
Authentication without Elision

Partially Specified Protocols, Associated Data, and

Cryptographic Models Described by Code

Phillip Rogaway Till Stegers
Department of Computer Science
University of California at Davis
{rogaway, stegers}@cs.ucdavis.edu

Abstract

Specification documents for real-world authentication
protocols typically mandate some aspects of a protocol’s
behavior but leave other features optional or undefined.
In addition, real-world schemes often include parameter
negotiations, authenticate associated data, and support a
multiplicity of options. The cryptographic community has
routinely elided such matters from our definitions, schemes,
and proofs. We propose encompassing them by explicitly
modeling the presence of unspecified protocol functionality.
To demonstrate, we provide a new treatment for mutual
authentication in the public-key setting, doing this in the
computational cryptographic tradition. In our model, com-
pactly described in pseudocode, a protocol core (PC) will
call out to protocol details (PD), but, for defining security,
such calls will be serviced by the adversary. Parties ac-
cepting an authentication exchange will output a string of
associated data, the value of which may be determined by
the PD calls. We illustrate the approach by re-proving secu-
rity for the Needham-Schroeder-Lowe public-key protocol,
but extended in a manner that would be typical were the
mechanism embedded in a real-world standard.

Keywords: authentication, associated data, Needham-
Schroeder-Lowe protocol, provable security, security models.

1. Introduction

To appear in Proceedings of the 22nd IEEE Computer Security Foundations Symposium (CSF 2009).

In academic papers containing definitions and proofs,
authentication protocols are usually quite simple schemes:
a few messages exchanged, each computed by simple rules.
Yet anyone who has examined a real-world authentication
spec has seen a different kind of beast—schemes that don’t
seem simple after all. The Kerberos 5 spec is 138 pages, the
TLS spec is 104 pages, and just one piece of the authenti-
cation underlying 802.11 security is 175 pages [20, 21, 38].
And it’s not just the page counts that reflect the mechanisms’
complexity; the real-world schemes are complex from many
points of view. The specs often leave some protocol behav-
iors optional or intentionally unspecified. As an example,

the TLS 1.2 spec has 61 SHOULDs, SHOULD NOTs, and
MAYs [12, 20]. Because of all this complexity, we would
claim that nobody has ever proven the cryptographic security
of something like the “full” TLS 1.2; instead, one extracts
some piece and goes from there [22, 36].

Certainly many people have observed this gulf between
academic and real-world authentication. Consider the fol-
lowing comment from Krawczyk concerning a standardized
key-exchange protocol, IKE [28], and how it is treated in
the author’s corresponding academic work:

A word of caution. It is important to remark that all
the protocols discussed in this paper are presented in
their most basic form, showing only their cryptographic
core. When used in practice it is essential to preserve
this cryptographic core but also to take care of additional
elements arising in actual settings. For example, if the
protocol negotiates some security parameters or uses the
protocol messages to send some additional information
then the designers of such [a] full-fledge[d] protocol
need to carefully expand the coverage of authentication
also to these additional elements. [29, p. 408]

The cautionary note may sound routine; one expects to see
some differences between an academic abstraction and a
fully worked-out scheme. Abstraction is what we do. But, at
another level, the proviso is actually quite alarming: if you
prove something about the (self-identified) cryptographic
core of an authentication protocol, does this actually prove
anything about the full-fledged scheme? An approach in
which security-relevant features of real-world protocols are
routinely elided in corresponding analyses ought to raise
foundational concerns.

Narrowing the gap. We suggest an approach aimed at
bridging the gap between simple academic protocols and
complex real-world schemes. The real-world scheme is to be
regarded as comprising a partially specified protocol (PSP)
plus additional protocol details (PD). The cryptographic core
of a protocol will not be heuristically identified, but formally
defined: it is the PSP. To prove a complex scheme secure,
dissect it into a PSP and PD, then prove security for the
PSP alone. Definitions for PSP security will be constructed
so that this will prove security for the (PSP, PD) pair, and
thus the real-world scheme.

The PSP will consist of a key generator (KG) and a
protocol core (PC). Both will be specified in pseudocode.
The PC is allowed to call out to the PD. But, for defining
security, the adversary itself will service PD calls. This may
sound a bit extreme: the PD isn’t adversarial chosen, and
regarding it as such might seem to give the adversary near-
infinite power to disrupt a protocol’s runs. But it does not,
as the adversary will be allowed to see and influence only
what’s actually sent to the PD. The benefit to this pessimistic
modeling of the PD is that a proof for a PSP becomes a proof
for any full-fledged protocol that extends it by realizing
the PD.

One might think that placing real-world protocol func-
tionality within the PD boundary and then ignoring this
functionality by replacing it with adversarially-controlled
code would, in the end, be no different from ignoring the
PD functionality in the first place. It is not so. First, it is a
stronger requirement for something to be secure when it is
adversarially controlled than when it is ignored. Second, for-
malizing what is the cryptographic core of a real-world pro-
tocol removes this step from the realm of informal, outside-
of-the-model considerations. Third, the explicit presence of
the PD will motivate an important definitional element: the
inclusion of associated data (AD). Finally, allowing PD-
determined AD opens the door to making security claims
that reference the AD’s contents, and therefore depend on
what the PD does, without having to open it up.

What the PD might do. What, anyway, is all this alleged
complexity in real-world protocols actually doing? A first
purpose was hinted at in the earlier Krawczyk quote: when
party A believes she has just had a conversation with B,
she will typically hold some information, ad, that encodes
what she believes that the two of them have agreed to.
Formalizing this idea gives rise to a notion of authentication
with associated data. While AD is known in the context
of authenticated encryption [18, 40], it has never been for-
malized in the context of entity authentication, where it is
equally applicable. So one important thing that the PD can
do is to choose the AD. The contents of the AD may depend
on the principal’s security policy. Its value might encode
things like the cryptographic primitives that were agreed to,
perhaps through a multiple-flow negotiation.

The PD can do more. It can select ancillary data to
augment each message flow. Such ancillary data may be
used to provide additional functionality, like distributing a
session key. The PD can also guide the PSP in selecting
what long-lived key to use. It can help the PSP select which
instance of a party to dispatch a message to. Or the PD
might formulate an error message, request retransmission of
a flow, or force a protocol to abort.

Defining MA. Our definitions are in the computational
cryptographic tradition. We develop our ideas for the case
of mutual authentication (MA), with associated data, in the

public-key setting. Other goals and trust models can be
handled in a similar vein. Our model refines earlier ones for
entity authentication and key distribution (EA/KD) that go
back to Bellare and Rogaway [8] and continue with works
like [7, 10, 15, 23, 31, 44].

Our execution model will be described in pseudocode:
four model-code procedures, about 30 lines of code, will
define what the adversary can do and when it wins. Two
more procedures, KG (key generator) and PC (protocol
core), comprise the PSP. One last procedure, A, is the
adversary itself. The model-code procedures formalize the
adversary’s presumptive ability to send messages, look up
public keys, and corrupt players. The protocol core PC may
call a procedure PD for realizing protocol details, with such
calls getting routed to the adversary A.

Using a code-based descriptive language for cryptographic
definitions not only enables the PSP idea, but may also prove
helpful to overcome the length and ambiguity endemic to
complex cryptographic notions described in English prose
(we are thinking, for example, of UC [13]). We hope that
writing cryptographic notions in code may make them more
accessible, precise, and readily compared.

In revisiting notions for EA/KD we also take the op-
portunity to address a modeling concern. In previous work
derived from [8], instances, not principals, are the conceptual
entities to which one sends a message M . For example, the
adversary might direct a query to a conceptualized entity Πs

i

representing instance s of party i. We find both philosophical
and pragmatic difficulties with this choice. It implies that a
party must tag each message with a session identifier, and
that a principal can’t, for example, refuse a create a session
because too many are already in use. We prefer a model in
which principals can create sessions at their discretion and
route messages to sessions of their choice, potentially based
on private state.

Security of NSL. After defining mutual authentication with
associated data for a PSP, we exercise the definition by using
it to prove security for the Needham-Schroeder-Lowe public-
key protocol (NSL) [32, 33, 37]. Actually, our proof is not
for NSL as it was first described, but for a variant of it
that fits our syntax and adds in “hooks,” in the form of
PD calls and PD-interpreted strings in message flows, to
incorporate additional functionality that a real-world NSL-
based protocol might choose to add. Let NSL2 name our
version of NSL. Using our notions, we will give a reduction
to establish that NSL2 is secure as long as it is based on an
encryption scheme that is CCA (chosen-ciphertext attack)
secure. Our adversaries are dynamic (they may choose
whom to corrupt based on information learned during the
attack) and our security bound is concrete (as opposed to
asymptotic). Our bound is worse than we expected: proven
security drops in about q4/2n, where q is the number of
adversary calls and n is the nonce length. We suspect this is

2

Figure 1. Who may call whom. A partially specified protocol Π = (KG , PC) for MA is run with an adversary A. Procedures are
in boxes and an arc from one box to another means the first procedure can call the second.

just an artifact of the current proof but, in any case, it raises
the question of how to design and analyze EA/KD schemes
so as to not only get a strong notion of cryptographic
security, but a tight bound as well.

