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Abstract

We describe a message authentication algorithm, UMAC, which authenticates messages (in
software, on contemporary machines) roughly an order of magnitude faster than current practice
(e.g., HMAC-SHA1), and about twice as fast as previously reported times for the universal hash-
function family MMH. To achieve such speeds, UMAC uses a new universal hash-function family,
NH, and a design which allows effective exploitation of SIMD parallelism. The “cryptographic”
work of UMAC is done using standard primitives of the user’s choice, such as a block cipher
or cryptographic hash function; no new heuristic primitives are developed here. Instead, the
security of UMAC is rigorously proven, in the sense of giving exact and quantitatively strong
results which demonstrate an inability to forge UMAC-authenticated messages assuming an
inability to break the underlying cryptographic primitive. Unlike conventional, inherently serial
MACs, UMAC is parallelizable, and will have ever-faster implementation speeds as machines
offer up increasing amounts of parallelism. We envision UMAC as a practical algorithm for
next-generation message authentication.
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1 Introduction

This paper describes a new message authentication code, UMAC, and the theory that lies behind
it. UMAC has been designed with two main goals in mind:
• Extreme speed. We have aimed to create the fastest MAC ever described, and by a wide

margin. We are speaking of speed with respect to software implementations on contemporary
general-purpose computers.

• Provable security. We insist that the MAC be demonstrably secure, by virtue of proofs
carried out in the sense of provable-security cryptography. Namely, if the underlying cryp-
tographic primitives are secure (we use pseudorandom functions) then the MAC is secure,
too.

There were of course other goals, avoiding excessive conceptual and implementation complexity
being principal among them.

UMAC is certainly fast. On our 350 MHz Pentium II PC, one version of UMAC (where the ad-
versary has 2−60 chance of forgery) achieves peak-performance of 2.9 Gbits/sec (0.98 cycles/byte).
Another version of UMAC (with 2−30 chance of forgery) achieves peak performance of 5.6 Gbits/sec
(0.51 cycles/byte). For comparison, our SHA-1 implementation runs at 12.6 cycles/byte. Note
that SHA-1 speed upper bounds the speed of HMAC-SHA1 [3], a software-oriented MAC represen-
tative of the speeds achieved by current practice. The previous speed champion among proposed
universal hash functions (the main ingredient for making a fast MAC; see below) was MMH [13],
which runs at about 1.2 cycles/byte (for 2−30 chance of forgery) under its originally envisioned
implementation.

How has it been possible to achieve these speeds? Interestingly, we have done this with the help
of our second goal, provable security. We use the well-known universal-hashing approach to message
authentication, introduced by [26], making innovations in its realization. Let us now review this
approach and its advantages, and then describe what we have done to make it fly.

1.1 Universal-Hashing Approach

Universal Hashing And Authentication. Our starting point is a universal hash-function fam-
ily [8]. (Indeed the “U” in UMAC is meant to suggest the central role that universal hash-function
families play in this MAC.) Remember that a set of hash functions is said to be “ε-universal” if
for any pair of distinct messages, the probability that they collide (hash to the same value) is at
most ε. The probability is over the random choice of hash function.

As described in [26], a universal hash-function family can be used to build a secure MAC. The
parties share two things: a secret and randomly chosen hash function from the universal hash-
function family, and a secret encryption key. A message is authenticated by hashing it with the
shared hash function and then encrypting the resulting hash (using the encryption key). Wegman
and Carter showed that when the hash-function family is strongly universal (a similar but stronger
property than the one we defined) and the encryption is realized by a one-time pad, the adversary
cannot forge with probability better than that obtained by choosing a random string for the MAC.

Why Universal Hashing? As suggested many times before, the above approach is a promising
one for building a highly-secure and ultra-fast MAC [16, 23, 13]. The reasoning is like this. The
speed of a universal-hashing MAC depends on the speed of the hashing step and the speed of the
encrypting step. But if the hash function compresses messages well (i.e., its output is short) then
the encryption shouldn’t take long simply because it is a short string that is being encrypted. On
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the other hand, since the combinatorial property of the universal hash-function family is mathe-
matically proven (making no cryptographic hardness assumptions), it needs no “over-design” or
“safety margin” the way a cryptographic primitive would. Quite the opposite: the hash-function
family might as well be the fastest, simplest thing that one can prove universal. And that should
be much faster than any sort of “cryptographic” primitive.

Equally important, the above approach makes for desirable security properties. Since the cryp-
tographic primitive is applied only to the (much shorter) hashed image of the message, we can select
a cryptographically conservative design for this step and pay with only a minor impact on speed.
Further, the underlying cryptographic primitive is used only on short and secret messages, elimi-
nating the typical avenues of attack. Under this approach security and efficiency are not conflicting
requirements—quite to the contrary, they go hand in hand.

The Quest For Fast Universal Hashing. At least in principle, the universal-hashing paradig-
m has reduced the problem of fast message authentication to the problem of fast universal hashing.
Thus there has been much recent work on the design of fast-to-compute universal hash-function fam-
ilies. Here is a brief overview of some of this work; a more complete overview is given in Section 1.3.
Krawczyk [16] describes a “cryptographic CRC” construction, which has very fast hardware imple-
mentations and reasonably fast software implementations; it needs about 6 cycles/byte, as shown
by Shoup [24]. Rogaway’s “bucket hashing” construction [23] was the first universal hash-function
family explicitly targeted for fast software implementation; it runs in about 1.5–2.5 cycles/byte.
Halevi and Krawczyk devised the MMH hash-function family [13], which takes advantage of current
CPU trends and hashes at about 1.5–3 cycles/byte on modern CPUs.

With methods now in hand which hash so very quickly, one may ask if the hash-design phase
of making a fast MAC is complete; after all, three cycles/byte may already be fast enough to keep
up with high-speed network traffic. However, authenticating information at the rate that it is
generated or transmitted is not the real goal. The goal is to use the smallest possible fraction of
the CPU’s cycles by the simplest possible hash mechanism, and having the best proven bounds. In
this way most of the machine’s cycles are available for other work.

1.2 Our Contributions

UMAC represents the next step in the quest for a fast and secure MAC. Here we describe the main
contributions associated to its design.

New Hash Function Families And Their Tight Analyses. A hash-function family named
NH underlies hashing in UMAC. It is a simplification of the MMH and NMH families described
in [13]. The family NH works like this. The message M to hash is regarded as a sequence of an
even number ` of integers, M = (m1, . . . ,m`), where each mi ∈ {0, . . . , 2w − 1} corresponds to a
w-bit word (e.g., w = 16 or w = 32). A particular hash function is named by a sequence of n ≥ `
w-bit integers K = (k1, . . . , kn). The NH function is then computed as

NHK(M) =


 `/2∑

i=1

((m2i−1 + k2i−1) mod 2w) · ((m2i + k2i) mod 2w))


 mod 22w . (1)

The novelty of this method is that all the arithmetic is “arithmetic that computers like to do”—no
finite fields or non-trivial modular reductions come into the picture.

Despite the non-linearity of this hash function and despite its being defined using two different
rings, Z/2w and Z/22w , not a finite field, we manage to obtain a tight and desirable bound on the
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collision probability: 2−w. Earlier analyses of related hash-function families had to give up a small
constant in the analysis [13]. We give up nothing.

After proving our bounds on NH we go on and extend the method using the “Toeplitz construc-
tion.” This is a well-known approach to reduce the error probability without much lengthening of
the key [17, 16]. Prior to our work the Toeplitz construction was known to work only for linear
functions over fields. Somewhat surprisingly, we prove that it also works for NH. Here again our
proof achieves a tight bound for the collision probability. We then make further extensions to
handle length-issues, and allow other optimizations, finally arriving at the hash-function family
actually used in UMAC.

Complete Specification. Previous work on universal-hash-paradigm MACs dealt with fast hash-
ing but did not address in detail the next step of the process—how to embed a fast-to-compute hash
function into a concrete, practical, and fully analyzed MAC. For some hash-function constructions
(e.g., cryptographic CRCs) this step would be straightforward. But for the fastest hash families
it is not, since these hash functions have some unpleasant characteristics, including specialized
domains, long key-lengths, long output-lengths, or good performance only on very long messages.
It had never been demonstrated that these difficulties could be overcome in a practical way which
would deliver on the promised speed. This paper shows that they can. We provide a complete
specification of UMAC, a ready-to-use MAC, in a separate specification document [6]). The techni-
cal difficulties encountered in embedding our hash-function family into a MAC are not minimized;
they are treated with the same care as the hash-function family itself. The construction is fully
analyzed, beginning-to-end. What is analyzed is exactly what is specified; there is no “gap” which
separates them. This has only been possible by co-developing the specification document and the
academic paper.

PRF(HASH, Nonce) Construction. Previous work has assumed that one hashes messages to
some fixed length string (e.g., 64 bits) and then the cryptographic primitive is applied. But using
universal hashing to reduce a very long message into a fixed-length one can be complex, require
long keys, or reduce the quantitative security. Furthermore, hashing the message down by a factor
of 128, say, already provides much of the speed and security benefits. So we reduce the length
of the message by some pre-set constant, concatenate a sender-generated nonce, and then apply
a pseudorandom function (PRF) to the shorter (but still unbounded-length) string. The nonce is
communicated along with the image of the PRF. We call this the PRF(HASH, Nonce)-construction.
We analyze it and compare it with alternatives.

Extensive Experimentation. In defining UMAC we have been guided by extensive experimen-
tation. Through this we have identified several parameters that influence the speed which UMAC
delivers. Our studies illuminate how these algorithmic details shape performance. Our experi-
ments have made clear that while any reasonable version of UMAC (i.e., any reasonable setting of
the parameters) should out-perform any conventional MAC, the fastest version of UMAC for one
platform will often be different from the fastest version for another platform. We have therefore
kept UMAC a parameterized construction, allowing some specific choices to be fine-tuned to the
application or platform at hand. In this paper and in [6] we consider a few reasonable settings for
these parameters.

