
On Garbled Circuits and Constant Round

Secure Function Evaluation
∗

Stephen R. Tate Ke Xu

Department of Computer Science

University of North Texas

Denton, TX 76203

Abstract

In this paper, we examine a form of garbled (or encrypted) circuit introduced by Beaver,
Micali, and Rogaway as part of their design of a constant-round secure function evaluation
(SFE) protocol [5]. We show that a subtle flaw in their construction allows even a simple
passive adversary (also known as an “honest-but-curious adversary”) to discover private data
when evaluating such a garbled circuit. In particular, information leaks from the garbled circuit
at places where multiple gates share a common input wire, and is extracted by exploiting
dependencies between the gate labels of the multiple gates that share that input wire. In
addition to showing how this flaw manifests itself and how it can be exploited, we pinpoint the
errors in the corresponding security proof [19]. Finally, we introduce a new type of gate called
a “splitter” which corrects the security flaw by removing all instances of shared input wires,
and using this we can correct the problems in the proof as well, giving a secure garbled circuit.
This corrected circuit can be substituted for the original construction in applications such as the
constant round SFE protocol of Beaver, Micali, and Rogaway and secure mobile agent protocols
such as described by Algesheimer et al. [1]

Keywords: Secure Function Evaluation, Garbled Circuits, Encrypted Circuits

1 Introduction

A central problem in modern cryptography is the design of secure distributed protocols for multiple
parties to jointly evaluate a given function. This problem, which is generally referred to as secure
function evaluation (SFE), consists of n parties, n ≥ 2, each of whom possesses a private input x i

that it wants to keep secret. The n parties want to collaboratively evaluate a function f(x1, . . . , xn).
A SFE protocol enables them to do so both correctly and securely without the help of any third
party, and in the end each party would obtain essentially the same information as it would if all
the parties had sent their inputs secretly to a trusted party who evaluates the function f on these
inputs and returns the desired output directly to the parties. That is, each party cannot learn more
about the other parties’ private inputs than what is revealed by the output of the function.

The pursuit of a general solution to secure function evaluation which is suitable for any function
was pioneered by Yao [21] for the two-party case, and by Goldreich, Micali, and Wigderson [14, 15]
for the multiparty case. Subsequent work has provided protocols for various communication models
as well as against different adversarial behavior. Some representative work includes [6, 12, 18, 5,
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19, 8, 10, 11]. Meanwhile, satisfactory definition of security for secure multiparty computation has
been developed due to [16, 2, 3, 9].

1.1 Garbled Circuits

The idea of “garbled circuits,” first described by Yao [21], is central to protocols for general secure
function evaluation. Garbled circuits are encrypted versions of standard bounded fan-in boolean
circuits in which the normal boolean values are replaced by encrypted signals, and the gates provide
enough information to obliviously evaluate the circuit gate-by-gate to produce a garbled output
(more details are given below).

Unfortunately, while Yao introduced the general idea, his paper contains no details on how such
circuits are constructed. To fill this gap, subsequent authors have given details on how garbled
circuits can be constructed. Goldreich, Micali, and Wigderson [14] and Beaver [4] both describe
what they describe as Yao’s construction, so we will refer to this particular circuit construction as
the Yao circuit construction. Naor, Pinkas, and Sumner [17] give a slightly different construction,
and we will refer to this construction as the NPS circuit construction. Finally, Beaver, Micali, and
Rogaway [5] give yet a different construction, which we refer to as the BMR construction. The
problems we discuss in this paper are specific to the BMR construction, and not to the idea of
garbled circuits in general or to the other constructions. However, this particular construction is
the only one which is specifically designed for constant round multiparty SFE, so correcting the
flaw in this particular construction corrects security problems in the constant round multiparty
SFE problem. We comment more fully on the applicability of the Yao and NPS constructions in a
following section, “Our Results, in Context.”

1.1.1 Two party SFE

The garbled circuit idea as introduced by Yao [21], as well as the NPS construction, is designed
specifically for the two-party setting. In this setting there are two parties, A and B, holding private
values x and y, respectively. The goal is for B to learn the output of a function f(x, y) while learning
nothing about A’s input x other than what follows from the computed value f(x, y). In order to
accomplish this, we first represent the function f with a bounded fan-in boolean circuit, and then
form the garbled version of the circuit which then can be evaluated by B (after B learns the garbled
versions of x and y). For simplicity we assume the fan-in of every gate in the circuit is at most 2.

In a garbled circuit, each wire is associated with a pair of random binary strings called wire
signals, corresponding to the 0 and 1 bit values in the boolean circuit, which are known as the
semantics of the signals since this reflects the meaning of the signal in the “cleartext” circuit.
The correspondence between the wire signals and their semantics is random and is kept secret.
Each two-input gate in the garbled circuit consists of four gate labels presented at random order,
corresponding to the four possible input values. Holding the left and right input wire signals, to
evaluate a gate, one first locates the correct gate label, then applies some computation on the gate
label and the input signals to obtain the output wire signal. The gate labels are constructed in a
way that respects the functionality of the gate. That is, the semantics of the two input signals and
the output signal obtained from the above computation complies to the gate functionality. Given a
garbled circuit and the wire signals for a particular instance of input, one can obliviously evaluate
the garbled circuit without learning anything about the input, output, or the internal states. Based
on this, Yao’s two-party protocol consists of three stages. First, player A creates a garbled circuit
for computing the desired function. In the second stage, A sends the garbled circuit as well as
the wire signals for its input to player B, and also reveals the semantics of the signals for the
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output wires. Then A and B engages in a 1-out-of-2 oblivious transfer protocol so that B receives
the wire signals for its input but nothing else, and A learns nothing about which signals B has
received. In the final stage, B independently evaluates the garbled circuit with both parties’ input
signals, obtains the output signals and recovers their semantics. As stated, this is secure against
passive adversaries, but this can be made secure against active adversaries as well with appropriate
zero-knowledge proofs showing that the players are behaving properly.