Related work. We considered NSL not because it needs yet
another proof of security, but because it has become some-
what of a “litmus test” for illustrating authentication method-
ologies. Within the computational-complexity tradition, the
security of NSL was first established in independent papers
by Backes and Pfitzmann [3] and by Warinschi [44]. The
two works use radically different definitions and approaches.
Backes and Pfitzmann employ a simulatability framework
based on the cryptographic library of Backes, Pfitzmann,
and Waidner [4]. While the initial result was a paper-and-
pencil proof, subsequent work has come to encompass the
use of automated theorem-provers and frameworks backed
up by cryptographic soundness guarantees; see [14, 16, 34,
42] for work in this direction. Warinschi’s paper [44] em-
ploys a definition that, like ours, is based on the simpler
notions of Bellare and Rogaway [8]. Their prescriptive-
style definition does not attempt to compare a real MA
protocol to an idealized one; instead, one directly defines
when the adversary does and doesn’t win. Warinschi’s result
was stated asymptotically, assumed static adversaries, and
defined partnering by matching conversations instead of
through session identifiers (SIDs), but these differences are
minor compared to the addition of PD-calls, associated data,
and the absence of reified instances within the communica-
tions model.

Our execution model resembles a code-based game [9]
and, in fact, we maintain that code-based games are a
promising approach for giving clean definitions for many
cryptographic goals. There is at least one difference between
what we do and what code-based games have been asked to
do: when an adversary interacts with a game, the adversary
calls the game’s procedures but the game doesn’t turn around
and call the adversary. For our definition, considering model

code and protocol code as a game, the calls go both ways.
We have not provided a formal semantics for our code, a

task we leave to future work. In recent work, Blanchet [11],
Backes, Berg and Unruh [1] as well as Barthe, Grégoire
and Zanella [5] each provide such semantics for some
formulation of games. Namely, Blanchet represents games
in a process calculus with probabilistic semantics with
support for polynomial-time computable functions. His tool
CryptoVerif heuristically finds transformations to simplify
games for goals based on computational indistinguishability.
Backes, Berg and Unruh define a typed lambda calculus with
support for probabilistic functions (including oracles), user-
defined types, and events (such as the canonical bad). They
provide a semantics for their language in which programs
evaluate to subprobability measures over program states and
lists of events. Furthermore they define polynomial run time
and formulate the Fundamental Lemma of Game-Playing
Proofs [9] in their framework. They embed their type system
in the Isabelle/HOL proof assistant to enable automated type
inference. Barthe, Grégoire, and Zanella define a probabilis-
tic imperative language pWHILE and show how a variety
of bridging steps between games can be expressed as the
transformation of pWHILE programs. They implement a
tool, CertiCrypt, that verifies game-based proofs written in
pWHILE and provides support for concrete-security resource
accounting. Using CertiCrypt, they are able to find a tighter
reduction for OAEP.

Hui and Lowe [27] share our motivation of bridging the
gap between real-world protocols and their abstractions in a
rigorous way, though they focus on simplifying the initially
modeled protocol, whereas PSPs are useful for describing
under-specified protocols as well. Working in a framework
based on CSP [26], Hui and Lowe define transformations on
protocols and their traces, giving sufficient conditions for
these mappings to be fault-preserving, that is, to preserve
the insecurity of protocols for certain definitions of mutual
authentication and session-key privacy. They show that sev-
eral mappings, such as omitting certain fields or extraneous

3

cryptographic operations, are fault-preserving. We are not
aware of an analog to fault-preserving transformations in
the computational cryptography tradition.

2. Defining Security of a PSP

Categories of code. Our execution model is described in
code: the protocol and the adversary are regarded as proce-
dures, and procedures are used to formalize how it all runs.
Thus procedures are of three kinds: protocol code, adversary
code, and model code. Figure 1 names the procedures of
each kind and indicates which ones may call which others,
while Figure 2 defines the model-code routines. In brief, the
three types of code are as follows:

Protocol code consists of two procedures: KG, the
key generator, and PC, the protocol core. The latter
routine defines how a principal responds when he
receives a message. Procedure PC may call a proce-
dure named PD, protocol details, but code for such a
routine is not included in the execution model, as PD
calls actually invoke the adversary A. Taken together,
KG and PC comprise the PSP Π = (KG , PC).
Protocol code may not employ static variables or
otherwise maintain state; our model code does that
on the protocol’s behalf.

Adversary code embodies functionality that we do
not control yet hope to defeat. It consists of a single
procedure, A, which may call model-code procedures
Send , Lookup, and Corrupt . We say that A has
oracles for these functionalities. Adversary code is
invoked by model code (to get things going) and by
the protocol code (when it makes a PD call). When
servicing a PD call, the adversary may not make Send
or Corrupt calls. In order that a single conceptual
entity services all adversary calls, the adversary may
maintain its own global variables.

Model code realizes the security definition. Our model
code for mutual authentication with associated data in
the public-key setting has procedures Send , Lookup,
Corrupt , and Main. These procedures share global
variables that are not visible to protocol or adversary
code. Procedure Main calls the adversary A and then
decides, based on the values of variables that have
been set, if the adversary has won or lost. Our model
code, specified in Figure 2, uses conventions that we
will momentarily describe.

While the model does not dictate the internals of protocol or
adversary code (routines KG, PC, and A), we do insist that
these procedures always terminate, regardless of coin tosses
or responses to procedure calls, and that they do so within
some bounded number of computational steps (this number
of steps is associated to the procedure, of course).

Programming-language conventions. We do not formally
define the programming language in which our code is
written; it may be regarded as pseudocode. But the intended
semantics is conventional enough that, with a bit of explana-
tion, the execution of the model code (and, later, our protocol
code for NSL2) should be clear.

To make our model code and protocol code compact,
we adopt some specialized conventions. Any variable can
take on the value �, read as invalid, and all variables
are silently initialized to this. In Boolean expressions, the
symbol � is treated as FALSE, as is the integer 0, while
nonzero integers are regarded as TRUE. Booleans are in-
terchangeably regarded as bits. Our informal programming
language supports variables recursively defined from types
array, boolean, integer, record, set, or string. Strings are
finite-length sequences over the alphabet Σ = {0, 1}. The
empty string is denoted ε. When 〈X1, . . . , Xm〉 appears
as an R-value, as in Figure 2/line 11 (henceforth to be
abbreviated as in 2:11), it means a string that encodes
(X1, . . . , Xm), including the type of each Xi. A matching
assignment 〈X1, . . . , Xm〉 ← X (eg, 2:10) works like this.
Parse the string X according to the reverse conventions used
for encoding to get a tuple (X ′

1, . . . , X
′
m′). If m′ = m and

the type of each Xi is compatible with the type of X ′
i

then simultaneously set Xi ← X ′
i for all i; otherwise

don’t do anything. Arrays are associative arrays that map
arbitrary values to values of some specified type. To declare
an array, put brackets after the variable name, as in the
declaration string pk[] at 2:1. Subscripts and brackets are
interchangeably used for element-extraction from an array
(eg, pkA = pk[A]). Types are static and can often be
inferred; when they cannot, they are strings. Variables are
local unless they are declared globally at the beginning of
the module in which they appear or are in a procedure’s
argument list. Procedure return types are inferred (usually
they are strings). Variables are passed by value except where
annotated by var, at the caller and called routine both,
whence they are copy-in/copy-out. Macros can be defined
using parentheses, which is the intent at 2:21–24. Further
conventions will be specified as needed.

Defining adversarial advantage. Execution of Π =
(KG , PC) with A begins by calling Main and ends when
Main terminates, returning a boolean indicating if the ad-
versary has won. Runs will differ from one another because
protocol and adversary code may be probabilistic. To re-
alize this probabilism, the programming language includes
a probabilistic-assignment statement x

$← S that chooses an
element x uniformly at random from a finite set S. The
statement is not seen in Figure 2 simply because model-
code routines for defining MA do not require probabilism.

We define Advma
Π (A) as the probability that A wins

(adversarywins = TRUE) its execution with Π = (KG , PC)
using the model code of Figure 2. This quantity, the ad-

4

1 string pk[], sk[], party[], π[], sid[], pid[], ad[]
2 boolean corrupt[], role [], conf []
3 integer n

4 procedure Send (string A, string M)
5 if corruptA then return �

6 n← n + 1
7 partyn ← A
8 Lookup(A)
9 〈M ′, decns〉 ← PC (A, M, skA, var πA)
10 〈sidn, rolen, pidn, adn, confn〉←decns
11 return 〈M ′, decns〉

12 procedure Lookup (string A)
13 if pkA = � then 〈pkA, skA〉 ← KG(A)
14 return pkA

15 procedure Corrupt (string A)
16 corruptA ← TRUE
17 return 〈skA, πA〉

18 procedure Main
19 n← 0
20 A(ε)
21 unfresh(sid)←(∃1≤i≤n) (sidi =sid) ∧ (corruptpartyi

∨corruptpidi
)

22 fresh(sid)← ¬unfresh(sid)
23 partnered(i, j)← sidi =sidj �=� ∧ rolei �= rolej

24 detailsmatch(i, j)← sidi =sidj �=� ∧ rolei �= rolej ∧ pidi =partyj ∧ pidj =partyi ∧ adi =adj

25 proper←(∀1≤i<j≤n) (sidi =sidj �=� ∧ rolei = rolej) =⇒ (partyi =partyj ∧ pidi =pidj ∧ adi =adj)
26 validpartnering← (∀1≤i,j≤n) partnered(i, j) =⇒ detailsmatch(i, j)
27 partnerconfirmation← (∀1≤i≤n) (confi ∧ fresh(sidi)) =⇒ (∃1≤j≤n) partnered(i, j)
28 adversarywins← ¬proper ∨ ¬validpartnering ∨ ¬partnerconfirmation
29 return adversarywins

Figure 2. Defining MA. To run a protocol Π = (KG , PC) with an adversary A, procedure Main is called. The adversary A may
call out to any of the procedures shown at lines 4–18. The protocol core PC , invoked at line 4, may call out to a procedure PD ,
which in fact invokes A. It may also call Lookup.

versary’s MA advantage, is a real number in [0, 1], with 0
meaning that the adversary has done terribly and 1 meaning
that it has done great. In the usual way, a protocol Π is re-
garded as “good” if Advma

Π (A) is “small” for any “reason-
able” adversary A. Concrete-security theorem statements,
like ours, explicitly quantify how small is this advantage
as a function of the computational resources spent by A.
The resources of interest include the number of procedure
calls A makes to each model-code subroutine, as well as A’s
running time (which, by convention, includes the length of
its code). For an asymptotic notion of security, a global
integer constant k can be declared in the model code and
exported to all routines. A protocol Π would be regarded
as secure if ε(k) = Advma

Π (A) is negligible (meaning it is
k−ω(1)) for every A that runs in time polynomial in k.