SIMD Exploitation. Unlike conventional, inherently serial MACs, UMAC is parallelizable, and
will have ever-faster implementations as machines offer up increasing amounts of parallelism. Our
algorithm and our specification were specifically designed to allow implementations to exploit the
form of parallelism offered up in current and emerging SIMD architectures (Single Instruction
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Multiple Data). These architectures provide some long registers that can, in certain instructions,
be treated as vectors of smaller-sized words. For NH to run well we must be able to quickly multiply
w-bit numbers (w = 16 or w = 32) into their w-bit product. Many modern machines let us do
this particularly well since we can re-appropriate instructions for vector dot-products that were
primarily intended for multimedia computations. One of our fastest implementations of UMAC
runs on a Pentium and makes use of its MMX instructions which treat a 64-bit register as a vector
of four 16-bit words. UMAC is the first MAC specifically constructed to exploit SIMD designs.

1.3 Related Work

MMH Paper. Halevi and Krawczyk investigated fast universal hashing in [13]. Their MMH
construction takes advantage of improving CPU support for integer multiplication, particularly
the ability to quickly multiply two 32-bit multiplicands into a 64-bit product. Besides MMH, [13]
describes a (formerly-unpublished) hash-function family of Carter and Wegman, NMH∗, and a
variation of it called NMH. Our NH function, as described in formula (1), is a (bound-improving)
simplification of NMH. The difference between NH and NMH is that NMH uses an additional
modular reduction by a prime close to 2w, followed by a reduction modulo 2w. Similarly, NMH∗ is
the same as NH, as given in formula (1) except the mods are omitted and the arithmetic is in Z/p,
where p is prime.

Other Work On Universal Hashing For MACs. Krawczyk describes a “cryptographic CRC”
which has very fast hardware implementations [16]. Shoup later studied the software performance of
this construction, and gave several related ones [24]. In [16] one also finds the Toeplitz construction
used in a context similar to ours. An earlier use of the Toeplitz construction, in a different domain,
can be found in [17].

A hash-function family specifically targeted for software was Rogaway’s “bucket hashing” [23].
Its peak speed is fast but its long output length makes it suitable only for long messages.

Nevelsteen and Preneel give a performance study of several universal hash functions proposed
for MACs [18]. Patel and Ramzan give an MMH-variant that can be more efficient than MMH in
certain settings [9].

Bernstein reports he has designed and implemented a polynomial-evaluation style hash-function
family that has a collision probability of around 2−96 and runs in 4.5 Pentium cycles/byte [5]. Other
recent work about universal hashing for authentication includes [1, 14].

Other Types Of MACs. Most concrete MACs have been constructed from other cryptographic
primitives. The most popular choice of cryptographic primitive has been a block cipher, with the
most popular construction being the CBC-MAC [2]. This MAC was analyzed by [4]. An extension
of this analysis was carried out by [19], this extension being relevant for how we suggest using a
block cipher to make a PRF.

More recently, MACs have been constructed from cryptographic hash-functions. It has usually
been assumed that this would lead to faster MACs than the CBC-MAC. A few such methods
are described in [25, 15], and analysis appears in [20, 21]. An increasingly popular MAC of this
cryptographic-hash-function variety is HMAC [3, 12]. In one version of UMAC we suggest using
HMAC as the underlying PRF. One can view UMAC as an alternative to HMAC, with UMAC
being faster but more complex.

Other Versions. The proceedings version of this paper appears in [7].
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Subkey generation :
Using a PRG, map Key to K = K1K2 · · ·K1024, with each Ki a 32-bit word, and

to A, where |A| = 512.

Hashing the message Msg to HM = NHXKey(Msg):
Let Len be |Msg| mod 4096, encoded as a 2-byte string.
Append to Msg the minimum number of 0 bits to make |Msg| divisible by 64.
Let Msg = Msg1 ‖Msg2 ‖ · · · ‖Msg t where each Msg i is 1024 words except for Msgt,

which has between 2 and 1024 words.
Let HM = NHK(Msg1) ‖ NHK(Msg2) ‖ · · · ‖ NHK(Msg t) ‖ Len

Computing the authentication tag :
The tag is Tag = HMAC-SHA1A (Nonce ‖ HM)

Figure 1: An illustrative special case of UMAC. The algorithm above computes a 160-bit tag given
Key, Msg, and Nonce. See the accompanying text for the definition of NH.

2 Overview of UMAC

Unlike many MACs, our construction is stateful for the sender: when he wants to authenticate some
string Msg he must provide as input to UMAC (along with Msg and the shared key Key) a 64-bit
string Nonce. The sender must not reuse the nonce within the communications session. Typically
the nonce would be a counter which the sender increments with each transmitted message.

The UMAC algorithm specifies how the message, key, and nonce determine an authentication
tag. The sender will need to provide the receiver with the message, nonce, and tag. The receiver
can then compute what “should be” the tag for this particular message and nonce, and see if it
matches the tag actually received. The receiver might also wish to verify that the nonce has not
been used already; doing this is a way to avoid replay attacks.

Like many modern ciphers, UMAC employs a subkey generation process in which the underlying
(convenient-length) key is mapped into UMAC’s internal keys. In typical applications subkey
generation is done just once, at the beginning of a long-lived session, and so subkey-generation is
usually not performance-critical.

UMAC depends on a few different parameters. We begin by giving a description of UMAC as
specialized to one particular setting of these parameters. Then we briefly explore the role of various
parameters.

2.1 An Illustrative Special Case

Refer to Figure 1. The underlying key Key (which might be, say, 128 bits) is first expanded into
internal keys K and A, where K is 1024 words (a word being 32-bits) and A is 512 bits. How Key
determines K and A is a rather unimportant and standard detail (it can be handled using any
PRG), and so we omit its description.

Figure 1 refers to the hash function NH, which is applied to each block Msg1, . . . ,Msg t of Msg .
Let M = Msgj be one of these blocks. Regard M as a sequence M = M1 · · ·M` of 32-bit words,
where 2 ≤ ` ≤ 1024. The hash function is named by K = K1 · · ·K1024, where Ki is 32 bits. We let
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Figure 2: Left: The NH hash function in its “basic” form, using a wordsize of w = 32 bits.
This type of hashing underlies UMAC-STD-30 and UMAC-STD-60. Right: The “strided” form
of NH, using a wordsize of w = 16 bits. This type of hashing underlies UMAC-MMX-30 and
UMAC-MMX-60.

NHK(M) be the 64-bit string

NHK(M) = (M1 +32 K1) ×64 (M2 +32 K2) +64 · · · +64 (M`−1 +32 K`−1) ×64 (M` +32 K`)

where +32 is computer addition on 32-bit strings to give their 32-bit sum, +64 is computer addition
on 64-bit strings to give their 64-bit sum, and ×64 is computer multiplication on unsigned 32-
bit strings to give their 64-bit product. This description of NH is identical to Equation (1) (for
w = 32) but emphasizes that all the operations we are performing directly correspond to machine
instructions of modern CPUs. See the left-hand side of Figure 2 for a picture.

Theorem 4.2 says that NH is 2−32-universal with respect to strings of equal and appropriate
length. Combining with Proposition 6.1 gives that NHX (as described in Figure 1) is 2−32-universal,
but now for any pair of strings. Now by Theorem 8.2, if an adversary could forge a message with
probability 2−32 + δ then an adversary of essentially the same computational complexity could
break HMAC-SHA1 (as a PRF) with advantage δ − 2−160. But analysis in [3] indicates that one
can’t break HMAC-SHA1 (as a PRF) given generally-accepted assumptions about SHA-1.

2.2 UMAC Parameters

The full name of the version of NH just described is NH[n,w], where n = 1024 and w = 32: the
wordsize is w = 32 bits and the blocksize is n = 1024 words. The values of n and w are examples
of two of UMAC’s parameters. Let us describe a few others.

Naturally enough, the pseudorandom function (PRF) which gets applied to Nonce ‖ HM is a
parameter. We used HMAC-SHA1, but any PRF is allowed. Similarly, it is a parameter of UMAC
how Key gets mapped to K and A.

The universal hashing we used in our example had collision probability 2−32. We make provisions
for lowering this (e.g., to 2−64). To square the collision probability one could of course hash
the message twice, using independent hash keys, and concatenate the results. But an important
optimization in UMAC is that the two keys that are used are not independent; rather, one key
is the “shift” of the other, with a few new words coming in. This is the well-known “Toeplitz
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construction.” We prove in Theorem 5.1 that, for NH, the probability still drops according to the
square.

In our example we used a long subkey K—it had 4096 bytes. To get good compression with
a shorter subkey we can use two-level (2L) hashing. If a hash key of length n1 gives compression
ratio λ1 and a hash key of length n2 gives compression ratio λ2 then using two levels of hashing
gives compression ratio λ1λ2 with key size `1 + `2. Our specification allows for this. In fact, we
allow 2L hashing in which the Toeplitz shift is applied at each level. It turns out that this only
loses a factor of two in the collision probability. The analysis is rather complex, and is omitted.

To accommodate SIMD architectures in the computation of NH we allow slight adjustments in
the indexing of NH. For example, to use the MMX instructions of the Pentium processor, instead
of multiplying (M1 +16 K1) by (M2 +16 K2) and (M3 +16 K3) by (M4 +16 K4), we compute

(M1 +16 K1) ×32 (M5 +16 K5) +32 (M2 +16 K2) ×32 (M6 +16 K6) +32 . . .

There are MMX instructions which treat each of two 64-bit words as four 16-bit words, correspond-
ing words of which can be added or multiplied to give four 16-bit sums or four 32-bit products.
Reading M1 ‖M2 ‖M3 ‖M4 into one MMX register and M5 ‖M6 ‖M7 ‖M8 into another, we are
well-positioned to multiply M1 +16 K1 by M5 +16 K5, not M2 +16 K2. See Figure 2.