1.1.2 Multiparty SFE

While the scenario just described works well in the two-party setting, it does not scale up well
to n parties. In fact, while the Goldreich, Micali, and Wigderson paper [14] was cited above for
its description of the two-party circuit construction, the primary contribution of their paper is a
multi-party SFE protocol that uses the two-party construction as one piece of the larger protocol.
Their approach, which we refer to as the GMW multi-party protocol, is based on n-way secret
sharing.

First, each of the n players shares its private input among all the players. As a result, each
player holds a piece of the shared n inputs. Next, all the players collaboratively evaluate the
circuit for computing the desired function in a gate-by-gate manner, from the input gates to the
output gates1. With each player holding its share of the values entering a gate, the idea is to
have the player obtain its share of the output value of that gate. This can be done by a series
of privacy-preserving two-party computations, which are in turn performed using Yao’s two-party
method. Finally, the shares of the output are combined to get the final result. Since evaluating each
gate potentially requires interaction among all the players, the GMW protocol requires unbounded
rounds of communication, as do other protocols which follow the same paradigm, such as [6, 12, 18].

Beaver, Micali, and Rogaway [5] show that multi-party SFE in the case of honest majority can
actually be done in a constant number of communication rounds, and essentially uses the earlier
multiparty protocols to construct a garbled circuit that computes the desired function and the
garbled forms of the parties’ inputs. After this multiparty protocol execution, the garbled circuit
and inputs are known by each player, and then each player evaluates the circuit without further
interaction. We will refer to this protocol as the BMR protocol. The form of the garbled circuit
constructed by the BMR protocol is carefully designed so that most of the construction is done
locally by each individual player, and the whole circuit is easily assembled from the individual
pieces. As a result, the construction requires only constant rounds of communication. To guard
against malicious adversaries, the players have to commit their inputs, the random bits used by
each player have to be jointly generated and committed, and each player has to prove that its
computation is done correctly. All these can be done within constant rounds of communication, so
the overall round complexity is constant.

1.2 The Security Flaw of the BMR Construction

As mentioned above, the constant round complexity of the BMR protocol comes from the carefully
designed garbled circuit whose construction requires only a constant number of communication
rounds. Recall that the 0 and 1 values for each wire are represented in the garbled circuit by
random, independently chosen binary strings called wire signals, and a way is given so that for
each gate the correct output signal can be computed from the input signals using supplemental
information called “gate labels”. A subtle point, which results in the flaws in the BMR circuit

1Note that the original GMW paper converts the circuit to a straight-line program, and then securely evaluates

this, but the technique can be understood without this additional step.
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construction, is that while the wire signals are independent, the gate labels are not. In particular,
all gates which share a particular wire have some degree of correlation between them, whether it is
a correlation between the gate which produces a signal as output and a gate which uses the signal as
input, or between multiple gates which share a common input wire. The first of these correlations
causes a technical problem in the security proof of the BMR protocol as presented in Rogaway’s
thesis [19], which is easily corrected and done later in this paper. The second of these correlations
is more serious, and is the basis of a technique which can compromise the privacy of players’ private
inputs in many circuits. As such, this requires a correction to the circuit construction, and our
approach involves making easy modifications to the circuit wherever a gate has fan-out greater than
one. Note that any interesting circuit will have such gates, because if all wires (including input
wires) are restricted to being used only once, then we are restricted to computing only read-once
boolean formulas — a serious limitation to what can be evaluated.

The BMR garbled circuit construction can be used back in Yao’s original two-party protocol,
which gives the design more general use than just for the multi-party SFE protocol. Yao’s protocol
has its own applications, one of the most recent being secure mobile agent computation [7, 1, 20]. To
protect mobile agents against malicious hosts, the critical part of the agent code can be implemented
as a garbled circuit. In the protocol proposed by Algesheimer, Cachin, Camenisch, and Karjoth [1],
the originator of the mobile agent creates a garbled circuit for each host, and uses a trusted third
party to implement the oblivious transfer for a host to receive its input signals. It’s obvious that
the garbled circuit design of the BMR protocol can be used here, and in fact, these papers refer
to [19] as a detailed description of the garbled circuit technique (as does some other literature [13]).
The only difference is that here the garbled circuits are created by one party, the originator, instead
of multiple parties. Because the security flaw has nothing to do with the multiparty setting but is
inherent to the circuit design, all protocols which adopt this design would suffer from it. Therefore,
we believe correcting this flaw has important and wide-ranging consequences.

1.3 Our Results, in Context

We correct the flaw in the BMR circuit construction by introducing a new type of gate, which we call
a splitter. This gate has a single input and two outputs, with both outputs being independently
coded versions of the input value. Trees of splitters can be built to accommodate any desired
fan-out. Obviously this is completely uninteresting in a standard (non-garbled) boolean circuit,
but allows us to create a circuit in which each output drives only a single input. Because of this
property, the gate labels have more independence than in the BMR construction, and in particular
the second type of inter-gate correlation mentioned above completely disappears. In addition to
describing this solution, we’ll also prove that the new design meets the standard security goals.

How do our results relate to other garbled circuit constructions and results? Both of the other
two garbled circuit constructions mentioned above (the Yao and NPS constructions) do not seem to
contain the same weakness as the BMR construction, and hence can’t be exploited in the same way.
However, both of these constructions are designed specifically for the two-party setting, so don’t
apply directly to the multi-party case. It is not clear that the Yao construction can even be adapted
to directly work in the multi-party case — in particular, note that the original GMW protocol [14]
was specifically addressing the multi-party SFE problem using Yao’s circuit construction, and used
an involved construction built up from multiple two-party computations.