3. Explanation

At this point we have defined our notion of MA. Still,
some English-language explanation may be useful to clarify
what is going on in the model code of Figure 2, and why.

Explaining the code. At 2:1–2 we declare string-valued and
boolean-valued associative arrays. Player A’s public key and
secret key are stored in pkA (= pk[A]) and skA, and party
A’s state is kept in πA. Recall that all values are initialized
to �, so, for example, initially πA = � for all A.

At 2:19 procedure Main initializes a counter n for the
number of Send calls to uncorrupted players. At 2:20 it calls
the adversary A, passing it the empty string as an indication

to A that it has been called from Main (PC ’s calls to PD =
A should pass in something else). Any return value from A
is discarded by 2:20.

As A executes, it may make calls to Send , Lookup, and
Corrupt . The first is called to send a principal A some
message M , the second to look up the public key of a
principal, and the last to obtain a principal’s internal state
and secret key.

Starting with Send , we begin by disallowing queries to
corrupted principals at 2:5. After recording the identity of
the party that the adversary wants to send a message to
at 2:7, we look up the public key for that party, which is
done to make sure that the secret key for A is valid when
we call PC at 2:9. There we pass PC the principal’s name A
(all identities are regarded as strings), the message M the
adversary wants to send her, the party’s secret key skA, and
the party’s state πA. As protocol code may not maintain
state across calls, the model code provides this service. The
contents of πA are uninterpreted by the model code, but
the string πA may be re-cast by PC to whatever type that
procedure wants. The PC call must return and, when it does,
its string-valued output is parsed and recorded in model-code
globals at 2:10. The five components of decns encode: the
session ID (SID), a string that names a session; the role,
a symmetry-breaking device so that two entities can have
the same SIDs but still be regarded as different instances;
the partner ID (PID), a string that names a principal; the
associated data (AD), a string that records a value that a
party believes he shares with his communication partner;

5

and, finally, a bit indicating whether the instance believes to
have received confirmation that his partner is there.

With a Lookup query the adversary can learn the public
key for any player. The PC too has access to this functional-
ity, which models an out-of-band mechanism to reliably map
identities to public keys. With a Corrupt call the adversary
can learn a player’s secret key and state.

The most tricky part of Figure 2 are the macros and pred-
icates at 2:21–29. Recall that 2:21–24 are macro definitions,
to be used in the predicates that follow. Lines 2:21–22 say
that an SID is fresh if any party that has that SID remains
uncorrupted at the game’s end, as does his partner. Line 2:23
captures the following notion. An instance is named by
an SID and a role. Two SID/role pairs are regarded as
partnered if they have the same SID and different roles (for
example, one role may correspond to “initiator” and one
to “responder”). Line 2:24 captures a stronger requirement
than partnering: not only are the instances partnered, but
they also agree in their AD values, and the PID of each
party is the identity of the other. Line 2:25 captures the
following, nearly “syntactic” requirement. Suppose that one
and then a subsequent Send query are answered by the same
instance. Then the identity of the party is not allowed to
have changed, nor the PIDs, nor the ADs. In short, decisions
stick: once an instance (sid, role) chooses a (pid, ad, conf),
he is not allowed to change his mind. Moving on, line 2:26
captures the following idea. Whenever two instances are
partnered—they have the same SID and opposite roles—
then each party’s PID should be the identity of the other,
and they should have the same AD values, too. At 2:27
we formalize the following expectation. Suppose that an
instance has confirmed his partner and has a fresh SID. Then
there must exist an instance out there that it is partnered to.
Finally, line 2:28 says that an adversary defeats the aim of
MA if it managed to violate any of the expectations we have
described.

Instances and dispatch. Under our model, messages are
sent to principals, not to instances, and the model does
not maintain separate state for each instance (of course a
principal may choose to do so). Fundamentally, instances
exist in our model only insofar as decisions coming out
of principals (2:9–10) include an SID and role, and the
predicates of Main interpret such pairs as though they named
a communication endpoint. This set of choices are quite dif-
ferent from prior formalizations of EA/KD [7, 8, 10, 15, 35],
where one addressed messages to instances and instances
maintained their own, separate state. In prior definitions,
peers were either pre-specified (one sends a message to a
Πs

i,j that models instance s of party i wanting to authenticate
party j) or post-specified (one sends a message to a Πs

i

that models instance s of party i willing to authenticate
someone, their identity to be determined) [15, 35]. Either
way, the SID s was specified with every message sent.

Our view is that principals receive messages, not in-
stances. In that case a protocol must decide which instance
to dispatch a message to. How should a principal decide?
The selection could depend on an SID that is included in
the message, but it could also be done based on information
otherwise present in the flow. A natural choice is to let the
PD choose the instance, based on information rich enough to
inform the choice but not so rich as to obviate security. The
issue there is that if message dispatch depends on private
information known to the principal who receives a message,
then one certainly can’t quantify over all possible message-
dispatch means, as a bad message-dispatch routine could
divulge secret keys through the choice of which session a
message is dispatched to. On the other hand, if message
dispatch may not depend on any private information, then
natural dispatch methods are impossible, including those
which, as in NSL, need to decrypt an incoming flow to
inspect a nonce contained within.

When messages are sent to instances rather than princi-
pals, protocols are unable, for example, to place limits on the
number of open sessions, which implementations routinely
do, or share other state. And session-identifiers effectively
must be present in all flows, even if one could do without.

Extensions. It is possible to modify our definition of MA
to handle a variety of trust models and goals. For exam-
ple, to define the secrecy of session keys shared out in
an authenticated key exchange (AKE) protocol, augment
decision-vectors to include a session key sn, have Main
flip a bit b, add in a Reveal query to obtain an already-
distributed session key, add in a Test query to produce
either a targeted session key sn or a sample from the
distribution it is supposed to be drawn from, have the
adversary output a bit b′, and adjust Main’s predicates to
say that the adversary wins when b = b′ and the adversary
could not know b by trivial means. Switching to shared-key
trust models is an easier change than this, as is the addition
of a security parameter k, or the inclusion of schemes that
employ globally-known parameters (eg, a randomly selected
prime or elliptic-curve group).

Our model is not intended to be the strongest one feasible;
we have opted for a relatively minimalist model instead. We
do not require the concomitant distribution of a shared secret
and so, correspondingly, there are no queries to reveal a
session key or expire one. You can’t reveal session state (no
such notion is in the model). Our Corrupt queries provide a
principal’s state, but not his prior coins. No query allows the
adversary to replace a principal’s public key with a new one
of his choice. We have in fact considered adding in this last
capability, which models key-infrastructure attacks (where
the adversary may, for example, obtain a valid certificate for
an invalid public key). But we find that such queries would
complicate our proof and necessitate a technical assumption
on the encryption scheme’s security beyond its being CCA.

6

A
EpkB

(A, NA)−−−−−−−−−−−−−−−−−−−−−→ B
EpkA

(B, NA, NB)←−−−−−−−−−−−−−−−−−−−−−
EpkB

(NB)−−−−−−−−−−−−−−−−−−−−−→

A
〈 HELLO, EpkB

(A, NA, α1), β1〉−−→ B
〈 RESPOND, EpkA

(B, NA, NB , α2), β2〉←−−
〈 CONFIRM, EpkB

(NB , α3), β3 〉−−→
Figure 3. Flow diagrams for NSL and NSL2. For the latter, when B sends its RESPOND message it outputs decisions
〈sid, role, pid, ad, conf 〉 of sid = 〈A, B, C1, C2〉, role = 1, pid = A, ad = PD(〈0, A, B, α1, α2〉), and conf = FALSE, where C1 is the
ciphertext within the HELLO message and C2 is the ciphertext within the RESPOND. When A sends its CONFIRM message, it
outputs decisions of sid = 〈A, B, C1, C2〉, role = 0, pid = B, ad = PD(〈0, A, B, α1, α2〉), and conf = TRUE. On receiving this
message, B revises its conf flag to TRUE. Values α1, β1, α2, β2, α3, β3 are all determined by PD -calls.