There are a few more parameters. The sign parameter indicates whether the arithmetic op-
eration ×64 is carried out thinking of the strings as unsigned (non-negative) or signed (two’s-
complement) integers. The signed version of NH requires a slightly different analysis and loses a
factor of two in the collision probability. This loss is inherent in the method; our analysis is tight.

If the input message is sufficiently short there is no speed savings to be had by hashing it. The
min-length-to-hash parameter specifies the minimum-length message which should be hashed.

An endian parameter indicates if the MAC should favor big-endian or little-endian computation.

Named Parameter Sets. In [6] we suggest five different settings for the vector of param-
eters, giving rise to UMAC-STD-30, UMAC-STD-60, UMAC-MMX-15, UMAC-MMX-30, and
UMAC-MMX-60. We summarize their salient features.

UMAC-STD-30 and UMAC-STD-60 use a wordsize of w = 32 bits. They employ 2L hashing
with a compression factor of 32 followed by a compression factor of 16. This corresponds to a
subkey K of about 400 Bytes. They employ HMAC-SHA1 as the underlying PRF. They use
signed arithmetic. The difference between UMAC-STD-30 and UMAC-STD-60 are the collision
bounds (and therefore forgery bounds): 2−30 and 2−60, respectively, which are achieved by hashing
either once or twice. These two versions of UMAC perform well on a wide range of contemporary
processors.

UMAC-MMX-15, UMAC-MMX-30 and UMAC-MMX-60 are well-suited for exploiting the SIMD-
parallelism available in the MMX instruction set of Intel processors. They use wordsize w = 16
bits. Hashing is accomplished with a single-level scheme and a hash key of about 4 KBytes, which
yields the same overall compression ratio as the 2L scheme used in the UMAC-STD variants. These
MACs use the CBC-MAC of a software-efficient block cipher as the basis of the underlying PRF.
Our tests were performed using the block cipher RC6 [22]. Arithmetic is again signed. The dif-
ference between UMAC-MMX-15, UMAC-MMX-30 and UMAC-MMX-60 is the maximal forgery
probability: 2−15, 2−30 and 2−60, respectively.

3 UMAC Performance

Fair performance comparisons are always difficult to make, but they are particularly difficult for
UMAC. First, UMAC depends on a number of parameters, and the most desirable setting for these
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Figure 3: UMAC Performance. Left: Performance over various message lengths on a Pentium II,
measured in machine cycles/byte. The lines in the graph correspond to the following MACs (begin-
ning at the top-right and moving downward): UMAC-MMX-30, UMAC-MMX-60, UMAC-STD-30,
UMAC-STD-60, HMAC-SHA1 and CBC-MAC-RC6. Right: Peak performance for three architec-
tures measured in Gbits/sec (cycles/byte). The Gbits/sec numbers are normalized to 350 MHz.

parameters differs from platform to platform. In some usage scenarios it is realistic to assume
the most desirable set of parameters, though often it is not. Thus it is unclear which parameters
should be selected and tested on which platforms. Second, UMAC performance varies with message
length. The advantage UMAC delivers over conventional MACs increases as messages get longer.
What message lengths should be chosen for performance tests?

To address the first issue we report performance characteristics for a few different parameter
choices. To address the second issue we report timing data for a variety of message lengths.

Test Environment. We implemented the four UMAC variants named in Section 2.2 on three
representative hardware platforms: a 350 MHz Intel Pentium II, a 200 MHz IBM/Motorola Power-
PC 604e, and a 300 MHz DEC Alpha 21164. We also implemented the UMAC-MMX variants on
a pre-release PowerPC 7400 equipped with AltiVec SIMD instructions and running at 266 MHz.
Performing well on these platforms is important for acceptance of UMAC but also is an indication
that the schemes will work well on future architectures. The SIMD operations in the MMX and
AltiVec equiped processors and the 64-bit register size of the Alpha are both features we expect to
become more prevalent in future processors.

All tests were written in C with a few functions written in assembly. For the Pentium II we
wrote assembly for RC6, SHA-1, and the first-level NH hashes. For the PowerPC 604e we wrote in
assembly just the first-level NH hashes. In both cases, the number of lines of assembly written was
small—about 70–90 lines. No assembly code was written for the Alpha or AltiVec implementations.

For each combination of options we determined the scheme’s throughput on variously sized mes-
sages, eight bytes through 512 KBytes. The experimental setup ensured that messages resided in
level-1 cache regardless of their length. For comparison the same tests were run for HMAC-SHA1 [10]
and the CBC-MAC of a fast block cipher, RC6 [22].

Results. The graph in Figure 3 shows the throughput of five versions of UMAC, as well as
HMAC-SHA1 and CBC-MAC-RC6, all run on our Pentium II. The table gives peak throughput for
the same MACs, but does so for all three architectures. When reporting throughput in Gbits/second
the meaning of “Gbit” is 109 bits (as opposed to 230 bits). The performance curves for the Alpha
and PowerPC look similar to the Pentium II—they perform better than the reference MACs at
around the same message length, and level out at around the same message length.

8



UMAC performs best on long messages because the hash function is then most effective at
reducing the amount of data acted upon by the PRF. For our choice of tested parameters the
maximum compression ratio is achieved on messages of 4 KBytes and up, which is why the curves
in Figure 3 level out at around 4 KBytes. Still, reasonably short messages (a couple hundred bytes)
already see substantial benefit from the hashing. For short messages about half the time spent by
UMAC-MMX-60 authenticating is spent in the PRF, but that ratio drops to around 7% for longer
messages.

When messages are short the portion of time spent computing the PRF is higher, making the
choice of PRF more significant. Our tests show that, all other parameters being the same, an
RC6-based UMAC is about 50% faster than one based on SHA-1 for messages of length 32 bytes,
but this advantage drops to 10% - 20% for 4 KByte messages and nearly vanishes for 64 KByte
messages.

In general, the amount of work spent hashing increases as word size decreases because the
number of arithmetic operations needed to hash a fixed-length message is inversely related to word
size. The performance of UMAC on the Alpha demonstrates this clearly. On UMAC-MMX-60
(w = 16) it requires 10 cycles per byte to authenticate a long message, while it requires 2.8 for
UMAC-STD-60 (w = 32) and only 1.7 for a test version which uses w = 64 bit words1. Perhaps our
most surprising experimental finding was how, on some processors, we could dramatically improve
performance by going from words of w = 32 bits to words of w = 16 bits. Such a reduction in word
size might appear to vastly increase the amount of work needed to get to a given collision bound.
But a single MMX instruction which UMAC uses heavily can do four 16-bit multiplications and
two 32-bit additions, and likewise a single AltiVec instruction can do eight 16-bit multiplications
and eight 32-bit additions. This is much more work per instruction than the corresponding 32-bit
instructions.

UMAC-STD uses only one-tenth as much hash key as UMAC-MMX to achieve the same com-
pression ratio. The penalty for such 2L hashing ranges from 8% on small messages to 15% on long
ones. To lower the amount of key material we could have used a one-level hash with a smaller
compression ratio, but experiments show this is much less effective: relative to UMAC-MMX-60,
which uses about 4 KBytes of hash key, a 2 KBytes scheme goes 85% as fast, a 1 KByte scheme
goes 66% as fast, and a 512 bytes scheme goes 47% as fast.

The endian-orientation of the UMAC version being executed has little effect on performance
for the PowerPC and Pentium II systems. Both support swapping the endian-orientation of words
efficiently. On the Alpha, and most other systems, such reorientation is not part of the architecture
and must be done with an expensive series of primitive operations. Key setup on our 350 MHz
Pentium II took 450 µs for UMAC-MMX-60 and 130 µs for UMAC-STD-60, or about 158,000 and
46,000 cycles, respectively.

To answer some questions we had about UMAC performance we implemented it with sev-
eral variations. In one supplementary experiment we replaced the NH hash function used in
UMAC-STD-30 by MMH [13]. Peak performance dropped by 24%. We replaced the NH hash
function of UMAC-MMX-30 by a 16-bit MMH (implemented using MMX instructions) and peak
performance dropped by 5%. Thus our performance gains (compared to prior art) are due more to
SIMD exploitation than the difference between NH and MMH.

The hash family MMH can be simplified by eliminating its last two modular reductions. We refer
to the resulting hash function family as MH, and it is defined by MHK(M) =

∑`
i=1 miki mod 22w.

An MH-version of UMAC-MMX-30 (w = 16) was about 5% slower than (our NH-version of)
1Another reason UMAC-MMX-60 does poorly on non-SIMD processors is because of additional overhead required

to load small words into registers and then sign-extend or zero the upper bits of those registers.
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UMAC-MMX-30, while an MH-version of UMAC-STD-30 (w = 32) was about 26% slower than
(our NH-version of) UMAC-STD-30. Finally, we coded UMAC-STD-30 and UMAC-STD-60 for a
Pentium processor which lacked MMX. Peak speeds were 2.2 cycles/byte and 4.3 cycles/byte—still
3 to 6 times faster than methods like HMAC-SHA1. Even though these versions of UMAC do
not use MMX instructions, Intel processors without MMX are also slower than the Pentium II at
integer multiplication, an important operation in UMAC.

4 The NH Hash Family

We now define and analyze NH, the hash-function family which underlies UMAC. Recall that NH is
not, by itself, the hash-function family which UMAC uses, but the basic building block from which
we construct UMAC’s hash families.

4.1 Preliminaries

Function Families. A family of functions (with domain A ⊆ {0, 1}∗ and range B ⊆ {0, 1}∗) is
a set of functions H = {h : A → B} endowed with some distribution. When we write h ← H we
mean to choose a random function h ∈ H according to this distribution. A family of functions is
also called a family of hash functions or a hash-function family.

Usually we specify a family of functions H by specifying some finite set of strings, Key, and
explaining how each string K ∈ Key names some function HK ∈ H. We may then think of H not
as a set of functions from A to B but as a single function H : Key ×A→ B, whose first argument
we write as a subscript. A random element h ∈ H is determined by selecting uniformly at random
a string K ∈ Key and setting h = HK .