On the other hand, the NPS circuit construction has more similarities with the BMR construc-
tion, and we believe that the techniques of Beaver, Micali, and Rogaway could be applied to this
construction to make it work within a protocol for multiparty SFE. Furthermore, due to a feature
of the NPR construction (specifically, the use of pseudorandom functions whose parameters change
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for each gate in the circuit) this approach may provide an alternative fix for the problems with the
BMR construction that we identify in this paper — in fact, our own first attempt at correcting the
BMR construction was precisely along these lines, but we changed to the use of splitters due to the
proof of security. In particular, by using splitters we are able to only slightly modify the security
proof for the original BMR construction [19], fixing the subtle bugs while keeping the bulk of the
proof that was correct. Unfortunately, the NPR approach would require a significantly different
approach to the security proof, as the gate-by-gate substitution used in the proof no longer works
due to the problem of making a gate constructed from a pseudo-random sample with an unknown
seed properly consistent with other pseudo-random gates that share the same input signal (this is
the consistency problem that we address more fully in Section 3.1). And since we are not aware of
any formal security proof for the NPR protocol, such a proof would have to be built from scratch.

Summarizing the preceding discussion, the advantages to our approach of correcting the BMR
protocol are that we directly deal with a solution to the multi-party SFE problem rather than
having to adapt a two-party solution, and we are able to give a solid security proof. Furthermore,
clearly identifying the subtle problem of correlations between gate labels provides valuable insight
for people designing such constructions in the future, and the general lessons learned from this are
important.

The rest of the paper is organized as follows. Section 2 presents the BMR garbled circuit con-
struction in detail and demonstrates the security flaw with an example. In Section 3 we summarize
Rogaway’s proof of the security and identify two places where the proof breaks down (correspond-
ing to the two types of inter-gate correlations mentioned earlier). Section 4 presents our correction
and proves the security of the new design using the basic outline from Rogaway’s proof method.
Section 5 gives conclusions.

2 The BMR Construction

The BMR protocol [5, 19] assumes existence of private channels among the players as well as a
broadcast channel. Its security is based on the basic assumption that a one-way function exists,
and hence that a secure pseudorandom number generator exists. The protocol is claimed to be
computationally secure against an adaptive, active adversary which corrupts strictly less than half
of the parties. In order to limit its round complexity to a constant, the BMR protocol is composed
of two phases.

• In Phase I, the n players collaboratively construct a garbled circuit and the garbled inputs
corresponding to their private inputs. The joint computation can be done through one of
the earlier information-theoretically secure multiparty protocols [6, 12, 18]. The constructed
garbled circuit and inputs exist as shared information among the players in such a way that
no coalition of t or fewer players (where t < n/2) is able to recover the shared information
from their pieces.

• In Phase II, the garbled circuit and the garbled inputs are publicly revealed by the players
and each player gets a copy of both. Also revealed are the semantics of the signals for the
output wires. Semantics of the signals for other wires are kept secret from all players. After
this, each player evaluates the garbled circuit with the garbled inputs and determines the
semantics of the output, with no further communication required.2

2This definition allows only a single shared output to be computed, but it can be modified to produce private

outputs for each player if that is needed — see the original SFE papers for details.
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Since the security flaw is in the design of the garbled circuit, not how it is constructed, we only
describe the form of the garbled circuit and the garbled inputs. More precisely, what we describe is
what each player gets in Phase II before it starts the non-interactive evaluation. For details related
to the joint construction and the constant round complexity, the readers are referred to the original
papers.

2.1 The Garbled Circuit and The Garbled Inputs

We summarize the definitions of the garbled circuit and the garbled inputs from the original pa-
per [5]. Suppose there are n parties, and let k be a security parameter, where we require that n
be bounded by a polynomial in k (for example, we could require that n ≤ k10). For simplicity of
presentation, suppose the desired function f takes n `-bit inputs and outputs a single `-bit value,
that is f : (Σ`)n −→ Σ`, where Σ = {0, 1}. Note that in parts of their presentation Beaver, Micali,
and Rogaway consider only boolean functions, so the output is a single bit. As they note, `-bit
output is an obvious generalization, and in fact they state their final result for an even more general
situation in which the output is from (Σ`)n (so is an n-tuple of `-bit values). The results in this
paper apply just as well in the more restricted setting of boolean functions, as the flaws we identify
can be exploited on sub-circuits, even if the full circuit has a single-bit output. For example, the
specific function described in Section 2.2 to demonstrate the security flaw could be changed from
computing the larger of two numbers to computing the parity of the bits in the larger of two num-
bers (a boolean function). Then the flaw is exploited easily on the subcircuit that corresponds to
the circuit shown in Figure 1.

Let C be a boolean circuit that computes f using Γ gates, where each gate has fan-in at most 2.
There are W wires, and we typically use small Greek letters to represent wire numbers 0, . . . ,W −1.
Wires 0, . . . , n`−1 are the inputs, while wires W −`, . . . ,W −1 are the outputs. In a garbled version
of C, each wire has associated with it a pair of signals, which are nk-bit strings. The signals are
numbered in the same order as the wires, so if α is a wire then the two signals associated with this
wire are s2α and s2α+1. We often define a signal base value, for example a = 2α, so the notation is
simpler, giving the signal pair (sa, sa+1). Each signal has an associated semantics that corresponds
to the signal’s “plaintext” value, with one signal of a pair having semantics 0 and the other having
semantics 1. For a wire α, a semantics variable λα ∈ {0, 1} is chosen randomly and indicates that
signal sa has semantics λα while signal sa+1 has semantics λα. The garbled inputs are the signals
of the input wires which correspond to the actual input bits, so for example if bω ∈ {0, 1} is the
plaintext input bit for wire ω ≤ n`− 1, then the input signal σω = s2ω+(bω⊕λω) is the garbled input
for this bit. When the garbled circuit is evaluated using the garbled inputs, each wire takes on the
value of exactly one of its signals, which is denoted σα for wire α. Note that since all semantics
variables are randomly chosen and kept secret (except those of the output wires), knowledge of
which wire signal becomes σα gives no information about the actual plaintext value of the bit.