4. The NSL2 Protocol

Embellishing NSL. The Needham-Schroeder-Lowe public-
key protocol [32, 37] (henceforth NSL) is usually summa-
rized by the flow diagram given on the left-hand side of
Figure 3. Such a diagram is useful and succinct, but it does
of course leave much to the reader’s imagination. Beyond
this, we claim that the protocol suggested by the diagram
elides cryptographically significant elements that one would
expect to see in a real-world authentication scheme based
on NSL. There are no parameter negotiations, public-key
certificates, or error messages; there is no possibility of
authenticating additional information by adding it within
the scope of the (presumably non-malleable) encryption
function E ; the scheme does not distribute a session key; and,
as soon as one adds elements into the flows so that it will,
cryptographic claims one has already made of the protocol
will probably be lost, as there is no a priori reason to think
that the MA property one shows for NSL will continue to
hold on the embellished scheme.

To address these issues we define a version of NSL we’ll
call NSL2. The latter is, to a first approximation, NSL with
generic “hooks” that are provided so that the scheme can
be extended to include elements like those just mentioned.
NSL2 is specified in Figure 4, doing this in a way that
conforms to the syntax of Section 2. A corresponding flow
diagram is given on the right-hand side of Figure 4, but it
should be emphasized that such a figure remains no more
than suggestive.

We call the αi and βi values that have been added to the
flows ancillary data. We expect ancillary data to be chosen
by the PD. For example, ancillary data might indicate the
choice of an encryption scheme or key, say β1 indicating A’s
choice for EpkA

and β2 indicating B’s choice for EpkB
. It can

be used to accomplish a key exchange intertwined with the
MA, for instance, letting α1 = ga and α2 = gb. Note that
even though the βi are not included within the scope of
any cryptographic operator, this does not mean that they are
security-irrelevant: the string β1 can impact the PD’s choice
for α2, which is part of what determines the AD.

Explaining the scheme. The partially specified protocol
NSL2 depends on a public-key encryption scheme Π =

(K, E ,D) and a nonce-length n; to be explicit, we will
write NSL2[Π, n]. See Section 6 for a formalization of
public-key encryption schemes and their security. Under that
formulation, our encryption scheme is assumed to have the
message space {0, 1}∗ and, insofar as we omitted a security
parameter in our formalization of MA, the key-generation
algorithm K likewise does without.

To help with concision and readability, Figure 4 uses a
programming-language construct that generalizes our earlier
matching assignment. Suppose we write 〈X1, . . . , Xm〉 ←
X where X is a string and each Xi is now a variable,
an underlined variable, or an underlined constant. Then we
parse X (using the reverse of whatever convention is used
to encode tuples of variables into string) to get an m′-
tuple of values (X ′

1, . . . , X
′
m′). If m = m′ and each Xi

has a type compatible with X ′
i and Xj = X ′

j for each
underlined Xj , then we simultaneously set Xk ← X ′

k

for all non-underlined Xk and the matching-assignment
statement itself returns TRUE. Otherwise, set Xk ← �

for all non-underlined Xk and the matching-assignment
statement returns FALSE. Either way, do not modify any
underlined Xj . We allow a wildcard, ∗, to function as an
anonymous non-underlined variable of the correct type. As
an example of all this, at 4:15 we attempt to parse M
into a triple consisting of the string constant RESPOND, a
string C2, and a third component we don’t care about. If
we succeed, the string C2 will now be defined and we will
continue evaluating the second half of the conjunct at 4:15
(conjunctions are assumed to evaluate from left-to-right),
filling in rcvdN with the second component of the decryption
of C2. As an additional new convention, procedures are
understood to return � in the absence of an explicit return
statement.

After the type declaration at 4:1–3 we define the two
routines exported from this module: KG and PC. The first is
trivial, simply returning a string (which presumably encodes
a pair of strings) returned by the encryption scheme’s key-
generation routine. In the declaration at 4:6, the final argu-
ment was a string when PC was called at 2:9, but it is now
mapped into a value of type PartyState, with a �-valued
string taken to correspond to an array of �-entries. We give
PD every opportunity to interfere with protocol mechanics,

7

1 type InstanceState = record {boolean myRole, conf; string myN, yourN, sid, you, ad, lastrcvd, M′,
2 decns, α1, β1, C1, α2, β2, C2, α3, β3, C3 }
3 PartyState = record {integer cnt; InstanceState instance[] }
4 procedure KG (string A)
5 returnK ()

6 procedure PC (string A, string M, string sk, var PartyState π)
7 if π.cnt = � then π.cnt← 0; M ← PD (〈1, A,M, Sanitize (π)〉)
8 〈M′, decns′〉 ← Dispatch (M, var π); M′ ← PD (〈2, A,M, M′, Sanitize (π)〉)
9 return 〈M′, decns′〉
10 procedure Dispatch (string A, string M, string sk, PartyState π)
11 if 〈START, ∗〉 ←M then
12 cur←++π.cnt; return Start (A, M, sk, π, var π.instance[cur])
13 if 〈HELLO, ∗〉 ←M then
14 cur←++π.cnt; return Hello (A, M, π, var π.instance[cur])
15 if 〈RESPOND, C2, ∗〉 ←M and 〈∗, rcvdN, ∗, ∗〉 ← D(sk, C2) then
16 cur← min{cur ∈ {1, . . . , π.cnt} : π.instance[i].myN = rcvdN}; PD (〈3, cur〉)
17 if cur = � then return � else return Respond (A, M, sk, π, var π.instance[cur])
18 if 〈CONFIRM, C3, ∗〉 ←M and 〈rcvdN, ∗〉 ← D(sk, C3) then
19 cur← min{cur ∈ {1, . . . , π.cnt} : π.instance[i].myN = rcvdN}; PD (〈4, cur〉)
20 if cur = � then return � else return Confirm (A, M, sk, π, var π.instance[cur])

21 procedure Start (string A, string M, string sk, PartyState π, var InstanceState σ)
22 if 〈START, σ.you〉 ←M then
23 σ.myN

$←{0, 1}n; σ.myRole← 0; σ.lastrcvd← START; 〈σ.α1, σ.β1〉 ← PD (〈5, A,M, Sanitize (π)〉)
24 σ.C1 ← E(Lookup(σ.you), 〈π.me, σ.myN, σ.α1〉); return 〈〈HELLO, σ.C1, σ.β1〉,�〉
25 procedure Hello (string A, string M, string sk, PartyState π, var InstanceState σ)
26 if 〈HELLO, σ.C1, σ.β1〉 ←M and 〈σ.you, σ.yourN, σ.α1〉 ← D(sk, σ.C1) then
27 〈σ.α2, σ.β2〉 ← PD (〈6, A,M, Sanitize (π)〉); σ.myN

$←{0, 1}n
28 σ.C2 ← E(Lookup(σ.you), 〈π.me, σ.yourN, σ.myN, σ.α2〉); σ.M′←〈RESPOND, σ.C2, σ.β2〉; σ.myRole← 1
29 σ.sid← 〈σ.you, π.me, σ.C1, σ.C2〉; σ.ad← PD (〈0, σ.you, A, σ.α1, σ.α2〉); σ.conf← FALSE

30 σ.lastrcvd← HELLO; σ.decns← 〈σ.sid, σ.myRole, σ.you, σ.ad, σ.conf〉; return 〈σ.M′, σ.decns〉
31 procedure Respond (string A, string M, string sk, PartyState π, var InstanceState σ)
32 if 〈RESPOND, σ.C2, σ.β2〉 ←M and σ.lastrcvd = START and ¬σ.conf
33 and 〈σ.you, σ.myN, σ.yourN, σ.α2〉 ← D(sk, σ.C2) then
34 〈σ.α3, σ.β3〉 ← PD (〈7, A,M, Sanitize (π)〉)
35 σ.C3 ← E(Lookup(σ.you), 〈σ.yourN, σ.α3〉)
36 σ.M′ ← 〈CONFIRM, σ.C3, σ.β3〉; σ.sid← 〈π.me, σ.you, σ.C1, σ.C2〉; σ.conf← TRUE

37 σ.ad← PD (〈0, A, σ.you, σ.α1, σ.α2〉); σ.decns← 〈σ.sid, σ.myRole, σ.you, σ.ad, σ.conf〉
38 return 〈σ.M′, σ.decns〉
39 procedure Confirm (string A, string M, string sk, PartyState π, var InstanceState σ)
40 if 〈CONFIRM, σ.C3, σ.β3〉←M and ¬σ.conf and σ.lastrcvd = HELLO

41 and 〈σ.myN, σ.α3〉←D(sk, σ.C3) then
42 σ.conf← TRUE; σ.decns← 〈σ.sid, σ.myRole, σ.you, σ.ad, σ.conf〉; return 〈�, σ.decns〉
43 procedure Sanitize (PartyState π)
44 π′ ← π; for i ∈ {1, . . . , cnt} do π′.instance[i].myN← π′.instance[i].yourN← �; return π′

Figure 4. Definition of NSL2. The protocol depends on an encryption scheme Π = (K, E ,D) and a nonce length n ≥ 1. For
security of NSL2, one must assume that PD(〈0, · · ·〉) calls are answered deterministically.

8

calling it at 4:7 to let it overwrite the message sent in, at 4:9
to let it overwrite the message going out. Such calls can be
used for creating error messages, for example, or deleting
communications not in conformance with a security policy.
We continue to call PD at discretionary points throughout
the code.