Universal Hashing. We are interested in hash-function families in which “collisions” (when
h(M) = h(M ′) for distinct M,M ′) are infrequent. The formal definition follows.

Definition 4.1 Let H = {h : A → B} be a family of hash functions and let ε ≥ 0 be a real
number. We say that H is ε-universal, denoted ε-AU, if for all distinct M,M ′ ∈ A, we have that
Prh←H[h(M) = h(M ′)] ≤ ε. We say that H is ε-universal on equal-length strings if for all distinct,
equal-length strings M,M ′ ∈ A, we have that Prh←H[h(M) = h(M ′)] ≤ ε.

4.2 Definition of NH

Fix an even n ≥ 2 (the “blocksize”) and a number w ≥ 1 (the “wordsize”). We define the family
of hash functions NH[n,w] as follows. The domain is A = {0, 1}2w ∪ {0, 1}4w ∪ · · · ∪ {0, 1}nw and
the range is B = {0, 1}2w. Each function in NH[n,w] is named by a string K of nw bits; a random
function in NH[n,w] is given by a random nw-bit string K. We write the function indicated by
string K as NHK(·).

Let Uw and U2w represent the sets {0, . . . , 2w−1} and {0, . . . , 22w−1}, respectively. Arithmetic
done modulo 2w returns a result in Uw; arithmetic done modulo 22w returns a result in U2w. We
overload the notation introduced in Section 2.1: for integers x, y let (x +w y) denote (x+y) mod 2w.
(Earlier this was an operator from strings to strings, but with analogous semantics.)

Let M ∈ A and denote M = M1 · · ·M`, where |M1| = · · · = |M`| = w. Similarly, let K ∈
{0, 1}nw and denote K = K1 · · ·Kn, where |K1| = · · · = |Kn| = w. Then NHK(M) is defined as

NHK(M) =
`/2∑
i=1

(k2i−1 +w m2i−1) · (k2i +w m2i) mod 22w
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where mi ∈ Uw is the number that Mi represents (as an unsigned integer), where ki ∈ Uw is the
number that Ki represents (as an unsigned integer), and the right-hand side of the above equation
is understood to name the (unique) 2w-bit string which represents (as an unsigned integer) the
U2w-valued integer result. Henceforth we shall refrain from explicitly converting from strings to
integers and back, leaving this to the reader’s good sense. (We comment that for everything we do,
one could use any bijective map from {0, 1}w to Uw, and any bijective map from U2w to {0, 1}2w.)

When the values of n and w are clear from the context, we write NH instead of NH[n,w].

4.3 Analysis

The following theorem bounds the collision probability of NH.

Theorem 4.2 For any even n ≥ 2 and w ≥ 1, NH[n,w] is 2−w-AU on equal-length strings.

Proof: Let M,M ′ be distinct members of the domain A with |M | = |M ′|. We are required to show

Pr
K←NH

[
NHK(M) = NHK(M ′)

] ≤ 2−w.

Converting the message and key strings to n-vectors of w-bit words we invoke the definition of NH
to restate our goal as requiring

Pr


 `/2∑

i=1

(k2i−1 +w m2i−1)(k2i +w m2i) =
`/2∑
i=1

(k2i−1 +w m′2i−1)(k2i +w m′2i)


 ≤ 2−w

where the probability is taken over uniform choices of (k1, . . . , kn) with each ki in Uw. Above (and
for the remainder of the proof) all arithmetic is carried out in Z/22w.

Since M and M ′ are distinct, mi 6= m′i for some 1 ≤ i ≤ n. Since addition and multiplication in
a ring are commutative, we lose no generality in assuming m2 6= m′2. We now prove that for any
choice of k2, · · · , kn we have

Pr
k1∈Uw

[
(m1 +w k1)(m2 +w k2) +

`/2∑
i=2

(m2i−1 +w k2i−1)(m2i +w k2i) =

(m′1 +w k1)(m′2 +w k2) +
`/2∑
i=2

(m′2i−1 +w k2i−1)(m′2i +w k2i)
]
≤ 2−w

which will imply the theorem. Collecting up the summations, let

y =
`/2∑
i=2

(m2i−1 +w k2i−1)(m2i +w k2i) −
`/2∑
i=2

(m′2i−1 +w k2i−1)(m′2i +w k2i)

and let c = (m2 +w k2) and c′ = (m′2 +w k2). Note that c and c′ are in Uw, and since m2 6= m′2,
we know c 6= c′. We rewrite the above probability as

Pr
k1∈Uw

[
c(m1 +w k1)− c′(m′1 +w k1) + y = 0

] ≤ 2−w.

In Lemma 4.3 below, we prove that there can be at most one k1 in Uw satisfying c(m1 +w k1) −
c′(m′1 +w k1) + y = 0, yielding the desired bound.

The above proof reduced establishing our bound to the following useful lemma, which is used
again for Theorem 5.1.
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Lemma 4.3 Let c and c′ be distinct values from Uw. Then for any m,m′ ∈ Uw and any y ∈ U2w

there exists at most one k ∈ Uw such that c(k +w m) = c′(k +w m′) + y in Z/22w.

Proof: We note that it is sufficient to prove the case where m = 0: to see this, notice that
if c(k +w m) = c′(k +w m′) + y, then also c(k∗ +w 0) = c′(k∗ +w m∗) + y, where we define
k∗ = (k +w m) and m∗ = (m′ −w m). If follows that if there exist k1 6= k2 satisfying the former
equality, then there must also exist k∗1 6= k∗2 satisfying the latter.

Assuming m = 0, we proceed to therefore prove that for any c, c′,m′ ∈ Uw with c 6= c′ and any
y ∈ U2w there is at most one k ∈ Uw such that kc = (k +w m′)c′ + y in Z/22w. Since k,m′ < 2w,
we know that (k +w m′) is either k + m′ or k + m′ − 2w, depending on whether k + m′ < 2w or
k + m′ ≥ 2w respectively. So now we have

k(c− c′) = m′c′ + y and k < 2w −m′ (2)

k(c− c′) = (m′ − 2w)c′ + y and k ≥ 2w −m′ (3)

A simple lemma (Lemma 4.4, presented next) shows that there is at most one solution to each of the
equations above. The remainder of the proof is devoted to showing there cannot exist k = k1 ∈ Uw

satisfying (2) and k = k2 ∈ Uw satisfying (3) in Z/22w. Suppose such a k1 and k2 did exist. Then
we have k1 < 2w−m′ with k1(c− c′) = m′c′+ y and k2 ≥ 2w−m′ with k2(c− c′) = (m′− 2w)c′+ y.
Subtracting the former from the latter yields

(k2 − k1)(c′ − c) = 2wc′ (4)

We show (4) has no solutions in Z/22w. To accomplish this, we examine two cases:

Case 1: c′ > c. Since both (k2 − k1) and (c′ − c) are positive and smaller than 2w, their product
is also positive and smaller than 22w. And since 2wc′ is also positive and smaller than 22w, it is
sufficient to show that (4) has no solutions in Z. But this clearly holds, since (k2 − k1) < 2w and
(c′ − c) ≤ c′, and so necessarily (k2 − k1)(c′ − c) < 2wc′.

Case 2: c′ < c. Here we show (k2 − k1)(c− c′) = −2wc′ has no solutions in Z/22w. As before, we
convert to Z, to yield (k2−k1)(c−c′) = 22w−2wc′. But again (k2−k1) < 2w and (c−c′) < (2w−c′),
so (k2 − k1)(c− c′) < 2w(2w − c′) = 22w − 2wc′.

Let Dw = {−2w +1, . . . , 2w−1} contain the values attainable from a difference of any two elements
of Uw. We now prove the following lemma, used in the body of the preceding proof.

Lemma 4.4 Let x ∈ Dw be nonzero. Then for any y ∈ U2w, there exists at most one a ∈ Uw such
that ax = y in Z/22w .

Proof: Suppose there were two distinct elements a, a′ ∈ Uw such that ax = y and a′x = y.
Then ax = a′x so x(a − a′) = 0. Since x is nonzero and a and a′ are distinct, the foregoing
product is 22wk for nonzero k. But x and (a − a′) are in Dw, and therefore their product is in
{−22w + 2w+1 − 1, . . . , 22w − 2w+1 + 1}, which contains no multiples of 22w other than 0.

Remarks. The bound given by Theorem 4.2 is tight: let M = 0w0w and M ′ = 1w0w and note
that any key K = K1K2 with K2 = 0w causes a collision.

Although we do not require any stronger properties than the above, NH is actually 2−w-A∆U
under the operation of addition modulo 22w; only trivial modifications to the above proof are
required. See [16] for a definition of ε-A∆U.
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Several variants of NH fail to preserve collision probability ε = 2−w. In particular, replacing the
inner addition or the outer addition with bitwise-XOR increases ε substantially. However, removing
the inner moduli retains ε = 2−w (but significantly degrades performance).

4.4 The Signed Construction: NHS

To this point we have assumed our strings are interpreted as sequences of unsigned integers. But
often we will prefer they be signed integers. Surprisingly, the signed version of NH has slightly
higher collision probability: we shall now prove that the collision bound increases by a factor of two
to 2−w+1-AU on equal-length strings. This helps explain the 2−30 and 2−60 forging probabilities
for the four UMAC versions named in Section 2.2 and the performance measured in Section 3; in
actuality, all four algorithms use the signed version of NH.

Let Sw and S2w be the sets {−2w−1, . . . , 2w−1 − 1} and {−22w−1, . . . , 22w−1 − 1}, respectively.
For this section, assume all arithmetic done modulo 2w returns a result in Sw and all arithmetic
done modulo 22w returns a result in S2w. The family of hash functions NHS is defined exactly like
NH except that each Mi ∈ {0, 1}w and K ∈ {0, 1}w is bijectively mapped to an mi ∈ Sw and a
ki ∈ Sw.

Theorem 4.5 For any even n ≥ 2 and w ≥ 1, NHS[n,w] is 2−w+1-AU on equal-length strings.

