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Abstract� We describe a software�e
cient encryption algorithm named
SEAL ���� Computational cost on a modern �	�bit processor is about �
clock cycles per byte of text� The cipher is a pseudorandom function
family� under control of a key ��rst pre�processed into an internal table�
it stretches a �	�bit position index into a long� pseudorandom string�
This string can be used as the keystream of a Vernam cipher�
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� Introduction

Encrypting Fast In Software� Encryption must often be performed at high
data rates� a requirement sometimes met with the help of supporting crypto�
graphic hardware� Unfortunately� cryptographic hardware is often absent and
data con�dentiality is sacri�ced because the cost of software cryptography is
deemed to be excessive�

The computational cost of software cryptography is a function of the under�
lying algorithm and the quality of its implementation� But regardless of imple�
mentation� a cryptographic algorithm designed to run well in hardware will not
perform in software as well as an algorithm optimized for software execution�
The hardware�oriented Data Encryption Algorithm 
DES� is no exception� Of�
ten what is needed is a well�designed� software�optimized encryption method for
today�s general purpose computers�

To this end� we have designed SEAL 
Software Encryption Algorithm�� SEAL
is a pseudorandom function family� under control of a key� �rst preprocessed
into a set of tables� SEAL stretches a ���bit �position index� into a keystream of
essentially arbitrary length� One then encrypts by XORing this keystream with
the plaintext� in the manner of a Vernam cipher� As with any Vernam cipher it
is imperative that the keystream only be used once�

On a modern ���bit processor SEAL can encrypt messages at a rate of about �
clock cycles per byte of text� In comparison� the DES algorithm is more than ��
times as expensive� Even a Cyclic Redundancy Code 
CRC� is more costly�



Related Work� We are not the �rst to realize the value of software�optimized
cryptography� In �		� Merkle described the utility of software�oriented cryptog�
raphy and he proposed a suite of three software�e�cient algorithms ���� One of
them� called �Khufu�� is a block cipher which is similar in spirit to SEAL�

An earlier software�oriented block cipher than Khufu is FEAL ����� But this
algorithm and its variants have not proven to be particularly secure 
see ��� for
history and attacks�� Nor is it all that fast�

RC� is a popular� software�e�cient stream cipher designed by Rivest �����
It is fast� though less fast than SEAL� RC� is a software�e�cient block cipher�
It too was designed by Rivest ����� Some other software�e�cient ciphers include
Blow�sh��
� and WAKE ��	��

History And Naming� The full name of the cipher described in this paper
is SEAL ���� An earlier version of this cipher was described in �		� ���� and
denoted SEAL ���� Though SEAL ��� is the �rst modi�cation to SEAL ��� which
the authors have described� a variant known as SEAL ��� had already appeared
in the literature �
�� it was identical to SEAL ��� apart from using NIST�s revised
Secure Hash Algorithm 
SHA��� instead of the original one 
SHA� ����� While
SEAL ��� retains that change� the more signi�cant adjustment is responsive to
an attack by Handschuh and Gilbert ���� See Section � for further information
on their attack and the di�erences between SEAL ��� and SEAL ����

In this paper the name SEAL� by itself� always refers to SEAL ����

� Characteristics of the Cipher

Key characteristics and design choices of SEAL are explained below�

Preprocessing The Key� In typical applications requiring fast software cryp�
tography� data encryption is required over the course of a communication session
to a remote partner� or over the course of a login session to a particular machine�
In either case the key a which protects the session is determined at session setup�
Typically this session setup takes at least a few milliseconds and is not a time�
critical operation� It is therefore acceptable� in most applications� to spend some
number of milliseconds to map the 
short� key a to a 
less concise� representation
of the cryptographic transformation specialized to this key� Our cipher has this
characteristic� As such� SEAL is an inappropriate choice for applications which
require rapid key�setup�

Length�Increasing Pseudorandom Function � Variable Output And

Key Lengths� The function SEAL is a type of cryptographic object called a
pseudorandom function family 
PRF�� Such objects were �rst de�ned in ���� SEAL
is a length�increasing PRF� under control of a ����bit key a� SEAL maps a ���bit
string n to an L�bit string SEAL
a� n� L�� The number L can be made as large or
as small as is needed for a target application� but output lengths ranging from
a few bytes to a few thousand bytes are anticipated� An arbitrary length key a�

can be used as the key for SEAL simply by selecting a � SHA��
a���
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As a pseudorandom function family� SEAL
a� �� L� should �look like a random
function� if a is random and unknown� The meaning of this is as follows� First a
key a is taken at random from f�� �g���� Next the adversary is given� at random�
either a black�box for the function SEAL
a� �� L� or else a black�box for a truly
random function R
��� Either maps �� bits to L bits� The adversary�s job is to
guess which type of box she has� Say that the adversary wins if she correctly
guesses �Random� or �Pseudorandom�� Our goal is that for any reasonable
adversary� she should not win with probability signi�cantly greater than ����
Though we will not attempt to de�ne �reasonable� or �signi�cant�� we aim to
defeat adversaries with substantial computational resources and cleverness�

A PRF can be used to make a good stream cipher� In a stream cipher the
encryption of a message depends not only on the key a and the message x but
also on the message�s �position� n in the data stream� This position is often a
counter 
sequence number� which indicates which message is being enciphered�
The encryption of string x at position n is given by hn� x�SEAL
a� n� L�i� where
L � jxj� In other applications n might indicate the address of a piece of data on
disk�

Target Platforms� Execution vehicles that should run the algorithm well in�
clude the Intel���TM�Intel���TM�PentiumTM processors� and contemporary ���bit
RISC machines� Because of the particular challenges involved in having a cipher
run well on the ��������Pentium� and because of the pervasiveness of this pro�
cessor family� we have optimized our cipher with the characteristics of this pro�
cessor familyparticularly in mind� By doing well on these di�cult�to�optimize�for
vehicles we expect to do well on any modern ���bit processor�

Some of the relevant limitations of the ��������Pentium are a small register
set� a two�operand instruction architecture� and a small �rst level cache� Here
is some further detail which was important in design choices� These processors
have � general registers 
including the register normally used as a stack pointer��
Most instructions work on two operands 
A � A op B� instead of three 
A �
B op C�� The ��� has an � KByte on�chip cache for data and instructions� while
the Pentium has an � KByte data cache and an � KByte instruction cache�
Cache misses can be expensive� The ��� and Pentium processors use a ��stage
instruction pipeline� and if the base register for an address calculation is the
destination register of the preceding instruction� an extra cycle will be consumed�
The Pentium processor has dual instruction pipes� one of which runs a very
limited instruction set� It was not a design goal for the cipher to exhibit an
instruction dependency structure which would allow us to always �ll both pipes�

Table�Driven Cipher� One early decision was whether to make the cipher
a straight�line program of logical operations 
like MD� ���� or SHA�� ����� or
to drive it instead by the use of a large table 
like Khufu or a software DES��
instead� The table�driven approach was selected because we felt that it would
lead to a faster and easier�to�design cipher� With the table�driven algorithm we
could get very rapid di�usion and there would be less temptation to produce a
cipher whose most e�cient implementation used self�modifying code�
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In view of the size of the �rst�level cache� and the fact that servers may want
to store in second�level cache the representation of the encryption transformation
of tens of clients� it was decided that we should not be too generous with the
size of the tables that we used� We would settle on a total size for all tables of
��� KBytes�

procedure Initialize�n� �� A�B�C�D� n�� n�� n�� n��

A� n� R�����
B � �n iii 
��R���� ���
C � �n iii ���� R���� 	��
D� �n iii 	���R���� ���

for j � � to 	 do

P � A � �x�fc� B � B � T �P���� A� A iii ��
P � B � �x�fc� C � C � T �P���� B � B iii ��
P � C � �x�fc� D� D� T �P���� C � C iii ��
P � D � �x�fc� A� A� T �P���� D � D iii ��

�n�� n�� n�� n��� �D� B� A� C��

P � A � �x�fc� B � B � T �P���� A� A iii ��
P � B � �x�fc� C � C � T �P���� B � B iii ��
P � C � �x�fc� D � D� T �P���� C � C iii ��
P � D � �x�fc� A� A� T �P���� D� D iii ��

Fig� �� Initialization of �A�B�C�D� n�� n�� n�� n�� from �n� ��� This initialization de�
pends on a�derived tables T and R�

� De�nition of the Cipher

Notation� We call a ���bit string a �word� and an ��bit string a �byte�� The
empty string is denoted �� We write numbers in hexadecimal by preceding them
with ��x� and then using the symbols �a���f� to represent decimal numbers
������ respectively� By y iii t we denote a right circular shift of the word y by t
bits� in other words� the i�th bit of y iii t is y�i�t� mod ��� Similarly� y hhh t denotes
a left circular shift of y by t bits� By ��� ��� and ��� we denote bitwise AND�
OR� and XOR� by A we denote the complement of A� By A � B we denote
the sum� ignoring the carry� of the unsigned integers A and B� this is the sum
mod ��� of numbers A and B� By �k� we denote the concatenation operator� By
odd
�� we mean the predicate which is true if and only if its argument is an odd
number�
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function SEAL�a� n�L�

y � ��

for �� � to � do

Initialize�n��� A�B�C�D� n�� n�� n�� n���

for i� � to �� do

P � A � �x�fc� B � B � T �P���� A� A iii �� B � B �A��

Q� B � �x�fc� C � C � T �Q���� B � B iii �� C � C � B��

P � �P �C� � �x�fc� D� D � T �P���� C � C iii �� D� D� C��

Q� �Q�D� � �x�fc� A� A� T �Q���� D � D iii �� A� A�D��

P � �P �A� � �x�fc� B � B � T �P���� A� A iii ��	

Q� �Q�B� � �x�fc� C � C � T �Q���� B � B iii ���

P � �P �C� � �x�fc� D� D � T �P���� C � C iii ��


Q� �Q�D� � �x�fc� A� A� T �Q���� D � D iii ���

y � y k B�S��i��� k C�S��i��� k D�S��i�	� k A�S��i�����

if jyj � L then return �y�y� � � � yL������

if odd�i� then �A� B� C� D�� �A� n�� B � n�� C � n�� D� n����

else �A� B� C� D�� �A� n�� B � n�� C � n�� D � n���

Fig� �� Cipher mapping ���bit position index n to L�bit string SEAL�a� n�L� under the
control of a�derived tables T � R� and S�

Output Length� Recall that we think of SEAL as producing variable�length
output� Let L be the number of output bits desired� We assume a large bound
on L� say L � �� � ���� � �� So at most �� KBytes may be produced per index�

Mapping The Key To The Tables� Our �rst task is to specify the tables
T � R� and S� all of which depend only on the key a� The key a is used only to
de�ne these three tables�

We specify the tables using a function G� For a a ����bit string and i an
integer� � � i � ���� Ga
i� is a ����bit value� The function G is just the com�
pression function of the Secure Hash Algorithm SHA�� ����� For completeness�
its de�nition is given in Appendix A�

Let us re�index G to construct a function � whose images are ���bit words
instead of ����bit ones� The function � is de�ned by �a
i� � Hi

i mod 	 where

H	j
� kH	j
�

� kH	j
�
� kH	j
�

� kH	j
�
� � Ga
j�� for j � bi��c�

Thus a table of � �values is exactly a table for G�values read left�to�right�
top�to�bottom�

Now de�ne

T �i� � �a
i� for all � � i � ����
S�j� � �a
�x���� � j� for all � � j � ���� and
R�k� � �a
�x���� � k� for all � � k � ����
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Four words of the array R are required for each kilobyte 
or fraction of a kilobyte�
of SEAL
a� n� L�� Thus if one has a bound Lmax on the maximal possible value
of L then it is adequate to compute R�k� for � � k � �dLmax���	�e� For the
maximalpermitted output length of �� KBytes one needs to calculate the SHA��
compression function ��
 times�

The Pseudorandom Function� Given the number L� the tables T � R� and
S 
determined by a�� and a ���bit position index n� the algorithm of Figure �
stretches n to an L�bit pseudorandom string y�

The algorithm uses a routine Initialize which� using tables T and R� maps n
and � to the words A�B�C�D� n�� n�� n�� n�� That procedure is given in Figure ��

The outer loop of Figure � is to be broken by line �� when enough output
bits have been collected�

Terminology� For purposes of subsequent discourse� a round refers to the
execution of any one of lines ��� in Figure �� while an iteration is the execution
of all of the lines 
����� associated to a given value of i� Thus there are eight
rounds in each iteration�

� Explanations and Design Heuristics

Some of the structure of SEAL may be made less mysterious by the general
explanations of this section and the speci�c attacks of Section �� The following
general heuristics were employed�

� Using a large� secret� key�derived �S�box� 
the � KByte table T ��

� Alternating arithmetic operations which don�t commute 
addition mod ���

and bitwise XOR��

� Using internal state maintained by the cipher and not directly manifest in
the output data stream 
the registers n�� n�� n�� n���

� Using simple� well�known methods where adequate 
using SHA�� to gen�
erate the tables��

Somewhat more speci�c heuristics�

� Varying the round function according to the round number 
e�g�� alternat�
ing use of P and Q��

� Varying the iteration function according to the iteration number 
e�g��

n�� n�� or 
n�� n�� in line ��� and S����values associated to the iteration��

The attention to the parity of the round and iteration number may help against
attacks which play o� successive rounds or successive iterations�

Details of the method used to produce the tables T � R and S 
the use of
SHA��� the indexing method� etc�� are not believed to be particularly impor�
tant� we think of these tables as �random� 
no design rules are built into their
construction� and we expect that any good pseudorandom generator applied to
the key should work �ne�
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Details of the function Initialize are believed to be of secondary importance�
We want A� B� C� D� n�� n�� n� and n� to be unpredictable functions 
n� ���

Each of the �nal instruction on lines ��� helps to di�use information in A� B�
C and D� An earlier version of the cipher made analogous register modi�cations
in lines ��� but the statements would seem to have less value there and so they
were removed to save cost�

Some performance�related explanations are given below�

� The divisions by � are not to be implemented by divisions or shifts� we
are simply indexing into T in units of bytes instead of words� This is more
e�cient on some platforms 
which may penalize for �scaling� word o�sets�
and no less e�cient on any platformwe considered� In a high�level language
these divisions might be implemented as a cast�

� On all processors we know of there is no performance di�erence between
using addition and XOR� and so there is no performance reason to favor
the latter�

� On our target two�operand machine architectures it is the same cost to
compute P � 
P�A� � �x
fc and then fetch T �P��� as it would be to fetch
T �
A � �x
fc����� This is because the computation of T �
A � �x
fc����� to
preserve A� must begin by movingA into a temporary register� That move
is the same cost as adding A to register P �

� The state of P and Q is not maintained across iterations simply because
machines with only � registers will need to use the registers holding P
and Q at the end of the iteration� We did not want to spend the extra
cycles to write P and Q to memory and then read them back�

� Operations are arranged so that in the clock cycle immediately following
a table lookup there is always something worthwhile to do which does not
depend on the value which is retrieved�

� Design Process

A brief description of the design process which has led to SEALmay be considered
relevant or interesting to some�

SEAL ���� The project began in the summer of �		� in response to the perception
of increasing customer needs for software�e�cient cryptography� Goals of the
design were �rst enumerated in a presentation of October �		�� Goals evolved as
we learned more� there was never any �xed or formal statement of requirements�

Merkle�s cipher Khufu was identi�ed as the most relevant prior art� We chose
it as our starting point and searched for ways that would lead to something even
faster�

A design �philosophy� emerged� We thought it better to do exceptionally well
in environments having a particular set of minimal environmental characteristics
than to do reasonably well across a wider range of environments� Our chosen
set of operating characteristics became� a ���bit machine with at least eight






general purpose registers� a cache of at least � KBytes� and a usage scenario
which partitions encryption into a performance non�critical key setup followed
by repeated and performance�critical encipherment of a reasonably large number
of bytes�

We didn�t care about the syntactic  avor of the cipher we would produce!
even whether it was a block cipher or something else seemed irrelevant� except
insofar as this might in uence the cipher�s speed�

The �rst suggestion 
March �		�� was for a block cipher� but soon we devel�
oped a basic �structure� for a pseudorandom function family which was going
to be faster� This structure consisted of having four registers 
A� B� C� D�� each
of which would modify a �neighboring� register as a result of a single lookup in
a key�derived table� After some number of such register modi�cations we would
�peel o�� the current value of the four registers and append them to the growing
keystream� This process would then be repeated�

A total of nine designs were considered between March �		� and October
�		�� Each revision was aimed to improve speed or perceived strength� Rogaway
would prepare a speci�cation and Coppersmith would attack it� Attacks were
considered far enough to make clear what was their main idea� not to assess
their exact e�cacy� Rogaway would then study the attack� try to identify some
essential weakness it exploited� and then modify the cipher 
without decreasing
its speed� to try to foil any similar cleverness�

The inner loop 
Figure �� was the subject of almost all of our e�ort� Very
little attention was paid to Initialize 
Figure �� or to the table generation method�

The design progressed entirely on paper� No statistical tests or other experi�
ments were performed during the design of the cipher� Our proposal� SEAL ����
was �rst described in December �		� �����

SEAL ���� In �		� Handschuh and Gilbert ��� described an attack on a simpli�ed
version of SEAL ���� and an attack on SEAL ��� itself� They require about ���

�samples�� each ��words long� to distinguish SEAL ��� from a random function�
Their attack is responsible for the main change between SEAL ��� and SEAL ����
That change requires the use of two new XORs for each � words of output� as
we now explain�

Refer to Line �� of Figure �� The corresponding line in SEAL ��� had been� if
odd
i� then 
A� C�� 
A� n�� C � n�� else 
A� C�� 
A� n�� C � n��� Now
we modify all four registers� A�B�C�D� instead of just the two registers A�C�
This better obscures relationships between the 
A�B�C�D� and 
A�� B�� C�� D��
values of successive iterations� Without the change there is a useful property
on 
D�C�� D��� say� which does not depend on any of n�� n�� n�� n�� see ���� Un�
published predecessors of SEAL ��� resembled SEAL ��� in modifying each of

A�B�C�D� at the end of an iteration� removing the modi�cations to B and D
was a poorly�chosen optimization�

The other di�erence between SEAL ��� and SEAL ��� is that in SEAL ��� 
and
SEAL ���� table generation uses SHA�� in lieu of the older SHA�

Statistical Tests� In response to a referee�s request we subjected SEAL to a
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battery of statistical tests developed byMarsaglia ���� We computed the �� MByte
string y � SEAL
a� �� L�kSEAL
a� �� L�k � � �kSEAL
a� �����	� L� for a �xed key a
and L � �� � � 
i�e�� �� bytes�� None of the �� tests in ��� revealed statistical
anomalies in y� In a second experiment we computed the ����� MByte string
z � SEAL
a� �� L�kSEAL
a� �� L�k � � �kSEAL
a� ���� L�� where L � �� � ���� � �

i�e�� �� KBytes�� Again� none of the �� tests revealed statistical anomalies in z�

� Illustrative Attacks

This section illustrates some attack ideas which were important to SEAL�s evo�
lution� We describe three attacks on a simpli�ed version of our cipher� This
simpli�ed cipher� WEAK� is show in Figure ��

function WEAK�a� n�

y � ��

Initializea�n� �� A�B�C�D� � � ���

for i� � to �� do

P � A � �x�ff� B � B � T �P �� A� A iii �� B � B �A��

P � B � �x�ff� C � C � T �P �� B � B iii �� C � C � B��

P � C � �x�ff� D � D� T �P �� C � C iii �� D� D� C��

P � D � �x�ff� A� A� T �P �� D � D iii �� A� A�D��

P � A � �x�ff� B � B � T �P �� A� A iii ��	

P � B � �x�ff� C � C � T �P �� B � B iii ���

P � C � �x�ff� D � D� T �P �� C � C iii ��


P � D � �x�ff� A� A� T �P �� D � D iii ���

y � y k B � S��i��� k C � S��i��� k D� S��i�	� k A� S��i�����

return y�

Fig� �� The cipher WEAK� attacks on which are given in the text� Under the control of
a�derived tables T � R and S �computed exactly as with SEAL� this cipher maps ���bit
position index n to �	
�word string WEAK�a� n��

Assemble a list of T �	� op T �
� values� A simple attack on WEAK is based
on the observation that each of A� B� C and D is modi�ed only two times
using T � and the net�change due to this pair of T �dependent modi�cations is
almost directly visible to the adversary�

In this and all subsequent attacks we �x an 
unknown� key a and provide
the adversary sample output strings� each of the form y � WEAK
a� n�� The
adversary will not need to know the n which produced each string y�

	



Fix one of the strings y the adversary collects and let us write y � y�y�y� � � �
for its words� For concreteness� let us now �x our attention on the change that
register B undergoes during the second iteration 
i � �� of the algorithm� This
change in B is manifest 
apart from S��� and S���� in y� and y�� In particular�
it is easy to verify by tracing through the de�nition of WEAK that

��
y� � S��� � T �P�� � 
y� � S���� iii 	

�
iii 	 � T �P	�

�
iii 	 � y� � S���

for some P�� P	 � f�� � � � � ���g� Distribute iii over � and collect up constants
and we get that

y� � 
y� iii ��� � 
y� iii �
� � c � 
T �P�� iii ��� � 
T �P	� iii 	�

for some constant c� In other words� up to some constant c the adversary can
directly �see� in the y�s the XOR of a shifted version of pairs of words of T �

To distinguish the output of WEAK from truly random data� simply compute
the value of y� � 
y� iii ��� � 
y� iii �
� for each output word y which is seen�
If the strings are pseudorandom then this word will take on only ��� possible
values� not ���� From the birthday problem we will be able to make a good
prediction of random�pseudorandom using about �� strings y� just by guessing
pseudorandom if we see a collision in the 
y� � 
y� iii ��� � 
y� iii �
���values
in a sample of this size�

Sorting on bits of yj� Let us go a bit further with the above attack� We
witness

y� � 
y� iii ��� � 
y� iii �
� � c � 
T �P�� iii ��� � 
T �P	� iii 	�

where P� is the o�set into T which is the value of P determined in line �� and
P	 is the o�set into T which is the value of P determined in line �� The thing
to notice is that we can tell when two strings y and y� have corresponding P�
and P �

� which agree� Simply sort the y�values into ��� buckets� depending on the
value of the last 	 bits of y�� All the strings in a given bucket receive the same
P� value� Thus for the strings y of a given bucket

y� � 
y� iii ��� � 
y� iii �
�

assumes only ��� di�erent values� and these values� apart from a shift� are the
entries of T � This forms the basis of a way to reconstruct T �

Guess and verify a correlation between i and T �i�� This next attack is
based on the fact that because T is small and �randomly�generated� it is not
unlikely that there will be substantial correlations between some bit 
or small
set of bits� of i and some particular bit of T �i�� For example� although the least
signi�cant bit of i is expected to agree with the 	�th bit of T �i� on ��� out of
��� words� the standard deviation is ��� so it would not be strange if these two
bits agreed ��� times� or �
��

��



Let us index the bits of a word x by 
x��
x�� � � � 
x���� Suppose that the least
signi�cant bit 
bit ��� of i happens to be correlated to the 	�th 
bit 	� of T �i��
Suppose too that the most signi�cant bit of i 
bit �� happens to be correlated to
the ���th bit of T �i�� As an example� maybe 
i��� � 
T �i��� ��" of the time� while

i�� �� 
T �i���� ��" of the time� The adversary will be able to spot correlations
like this� based on a sample of y�values�

Once again� focus on the net change to a particular register which occurs
during a particular iteration� To be concrete� let us see how D changes during
iteration i � �� First� in line �� D is modi�ed by a T �value which depends on C�
While we don�t know what this C�value is� after C is shifted 	 places to the
right and XORed with the modi�ed D�value the net change to bit 	 of D is
biased according to the direction of the correlation between the least signi�cant
bit of i and 
T �i���!in our example� line � preserves bit 	 ��" of the time and
complements bit 	 ��" of the time 
assuming C is uniformly distributed�� Next�
on line �� D is shifted 	 places to the right� This moves the bit in question into
position 
D���� On line 
 register D is XORed with a table value which depends
on C� But this value of C is manifest in the output stream after it has been
shifted and masked by the constant S���� Thus if the ���th bit of T �i� is correlated
with the most signi�cant bit of i� the change to bit �� of D which line 
 causes
will be correlated to bit �� 
due to the right shift of C in line 
� of y	� Finally�
in line �� the bit in question is shifted into position �
� We conclude that if the
initial assumption is correct then there will be a statistical correlation between

y���� 
y���
 and 
y	���� This observation can form the basis of a statistical test
which looks for �oddities� in the table T �

� Performance

To get a rough sense of the expected performance of SEAL� we count clock cycles
relative to an abstract machine model� Assume a two�operand machine with ���
bit words and at least 
 general purpose registers� Assume that in a single clock
cycle we can execute a single addition� logical and� logical exclusive or� data
movement� or rotate� Then counting instructions reveals that� if we encrypt long
strings with SEAL� we spend about � clock cycles per byte� Experimental results
on a real machine 
see below� are in line with such an estimate�

Some of the e�ciency of SEAL stems from the fact that its inner�loop uses
only ��
� table lookups per byte of output� By way of comparison� a software
DES implementation typically uses �� table lookups per byte�

Bosselaers has recently provided us with experimental results on the perfor�
mance of various cryptographic algorithms ���� We reproduce some of his data
in Figure �� quoting his �gures for the ciphers SEAL� RC�� RC�� and DES� as
well as the hash function MD�� For each of these algorithms Bosselaers wrote a
highly optimized assembly language implementation for the Pentium processor�
Performance of the code was then measured on a 	� MHz machine� For all of the
algorithms shown� code and data were resident in on�chip cache� The cost of key
setup is ignored� The SEAL �gures are for encrypting ���� bytes of data� They

��



assume a little�endian convention for XORing the plaintext with SEAL�s output�
The last column in the table gives the speed of SEAL divided by the speed of
the indicated algorithm�

Algorithm Mbit�s Relative speed

SEAL ��
 ���
RC� ��� ��

RC���	��	 �
�� ��	
DES ���� ����
MD� ����� ���

Fig� �� Timing �gures reported by Bosselaers ��
� The platform is a �� MHz Intel Pen�
tium processor� and the implementations are in optimized assembly language�

Bosselaers reports that his SEAL implementation uses �
�
 clock cycles to
encrypt ���� bytes� This comes to ���� cycles�byte� or �	� Mbit�s with a 	� MHz
processor� A total of ���� instructions are executed to produce these ���� bytes
of output 
���� instructions�byte�� but ���
 of these instructions execute con�
currently with the remaining �����

A straightforward implementation of SEAL in the language �C� runs at
��� Mbit�s on an SGI Indy with a ��� MHz MIPS ���� Processor 
this is a
low�end workstation with a RISC CPU�� Compilation was under the Gnu com�
piler gcc 
with optimization�� and the code computed �n

n��SEAL
a� n� L� for a
�xed value of a� L � ���� � �� and a large value of M � The cost of key setup was
ignored� The experimental regime ignores the performance penalty which will be
incurred if the plaintext� ciphertext� or internal tables of SEAL are out of cache�

The experiments above had SEAL produce output of ���� bytes� which is
an advantageous value for the cipher� When SEAL must produce fewer bytes of
output a larger fraction of time is spent on Initialize� For the �C� code mentioned
above� producing ��� bytes was �" slower 
per byte� than producing ���� bytes�
Producing ��� bytes was �
" slower� Producing output just more than a multiple
of ���� bytes is also a sub�optimal case for SEAL performance� since little bene�t
is made of the �nal call to Initialize�

Key�setup in SEAL has a cost comparable to computing SHA�� on about
�� KBytes of data� this is estimated to be ����� msec on a 	� MHz Pentium ����
In the design of SEAL no attention was paid to minimizing key�setup time� If this
is at issue in a target application for SEAL one should select a di�erent method
for generating SEAL�s tables 
e�g�� using RC� or RC� ���� ����� or abandon the
use of SEAL entirely�

Roe ���� did timing studies of �C� implementations of various cryptographic
algorithms� including SEAL ���� He used a SUN Sparc and a DEC Alpha� In
his experiments on a Sun Sparc� SEAL ��� ran ���� ���
� ����� and ��� times
faster than RC�� RC�������� DES� and MD�� respectively� In his experiments
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on a DEC Alpha� SEAL ��� ran 
��� ����� ���	� and ��	� times faster than RC��
RC�������� DES� and MD�� respectively� The data indicates a greater speed
advantage for SEAL ��� than does the data reported by ���� Probably Roe�s �C�
code was not uniformly optimized for all of the algorithms�

	 Concluding Remarks

It should be emphasized that using SEAL in the expected way does nothing to
provide for data authenticity� Many applications which require data privacy also
require data authenticity� Such applications should accompany SEAL�encrypted
data by a message authentication code 
MAC�� Techniques for fast MAC gener�
ation are an active area of research�

SEAL is endian�neutral� and yet an endian convention is needed to interopera�
bly encrypt using SEAL� One possibility is to allow encryption with either endian
convention� but to include information in SEAL�encrypted ciphertext which un�
ambiguously indicates the endian convention employed�

It is easy to modify SEAL to get a cipher optimized for ���bit architectures�
The tables would be twice as wide and Initialize would be slightly changed�
SEAL has the unusual attribute that doubling the word size� and making natural
changes in the cipher�s de�nition� would nearly double the cipher�s speed� It is
unclear whether security would be impacted by the longer word length�

For purposes of possible export approval in various countries� an intentionally
weakened version of SEAL can easily be obtained simply by modifying the key
generation process� For example� instead of mapping variable�length key a� to
underlying ����bit SEAL key a according to a � SHA��
a��� one could instead
select a � SHA��
MASK� SHA��
a���� where MASK is a �xed ����bit mask whose
Hamming weight can be adjusted to adjust the security of the cipher�

One thing that the present paper has helped to bring out is the usefulness of
designing encryption primitives to be PRFs instead of block ciphers or stream
ciphers� A PRF may be easier to use than a stream cipher 
because there are
no synchronization requirements beyond communicating the index� and easier
to make software�e�cient than a block cipher�
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Appendix A
 The Table�Generation Function

We specify Ga
i� for ����bit string a and integer � � i � ���� The latter is
treated as a ���bit string whose value as an unsigned binary number is i� This
function is de�ned directly from Sections ��
 of ����� the de�nition is repeated
here only for ease of reference�

First we make the following de�nitions� For � � t � �	� set Kt � �x�a��
			
and ft
B�C�D� � 
B � C� � 
B � D�� For �� � t � �	� set Kt � �x�ed	eba�
and ft
B�C�D� � B � C � D� For �� � t � �	� set Kt � �x�f�bbcdc and
ft
B�C�D� � 
B � C� � 
B � D� � 
C � D�� For �� � t � 
	� set Kt �
�xca��c�d� and ft
B�C�D� � B � C �D�

The ����bit string a is broken up into �ve ���bit words� a � H�H�H�H�H��
and the ����bit M� is set to i k ���� and then processed by�

a� Divide M� into �� words W��W�� � � � �W�	 where W� is the left�most word�
so that W� � i� W� �W� � � � �� W�	�

b� For t � �� to 
	 let Wt � 
Wt�� �Wt�� �Wt��� �Wt���� hhh ��

c� Let A � H�� B � H�� C � H�� D � H�� E � H��

d� For t � � to 
	 do
TEMP � A hhh � � ft
B�C�D� �E �Wt �Kt

E � D� D � C� C � B hhh ��� B � A� A �TEMP�

e� H� � H� �A� H� � H� �B� H� � H� �C� H� � H� �D� H� � H� �E�

After processing M� the value of Ga
i� is the ����bit string H�H�H�H�H��

Appendix B
 Test Case

This appendix provides adequate data to verify a correct implementation of
SEAL ���� Suppose the key is the ����bit string

a � �������	 efcdab
� �
badcfe 	������� c�d�e	f�

and assume we want SEAL to produce � KByte outputs 
i�e�� L � ��
�� bits��
Then the table R consists of words R���� R���� � � �� R�����

�������d ce���c�� fa�bd�dd ���d�b	� ���cff�� ac��d�c� ����ead� fabe����

��a��c	� 
�c
��bd ca	����c ��fe�
c� bd��b��� �fdcc��c �dada��� 
���dd�


The table T consists of words T ���� T ���� � � �� T ������

	�b
�
e� �����ced �c�acd
e bf���f�� �	f��a	� cd�f���a b���f�
e �b��
a�f



��e�
� �������� ���d�f	� 
d	
�a�� aea��ffb 	����a�b 
���af�� ��bb����

�������� �������� �������� �������� �������� �������� �������� ��������

�
e�afcd ���e�c�f �af�a
bf ���e
��� �a���d	� 
��c�db� ���e
b�e �	ccf���

The table S consists of words S���� S���� � � �� S������

��



	��c�e�d ce��ef�a 
�f��	ef �b�ab�bc 
���f
b� ���e	b�� 
fde�efa �a�
�f	


�����c�b d
b

�	� �����dce 
�	efa�� ��bea��e a
�d�b�d c
���

e ��f�	�ee

�������� �������� �������� �������� �������� �������� �������� ��������

��d
���� �
�f	�cc bd�dea�� fd���d�� ��aa���� ec��e��� �eaef�f	 �b�a�	
	

Let n � �	����af� Then y � SEAL
a� n� L� consists of y��� k y��� k � � � k y�������

��a���	� 	b�
c
	c a
be�e�� �������f �fb�	�fd f�a��fbd �c�cdecd ��fdee�c

�abdc�e� �
��	aff ��a����� ef������ c���
b�� ��	��	e� a�ab�ed	 
��c��eb

�������� �������� �������� �������� �������� �������� �������� ��������

���a�	�� f�
	�ba� �eb�d�
� efa�
b�� 
d�a���
 fed	fede �����
aa �	�e��e


The XOR of the ���� words of y is �x�e�fe��f�
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