The Dispatch routine is responsible for sending the in-
coming message to the appropriate handler, sending that
handler the protocol-maintained (as opposed to model-
maintained) instance state for the appropriate instance. In-
stance identification is based on the nonces within messages
or, when there is none, a new instance is created. Message
are not annotated with anything “extra” to determine the
session, as this can be gleaned from what was already in
NSL flows.

Procedures Start , Hello, Respond and Confirm are called
by Dispatch when a flow of that type is received. The first
of these is used simply to request that the protocol begin.
Procedure Sanitize is used to strip the state of the one thing
that the adversary may not be given when PD is called:
access to all nonces. Associated data is determined by the
PD on the basis of the principal names, α1, and α2. For our
security result on NSL2 we will need to assume that this
particular PD call is deterministic, as we shall now explain.

5. Security of NSL2

We would like to claim that no reasonable adversary A
can achieve good MA-advantage when attacking NSL2, but
there is a technical issue that would make such a claim
untrue. Since the AD is computed by a call to PD, the
adversary could, for example, return a random bit at 4:29
and 4:37, in which case the pairs of AD values that “should”
be equal will often disagree. To get around this, the PD calls
that compute the AD ought to be deterministic. Formally,
let’s say that an adversary A is valid if A(〈0, · · ·〉) uses no
probabilistic assignment and reads no global variable. This
way PD(〈0, · · ·〉) acts as a function. Of course calls of the
form PD(ε) or PD(〈i, · · ·〉) for i ≥ 1 are not impacted; they
can use probabilism or A’s retained state.

We now quantify the MA-security of NSL2[Π, n] in
terms of the CCA-security of the asymmetric encryption
scheme Π.

Theorem 1. Let Π = (K, E ,D) be a public-key encryption
scheme and let n ∈ N be a number. Then for any valid
adversary A making q < 2n/2 queries there exists an
adversary B such that

Advma
NSL2[Π,n](A) ≤ 8q2

1− q2/2n
·Advcca

Π (B)

+
4q4

(2n − q)(1− q2/2n)
+

q2

2n

(1)

where B makes at most 3q queries and runs in time compa-
rable to A’s.

More precisely, the phrase “time comparable to A’s” means
this. If A runs in time t and λ is the length of a longest
string asked or answered by A, then B’s running time will be
linear in t log q+q2 ·TimeΠ(λ). Here TimeΠ(�) denotes the
maximum number of steps to compute E(pk,X), D(sk,X),
and K(), where |X| ≤ �.

The proof of Theorem 1 is given in Section 6. Let us here
sketch some of its ideas.

Proof intuition. First we bound the probability that two
nonces sampled in two distinct rounds collide. This is
trivially seen to be rare, so, in the rest of the proof, we
can then assume that there are no such nonce collisions.

The main part of the proof reduces the inability of A
to create a “forgery” to the CCA-security of Π. Now it’s
not at all obvious what a forgery in NSL2 should mean;
after all, we start with nothing but an encryption scheme, a
kind of object that doesn’t normally have an unforgeability
guarantee, and an asymmetric one at that, so the adversary
can come up with, say, a well-formed HELLO message.
Fortunately, our code-based definitions provide a helpful
language for what turns out to be a somewhat technical
definition for what it means for the adversary to forge a
ciphertext. Roughly said, we consider a HELLO message M
a forgery if it is accepted by a principal B who believes it
came from A, and in fact it does contain a nonce chosen
by A for a session with B, but party A never sent M (so
the adversary must have modified or created it). We define
forgery notions for RESPOND and CONFIRM messages in
a similar manner, this time requiring that the recipient’s
alleged nonce in the message match a nonce it previously
chose for communication with the purported sender. Attacks
on corrupted parties will not count as forgeries, as they can
be trivially mounted.

Given an adversary A that forges NSL2 messages, we
can build a CCA-distinguisher B against a nonstandard-but-
equivalent formulation of CCA security. In this formulation,
adversary B is given two encryption and decryption oracles,
based on two independent key pairs. When started, our
adversary B will pick two random principals A,B (this
choice must be specified with care; our set of principals is
infinite) and B will encrypt all messages between them using
its left-or-right encryption oracles (“left-or-right” refers to
the particular formalization of CCA security we will use).
In the left-hand argument to the oracles, the adversary will
submit the correct plaintext, as with NSL2. In the right-hand
argument, it will pass in a plaintext with all nonces replaced
by 0n. (For parties other than A and B, distinguisher B will
faithfully simulate all that goes on.) If all left plaintexts were
encrypted, the specified behavior will perfectly simulate
running NSL2 in our MA-model. If all right plaintexts were
encrypted, then, since the nonces are excised from plaintexts
and not surfaced through any other means, the messages
exchanged between A and B are nearly independent of the

9

nonces. Thus, intuitively, even though the adversary may
be likely to forge in the first setting, it cannot possibly do
well in the second, which lets us distinguish among the
encryption oracles we were given. If the adversary happens
to corrupt A or B (which might in fact happen most of the
time), then B’s initial guess of A,B fails, and it gives up.
The likelihood of this contributes a multiplicative loss of q2

to the first two terms of bound (1).
The next portion of the proof shows that the absence

of both forgeries and nonce collisions is enough to imply
partner confirmation (the predicate at 2:25–26). Essentially,
the proof for this backtracks the flows exchanged during a
protocol, repeatedly using the condition that there are no
forgeries to conclude the authenticity of received messages.
In particular, we use the fact that PD(〈0, . . .〉) is determinis-
tic and that both session participants have the same transcript
of the session to conclude they computed the same AD. (One
would expect that following this rather tedious portion of the
proof would admit automation.)

Finally, the structure of our SID being 〈A,B,C1, C2〉
together with the assumption that no nonces collide makes
it fairly straightforward to show that variables proper and
validpartnering will be set. Each of these is a claim about
two executions of PC that return the same SID, therefore
already agreeing about most of the first two flows, the
session participants, and their roles.

The proof intuition we have just described omits many
hidden complexities and details, yet we do not see the proof
as containing very novel ideas or techniques. Perhaps the
nicest thing about it is that writing the MA definition and
the protocol in code lends itself to easy referencing and
inference chains.

6. Proof of Theorem 1

Encryption schemes. Adapting the syntax of encryption
schemes [6, 24, 39] so that their component algorithms can
be called by code, we say that an (asymmetric) encryption
scheme is a triple of procedures Π = (K, E ,D) such that K
takes no input and returns a string 〈pk, sk〉; E takes a pair
of strings pk,M and returns a string C; and D takes a
pair of strings sk, C and returns a string M . We require
that for every 〈pk, sk〉 returned by K and every string
M we have D(sk, E(pk,M)) = M. This holds for all
outcomes of probabilistic assignments that may appear in
those procedures.

An adversary A attacking the CCA security of an encryp-
tion scheme Π = (K, E ,D) may call procedures Encrypt and
Decrypt that work like this. Before the adversary is run, we
set b

$←{0, 1}, 〈pk, sk〉 ← K, and then call A(pk). Proce-
dure Encrypt takes strings X0 and X1 and returns E(pk,Xb)
if |X0| = |X1|, and � otherwise. Procedure Decrypt takes
a string Y and returns D(sk, Y), unless Y was returned
by an earlier call to Encrypt , in which case it returns �.

When A terminates, returning a bit b′, it wins if b = b′.
The advantage of A in attacking the CCA property of Π is
defined as Advcca

Π (A) = Pr[A wins].

Proof strategy. Let Gma be the game defined by running the
model code for MA given in Figure 2 together with NSL2
as defined by Figure 4. Let A be a valid adversary as in
Theorem 1, and denote A running in Gma by Ama. Let
nc be the event that the nonces chosen in 4:23 or 4:27
during two different executions of PC coincide. For the
variables proper, validpartnering and partnerconfirmation in
lines 2:25–27, let proper, vp, and pc be events occurring
if and only if the corresponding variable is TRUE when
the model code terminates. Similarly, for integers i, j, let
partnered(i, j) denote the value of the macro partnered(i, j)
at the end of execution.

Suppose for the moment that forgery is some event. By
the definition of Advma

P (A) and repeated application of the
inequality Pr[E1 ∨ E2] ≤ Pr[E1] + Pr[E2 | ¬E1] we have:

Advma
NSL2[Π,n](A)

≤ Pr[Ama : ¬proper ∨ ¬vp ∨ ¬pc]
≤ Pr[Ama : nc]

+ Pr[Ama : ¬proper ∨ forgery ∨ ¬vp ∨ ¬pc | ¬nc]
≤ Pr[Ama : nc] + Pr[Ama : ¬proper | ¬nc]

+ Pr[Ama : forgery | ¬nc]
+ Pr[Ama : ¬vp | proper ∧ ¬forgery ∧ ¬nc]
+ Pr[Ama : ¬pc | proper ∧ ¬forgery ∧ ¬nc]

We continue by bounding the last probabilities above in a
sequence of lemmas (and defining forgery). The claim of
Theorem 1 then follows by combining the results.

Lemma 2. Let A be an adversary that makes q calls. Then
Pr[Ama : nc] ≤ q2/2n+1.

Proof: We notice that ≤q nonces are sampled independently
from Σn = {0, 1}n and apply the birthday bound.