The proof of Theorem 4.5 is identical to the proof for Theorem 4.2 with two exceptions: instead of
Uw we take elements from Sw, and in the end we use Lemma 4.7, which guarantees a bound of two
on the number of k1 values satisfying c(m1 +w k1)− c′(m′1 +w k1) + y = 0. To prove Lemma 4.7
we begin by restating Lemma 4.4 for the signed case. Recall that Dw = {−2w + 1, . . . , 2w − 1}.

Lemma 4.6 Let x ∈ Dw be nonzero. Then for any y ∈ S2w, there exists at most one a ∈ Sw such
that ax = y in Z/22w .

Proof: Notice that the set of possible differences of any two elements of Sw is again Dw. (This
follows from the fact that the obtainable differences for two elements of any set of j consecutive
integers is always the same, namely {−j + 1, . . . , j − 1}.) Since the proof of Lemma 4.4 depends
only on Dw, we may recycle the proof without modification.

Lemma 4.7 Let c and c′ be distinct values from Sw. Then for any m,m′ ∈ Sw and any y ∈ S2w

there exist at most two k ∈ Sw such that c(k +w m) = c′(k +w m′) + y in Z/22w .

Proof: As in the proof to Lemma 4.3, we again notice it is sufficient to prove the case where m = 0.
We now consider two cases depending on whether m′ < 0 or m′ ≥ 0. We show in either case there
can be at most two values of k satisfying c(k +w m) = c′(k +w m′) + y in Z/22w.

Case 1: m′ < 0. Since k ∈ Sw, we know that (k +w m′) is either k +m′+2w (if k +m′ < −2w−1),
or k + m′ (if −2w−1 ≤ k + m′). Clearly we cannot have k + m′ ≥ 2w−1. Substituting these values
and moving k to the left yields

k(c − c′) = (m′ + 2w)c′ + y and k + m′ < −2w−1

k(c− c′) = m′c′ + y and k + m′ < 2w−1

But Lemma 4.6 tells us there can be at most one solution to each of the above equations.
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Case 2: m′ ≥ 0. Since k ∈ Sw, we now have that (k +w m′) is either k + m′ (if k + m′ < 2w−1)
or k + m′ − 2w (if k + m′ ≥ 2w−1). Clearly we cannot have k + m′ < −2w−1. Substituting these
values and moving k to the left yields

k(c− c′) = m′c′ + y and k + m′ < 2w−1

k(c− c′) = (m′ − 2w)c′ + y and k + m′ ≥ 2w−1

But again Lemma 4.6 tells us there can be at most one solution to each of the above equations.

A Lower Bound. We now show that the bound for NHS is nearly tight by exhibiting two equal-
length messages where the probability of collision is very close to 2−w+1.

Theorem 4.8 Fix an even n ≥ 2 and let mi = 0 for 1 ≤ i ≤ n. Let m′1 = m′2 = −2w−1 and m′i = 0
for 3 ≤ i ≤ n. Then

Pr
K←NHS

[
NHSK(M) = NHSK(M ′)

] ≥ 2−w+1 − 21−2w

where the M and M ′ are mapped in the usual way from mi and m′i, respectively.

Proof: As usual, assume henceforth that all arithmetic is in Z/22w. Invoking the definition of
NHS, we will show

(k1 +w m1)(k2 +w m2) = (k1 +w m′1)(k2 +w m′2) + y

has at least 2w+1 − 2 solutions in k1, k2 ∈ Sw. This will imply the theorem. As in the proof
to Theorem 4.2, y is the collection of terms for the mi, m′i, and ki where i > 2. Since we have
mi = m′i = 0 for i > 2, y is clearly 0. Therefore we wish to prove

k1k2 = (k1 −w 2w−1)(k2 −w 2w−1)

has at least 2w+1 − 2 solutions. To remove the inner moduli, we let i1 = 1 if k1 < 0 and i1 = 0
otherwise. Define i2 = 1 if k2 < 0 and i2 = 0 otherwise. Now we may re-write the above as

k1k2 = (k1 − 2w−1 + i12w)(k2 − 2w−1 + i22w).

Multiplying the right side out and rearranging terms we have

2w−1(k1(2i2 − 1) + k2(2i1 − 1)) + 22w−2 = 0.

Multiplying through by 4, we arrive at

2w+1(k1(2i2 − 1) + k2(2i1 − 1)) = 0.

We notice that all k1, k2 ∈ Sw such that |k1|+ |k2| = 2w−1 will satisfy the above. Now we count the
number of k1, k2 which work: we see that for each of the 2w − 2 choices of k1 ∈ Sw − {0,−2w−1}
there are two values of k2 causing |k1| + |k2| = 2w−1, yielding 2w+1 − 4 solutions. And of course
two further solutions are k1 = −2w−1, k2 = 0 and k1 = 0, k2 = −2w−1. And so there are at least
2w+1 − 2 total solutions.
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5 Reducing the Collision Probability: Toeplitz Extensions

The hash-function families NH and NHS are not yet suitable for use in a MAC: they operate only
on strings of “convenient” lengths (`w-bit strings for even ` ≤ n); their collision probability may
be higher than desired (2−w when one may want 2−2w or 2−4w); and they guarantee low collision
probability only for strings of equal length. We begin the process of removing these deficiencies,
here describing a method to square the collision probability at a cost far less than doubling the key
length.

5.1 The Toeplitz Approach

To reduce the collision probability for NH, we have a few options. Increasing the wordsize w yields
an improvement, but architectural characteristics dictate the natural values for w. Another well-
known technique is to apply several random members of our hash-function family to the message,
and concatenate the results. For example, if we concatenate the results from, say, four independent
instances of the hash function, the collision probability drops from 2−w to 2−4w. But this solution
requires four times as much key material. A superior (and well-known) idea is to use the Toeplitz-
extension of our hash-function families: given one key we “left shift” to get another key, and we
hash again.

For example, to reduce the collision probability to 2−64 for NH[n, 16], we can choose an un-
derlying hash key K = K1 ‖ · · · ‖Kn+6 and then hash with the four derived keys K1 ‖ · · · ‖Kn,
K3 ‖ · · · ‖ Kn+2, K5 ‖ · · · ‖ Kn+4, and K7 ‖ · · · ‖ Kn+6. This trick not only saves key material
but it can also improve performance by reducing memory accesses, increasing locality of memory
references, and increasing parallelism.

Since the derived keys are related it is not clear that the collision probability drops to the
desired value of 2−64. Although there are established results which yield this bound (e.g., [17]),
they only apply to linear hashing schemes over fields. Instead, NH is non-linear and operates over
a combination of rings (Z/2w and Z/22w). In Theorem 5.1 we prove that the Toeplitz construction
nonetheless achieves the desired bound in the case of NH.

5.2 The Unsigned Case

We define the hash-function family NHT[n,w, t] (“Toeplitz-NH”) as follows. Fix an even n ≥ 2,
w ≥ 1, and t ≥ 1 (the “Toeplitz iteration count”). The domain A = {0, 1}2w∪{0, 1}4w∪· · ·∪{0, 1}nw

remains as it was for NH, but the range is now B = {0, 1}2wt. A function in NH[n,w, t] is named by
a string K of w(n + 2(t− 1)) bits. Let K = K1 ‖ · · · ‖Kn+2(t−1) (where each Ki is a w-bit word),
and let the notation Ki..j represent Ki ‖ · · · ‖ Kj. Then for any M ∈ A we define NHT

K(M) as

NHT
K(M) = NHK1..n(M) ‖ NHK3..n+2(M) ‖ · · · ‖ NHK(2t−1)..(n+2t−2)

(M).

When clear from context we write NHT instead of NHT[n,w, t].
The following shows that NHT enjoys the best bound that one could hope for.

Theorem 5.1 For any w, t ≥ 1 and any even n ≥ 2, NHT[n,w, t] is 2−wt-AU on equal-length
strings.

Proof: We refer to NHT[n,w, t] as NHT and to NH[n,w] as NH, where the parameters n, w, and t
are as in the theorem statement.
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Let M and M ′ be distinct members of the domain A with |M | = |M ′|. We are required to show

Pr
K←NHT

[
NHT

K(M) = NHT
K(M ′)

] ≤ 2−wt.

As usual, we view M,M ′, K as sequences of w-bit words, M = M1 ‖ · · · ‖M`, M ′ = M ′
1 ‖ · · · ‖M ′

`

and K = K1 ‖ · · · ‖ Kn+2(t−1), where the Mi, M ′
i and Ki are each w-bits long. We denote by mi,

m′i, and ki the w-bit integers corresponding to Mi, M ′
i , and Ki, respectively. Again, for this proof

assume all arithmetic is carried out in Z/22w. For j ∈ {1, . . . , t}, define Ej as

Ej :
`/2∑
i=1

(k2i+2j−3 +w m2i−1)(k2i+2j−2 +w m2i) =
`/2∑
i=1

(k2i+2j−3 +w m′2i−1)(k2i+2j−2 +w m′2i)

and invoke the definition of NHT to rewrite the above probability as

Pr
K←NHT

[E1 ∧ E2 ∧ · · · ∧Et]. (5)

We call each term in the summations of the Ej a “clause” (for example, (k1 +w m1)(k2 +w m2)
is a clause). We refer to the jth equality in (5) as Equality Ej.

Without loss of generality, we can assume that M and M ′ disagree in the last clause (i.e., that
m`−1 6= m′`−1 or m` 6= m′`). To see this, observe that if M and M ′ agree in the last few clauses,
then each Ej is satisfied by a key K if and only if it is also satisfied when omitting these last few
clauses. Hence, we could truncate M and M ′ after the last clause in which they disagree, and still
have exactly the same set of keys causing collisions.

Assume now that m`−1 6= m′`−1. (The proof may easily be restated if we instead have m` 6= m′`.
This case is symmetric due to the fact we shift the key by two words.) We proceed by proving that
for all j ∈ {1, . . . , t}, Pr[Ej is true | E1, . . . , Ej−1 are true] ≤ 2−w, implying the theorem.