Let G be a pseudorandom generator that generates a (k + 2nk)-bit string from a k-bit seed.
Define F , G, and H to be the first k, next nk, and last nk bits of the G’s output, respectively.
Therefore, F (s) = G(s)[1 : k], G(s) = G(s)[k + 1 : k + nk], H(s) = G(s)[k + nk + 1 : k + 2nk]. In
the following definitions, ◦ denotes the concatenation of two strings, and ⊕ denotes XOR.

The signals associated with a wire ω can be broken into n pieces of k bits each, so s2ω =
s1
2ω ◦ · · · ◦ sn

2ω and s2ω+1 = s1
2ω+1 ◦ · · · ◦ sn

2ω+1, where |si
j| = k for 1 ≤ i ≤ n and 0 ≤ j ≤ 2W − 1

(so superscript ranges over the n players, while the subscript ranges over the wire indices). These
pieces are then used to compute the gate labels as follows. Let f i

j = F (si
j), gi

j = G(si
j), hi

j = H(si
j),

for 1 ≤ i ≤ n and 0 ≤ j ≤ 2W − 1. Suppose gate g computes the function ⊗. If the left and right
incoming wires and the outgoing wire of gate g are α, β, and γ respectively, then writing a = 2α,
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b = 2β, and c = 2γ, the gate labels for g are

Ag = g1
a ⊕ · · · ⊕ gn

a ⊕ g1
b ⊕ · · · ⊕ gn

b ⊕

{

s1
c ◦ · · · ◦ sn

c if λα ⊗ λβ = λγ

s1
c+1 ◦ · · · ◦ sn

c+1 otherwise

Bg = h1
a ⊕ · · · ⊕ hn

a ⊕ g1
b+1 ⊕ · · · ⊕ gn

b+1 ⊕

{

s1
c ◦ · · · ◦ sn

c if λα ⊗ λβ = λγ

s1
c+1 ◦ · · · ◦ sn

c+1 otherwise

Cg = g1
a+1 ⊕ · · · ⊕ gn

a+1 ⊕ h1
b ⊕ · · · ⊕ hn

b ⊕

{

s1
c ◦ · · · ◦ sn

c if λα ⊗ λβ = λγ

s1
c+1 ◦ · · · ◦ sn

c+1 otherwise

Dg = h1
a+1 ⊕ · · · ⊕ hn

a+1 ⊕ h1
b+1 ⊕ · · · ⊕ hn

b+1 ⊕

{

s1
c ◦ · · · ◦ sn

c if λα ⊗ λβ = λγ

s1
c+1 ◦ · · · ◦ sn

c+1 otherwise

(1)

In order to use the garbled circuit, each player learns all the gate labels and the garbled inputs,
and also the wire labels f i

j , for 1 ≤ i ≤ n and 0 ≤ j ≤ 2W − 1. The semantics λω for the circuit
outputs are revealed, but all other semantics variables (for the inputs and intermediate values)
remain secret. Note that the wire labels do not leak any information about their corresponding
signals si

j. Holding signal σ1
ω ◦ · · · ◦ σn

ω for a wire ω, a player can determine whether this signal is
s1
2ω ◦ · · · ◦ sn

2ω if F (σ1
ω) = f1

2ω (in which case we say the signal has index 0), or s1
2ω+1 ◦ · · · ◦ sn

2ω+1

(in which case we say the signal has index 1). This information allows the player to locate the
right gate label for evaluating a gate. For a gate g, if the player holds s1

a+p ◦ · · · ◦ sn
a+p for the left

incoming wire α, and s1
b+q ◦ · · · ◦ sn

b+q for the right incoming wire β, where a = 2α, b = 2β, and
p, q ∈ {0, 1} are the signal indices, and suppose the outgoing wire is γ, then the outgoing signal σγ

is computed as

σγ =



















g1
a+p ⊕ · · · ⊕ gn

a+p ⊕ g1
b+q ⊕ · · · ⊕ gn

b+q ⊕ Ag if p = 0 and q = 0

h1
a+p ⊕ · · · ⊕ hn

a+p ⊕ g1
b+q ⊕ · · · ⊕ gn

b+q ⊕ Bg if p = 0 and q = 1

g1
a+p ⊕ · · · ⊕ gn

a+p ⊕ h1
b+q ⊕ · · · ⊕ hn

b+q ⊕ Cg if p = 1 and q = 0

h1
a+p ⊕ · · · ⊕ hn

a+p ⊕ h1
b+q ⊕ · · · ⊕ hn

b+q ⊕ Dg if p = 1 and q = 1

(2)

It is easy to verify that equation (2) computes the correct outgoing signal according to the gate
function ⊗, and this is done without revealing any information about the semantics of the incoming
and outgoing signals. Notice that each gate label is composed of n substrings which are combined
using a simple XOR, so the gate labels can be easily constructed through a multiparty protocol.
When applying this design to a case where the garbled circuit is created by a single party (such as
Yao’s two-party protocol), the signals don’t have to be divided into substrings. A single string will
work. Except this, the design can be directly used in this special case without modification.

As another alternative, notice the signal index can be simplified by adding an additional bit
to the signal as the index. As a result, determining which signal one is holding becomes simply
inspecting the last bit of the signal. This technique was used in Rogaway’s thesis [19], and has the
benefit of simplifying the garbled circuit without sacrificing security.