Consider an execution of Ama. If v is a variable in the
pseudocode of NSL2, then denote by vi the last value v
holds in the i-th execution of PC . Further, let corrupti be
TRUE iff partyi ever gets corrupted (a party A is corrupted
at run j iff corruptA is TRUE).

Lemma 3. For any valid adversary A we have that
Pr[Ama : ¬proper | ¬nc] = 0 .

Proof: To show proper holds, suppose that i ≤ j, sidi =
sidj �= �, and rolei = rolej . Since the identities of both
initiator and responder are included in the session ID in
4:29, 4:36, it is clear that partyi = partyj and pidi = pidj .

Moreover, σ.Ci
2 = σ.Cj

2 . Without loss of generality we can
assume that the field σ.C2 was assigned in both call i and j.
If rolei = rolej = 0, then we conclude from 4:33 σ.myNi =
σ.myNj . If rolei = rolej = 1, then by σ.Ci

2 = σ.Cj
2 and the

injectivity of encryption σ.myNi = σ.myNj as well. By ¬nc

10

both of these nonces were chosen during the same execution
of PC , and so curi = curj . Every field π.instance[l].ad
is written at most once; since sidi �= � we conclude by
4:29 and 4:36, respectively, that π.instance[cur].ad must have
been set by the i-th run, so adi = adj .

Message authenticity. We define existential forgeries of
messages in the context of NSL2 . Let forgery be the event
that there exists a run i of PC such that forgery(i) =
forgehello(i) ∨ forgerespond(i) ∨ forgeconfirm(i) occurs,
where these events are defined as follows:

1) forgehello(i): rolei = 1, and in the i-th Send query,
A sends a message M = 〈HELLO, C, β1〉, where
Dski(C) = 〈σ.youi, σ.myNj , α1〉 for some j < i such
that partyj = σ.youi, σ.youj = partyi, α1, β1 ∈
{0, 1}∗, and corrupti = corruptj = FALSE, but M
was never the response to a query Send(σ.youi,M ′);

2) forgerespond(i): rolei = 0, and the i-th Send is
Send(partyi,M), where M = 〈RESPOND, C, β2〉, and
Dski(C) = 〈σ.youi, σ.myNj , N, α2〉 for some j < i
such that partyj = partyi, σ.youj = σ.youi, N ∈
{0, 1}n, α2, β2 ∈ {0, 1}∗, and corrupti = corruptj =
FALSE, but M was not replied in any Send query
k < i such that partyk = σ.youi and σ.youk = partyi;

3) forgeconfirm(i): rolei = 1, and the i-th Send is
Send(partyi,M), where M = 〈CONFIRM, C, β3〉 and
Dski(C) = 〈σ.myNj , α3〉 for some j < i such that
partyj = partyi, σ.youj = σ.youi, α3, β3 ∈ {0, 1}∗,
and corrupti = corruptj = FALSE, but M was not
replied in any run k < i such that partyk = σ.youi

and σ.youk = partyi.

Lemma 4. Let A be a valid adversary that makes q calls,
where q /∈ {2(n+1)/2, 2n}, and runs in time t. There exists
a CCA adversary B such that

Pr[Ama : forgery | ¬nc] ≤ 8q2

1− q2/2n+1
·Advcca

Π (B)

+
4q4

2n − q
· 1
1− q2/2n+1

.

Adversary B asks at most 3q queries and runs in time linear
in t log q + q2 · TimeΠ(λ), where TimeΠ(c) denotes the
maximum number of steps to compute E(pk,X), D(sk,X),
and K () over all strings X with |X| ≤ c.

Proof: We define an adversary B that runs A in a
modified version of the game formed by the model code
in Figure 2 and NSL2[Π, n] described in Figure 4. We
assume that, for a fixed bit b, B has in fact access to two
encryption oracles Encrypt1b , Encrypt2b and corresponding
decryption oracles Decrypt1 and Decrypt2 that use key
pairs (pk1, sk1), (pk2, sk1)

$←K (), respectively. Denoting
the game of running B with these oracles by Bb, the
advantage of B against Π in this setting is Adv2-cca

Π (B) =
Pr[B1⇒ 1] − Pr[B0⇒ 1]. A standard reduction shows

that that for every adversary B there is a B′ such that
Adv2-cca

Π (B) ≤ 2 ·Advcca
Π (B′) and B′ runs in time linear

in the running time of B. Call this notion 2-CCA.
Let p ≤ 2q be the number of distinct parties men-

tioned in Lookup queries. First, the simulator B chooses
r, s

$←{1, . . . , p} and sets C ← ∅. Let A1 and A2 be the r-th
and s-th (distinct) principal mentioned in a Lookup query,
respectively. The simulator answers each query Lookup(A1)
with pk1 and each query Lookup(A2) with pk2. (If A1 = A2

it also returns pk1. For simplicity, we assume A1 �= A2 in
this description.) Adversary B hopes that A attempts to forge
a message from A1 to A2 or from A2 to A1. To encrypt
messages sent between A1 and A2, the simulator queries its
corresponding oracle Encrypt i

b(·, ·). For each plaintext X1

that, say, A1 would want to encrypt for A2, B forms a plain-
text X0 by taking X1 and replacing each nonce in it by 0n.
It then includes the ciphertext Y ← Encrypt2b(X0,X1) in
the outgoing message for A2 and adds (A2,X, Y) to C. If
b = 1 then Y has the same distribution as in Gma, whereas
if b = 0 then, intuitively, Y is (almost) independent of the
choice of nonces. (We will make the latter precise.) For
messages from A2 to A1 the simulator proceeds analogously,
making use of its oracle Encrypt1b(·, ·). For all messages
sent from or to a party B �= A1, A2, the simulator uses
Π’s encryption and decryption algorithms as in Figure 4.
Whenever Ai needs to decrypt, B checks if the ciphertext
was the result of a query Encrypt i

b(X0,X1) by searching
for a tuple (Ai,X1, Y) ∈ C. If so, it assumes X1 is the
plaintext. If not, it makes a query Decrypt i(Y) to obtain the
plaintext. If A1 or A2 gets corrupted, B aborts and outputs 0,
effectively giving up since it doesn’t know their secret keys.
All other Corrupt queries are answered as in Figure 4.

Let nc be defined as in Gma, and let forgery∗(i) be the
event that forgery(i) happens and {Ai

1, σ.youi} = {A1, A2},
where A1 and A2 are the principals selected by B based on
its random choices r, s. Define forgery∗ as the union of all
events forgery∗(i) where 1 ≤ i ≤ q. The simulator B outputs
1 if ¬forgery∗ ∧ ¬nc, and 0 otherwise. We have

Adv2-cca
Π (B) = Pr[B1⇒ 1]− Pr[B0⇒ 1]

= Pr[B1 : forgery∗ | ¬nc] · Pr[B0: ¬nc]

− Pr[B0 : forgery∗ | ¬nc] · Pr[B0 : ¬nc] .

(2)

Note that the answers given to A in the games B1 and
Ama are identically distributed, and the behavior of A
in B1 is independent of the choice of i, j. In particular,
the probability of the event {partyi, σ.youi} = {A1, A2}
occurring conditioned on forgery(i) ∧ ¬nc is 1/p2, thus
Pr[B1 : forgery∗(i) | ¬nc] = Pr[B1 : forgery(i) | ¬nc]/p2.
Applying the union bound yields Pr[B1 : forgery∗ | ¬nc] ≥
1/p2 · Pr[B1 : forgery | ¬nc]. The birthday bound gives the
inequality Pr[B1: ¬nc] ≥ 1 − q2/2n+1. To bound the
remaining term, we will soon show that

Pr[B0 : forgery∗ | ¬nc] ≤ q2/(2n − q).

11

Rearranging equation (2) and applying all bounds we just
derived yields:

Pr[Ama : forgery | ¬nc] ≤ p2

1− q2/2n+1
·Adv2-cca

Π (B)

+
p2q2

2n − q
· 1
1− q2/2n+1

.

By the reduction from 2-CCA to CCA, there exists an ad-
versary B′ such that Advcca

Π (B′) is at most 2·Adv2-cca
Π (B).

Since B asks at most 3q queries, B′ makes at most 3q
queries as well. The validity of of forgery∗ ∧ ¬nc can be
checked in time proportional to t log q, and B spends at most
q2 · TimeΠ(λ) steps in public-key operations. Thus both B
and B′ run in time t′ ≤ cq2TimeΠ(λ)+ct log q, where c is a
small constant depending only on the model of computation.
Replacing B by B′ and applying p ≤ 2q yields the claim.

It remains to bound Pr[B0 : forgery∗ | ¬nc]. We distin-
guish three cases. First suppose forgehello(i). Without loss
of generality partyi = A1. Then rolei = 1, and the
i-th Send query was of the form 〈HELLO, C, β1〉, where
X = Dski(C) = 〈A2, N, α1〉 for strings N ∈ {0, 1}n,
α1, β1 ∈ {0, 1}∗, but M was never the response to a
query Send(A2,M

′). Moreover, for a successful forgery it
is necessary that N = σ.myNj for some j < i such that
partyj = A2 and σ.youj = A1. Without loss of generality
A2 sampled σ.myN in the j-th call. Since nonces chosen
by A1 and A2 never actually get encrypted, the only place
where they are used is to influence the control flow in the
equality tests in 4:16, 4:19, 4:33, and 4:41. In particular,
the nonce fields are redacted from the principal’s state using
Sanitize(π) before being passed to the PD . By ¬nc the value
σ.myNj does not coincide with any nonce chosen by any
party in any other round. Thus, in a thought experiment one
could swap σ.myNj for any one of the ≥ 2n − q strings
in {0, 1}n that are never sampled during the game without
changing A’s view. Hence the probability that N = σ.myNj

is at most 1/(2n − q). Since there are most q choices
for i and j, the probability that A succeeds in forging a
HELLO message against A1 or A2 is at most q2/(2n − q).
Interchanging the roles of A1 and A2 yields the same bound
for the case partyi = A2.