For E1, the claim is satisfied due to Theorem 4.2. For j > 1, notice that Equalities E1 through
Ej−1 depend only on key words k1, . . . , k`+2j−4, whereas Equality Ej depends also on key words
k`+2j−3 and k`+2j−2. Fix k1 through k`+2j−4 such that Equalities E1 through Ej−1 are satisfied,
and fix any value for k`+2j−3. We prove that there is at most one value of k`+2j−2 satisfying Ej .
To achieve this we follow the same technique used in Theorem 4.2. Let

y =
`/2−1∑
i=1

(k2i+2j−3 +w m2i−1)(k2i+2j−2 +w m2i)−
`/2−1∑
i=1

(k2i+2j−3 +w m′2i−1)(k2i+2j−2 +w m′2i)

and let c = (k`+2j−3 +w m`−1) and c′ = (k`+2j−3 +w m′`−1), and then rewrite Ej as

c(k`+2j−2 +w m`) + y = c′(k`+2j−2 +w m′`).

Since we assumed m`−1 6= m′`−1 we know c 6= c′; clearly m`,m
′
`, c, c

′ ∈ Uw so Lemma 4.3 tells us
there is at most one value of k`+2j−2 satisfying this equation, which completes the proof.

Comment. With UMAC, we sometimes use shift amounts of more than two words; this clearly
does not interfere with the validity of our proof, provided the number of shifted words is even.
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Figure 4: The T2 scheme. Each block of the message is hashed twice, first using a key Ka, and then
using a key Kb. Key Kb is the shift of key Ka. The outputs of the Ka-hashes are concatenated
and La hashed, and the outputs of the Kb-hashes are concatenated and then Lb hashed. Key Lb
is once again the shift of key La.

5.3 The Signed Case

Now we consider the Toeplitz construction on NHS, the signed version of NH. The only significant
change in the analysis for NHT will be the effect of the higher collision probability of NHS.

We define the hash family NHST[n,w, t] (“Toeplitz-NHS”) exactly as we did for NH, but we
instead use NHS as the underlying hash function. Now we restate Theorem 5.1 for the signed case.

Theorem 5.2 For any w, t ≥ 1 and any even n ≥ 2, NHST[n,w, t] is 2t(−w+1)-AU on equal-length
strings.

Proof: The proof is precisely the same as the proof to Theorem 5.1 except we use Theorem 4.5
in place of Theorem 4.2 and Lemma 4.7 in place of Lemma 4.3. Then, using the same notation
as Theorem 5.1, PrK←NHST [Ej | E1, . . . , Ej−1] ≤ 2−w+1, and so PrK←NHST [E1 ∧ E2 ∧ · · · ∧ Et] ≤
2t(−w+1), yielding our result.

5.4 Shorter Keys: T2

Fix an even n ≥ 2 and m,w ≥ 1. We describe the family of hash functions NHT2[n,m,w] and the
family of hash functions NHST2[n,m,w]. Both families have domain A = {0, 1}2w ∪{0, 1}4w ∪ · · · ∪
{0, 1}nmw and range B = {0, 1}4w. (That is, the input consists of an even number of w-bit words—
at least two words and at most mw words. The output is four words.) A function NHT2(K ‖ L, ·)
from the family NHT2[n,m,w] is named by a key K ‖ L having (n + 2)w + (2m + 2)w bits. (The
part of the key denoted K has n + 2 words, and the part of the key denoted L has 2m + 2 words.)
We define NHT2(K ‖ L, M) below. See Figure 4 as well.

function NHT2(K ‖ L, M)
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1. Let Ka = K[1..nw]
2. Let Kb = K[2w + 1..(n + 2)w]
3. Let La = L[1..2mw]
4. Let Lb = L[2w + ..(2m + 2)w]
5. Let M1 ‖ · · · ‖Mt = M , where t = d|M |/(nw)e,

|M1| = · · · = |Mt−1| = nw, and 2w ≤ |Mt| ≤ nw
6. A = NHKa(M) ‖ · · · ‖ NHKa(Mt)
7. B = NHKb(M) ‖ · · · ‖ NHKb(Mt)
8. Return NHLa(A) ‖ NHLb(B)

The family of hash functions NHST2[n,m,w] is defined exactly as above except for using NHS
instead of NH throughout the construction. We can show the following two theorems.

Theorem 5.3 For any m,w ≥ 1 and any even n ≥ 2, NHT2[n,m,w] is 2−2w+2-AU on equal-length
strings.

Theorem 5.4 For any m,w ≥ 1 and any even n ≥ 2, NHST2[n,m,w] is 2−2w+4-AU on equal-length
strings.

6 Arbitrary-Length Messages: Padding, Concatenation, Length
Annotation

With NHT we can decrease the collision probability to any desired level but we still face the problem
that this function operates only on strings of “convenient” length, and that it guarantees this low
collision probability only for equal-length strings. We solve these problems in a generic manner,
with a combination of padding, concatenation, and length annotation.

Mechanism. Let H : {A→ B} be a family of hash functions where functions in H are defined only
for particular input lengths, up to some maximum, and all the hash functions have a fixed output
length. Formally, the domain is A =

⋃
i∈I {0, 1}i for some finite nonempty index set I ⊆ N and

the range is B = {0, 1}β, where β is some positive integer. Let a (the “blocksize”) be the length
of the longest string in A and let α ≥ dlg2 ae be large enough to describe |M | mod a. Then we
define H∗ = {h∗ : {0, 1}∗ → {0, 1}∗} as follows. Each function h ∈ H gives rise to a corresponding
function h∗ ∈ H∗, A random function of H∗ is determined by taking a random function h ∈ H and
following the procedure below.

First partition the message Msg into some number of “full blocks” (each containing exactly a
bits) and then a “last block” (which might contain fewer bits). Hash each of the full blocks by
applying h, and then hash the last block by first zero-padding it to the next domain point and then
applying h. Finally, concatenate all the hash values (each having β bits), and append (an encoding
of) the length of the last block prior to padding. 2 Pseudocode follows.

function h∗(Msg)
1. If M = λ then return 0α

2. View Msg as a sequence of “blocks”, Msg = Msg1 ‖ · · · ‖Msg t,
with |Msgj| = a for all 1 ≤ j < t, and 1 ≤ |Msgt| ≤ a

2 Since the length of the last block (prior to padding) is between 1 and a, it suffices to take this number modulo a;
it still specifies the length of the last block. The length annotation can equivalently be regarded as the length of the
original message Msg modulo a.
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3. Let Len be an α-bit string that encodes |Msg| mod a
4. Let i ≥ 0 be the least number such that Msgt ‖ 0i ∈ A
5. Msg t = Msgt ‖ 0i

6. Return h(Msg1) ‖ · · · ‖ h(Msg t) ‖ Len

Analysis. The following proposition indicates that we have correctly extended H to H∗.

Proposition 6.1 Let I ⊆ N be a nonempty finite set, let β ≥ 1 be a number, and let H = {h :⋃
i∈I {0, 1}i → {0, 1}β} be a family of hash functions. Let H∗ = {h∗ : {0, 1}∗ → {0, 1}∗} be the

family of hash functions obtained from H as described above. Suppose H is ε-AU on strings of equal
length. Then H∗ is ε-AU (across all strings).

Proof: The idea is to note that when distinct messages Msg and Msg ′ have different lengths
then, by our definition of H∗, their hashes can never collide; and if, on the other hand, distinct
messages Msg and Msg ′ have the same length, then, because H is ε-AU on equal-length strings, the
hash under h∗ ← H∗ of Msg and Msg ′ agree with probability at most ε even if one fixes attention
on some particular spot where Msg and Msg ′ differ. Details follows.

We must show that for all distinct Msg,Msg ′ ∈ {0, 1}∗, Prh∗∈H∗ [h∗(Msg) = h∗(Msg ′)] ≤ ε. So fix
distinct Msg ,Msg ′ ∈ {0, 1}∗ and consider the following cases, based on the relative lengths of these
strings:

Case 1. Let t = d|Msg |/ae and let t′ = d|Msg ′|/ae. If the length of Msg and Msg ′ are sufficiently
different that t 6= t′ then the probability that h∗(Msg) = h∗(Msg ′) is zero, since h∗(Msg) and
h∗(Msg ′) have different lengths.

Case 2. With t and t′ as above, assume |Msg| differs from |Msg ′| but in a manner such that t = t′.
This means that the lengths of the last blocks of Msg and Msg ′ differ, and therefore the last α bits
of h∗(Msg) (representing the length of the last block) differ from the last α bits of h∗(Msg ′), so the
probability of collision is zero.

Case 3. Finally, assume |Msg| = |Msg ′|. Suppose Msg is partitioned into Msg1 ‖ · · · ‖ Msgt

and Msg ′ is partitioned into Msg ′1 ‖ · · · ‖ Msg ′t. Since Msg 6= Msg ′ there exists some index i
such that Msg i 6= Msg ′i. Fix such an i. Of course |Msg i| = |Msg ′i|. If i = t then we replace
Msg i and Msg ′i by what we get after zero-padding them, but the lengths of the (now padded)
blocks Msg i and Msg ′i will still be identical and these blocks will still differ. Hence we have that
Prh∈H[h(Msg i) = h(Msg ′i)] ≤ ε. Moreover, h(Msg i) 6= h(Msg ′i) implies that h∗(Msg) 6= h∗(Msg ′),
since one can infer h(Msg i) from h∗(Msg) and one can infer h(Msg ′i) from h∗(Msg ′). (This uses
the fact the range of h is fixed-length strings.) It follows that h∗(Msg) and h∗(Msg ′) coincide with
probability at most ε.

Comment. For implementation convenience the spec for UMAC [6] is byte-oriented, and so the
domain of the hash function defined in the spec is actually ({0, 1}8)∗, not {0, 1}∗.

