

R← K32; k2
R← K64 : PolyR32 64(k1, k2,M) = PolyR32 64(k1, k2,M

′)] ≤ max(`2−28,m2−49) +
2Some of this difference is an artifact of the fact that the Pentium II natively supports multiplication of 32-bit

operands to a 64-bit result, but not the multiplication of 64-bit operands to a 128-bit result. Most processors will
display this type of threshold behavior when operands exceed well-supported lengths.

10

2−50.

Proof. Let M and M ′ be messages, and imagine partitioning them into M = M1 ‖M2 and
M ′ = M ′

1 ‖M ′
2 so that M1 and M ′

1 are the first 32` bits of M and M ′. If M is shorter than 32`
bits, then M1 = M and M2 is empty. Likewise, if M ′ is shorter than 32` bits, then M ′

1 = M ′

and M ′
2 is empty. We ignore all padding issues in this discussion, assuming that standard padding

techniques are used to bring M and M ′ to appropriate lengths. Let k1
R← K32 and k2

R← K64 be
randomly chosen keys. We define the following values here for convenience, but all probabilities in
this proof are assumed to be taken over these random choices of k1 and k2.

h1 = num2str(PolyQ32(k1,M1), 64) and h′
1 = num2str(PolyQ32(k1,M

′
1), 64)

h2 = num2str(PolyQ64(k2, h1 ‖M2), 64) and h′
2 = num2str(PolyQ64(k1,M

′
2), 64)

Depending on the lengths of M and M ′, the result of hashing M will be h1 or h2 and the result of
hashing M ′ will be h′

1 or h′
2. We examine several cases for the relative lengths of M and M ′.

Case 1: Different lengths, same ramp. Here we examine the case where the messages M
and M ′ are different lengths, but are both either longer than 32` bits or both no longer. If both
are no longer than 32` bits then a collision occurs if h1 = h′

1. But, M1 = M and M ′
1 = M ′ differ in

length which means (by Proposition 4.3) that Pr[h1 = h′
1] ≤ `2−28. If both M and M ′ are longer

than 32` bits then a collision occurs if h2 = h′
2. But, h1 ‖M2 and h′

1 ‖M ′
2 also differ in length

which means (by Proposition 4.4) that Pr[h2 = h′
2] ≤ m2−49

Case 2: Different lengths, different ramp. If M is longer than 32` bits and M ′ is not,
then a collision occurs only if h′

1 = h2. Expanding the h2 term, we see that a collision only
occurs if h′

1 = num2str(PolyQ64(k2, h1 ‖M2), 64). If we fix k1 to an arbitrary value, then h1 and h′
1

become fixed as well, and the probability of collision then depends only on the selection of k2. The
string h1 ‖M2 is partitioned by the PolyQ64 algorithm into 64-bit strings and then transformed
by DoubleTransform into some sequence x0, x1, . . . , xn≤2m of elements from Zp(64). This sequence is
then used in the summation

∑n
i=0 xik

n−i
2 mod p(64) to calculate the final hash result. A collision

occurs if the result of this summation is h′
1, or alternatively when

∑n
i=0 xik

n−i
2 −h′

1 mod p(64) = 0.
The Fundamental Theorem of Algebra applies to this last polynomial, meaning there are no more
than n ≤ 2m values for k2 which satisfy it. Thus, Pr[h′

1 = h2] ≤ 2m2−29 = m2−28.

Case 3: Equal length messages, last ramp different. If M and M ′ are equal length, longer
than 32` bits and M2 6= M ′

2, then (by Proposition 4.4) Pr[h2 = h′
2] ≤ m2−49 because h1 ‖M2 and

h′
1 ‖M ′

2 are distinct. Similarly, if M and M ′ are the same length, no longer than 32` bits and
M1 6= M ′

1, then (by Proposition 4.3) Pr[h1 = h′
1] ≤ m2−28 because M1 and M ′

1 are distinct.