2.2 Exploiting Inter-gate Dependencies

Before pointing out the security flaw in a general sense, let’s look at an example. Suppose two
players A and B each hold `-bit numbers, x1 and x2 respectively, and want to find out the larger
number of the two (this example can obviously be extended to an arbitrary number of players).
After joint computation, the two players should learn the larger number, but no information about
the smaller number should be revealed. Hence, if player A has the larger number, she should
essentially gain no new information after the computation. We show that using the BMR protocol,
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Combiner
x1

x2

y1

y2

Comparator z

Mask 1

Mask 2
(M )

(M )1

2

Figure 1: A circuit that computes z = max(x1, x2).

even an honest-but-curious A is able to learn B’s number x2 with high probability, as long as x2

has a nontrivial number of zero bits.
Figure 1 shows a circuit that computes z = max(x1, x2). Each rectangle represents a subcircuit.

If x1 ≥ x2, the comparator outputs 1, otherwise 0. This bit serves as a selector to the mask circuits
M1 and M2, so that if the bit is 1, then y1 = x1 and y2 = 0; otherwise, y1 = 0 and y2 = x2.
The “combiner” subcircuit is just a bitwise OR of y1 and y2. Following the BMR protocol, the two
players A and B first collaboratively construct a garbled version of the circuit and the garbled inputs
corresponding to x1 and x2. Mask subcircuit M2 simply ANDs each bit from x2 with the selector bit
(the complemented output of the comparator), and the garbled version of this subcircuit is shown in
Figure 2. Suppose the input wires of M2 are α1, . . . , α` for x2 and β for the selector bit, the output
wires are γ1, . . . , γ` for y2, and the gate labels are (Ag1

, Bg1
, Cg1

, Dg1
), . . . , (Ag`

, Bg`
, Cg`

, Dg`
). In

Phase II of the protocol, both A and B receive a copy of the garbled circuit and inputs, and evaluate
the circuit on their own.

According to equation (1), the labels Agi
, Bgi

, Cgi
, Dgi

, for 1 ≤ i ≤ `, are

Agi
= g1

ai
⊕ g2

ai
⊕ g1

b ⊕ g2
b ⊕

{

s1
ci
◦ s2

ci
if λαi

∧ λβ = λγi

s1
ci+1 ◦ s2

ci+1 otherwise

Bgi
= h1

ai
⊕ h2

ai
⊕ g1

b+1 ⊕ g2
b+1 ⊕

{

s1
ci
◦ s2

ci
if λαi

∧ λβ = λγi

s1
ci+1 ◦ s2

ci+1 otherwise

Cgi
= g1

ai+1 ⊕ g2
ai+1 ⊕ h1

b ⊕ h2
b ⊕

{

s1
ci
◦ s2

ci
if λαi

∧ λβ = λγi

s1
ci+1 ◦ s2

ci+1 otherwise

Dgi
= h1

ai+1 ⊕ h2
ai+1 ⊕ h1

b+1 ⊕ h2
b+1 ⊕

{

s1
ci
◦ s2

ci
if λαi

∧ λβ = λγi

s1
ci+1 ◦ s2

ci+1 otherwise

(3)

where ai = 2αi, b = 2β, and ci = 2γi. Therefore, the contribution of wire β to all output signals
(through the gate labels) comes from a limited set of four possible values consisting of g1

b ⊕ g2
b ,

g1
b+1 ⊕ g2

b+1, h1
b ⊕ h2

b , and h1
b+1 ⊕ h2

b+1. This can be exploited by an adversary as follows.
Let bβ denote the plaintext bit on wire β. Assume x1 ≥ x2, so that bβ = 0 which in turn

makes all the output wires of M2 0 and so masks out x2. However, this does not prevent us from
learning x2. Essentially we are going to deduce what the output of M2 would be if bβ were 1. Let
pi denote the index of signal σαi

(recall that σαi
is the signal held by wire αi, so σαi

= s2αi+pi
).

Because the signals on input wires α1, . . . , α` don’t change when β changes, indices pi won’t change;
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Figure 2: The garbled subcircuit M2. Wires αk get the input bits from x2, and output wires γk

provide the bits of y2.

furthermore, while we don’t know what the signal on wire β will be when it is complemented, we
do know its index. Therefore, we can locate the labels that would be used for evaluating the gates
if bβ were 1. In addition, since σαi

is known we can compute the contribution of σαi
to the output

value of each gate after β is changed. Next we make a (likely wrong) guess that all bits of x2 are 0.
If this were true, evaluating the gates with bβ = 1 would give the same result as when bβ = 0, so
we in fact know the output signals because we computed them when the circuit was evaluated with
the correct, legally obtained inputs. Therefore, of the four basic parts of the gate label equation
when bβ = 1 we know three of them: The contribution of σαi

, the proper gate label, and the output
signal σγi

. Now we can solve equation (2) with the following results. Without loss of generality,
suppose that λβ = 1, so the index q for wire β is 1 when bβ = 0, and q = 0 when bβ = 1. Then for
gate gi,

• If pi, the index for wire αi, is 0, then Agi
is the correct gate label to use when bβ = 1, as

pi = q = 0. Compute µi = σγi
⊕ g1

2αi
⊕ g2

2αi
⊕Agi

. If our guess was right, which means the ith
bit of x2 is actually 0, then σγi

is the correct output signal, and so according to equation (3)
Agi

= g1
2αi

⊕ g2
2αi

⊕ g1
2β ⊕ g2

2β ⊕ σγi
. Thus µi = g1

2β ⊕ g2
2β . Otherwise (if our guess was not

correct), then following the equations we see that µi = s2γi
⊕ s2γi+1 ⊕ g1

2β ⊕ g2
2β, and since the

wire labels are chosen randomly and independently, µi is a random value in this case.

• If pi is 1, compute µi = σγi
⊕ g1

2αi+1 ⊕ g2
2αi+1 ⊕Cgi

. If our guess is right, then µi = h1
2β ⊕h2

2β .
Otherwise, as before it is just another random string.