7 Final Extensions: Stride, Endianness, Key Shifts

There are a few more useful adjustments to enhance the performance, generality, or and ease-of-
implementation of the hash families we have constructed. Although we have defined NHX with
parameters n,w, t, what is specified [6] actually has additional parameters: “message stride,” “en-
dianness,” “key shift,” “signed/unsigned,” and parameters to handle two-level (2L) hashing. We
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have already analyzed the effect of using signed integers and two-level hashing in Section 4.4 and
Section 5.4. Let us now describe the parameters we have not touched on and argue that they do
not affect the analysis.

First we make the simple observation that any bijection π applied to the inputs of an ε-AU
hash-function family leaves the collision bound unchanged. This can be observed by simply looking
at the definition of ε-AU: the statement requires a certain probability hold for any two distinct
inputs M,M ′ from the domain. But if M 6= M ′ then certainly π(M) 6= π(M ′) and so the bound
still holds.

Message Stride. In NH we multiplied (k2i−1 +w m2i−1) by (k2i +w m2i) for 1 ≤ i ≤ `/2. As
described in Section 2.2, we may prefer to pair these multiplications differently, like

(k1 +w m1)(k5 +w m5) + (k2 +w m2)(k6 +w m6) + · · ·

to take advantage of machine architectural characteristics. Such rearrangements do not affect our
collision bound since they amount to applying a fixed permutation to the input and key; since the
keys are random, permuting them is irrelevant.

Endianness. Whether we read a message using big-endian or little-endian conventions again can
be viewed as a bijection on the messages.

Key Shift. In our proof of Theorem 5.1 we shifted our key by two words to acquire the “next” key.
In some cases we may wish to shift by more than two words for performance reasons (specifically
in the MMX implementations). As noted in the comment following that proof, a larger shift does
not invalidate the argument.

8 From Hash to MAC

In this section we describe a way to make a secure MAC from an ε-AU family of hash functions
(with small ε) and a secure pseudorandom function (PRF). We also describe some constructions
for suitable PRFs. We begin with the formal definitions for MACs and PRFs.

8.1 Security Definitions

MACs And Their Security. For this paper a MAC scheme Σ = (Key,Tag) consists of two
things: a key generator Key and a tag generator Tag. There are also four associated nonempty
sets: Key, which denotes the set of possible keys, and Message, Nonce, and Tag, which are sets of
strings. The sets Nonce and Tag are finite, with Nonce = {0, 1}η and Tag = {0, 1}τ . These different
sets are used to describe the domain and range of Key and Tag, as we now explain.

The key generator Key takes no arguments and probabilistically produces an element Key ∈
Key. This process is denoted Key ← Key(). The tag generator Tag takes Key ∈ Key, M ∈
Message, and Nonce ∈ Nonce, and deterministically yields Tag ∈ Tag. The first argument to Tag

will be written as a subscript, as in Tag = TagKey(M,Nonce).
An adversary F for attacking MAC scheme Σ = (Key,Tag) is an algorithm with access to two

oracles, denoted Tag and Vf. Specifically, F ’s oracles behave as follows. First the key generator
is run to compute Key ← Key(). From then on, when presented with a query (M,Nonce) ∈
Message× Nonce, the Tag oracle returns TagKey(M,Nonce). (If the query (M,Nonce) is outside
of the indicated domain, the oracle returns the empty string.) When presented with a query
(M,Nonce,Tag) ∈ Message × Nonce × Tag, the Vf oracle returns 1 if TagKey(M,Nonce) = Tag,
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and it returns 0 otherwise. (If the query (M,Nonce,Tag) is outside of the indicated domain, the
oracle returns 0.) To disallow replay attacks and meet other goals one can, alternatively, make the
Vf oracle stateful and more restrictive with when it returns 1. We will not pursue these possibilities
here.

In an execution of an adversary with her oracles, she is said to forge, or succeed, if she asks
the Vf oracle some query (M,Nonce,Tag) which returns 1 even though (M,Nonce) was not an
earlier query to the Tag oracle. The success of adversary F in attacking Σ, denoted Succmac

Σ (F ),
is the probability that F succeeds. Informally, a MAC scheme Σ is good if for every reasonable
adversary F the value Succmac

Σ (F ) is suitably small. To talk of this conveniently, we overload the
notation and let Succmac

Σ (t, qs, qv, µ) be the maximal value of Succmac
Σ (F ) among adversaries that

run in time at most t, ask at most qs Tag queries, ask at most qv Vf queries, and all of these
queries total at most µ bits. One assumes some fixed RAM model of computation and running
time is understood to mean the actual running time plus the size of the program description.

Remarks. Our notion for MAC security is very strong, insofar as we have let the adversary
manipulate the nonce (just so long as they are nonces), and then we regarded the adversary as
successful if she could forge any new message (or even an old message, but with a nonce different
from any already used for it). In actuality we expect the nonce to be a counter which is not under
the adversary’s control. Our notion of security says that even if the adversary could control the
nonce, still she would be unable to forge, even in a very weak sense.

The definition above explicitly allows verification queries. This definitional choice is pretty
inconsequential, in the following sense: Succmac

Σ (t, qs, qv, µ) ≤ qv · Succmac
Σ (t + O(µ), qs, 1, µ) for any

MAC scheme Π. That is, suppose we allowed only one verification query. This is equivalent to
having the adversary output her one and only attempt at a forgery, (M,Nonce,Tag), at the end of
her execution. Then generalizing (as our definition does) to qv ≥ 1 verification queries will increase
the adversary’s chance of success by at most qv. The proof is simple and the observation is well
known, so a proof is omitted. But we will use this fact in the proof of Lemma 8.1.

For substantial qv the value Succmac
Σ (t, qs, qv, µ) may become larger than desired. For this reason

it may be necessary to architecturally limit qv to 1—for example, by tearing down a connection
when a forgery attempt is detected. There are further approaches to keeping Succmac

Σ (t, qs, qv, µ)
small when one is imagining qv large.

PRFs And Their Security. A pseudorandom function (PRF) (with key-length α, arbitrary
argument length, and output-length β) is a family of functions F : {0, 1}α×{0, 1}∗ → {0, 1}β . (See
Section 4.1). Let Rand(β) be the family of functions from {0, 1}∗ to {0, 1}β in which choosing a
random ρ← Rand(β) means associating to each string x ∈ {0, 1}∗ a random string ρ(x) ∈ {0, 1}β.

An adversary D for attacking the PRF F : {0, 1}α × {0, 1}∗ → {0, 1}β is given an oracle g
which is either a random element of F or a random element of Rand(β). The adversary tries to
distinguish these two possibilities. Her advantage is defined as Advprf

F (D) = Pra∈{0,1}α [DFa(·) = 1]−
Prρ∈Rand(β)[Dρ(·) = 1]. Informally, a PRF F is good if for every reasonable adversary D the value
AdvF(D) is small. To talk of this conveniently we overload the notation and let Advprf

F (t, q, µ) be
the maximal value of Advprf

F (D) among adversaries that run in time at most t, ask at most q oracle
queries, and these queries total at most µ bits.

8.2 Definition of the PRF(HASH, Nonce) Construction

We use a family of (hash) functions H = {h : {0, 1}∗ → {0, 1}∗} and a family of (random or
pseudorandom) functions F = {f : {0, 1}∗ → {0, 1}τ}. These are parameters of the construction.
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We also fix a set Nonce = {0, 1}η and an “encoding scheme” 〈·, ·〉. The encoding scheme is a
linear-time computable function that maps a string HM ∈ {0, 1}∗ and Nonce ∈ Nonce into a string
〈HM ,Nonce〉 of length |HM |+ |Nonce|+O(1) from which, again in linear time, one can recover HM
and Nonce. The MAC scheme UMAC[H,F] = (Key,Tag) is then defined as follows:

function Key ()
f ← F
h← H
return (f, h)

function Tag(f,h) (M, Nonce)

return f ( 〈h(M), Nonce〉 )

The keyspace for this MAC is Key = H× F; that is, a random key for the MAC is a random hash
function h ∈ H together with a random function f ∈ F.

Analysis. We begin with the information-theoretic version of the scheme.

Lemma 8.1 Let ε ≥ 0 be a real number and let H = {h : {0, 1}∗ → {0, 1}∗} be an ε-AU family
of hash functions. Let τ ≥ 1 be a number and let Σ = UMAC[H,Rand(τ)] be the MAC scheme
described above. Then for every adversary F that makes at most qv verification queries we have
that Succmac

Σ (F ) ≤ qv(ε + 2−τ ).

Proof: First assume that F prepares a single verification query which, without loss of gener-
ality, is its last oracle query. Run adversary F in the experiment which defines success in at-
tacking Σ = (Key,Tag). In this experiment the adversary is provided an oracle which behaves
as follows. First it chooses a random ρ ← Rand(τ) and h ← H. Now F asks the sequence
of tag-generation queries (M1,Nonce1), . . . , (Mq,Nonceq), getting responses Tag1, . . . ,Tagq, where
Tagi = Tag(ρ,h)(〈h(Mi),Noncei〉). Based on these answers (and possibly internal coin flips) the
adversary produces its verification query (M,Nonce,Tag). Since we are bounding from above the
probability that F is successful we may assume of F ’s behavior that Nonce1, . . . ,Nonceq are distinct
and that (M,Nonce) 6∈ {(M1,Nonce1), . . . , (Mq,Nonceq)} for otherwise, by definition, F does not
succeed. Let Forge be the event that the adversary is successful: Tag = ρ(〈h(M),Nonce〉). Let
yj = 〈Mj ,Noncej〉 for 1 ≤ j ≤ q and let y = 〈M,Nonce〉. Note that y1, . . . , yq are distinct, since
Nonce1, . . . Nonceq are distinct and 〈·, ·〉 is a (reversible) encoding.

Let Repeat be the event that Nonce ∈ {Nonce1, . . . ,Nonceq}. Observe that Pr[Forge|Repeat] ≤ 2−τ

since when Repeat holds the adversary must predict σ(y) given σ(y1), . . . , σ(yq), where y1, . . . , yq

are all distinct from y.