Case 4: Equal length messages, last ramp same. If M and M ′ are equal length and longer
than 32` bits, and M1 6= M ′

1 but M2 = M ′
2, then there are two opportunities for a collision to take

place. First, if PolyQ32(k1,M1) = PolyQ32(k1,M
′
1), then the strings h1 ‖M2 and h′

1 ‖M ′
2 are equal,

guaranteeing that h2 and h′
2 collide. The probability of this event is no more than `2−28. Second, if

h1 6= h′
1, then a collision can still occur if PolyQ32(k2, h1 ‖M1) = PolyQ32(k2, h

′
2 ‖M ′

2). One might
think that this is an event with up to m2−49 probability, but it is not. Because M2 = M ′

2, the
strings h1 ‖M1 and h′

1 ‖M ′
1 only differ in their first 64-bit word. The collision event when hashing

such strings takes the form (h1−h′
1)k

n
2 = 0, which can only be satisfied if k2 = 0, a 2−50 probability

event. Thus, the total probability of collision in this case is bounded by `2−28 + 2−50. ♦

11

5.1 Security Notes

If a lower collision probability is desired, one can hash messages multiple times, using a different
key for each message hash. A hash function which has an ε collision bound when hashing once
with a random key, has an ε2 collision bound when hashing twice with two random keys, and an
ε3 collision bound when hashed with three keys, etc.

Also, all of the theorems in this work have been stated in terms of collisions (ie. the difference
between the result of evaluating the hash of two distinct messages is zero). It is a simple matter
to tweak the algorithms and proofs to show that the probability that the difference between the
hash of two distinct messages being a particular constant is bounded by the same ε. This version
of universal hashing (“delta”-universal) is required in some message authentication schemes.

References

[1] Afanassiev, V., Gehrmann, C., and Smeets, B. Fast message authentication using efficient poly-
nomial evaluation. In Proceedings of the 4th Workshop on Fast Software Encryption (1997), vol. 1267,
Springer-Verlag, pp. 190–204.

[2] Bernstein, D. Floating-point arithmetic and message authentication. Unpublished manuscript,
http://cr.yp.to/papers.html, 2000.

[3] Black, J., Halevi, S., Krawczyk, H., Krovetz, T., and Rogaway, P. UMAC: Fast and secure
message authentication. In Advances in Cryptology – CRYPTO ’99 (1999), vol. 1666 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 216–233.

[4] Black, J., Halevi, S., Krawczyk, H., Krovetz, T., and Rogaway, P. UMAC: Fast and secure
message authentication. In Advances in Cryptology – CRYPTO ’99 (1999), vol. 1666 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 216–233.

[5] Bosselaers, A., Govaerts, R., and Vandewalle, J. Fast hashing on the Pentium. In Advances
in Cryptology – CRYPTO ’96 (1996), vol. 1109 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 298–312. Updated timing at http://www.esat.kuleuven.ac.be/ bosselae/fast.html.

[6] Carter, L., and Wegman, M. Universal classes of hash functions. J. of Computer and System
Sciences 18 (1979), 143–154.

[7] Halevi, S., and Krawczyk, H. MMH: Software message authentication in the Gbit/second rates.
In Proceedings of the 4th Workshop on Fast Software Encryption (1997), vol. 1267, Springer-Verlag,
pp. 172–189.

[8] Krawczyk, H. LFSR-based hashing and authentication. In Advances in Cryptology – CRYPTO ’94
(1994), vol. 839 of Lecture Notes in Computer Science, Springer-Verlag, pp. 129–139.

[9] Rogaway, P. Bucket hashing and its application to fast message authentication. In Advances in
Cryptology – CRYPTO ’95 (1995), vol. 963 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 313–328.

[10] Shoup, V. On fast and provably secure message authentication based on universal hashing. In Advances
in Cryptology – CRYPTO ’96 (1996), vol. 1109 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 313–328.

[11] Tsudik, G. Message authentication with one-way hash functions. Computer Communications Review
22 (1992), 29–38.

[12] Wegman, M., and Carter, L. New hash functions and their use in authentication and set equality.
J. of Computer and System Sciences 22 (1981), 265–279.

12

A Fully Parameterized: PolyQ, PolyR

The body of this paper developed a two-stage ramped polynomial hash function PolyR32 64 using
polynomials over 32- and 64-bit prime fields. The concrete choices made for PolyR32 64 were
designed especially for a message authentication code. In the MAC, we needed a universal hash
function which would guarantee a collision bound of at most 2−16 and would typically be applied
to messages no longer than a few dozen bytes. But, the hash function must also be able to process
huge inputs, too, and still guarantee a bound of at most 2−16. These requirements led to the
development of ramped polynomial hashing in general, and in the choice of the 32- and 64-bit
prime fields, and associated crossover points, used in the body of this paper.