Therefore, all the resulting µi’s can be divided into 3 groups. In each of the first 2 groups, the µi’s
are equal to each other, since they are equal to either g1

2β ⊕ g2
2β or h1

2β ⊕h2
2β . These µi’s correspond

to correct guesses of the output bit, or in other words the 0 bits of x2. Note that we have no way
of knowing these values ahead of time, since we don’t know the proper signal for the complement
of β, but we can recognize subsets with equal µi values. The third group will be just some random
strings, corresponding to the 1 bits, and the probability that these values are equal to the values
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produced by the first two sets, or any other µi value, is very small. Thus by identifying repeated
values produced by this computation we have determined x2 with high probability. We summarize
this attack in the following theorem.

Theorem 2.1 Let M be a mask circuit as in the previous discussion that correctly masks out an
`-bit value x that has z zero bits, for z ≥ 3. If the garbled wire signals have nk bits, then the attack
described above correctly recovers x with probability at least 1 − z

2z−2 , for sufficiently large k.

The proof of this theorem is straightforward and included in the full paper. Note that while
we attack specific masking circuits, similar techniques could apply in many other situations where
multiple gates share a common input.

3 The Flaw in the Proof

Rogaway [19] presented a proof of security for the BMR protocol. Clearly, because the attack
described in the last section exists, the proof is not valid, and in this section we identify the flaws
in the proof. Rogaway’s proof is extremely intricate, but the vast majority of the proof deals with
oracle constructions that address how active adversaries interact with the secure function evaluation
protocol. Fortunately for us, the flaws are in a more basic portion of the proof, so we simplify things
greatly here by looking at a related problem which turns out to be one piece in building up the
entire proof. While our simplifications sweep many details under the rug, the ideas presented here
translate directly into the full proof for secure function evaluation.

We can construct a “fake” garbled circuit given just knowledge of the output of f as follows:
Random signals are assigned to all wires, and the semantics are defined such that the semantics
of the output signals match the desired output of the function f , and all non-output signals have
unknown semantics. Each signal is made to have a random index in the pair of signals for that
wire. For any gate, the gate labels are constructed by finding the one label that corresponds to
the indices of its input signals3 and correctly setting that label to produce the previously selected
output signal. The other three labels are set to random values. The correct gate labels are called
the on-path labels, and other than making a consistent path through the circuit they have no real
meaning (notice that the definition doesn’t even depend on the functionality of the gate or the
semantics of the signals). Noticing that these fake circuits can be constructed from just knowledge
of the output and the structure of the circuit, it is clear that this fake circuit reveals no information
about private inputs or intermediate values of the computation (since none exist!). The goal is
to show that an ensemble of distributions (indexed by k, n, and C) of these fake circuits and
fake inputs is computationally indistinguishable from an ensemble of real garbled circuits and real
garbled inputs. If this is true, then no more information can be obtained from a real garbled circuit
than the fake one, which is to say that no information can be obtained other than what follows
from the output value.

Denote the distributions of fake garbled circuits and the real garbled circuits as C̃ and C re-
spectively. To prove their indistinguishability, Rogaway makes a sequence of hybrid garbled circuit
distributions as

C̃ = C0 ⇒ C1 ⇒ · · · ⇒ CΓ−1 ⇒ CΓ = C.

For Ci, real gate labels (for all 4 labels) are generated as in C for gates numbered 1, . . . , i, and the
remaining gates are fake (only the one on-path label, which is required for proper computation of

3Since the indices are random, the gate label selected will also be random.
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the output, is correctly computed from pseudorandom strings, while the remaining labels are truly
random strings). It is obvious that at the endpoints of this sequence, C0 = C̃ and CΓ = C.

We wish to show that C̃ and C are computationally indistinguishable, so assume for the sake
of contradiction that this is not true and that a polynomial time distinguisher for these two dis-
tributions exists. It immediately follows that somewhere in the above sequence there exists a non-
negligible “jump” in the distinguishing probabilities. Let gk denote the jumping point, meaning that
distributions Cgk−1 and Cgk

are distinguishable. The strategy is to make use of this distinguisher to
construct another polynomial-time distinguisher which is able to distinguish a truly random string
from a pseudorandom string. This contradicts the assumption that the pseudorandom generator G
is secure.

Definition 3.1 We define the two probability distributions:

• U2nk+k is the uniform distribution on length 2nk + k binary strings;

• G(Uk) is the distribution of length 2nk + k binary strings that are produced by pseudorandom
generator G on uniformly selected seeds of length k.

Consider two (2nk+k)-bit strings, X and Y , which either both come from U2nk+k or both come
from G(Uk). Our goal is to create a distinguisher for these distributions. Define four substrings
Xg = X[k + 1 : k + nk], Xh = X[k + nk + 1 : k + 2nk], Yg = Y [k + 1 : k + nk], and Yh =
Y [k+nk+1 : k+2nk] — note that if X and Y are pseudorandom these correspond to precisely the
pseudorandom substrings produced by the G(s) and H(s) functions, which were defined earlier.

We use these strings to define a new circuit distribution CX,Y which involves constructing as in
Cgk

but substituting the substrings into the off-path signal contributions to gate gk. It is not clear
how Rogaway had intended to do this in his proof because there are two possibilities: either only
the labels in gate gk are changed (a theory supported by Rogaway’s statement that labels in CX,Y

are “computed differently ... but just for the case of gk”), or all gates which share these off-path
signals change (this alternative is supported by the actual formulas given for computing the gate
labels). While there is some ambiguity on what is intended, we take the latter option for several
reasons, the most important being that the first interpretation creates additional problems in the
proof, since the real gates don’t have the necessary inter-gate dependencies unless substitutions are
made in all the gates sharing input wires.