We wish to bound Pr[Forge|Repeat]. Let i be the index such that Nonce = Noncei. There is a
unique such i since Nonce1, . . . ,Nonceq are distinct and Nonce is among them. Let Collision be
the event that Repeat holds and h(M) = h(Mi). We note that Pr[Forge|Collision] ≤ 2−τ since, as
before, the adversary must predict σ(y) having seen only σ(y1), . . . , σ(yq), where y 6∈ {y1, . . . , yq}.
We claim Pr[Collision] ≤ ε. By definition of H being ε-AU we know if one chooses a random h← H
and gives the adversary no information correlated to h then the adversary’s chance of producing
distinct M and Mi which collide under h is at most ε. The point to note is that the adversary has,
in fact, obtained no information correlated to h. In response to her queries she obtains the images
under ρ of the distinct points y1, . . . , yq. These values, Tag1, . . . ,Tagq, are random τ -bit strings;
the adversary F would be provided an identical distribution of views if the oracle were replaced by
one which, in response to a query, returned a random τ -bit string.
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The result now follows. We have that Pr[Forge] ≤ max{Pr[Forge|Repeat], Pr[Forge|Repeat]}, with
the second expression being at most 2−τ . On the other hand,

Pr[Forge|Repeat] = Pr[Forge|Collision] Pr[Collision] + Pr[Forge|Collision] Pr[Collision]

≤ Pr[Collision] + Pr[Forge|Collision]

≤ ε + 2−τ ,

as we have argued. We conclude that Pr[Forge] ≤ ε+ 2−τ . To finish the proof, use the observation,
mentioned in the Remarks of Section 8.1, that allowing qv verification queries at most increases the
adversary’s chance of success by a multiplicative factor of qv.

In the usual way we can extend the above information-theoretic result to the complexity-theoretic
setting of interest to applications. Roughly, we prove that if the hash-function family is ε-AU and
no reasonable adversary can distinguish the PRF from a truly random function with advantage
exceeding δ then no reasonable adversary can break the resulting MAC scheme with probability
exceeding ε + δ.

To make this formal, we use the following notations. If H is a family of hash functions then
TimeH is an amount of time adequate to compute a representation for a random h ← H, while
Timeh(µ) is an amount of time adequate to evaluate h on strings whose lengths total µ bits.

The proof of the following, being standard, is omitted.

Theorem 8.2 Let ε ≥ 0 be a real number, let H = {h : {0, 1}∗ → {0, 1}∗} be an ε-AU family
of hash functions, let τ ≥ 1 be a number and let F : {0, 1}α × {0, 1}∗ → {0, 1}τ be a PRF. Let
Σ = UMAC[H,F] be the MAC scheme described above. Then

Succmac
Σ (t, qs, qv, µ) ≤ Advprf

F (t′, q′, µ′) + qv(ε + 2−τ )

where t′ = t + TimeH + Timeh(µ) + O(µ) and q′ = qs + qv and µ′ = O(µ).

8.3 Discussion

We have now defined the PRF(HASH, Nonce) construction, but we wish to make a couple of
comments about it.

Comparison With Carter-Wegman Method. Compared to the original suggestion of [26],
where one encrypts the hash of the message by XOR-ing with a one-time pad, we require a weaker
assumption about the hash-function family H: it need only be ε-AU. The original approach of [26]
needs of H the stronger property of being “XOR almost-universal” [16]: for all distinct M,M ′ and
for all C, one must have that Prh[h(M)⊕h(M ′) = C] ≤ ε. Furthermore, it is no problem for us that
the range of h ∈ H has strings of unbounded length, while the hash functions used for [26] should
have fixed-length output. On the other hand, our cryptographic tool is effectively stronger than
what the complexity-theoretic version of [26] requires: we need a PRF over {0, 1}∗ (or at least over
the domain Encoding of possible 〈HM ,Nonce〉 encodings), while the complexity-theoretic analog
of [26] could conveniently use a (fixed-output-length) PRF on the fixed-length strings Nonce. The
security bound one gets is the same; both constructions are as good as one could hope for, from
the point of view of concrete security.

Comparison With PRF(HASH) Construction. Let us now clarify the role of the nonce in the
PRF(HASH, Nonce) scheme. The nonce is essential, in the sense that in its absence the quantitative
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security bounds are much worse and unacceptable for many applications. Let UMAC[H,F] be the
scheme which is the same as UMAC, except that the PRF is applied directly to HM , rather than
to 〈HM ,Nonce〉. Then the analog of Lemma 8.1 would say the following: Fix a number τ ≥ 1, let
H = {h : {0, 1}∗ → {0, 1}∗} be an ε-AU family of hash functions, and let Σ = UMAC[H,Rand(τ)]
be the MAC scheme described above. Then for every adversary F , Succmac

Σ (F ) ≤ q2ε + 2−τ .
This is a far cry from our earlier bound of ε + 2−τ . Instead of security which is independent of

the number of tags acquired, q, security degrades with the square of that number. When q = ε−1/2,
there is no security left.

It is important to note that this is not a problem with the analysis, but with the scheme itself.
If one asks ε−1/2 oracle queries of UMAC then, by the birthday bound, there is a good chance to
find distinct messages, M1 and M2, which yield the same authentication tag. If τ is large then
this implies that, with high probability, the hash of M1 equals the hash of M2. This is crucial
information about the hash function which has now been leaked. In particular, for some ε-AU
hash-function families knowing that M1 and M2 collide immediately tells us some third message
M3 which collides with both of them. The adversary can now forge an authentication tag for this
message.

The conclusion is that the nonce in the PRF(HASH, Nonce)-scheme cannot be removed. For
example, without it, using a 2−32-AU hash function would let you authenticate fewer than 216

messages, which is usually insufficient.

8.4 Realizing the PRF

A complete specification of UMAC must describe how to make the requisite PRF. Under our
construction the domain of the PRF needs to be strings of arbitrary lengths. The specification
associated to this paper [6] suggests two ways of realizing such PRFs: one using a cryptographic hash
function and using a secure block cipher. Let us briefly describe the two suggested constructions.
The second is somewhat novel.

From A Cryptographic Hash Function. Given a cryptographic hash function H (e.g., SHA-1)
we can use HMAC based on H as our PRF [3, 12]. This method defines the PRF F to be
FA(M) = H(A ⊕ opad ‖ H(A ⊕ ipad ‖ M)), where |A| is, typically, the blocksize of H (i.e.,
512 bits for all well-known constructions) and opad and ipad are distinct |A|-bit constants. This
construction is shown in [3] to be a PRF under weak (though nonstandard) assumptions about H.

From A Block Cipher. We use a new variant of the CBC-MAC in order to turn a block cipher E
into a PRF F which operates over arbitrary-length inputs. Our CBC-MAC variant is more efficient
than earlier suggestions but can still be proven secure when E is a good block cipher.

Let E : {0, 1}α × {0, 1}β → {0, 1}β be the block cipher. We define FK1 ‖K2 ‖K3(M), where
|K1| = |K2| = |K3| = α and M ∈ {0, 1}∗, as follows.

If M contains an integral number of blocks (i.e., |M | is a nonzero multiple of β) then apply
the “basic” CBC-MAC construction to M except use key K2 for encrypting the last block and
use key K1 for encrypting the earlier ones. More precisely, writing M = M1 ‖ · · · ‖Mn, where
|M1| = · · · = |Mn| = β, and letting y0 = 0β , set yi = EK1(Mi ⊕ yi−1) for 1 ≤ i < n, and then
define FK1 ‖K2 ‖K3(M) as EK2(Mn ⊕ yn−1).

If |M | = 0 or |M | is not a multiple of β then append to M a 1-bit and then the minimum
number of 0-bits so that the resulting string M ′ will have length which is a multiple of β. Now
proceed as above, but using key K3 in lieu of K2: that is, writing M ′ = M ′

1 ‖ · · · ‖M ′
n, where

|M ′
1| = · · · = |M ′

n| = β, and letting y0 = 0β , set yi = EK1(M ′
i⊕yi−1) for 1 ≤ i < n, and then define

FK1 ‖K2 ‖K3(M) as EK3(M ′
n⊕yn−1).
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Building on [19], which in turn builds on [4], it is possible to show that if E is a good PRF (on
its domain) then F is a good PRF (on its domain). The quantitative bounds are as in [19]. Further
details are omitted.

We comment that since FA is being applied to adversarially-unknown points, even if it were to
have some cryptographic weakness as a PRF, still this might not, by itself, lead to the resulting
MAC being insecure. This is true regardless of how the PRF F is realized.

9 Directions

An interesting possibility (suggested to us by researchers at NAI Labs—see acknowledgments) is
to restructure UMAC so that a receiver can verify a tag to various forgery probabilities—e.g.,
changing UMAC-MMX-60 to allow tags to be verified, at increasing cost, to forging probabilities
of 2−15, 2−30, 2−45, or 2−60. Such a MAC need be no longer than it is now, and perhaps it need
take no longer to generate. Such a feature is particularly attractive for authenticating broadcasts
to receivers of different security policies or computational capabilities.

Our efforts to further improve upon UMAC continue, and, at the time of this writing, are
working on a new version of the specification document. We expect that UMAC 2.0, as we are
calling it, will be a little bit faster and simpler than what we have currently specified in [6]. It will
also achieve the property mentioned above, and it will no longer require a variable-input-length
PRF. Additionally, the specification document will “export” the underlying hash function, for use
in contexts beyond message authentication.

For the authors, who like to mix up theory and practice, the development of UMAC has involved
an unprecedented intermixing of theory, experimentation, and painstaking engineering. We think
that this has led to a MAC which is faster and more versatile than anything you could devise in
the absence of any of these three elements. Thus we hope that UMAC will not only get used, but
will help further the underlying design approach we used.

Finally, we comment that, to the best of our knowledge, UMAC is completely patent unencum-
bered.
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