Now let’s consider the case where A attempts to forge
a RESPOND message between A1 and A2. Suppose there
exists some i such that partyi = A1 and the i-th Send query
is Send(partyi,M), where M = 〈RESPOND, C, β2〉, and
Dski(C) = 〈A2, N,N ′, α2〉, N,N ′ ∈ {0, 1}n, and α2, β2 ∈
{0, 1}∗. We want to bound the probability that N = σ.myNj

for some j < i such that partyj = A1, σ.youj = A2, but
M was not replied in any run k < i such that partyk = A2

and σ.youk = A1. Since σ.myNj was chosen by A1, we can
apply a similar argument as for forgehello: there are at least
2n−q possible values for σ.myNj , and at most q choices for
j. Hence the probability that A forges a RESPOND message
between A1 or A2 is at most q2/(2n−q). Similarly, the same

bound holds for the case of CONFIRM messages. All cases
are mutually exclusive because the number of components
of the plaintext in the three cases above is distinct. Therefore
Pr[B0 : forgery∗ | ¬nc] ≤ q2/(2n − q).

Lemma 5. For a valid adversary A,

Pr[Ama : ¬vp | proper ∧ ¬forgery ∧ ¬nc] = 0 .

Proof: Suppose proper, ¬forgery, and partnered(i, j). As
sidi = sidj �= � and rolei �= rolej , it follows from the
construction of σ.sid in 4:29, 4:36 that pidi = partyj , pidj =
partyi, and σ.Ci

1 = σ.Cj
1 , σ.Ci

2 = σ.Cj
2 . Since the partner

IDs match, and thus matching keys were used, lines 4:24,
4:26 imply that σ.αi

1 = σ.αj
1. Similarly, by lines 4:28, 4:33,

we get σ.αi
2 = σ.αj

2. Therefore σ.ad was computed using
the same deterministic call PD (〈0, σ.α1, σ.α2〉) in 4:29 and
4:37, and thus adi = adj .

Lemma 6. For a valid adversary A,

Pr[Ama : ¬pc | proper ∧ ¬forgery ∧ ¬nc] = 0 .

Proof: The proof somewhat tediously traces back the
execution of both ends of a session to conclude that they
are partnered. Crucially, we use ¬forgery to infer the au-
thenticity of messages each participant received.

Suppose proper, ¬forgery, and ¬nc, but for some i with
confi and fresh(sidi) there is no j such that partnered(i, j),
i.e., no j such that sidi = sidj �= � and rolei �= rolej . Note
that sidi �= � since confi �= �. We distinguish two cases
based on the role of partyi. If rolei = 0 then σ.conf i was
set in 4:36, so by 4:15 and 4:32–33, partyi must have re-
ceived a message M1 of the form 〈RESPOND, σ.Ci

2, σ.βi
2〉 in

run i, where Dski(σ.Ci
2) = 〈pidi, σ.myNi, σ.yourNi, σ.αi

2〉.
The nonce σ.myNi was generated in an earlier call in
which σ.you was set, necessarily to σ.youi since that field
is written at most once. Since fresh(sidi) implies that
corrupti = FALSE and that corruptB = FALSE, where
B = pidi, we conclude by ¬forgerespond(i) that M1 was
the response to some j-th Send query with partyj = pidi

and pidj = partyi. We aim to show partnered(i, j). As
M1 was sent in the j-th run, we have σ.Ci

2 = σ.Cj
2 .

Encryptions are only performed in lines 4:24, 4:28, and
4:35. The plaintexts in those lines are encodings of tu-
ples with three, four, and two components, respectively,
so ciphertexts and the sender’s σ.you uniquely determine
in which line of the pseudocode they were constructed. In
particular, M1 must have been constructed when executing
line 4:28, and since σ.youj = partyi’s public key was used
to encrypt and its secret key to decrypt, the corresponding
plaintexts are equal, that is, 〈pidi, σ.myNi, σ.yourNi, αi

2〉 =
〈partyj , σ.yourNj , σ.myNj , αj

2〉. (We shall use an analogous
argument several times below, but keep it more succinct.)

By construction of M1 in 4:28 we have that σ.myNi =
σ.yourNj , and from line 4:29 see that rolej = 1. As

12

sidi = 〈partyi, pidi, σ.Ci
1, σ.Ci

2〉, it remains to show that
σ.Ci

1 = σ.Cj
1 . By 4:26, partyj received a message M2 =

〈HELLO, σ.Cj
1 , σ.βj

1〉 in run j such that Dskj (σ.Cj
1) =

〈pidj , σ.yourNj , σ.αj
1〉 = 〈pidj , σ.myNi, σ.αj

1〉. Since sidi

is fresh, pidj = partyi, and partyi = pidj , corruptj =
corruptj = FALSE so ¬forgehello(j) implies that M2 was
indeed sent in k-th run of PC . By the construction of M2

in 4:24 we have σ.Ck
1 = σ.Cj

1 , and curi = curk. σ.myNk =
σ.yourNj = σ.myNi. By ¬nc, we get curi = curk, and thus
σ.Ci

1 = σ.Cj
1 . By the construction of the session ID in 4:29

and 4:36, we conclude that sidi = sidj . Hence i and j are
partnered.

Let’s consider the case where rolei = 1. Because
confi = TRUE, line 4:42 must have been executed dur-
ing the i-th run of PC . Hence partyi received a mes-
sage M1 = 〈CONFIRM, σ.Ci

3, σ.βi
3〉 such that Dski(σ.Ci

3) =
〈σ.myNi, σ.αi

3〉. By ¬forgeconfirm(i), there is a j < i such
that M1 was sent by PC in the j-th run, and partyj = pidi,
partyi = pidj . By the way M1 was constructed in 4:36 it
follows that rolej = 0 �= rolei and σ.myNi = σ.yourNj .

To prove partnered(i, j) it remains to show that we
have σ.Ci

1 = σ.Cj
1 and σ.Ci

2 = σ.Cj
2 . Since partyj

sent message M1 in the j-th run, by 4:32 it must
have received a message M2 = 〈RESPOND, σ.Cj

2 , σ.βj
2〉

such that Dskj (σ.Cj
2) = 〈partyi, σ.myNj , σ.yourNj , σ.αj

2〉.
Since fresh(sidi), partyj = pidi, and pidj = partyi,
¬forgerespond(j) shows that there exists k < j such that
partyk sent M2 in the k-th run, partyk = pidj = partyi,
and pidk = partyj . Since partyk = partyi and fresh(sidi),
line 4:24 implies in particular that σ.myNi = σ.yourNj =
σ.myNk. By the latter equation and ¬nc, we find that
curi = curk and thus σ.Ci

2. = σ.Ck
2 = σ.Cj

2 .

Since PC executed 4:28 in run k, it must have ex-
ecuted 4:26 as well. Therefore it must have received a
message M3 = 〈HELLO, σ.Ck

1 , σ.βk
1 〉, where Dskk(σ.Ck

1) =
〈pidk, σ.yourNk, σ.αk

1〉 = 〈partyj , σ.myNj , σ.αk
1〉. Because

fresh(sidi), pidk = partyj = pidi, and ¬forgehello(k), there
is some l < k such that partyl = pidk, partyk = pidl, and
M3 was sent in run l. Thus σ.Ck

1 = σ.Ci
1. The way M2

was constructed in 4:24 and its contents verified in 4:40
together with σ.youl = Ak and Al = σ.youk imply that
σ.myNl = σ.yourNk = σ.myNj . By ¬nc, we get σ.Ci

1 =
σ.Ck

1 = σ.Cl
1 = σ.Cj

1 , thus sidi = sidj and partnered(i, j).
This gives Pr[¬pc | proper ∧ ¬forgery ∧ ¬nc] = 0.

7. Conclusions

The notions of this paper were not invented in a vacuum,
but in an attempt to prove the security for a specific real-
word protocol: the Abbreviated Handshake protocol of the
draft IEEE 802.11s standard for mesh networking [19, 45].
The protocol there is for authenticated key exchange (AKE)
in the symmetric setting. A conventional treatment of the

scheme, which was our starting point, would begin by
extracting out of the spec a simple four-flow sequence that
one would claim to be the relevant object of study. After
defining this protocol, one could prove it correct under one
of the existing cryptographic definitions for AKE and claim
success. But we decided that there would be something
deeply unsatisfying with this whole approach. Most of the
802.11s spec would have been elided, including pieces that
were clearly of cryptographic relevance. We wanted to make
sure we had a proof that would say something about the
actual protocol in the spec and in implementations, not some
fiction of our design.

In the end, the complexity of the protocol core of the
Abbreviated Handshake and the unsettledness of its spec
proved to be a major impediment in communicating our
ideas, so we switched to NSL, which is not a real-world
scheme. It remains a thesis of our work that the PSP idea can
be used to faithfully represent a real-world scheme without
taking on an unmanageable amount of complexity.