Other collision bounds and message lengths not addressed by PolyR32 64 are likely, and so we
present in this appendix fully parameterized versions of the hashes called PolyQ and PolyR. For
each of the algorithms we state their collision bounds as a theorem, but give no proofs. The proofs
are straightforward extensions of those given in the body of the paper.

Proposition A.1 Let v be any positive integer, let K ⊆ Zp(v) be any subset of points in the field

Zp(v), and let 2v−1 ≤ d ≤ p(v). For any positive integers ` ≤ n and distinct messages M ∈ {0, 1}lv
and M ′ ∈ {0, 1}nv , Pr[k R← K : PolyQ[K, v, d](k,M) = PolyQ[K, v, d](k,M ′)] ≤ 2n/|K|.

Proposition A.2 Let all of the parameters from Figure 6 be fixed. For any distinct messages M
and M ′, each shorter than

∑
1≤i≤r `ivi bits, Pr[k R← K : PolyR(k,M) = PolyR(k,M ′)] ≤

max
1≤i≤r

{
2`i

|Ki|
}

+
r∑

i=2

1
|Ki| .

r ≥ 1 : Length of v, l, K vectors used in PolyR.
v = (v1, . . . , vr) : Word-lengths used in PolyR, with 1 < v1 < · · · < vr.
l = (`1, . . . , `r) : Message lengths used in PolyR, with `i ≥ 1 for 1 ≤ i ≤ r.
d = (d1, . . . , dr) : Domain bounds used in PolyR, with 2vi−1 ≤ di ≤ p(vi).
K = (K1, . . . ,Kr) : Key-sets used in PolyR, with Ki ⊆ Zp(vi) for 1 ≤ i ≤ r.

Figure 6: Parameters used in the fully parameterized PolyR algorithm. Fixing these parameters
fixes the algorithm definition specified in Figure 8.

13

algorithm PolyQ[K, v, d](k,M)
// Parameters: “Key set” K ⊆ Zp(v), “word length” v ≥ 1 and “domain-bound” d.
// Input: k ∈ K and M ∈ ({0, 1}v)+.
// Output: y ∈ Zp(v).
offset ← 2v − p(v) // Constant for translating out-of-range words
marker ← p(v)− 1 // Constant for indicating out-of-range words
n← |M |/v
M1 ‖ . . . ‖Mn ←M , // Break M into word size chunks

where |M1| = · · · = |Mn| = v
y ← 1 // Set highest coefficient to 1
for i← 1 to n do

m← str2num(Mi)
if (m ≥ d) then // If word is not in range, then

y ← ky + marker mod p(v) // Marker indicates out-of-range
y ← ky + (m− offset) mod p(v) // Offset m back into range

else
y ← ky + m mod p(v) // Otherwise hash in-range word

return y

Figure 7: The PolyQ algorithm, parameterized on key-set K, word-length v and domain-bound d.

algorithm PolyR(k,M)
// Parameters: Uses “vector length” r, “word-length vector” v,
// “message-length vector” l, “domain-bounds vector” d, and “key-set vector” K.
// Input: k = (k1, . . . , kr) with ki ∈ Ki for 1 ≤ i ≤ r and M ∈ {0, 1}∗.
// Output: Y ∈ {0, 1}vr .
prepend ← ε // Initially no string to prepend
i← 1 // Index for v, l, K vectors
while (|M | > `ivi) do // While more than one ramp-level remains

if (i = r) then return Error // Message too long
T ←M [1 . . . `ivi] // Extract the string to be hashed under p(vi)
M ←M [`ivi + 1 . . . |M |]
y ← PolyQ[Ki, vi, di](ki, prepend ‖ T) // Hash in Zp(vi), prepending previous hash
prepend ← num2str(y, vi+1) // Update prepend for next ramp-level
i← i + 1

M ← padonezero(M,vi) // Final ramp-level needs bijective padding
y ← PolyQ[Ki, vi, di](ki, prepend ‖M) // Hash in Zp(vi), prepending previous hash
Y ← num2str(y, vr) // Convert to string
return Y

Figure 8: The PolyR algorithm. Parameters are described in Figure 6.

14