Referring back to equation (1), if the on-path signal indices for the two input wires α and β
are p and q, then we call gj

a+p, hj
a+p, gj

b+q and hj
b+q “player j’s on-path contributions to gate gk,”

while gj
a+(1−p), hj

a+(1−p), gj
b+(1−q), and hj

b+(1−q) are “player j’s off-path contributions to gate gk.”

In order to create a circuit from distribution CX,Y , we create the circuit just like Cgk
except that

we randomly select a player j and then substitute Xg, Xh, Yg, and Yh in place of the off-path
contributions to gk. Note that the random selection of player j is important in the original proof
due to the model of the adversary used there, but is not really needed here (we could always use
player 1, for instance). However, we keep the random selection of j anyway in order to simplify
translation back to the larger context of the original proof.

As an illustration, suppose that for gate gk, the on-path indices are p = q = 0, so Agk
is the

on-path gate label used in constructing the output signal. Further suppose that the randomly
chosen player is j = 1. Then the gate labels for gate gk in CX,Y are calculated as follows:
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Ag = g1
a ⊕ · · · ⊕ gn

a ⊕ g1
b ⊕ · · · ⊕ gn

b ⊕

{

s1
c ◦ · · · ◦ sn

c if λα ⊗ λβ = λγ

s1
c+1 ◦ · · · ◦ sn

c+1 otherwise

Bg = h1
a ⊕ · · · ⊕ hn

a ⊕ Yg ⊕ · · · ⊕ gn
b+1 ⊕

{

s1
c ◦ · · · ◦ sn

c if λα ⊗ λβ = λγ

s1
c+1 ◦ · · · ◦ sn

c+1 otherwise

Cg = Xg ⊕ · · · ⊕ gn
a+1 ⊕ h1

b ⊕ · · · ⊕ hn
b ⊕

{

s1
c ◦ · · · ◦ sn

c if λα ⊗ λβ = λγ

s1
c+1 ◦ · · · ◦ sn

c+1 otherwise

Dg = Xh ⊕ · · · ⊕ hn
a+1 ⊕ Yh ⊕ · · · ⊕ hn

b+1 ⊕

{

s1
c ◦ · · · ◦ sn

c if λα ⊗ λβ = λγ

s1
c+1 ◦ · · · ◦ sn

c+1 otherwise

Note that this substitution leaves all the on-path labels the same as before, and consistent through-
out the circuit. If we ignore issues of inter-gate dependencies, and if X and Y are G(Uk)-distributed,
then the labels in gate gk are made from pseudorandom strings just as they would be in a real gar-
bled gate. Furthermore (again ignoring inter-gate dependencies), if X and Y are U2nk+k-distributed
then each of the off-path gate labels is XORed with a truly random string from X or Y , so the
off-path gate labels should be random just as they would be in a fake gate. This leads to the
following two claims in Rogaway’s proof [19], with notation adjustments to match our presentation:

Claim 11: If X and Y are G(Uk)-distributed, then CX,Y = Cgk
.

Claim 12: If X and Y are U2nk+k-distributed, then CX,Y = Cgk−1.

Clearly, since we have a distinguisher for Cgk
and Cgk−1, these claims would imply that we can

use this distinguisher to create a polynomial time distinguisher for G(Uk) and U2nk+k, which would
complete the proof by contradiction, thus proving the security of this construction. The claims
seem likely enough, but unfortunately, as presented, both claims are false due to two different
types of inter-gate dependencies that aren’t taken into account. We correct Claim 11 below, but
postpone the correction of Claim 12 until the next section where we fix the problems in the circuit
construction.

3.1 Correcting Claim 11

The problem with both claims is that gate labels are not independent of other gate labels in the
circuit: the gate labels of gate g are correlated with the labels in the gates whose output provide
the inputs to g (this is the failing of Claim 11), and are correlated with other gates that share the
same input wire (this is the failing of Claim 12). In particular, for CX,Y = Cgk

it is not sufficient
that the labels on gate gk be based on a pseudorandom number generator, but that pseudorandom
number generator must use as a seed the values provided by the gate whose output feeds it, even
for the off-path labels (since the first gk gates must form a subcircuit of a “real” garbled circuit).
In other words, to properly substitute the substrings of X and Y , we would need to modify the
predecessor gates to output appropriate seeds to generate X and Y . Since we don’t know the seeds
for X and Y this is clearly not possible.

Fortunately, this is not a hard problem to correct, and can in fact be corrected without changing
the circuit construction. First, let’s put a more specific ordering on the gates: The gates of the
circuit are labeled in the order of a valid topological sorting, so the gates providing input to a gate
g always have lower gate numbers than g. We define a new “walk” from C̃ to C as

C̃ = C0 ⇒ C1 ⇒ · · · ⇒ CΓ−1 ⇒ CΓ = C,

where Ci consists of fake gate labels in gates 1, . . . ,Γ− i and real gate labels in the remaining gates.
The difference with the earlier walk is that we now change fake gates to real gates starting from
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the outputs and working back to the inputs, rather than vice versa. Define ik to be a position in
this sequence where C ik−1 is distinguishable from C ik , and let gk = Γ− ik + 1 so that gk is the gate

whose change from fake to real enables the distinguisher to detect the difference. C
X,Y

is defined
similarly to CX,Y , but with respect to the Ci distributions.

Lemma 3.1 If X and Y are G(Uk)-distributed, then C
X,Y

= Cik .

Proof sketch: The subcircuit of C
X,Y

made up of gates gk, . . . ,Γ now makes up a subcircuit of
a real garbled circuit — the only unusual gate is gate gk, but since only the pseudorandom strings
themselves (and not the seeds) affect later gate labels, the later gates are easily made consistent.
Predecessor gates have fake labels so no correlation with predecessor gates is needed or desired for
the off-path gate labels. Since even in C ik the seeds producing the pseudorandom strings affecting
the off-path gate labels of gate gk are not used for anything, our ignorance of what seeds generated
X and Y is unimportant.