Acknowledgment

The authors thank Mihir Bellare, Mark Gondree, Payman
Mohassel, Jesse Walker, Meiyuan Zhao, and the anony-
mous referees for their comments and suggestions. We
were supported in part by NSF 0208842 and a gift from
Intel Corporation.

References

[1] M. Backes, M. Berg, and D. Unruh. A formal language for
cryptographic pseudocode. Logic for Programming, Artifi-
cial Intelligence, and Reasoning, LNCS vol. 5330, Springer,
pp. 353–373, 2008.

[2] M. Backes and P. Laud. Computationally sound secrecy
proofs by mechanized flow analysis. ACM Conference on
Computer and Communications Security (CCS 2006). ACM
Press, pp. 370–379, 2006.

[3] M. Backes and B. Pfitzmann. A cryptographically sound
security proof of the Needham-Schroeder-Lowe public-key
protocol. IEEE Journal on Selected Areas in Communications
22(10), pp. 2075–2086, 2004.

[4] M. Backes, B. Pfitzmann, and M. Waidner. Symmetric au-
thentication in a simulatable Dolev-Yao-style cryptographic
library. International Journal of Information Security, 4(3),
pp. 135–154, 2005.

[5] G. Barthe, B. Grégoire, and S. Zanella. Formal certifica-
tion of code-based cryptographic proofs. ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL 2009), pp. 90–101, ACM Press, 2009.

[6] M. Bellare, A. Desai, D. Pointcheval, P. Rogaway. Relations
among notions of security for public-key encryption schemes.
Advances in Cryptology – CRYPTO ’98, LNCS vol. 1462,
Springer, pp. 26–45, 1998.

[7] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated
key exchange secure against dictionary attacks. Advances in
Cryptology – EUROCRYPT 2000, LNCS vol. 1807, Springer,
pp. 139–155, 2000.

13

[8] M. Bellare and P. Rogaway. Entity authentication and key
distribution. Advances in Cryptology – CRYPTO ’93, LNCS
vol. 773, Springer, pp. 232–249, 1994.

[9] M. Bellare and P. Rogaway. The security of triple encryption
and a framework for code-based game-playing proofs. Ad-
vances in Cryptology – EUROCRYPT 2006. LNCS vol. 4004,
Springer, pp. 409–426, 2006.

[10] S. Blake-Wilson and A. Menezes. Entity authentication and
authenticated key transport protocols employing asymmet-
ric techniques. Security Protocols Workshop 1997, LNCS
vol. 1361, Springer, pp. 137–158, 1997.

[11] B. Blanchet. A computationally sound mechanized prover
for security protocols. IEEE Transactions on Dependable and
Secure Computing, 5(4), pp. 193–207, 2008.

[12] S. Bradner. Key words for use in RFCs to indicate require-
ment levels. RFC 2119. March 1997.

[13] R. Canetti. Universally composable security: a new paradigm
for cryptographic protocols. Cryptology ePrint Report
2000/067. Last revised 13 Dec 2005. Extended abstract in
FOCS 2001.

[14] R. Canetti and J. Herzog. Universally composable symbolic
analysis of mutual authentication and key-exchange proto-
cols. TCC 2006, LNCS vol. 3876, pp. 380–403, 2006.

[15] R. Canetti and H. Krawczyk. Security analysis of IKE’s
signature-based key-exchange protocol. Advances in Cryptol-
ogy – CRYPTO 2002. LNCS vol. 2442, Springer, pp. 143–
161, 2002.

[16] V. Cortier and B. Warinschi. Computationally sound, auto-
mated proofs for security protocols. European Symposium
on Programming (ESOP 2005). LNCS vol. 3444, Springer,
pp. 157–171, 2005.

[17] A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Proto-
col Composition Logic (PCL). Computation, Meaning, and
Logic: Articles dedicated to Gordon Plotkin, ENTCS vol. 172,
Elsevier, pp. 311–358, 2007.

[18] M. Dworkin. Recommendation for block cipher modes of
operation: the CCM mode for authentication and confiden-
tiality. NIST Special Publication 800-38C. May 2004.

[19] S. Connor. IEEE P802.11s draft 1.08. January 2008.
[20] T. Dierks and E. Rescorla. The transport layer security (TLS)

protocol: version 1.2. RFC 5246. August 2008.
[21] IEEE Standard 802.11i, Part 11: Wireless LAN medium ac-

cess control (MAC) and physical layer (PHY) specifications:
Amendment 6: Medium Access Control (MAC) security
enhancements. IEEE Computer Society, 2004.

[22] S. Gajek, M. Manulis, O. Pereira, A Sadeghi, and J. Schwenk.
Universally composable security analysis of TLS—secure
sessions with handshake and record layer protocols. ProvSec
2008, LNCS 5324, Springer, pp. 313–327, 2008.

[23] R. Gennaro and Y. Lindell. A framework for password-based
authenticated key exchange. ACM TISSEC, 9(2), pp. 181–
234, 2006.

[24] S. Goldwasser, S. Micali. Probabilistic Encryption. Journal of
Computer and System Sciences, 28(2), pp. 270–299, 1984.

[25] C. He, M. Sundararajan, A. Datta, A. Derek, J. C. Mitchell.
A modular correctness proof of IEEE 802.11i and TLS.
ACM Conference on Computer and Communications Security
(CCS ’05), pp. 2–15, ACM, 2005.

[26] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall International, 1985. www.usingcsp.com

[27] M. L. Hui and G. Lowe. Fault-preserving simplifying trans-
formations for security protocols or Not just the Needham
Schroeder Public Key Protocol. Journal of Computer Secu-
rity, vol. 9, pp. 3–46, 2001.

[28] C. Kaufman. Internet key exchange (IKEv2) protocol.
RFC 4306. December 2005. See also RFC 2409, The Internet
key exchange, by D. Harkins and D. Carrel, November 1998.

[29] H. Krawczyk. SIGMA: The ‘SIGn-and-MAc’ approach to au-
thenticated Diffie-Hellman and its use in the IKE-protocols.
Advances in Cryptology – CRYPTO 2003. LNCS vol. 2729,
Springer, pp. 400–425, 2003.

[30] D. Kuhlman, R. Moriarty, T. Braskich, S. Emeott, and
M. Tripunitara. A correctness proof of a mesh security ar-
chitecture. IEEE Computer Security Foundations Symposium
2008 (CSF 2008), IEEE Press, pp. 315–330, 2008.

[31] B. LaMacchia, K. Lauter, and A. Mityagin. Stronger secu-
rity of authenticated key exchange. ProvSec 2007. LNCS
vol. 4784, Springer, pp. 1–16, 2007.

[32] G. Lowe. An attack on the Needham-Schroeder public
key authentication protocol. Information Processing Letters,
56(3), pp. 131–136, 1995.

[33] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. Tools and Algorithms for
Construction and Analysis of Systems (TACAS 1996), LNCS
vol. 1055, Springer, pp. 147–166, 1996.

[34] D. Micciancio and B. Warinschi. Soundness of formal en-
cryption in the presence of active adversaries. Theory of
Cryptography Conference (TCC 2004), LNCS vol. 2951,
Springer, pp. 133–151, 2004.

[35] A. Menezes and B. Ustaoglu. Comparing the pre- and post-
specified peer models for key agreement. ACISP 2008. LNCS
vol. 5107, Springer, pp. 53–68, 2008.

[36] P. Morrissey, N. Smart, and B. Warinschi. A modular se-
curity analysis of the TLS handshake protocol. Advances in
Cryptology – ASIACRYPT 2008. LNCS vol. 5350, Springer,
pp. 55–73, 2008.

[37] R. Needham and M. Schroeder. Using encryption for authen-
tication in large networks of computers. Communications of
the ACM, 21(12), pp. 993–999, 1978.

[38] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Ker-
beros network authentication service (V5). RFC 4120. July
2005.

[39] C. Rackoff and D. Simon. Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack. Advances
in Cryptology – CRYPTO 1991, LNCS vol. 576, Springer,
pp. 433–444, 1991.

[40] P. Rogaway. Authenticated-encryption with associated-data.
ACM Conference on Computer and Communications Security
(CCS 2002), ACM Press, pp. 98–107, 2002.

[41] V. Shoup. On formal models for secure key exchange.
Manuscript, 1999.

[42] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and
M. Waidner. Cryptographically sound theorem proving. Com-
puter Security Foundations Workshop (CSFW 19), IEEE
Press, pp. 153–166, 2006.

[43] V. Shoup and A. Rubin. Session key distribution using smart
cards. Advances in Cryptology – EUROCRYPT 1996, LNCS
vol. 1070, Springer, pp. 321–331, 1996.

[44] B. Warinschi. A computational analysis of the Needham-
Schroeder-(Lowe) protocol. Journal of Computer Security,
13(3), pp. 565–591, 2005. Earlier version in Computer Secu-
rity Foundations Workshop (CSFW 16), IEEE Press, pp. 248–
262, 2003.

[45] M. Zhao, J. Walker, S. Conner, H. Suzuki, and J. Kruys.
Abbreviated handshake for authenticated peer link establish-
ment. Document IEEE 802.11-07/1999r4. Proposal to the to
IEEE 802.11s Task Group, September 2007.

14