To summarize, we have removed the problem of correlations between labels in gate gk and in
the gates providing the input values to gk by converting fake gates to real gates in a different order,
thereby removing the correlations in the hybrid circuits. Unfortunately, no such fix is possible for
Claim 12, as correlations between gates sharing the same input wire simply can’t be removed from
the hybrid circuit. Because of this, we modify the main circuit construction in the next section so
that these correlations no longer exist.

4 Using Splitters to Correct the Problem in the Construction

The correction we need to make to the circuit construction is straightforward: we add a “splitter”
gate which has a single input and two outputs. In the garbled version, the two outputs will have
independent pairs of wire signals, effectively decorrelating the gates which use these shared input
values. We build up trees of splitters to accommodate arbitrary fanout.

A splitter simply copies the value from the input to each output. In the garbled version, there
are four labels just as in the standard logic gates. Let the input wire be α, the two output wires
be γ and δ, and let a = 2α, c = 2γ, and d = 2δ. Then the output signal pairs for the two output
wires are (sc, sc+1) and (sd, sd+1), and the gate labels are defined as follows:

Ag = g1
a ⊕ · · · ⊕ gn

a ⊕

{

sc if λα = λγ ,
sc+1 otherwise;

Bg = g1
a+1 ⊕ · · · ⊕ gn

a+1 ⊕

{

sc if λα = λγ ,
sc+1 otherwise;

Cg = h1
a ⊕ · · · ⊕ hn

a ⊕

{

sd if λα = λδ,
sd+1 otherwise;

Dg = h1
a+1 ⊕ · · · ⊕ hn

a+1 ⊕

{

sd if λα = λδ,
sd+1 otherwise.

Then in the evaluation phase, the output signals are calculated as follows:

σγ =

{

g1
a ⊕ · · · ⊕ gn

a ⊕ Ag if p = 0;
g1
a+1 ⊕ · · · ⊕ gn

a+1 ⊕ Bg if p = 1.

and

σδ =

{

h1
a ⊕ · · · ⊕ hn

a ⊕ Cg if p = 0;
h1

a+1 ⊕ · · · ⊕ hn
a+1 ⊕ Dg if p = 1.
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It is not difficult to see that this properly reflects the semantics of what we are trying to do, and
results in two independent codings of the input value as signals on the outputs.

4.1 Proving The Security of The New Design

First, we will be specific about the flaw in Claim 12 from Rogaway’s proof. Assume that gate gk

shares an input wire with many other gates, and further assume that several of these other gates
are on the “real side” of the circuit (so have already been converted from fake gates to real ones).

When we switch to constructing a circuit from C
X,Y

by substituting substrings from X and Y into
the off-path contributions to gate gk, we must also make substitutions into all the other “real”
gates that share an input wire (if we did not do so, then there would be serious problems with
Claim 11, as pointed out in the previous section). However, this means that even if X and Y are
U2nk+k-distributed random strings, they are not independent of other gate labels in the circuit, and
so this distribution of circuits is in fact different from C ik−1. While not immediately obvious, it
becomes clear with a minimal amount of work that this is precisely the set of dependencies that
we exploited in compromising the BMR construction in Section 2.2.

In the new construction, using splitters to avoid any direct sharing of input wires, we must

extend the construction for C
X,Y

in order to accommodate this new type of gate. Unlike standard
logic gates, a splitter will actually have two on-path gate labels, corresponding to the two outputs

that must be computed. To construct a circuit from distribution C
X,Y

when gate gk is a splitter,
we simply substitute into the two off-path labels in the obvious way, using only Xg and Xh. Note
that string Y is not used at all in this case, but that is not important — X and Y are just two
samples from the same distribution, and there is no requirement that the distinguisher use all
strings available as input. We now have corrected Claim 12, which we restate here as a lemma for
the corrected version.

Lemma 4.1 If X and Y are U2nk+k-distributed, then C
X,Y

= Cik−1.

Proof sketch: As in our discussion of the original “Claim 12”, if X and Y are U2nk+k-distributed
then each off-path label in gk is XORed with a random value, so the off-path label is itself truly
random. The difference with the earlier discussion is that now the inputs of any gate are not shared
with any other gate, so the question of whether to substitute in only gate gk or in all gates that
share an input wire is irrelevant. The substitution is not used anywhere other than in gate gk, so
the off-path labels are not only truly random, but they are independent of all other gate labels in

the garbled circuit. Therefore, distributions C
X,Y

and Cik−1 are identical.

We now combine Lemma 3.1 and Lemma 4.1 in the obvious way to get the following theorem.

Theorem 4.1 The circuit construction from BMR, modified with the use of splitter gates as de-
scribed in this paper so that the fanout of all gates is at most one, is secure against a passive,
honest-but-curious adversary.

Placed into the context of Rogaway’s larger proof of security against active, adaptive adversaries,
we get a corrected version of the constant round secure function evaluation protocol. We restate
the security theorem from the Beaver, Micali, Rogaway paper [5] here for completeness.

Theorem 4.2 Assume the standard model, t < n/2, f : (Σ`)n → (Σ`)n a function realized by a
circuit C. Assume that a secure pseudorandom generator exists. Then there is a protocol P that
strongly t-securely computes f in const rounds, where const is an absolute constant. Furthermore,
a natural encoding of protocol P can be found by a fixed algorithm in time polynomial in |C|. Local
computation in P is poly(|C|, k) time bounded, where poly is a fixed polynomial.
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5 Conclusion

We have shown that the constant round SFE protocol of Beaver, Micali, and Rogaway is not secure
against even a passive adversary due to a flaw in its garbled circuit design. Our correction fixes the
flaw while still maintaining the constant round complexity. Our modified circuit construction can
also be used on its own in many other applications that make use of the garbled circuit technique.
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