
Detecting and Defending against Web-Server Fingerprinting

Dustin Lee, Jeff Rowe, Calvin Ko, Karl Levitt

Computer Security Laboratory,
University of California, Davis

NAI Labs,
Network Associates, Inc.

fleed,rowe,levittg@cs.ucdavis.edu, calvin ko@nai.com

Abstract

Cyber attacks continue to increase in sophistication. Ad-
vanced attackers often gather information about a target
system before launching a precise attack to exploit a dis-
covered vulnerability. This paper discusses techniques for
remote identification of web servers and suggests possible
defenses to the probing activity. General concepts of finger-
printing and their application to the identification of Web
servers, even where server information has been omitted
are described and methodologies for detecting and limiting
such activity are discussed.

1. Introduction

“Note: Revealing the specific software version of
the server might allow the server machine to be-
come more vulnerable to attacks against software
that is known to contain security holes. Server
implementors are encouraged to make this field
a configurable option.” [RFC 2068: HTTP/1.1
(section 14.38)]

Knowledge of software vendor and version information
provides a huge advantage to attackers in penetrating a sys-
tem. In a sophisticated cyber attack, information about po-
tential vulnerabilities in the target system are first gathered
then a penetration attempt is launched. Although the secu-
rity of a system should not be based solely on obscurity, it
is desirable to protect against attempts to gain system infor-
mation.

HTTP servers and clients1 exchange meta-data during
a transaction in the form of MIME-like headers. For in-

1also known as web servers and browsers

stance, within a Request a client can inform the server what
level of HTTP it is using and what format of return data it
prefers and is willing to accept. A server typically responds
with headers describing, among other things, the size, for-
mat, name and transfer time of the returned document. It
is important to note that this meta-data is not authenticated
in anyway. If a server sends incorrect format information
the client will likely misinterpret the message. Clients and
servers are designed to cooperate and avoid this situation.

Some information normally sent within the HTTP head-
ers is security sensitive. If an attacker has information about
the vendor and version number of a server (not to mention
server plugins) this information could be used to exploit
vulnerabilities more efficiently. Unfortunately, few vendors
have taken the advice offered in the quote above.

Since HTTP servers do not generally provide a sim-
ple means for modifying or omitting the server’s self-
description (e.g. as a configuration file option) a server
administrator can not easily manipulate this information.
However, through modification of source code (or even the
binary using reverse engineering) it is possible to remove
or obscure the server header from an HTTP response. A
small percentage of servers on the Internet currently do just
this. This paper will demonstrate that even after hiding the
server information a determined attacker can still learn the
server’s vendor and version number with a high degree of
confidence. The HMAP method uses fingerprinting tech-
niques to gather information about a server’s identity from
HTTP headers returned from a variety of “normal” and “ab-
normal” Requests.

This paper describes techniques for fingerprinting HTTP
servers and discusses possible defenses to the activity.
HTTP servers have been a popular target of penetration,
largely because they are one of the most common web ser-
vices to be running and publicly available. In addition,

many vulnerabilities exist in HTTP servers[6]. As with
most types of software, the vulnerabilities in HTTP servers
are specific to vendor and version. Previously, researchers
have investigated fingerprinting on TCP/IP and defenses to
the activity [14][15]. Nevertheless, this paper focuses on
the application layer and the HTTP protocol.

In viewing the fingerprinting problem of networking
software, we identify several general concepts: lexical, syn-
tactic, and semantic analysis of the Response and discuss
their effectiveness in identifying the identity of the software.
We have built a tool (HMAP) for testing existing HTTP
servers and discovered that most of them can be precisely
identified. In addition, we discuss approaches to the prob-
lem of the availability of HTTP based fingerprinting tools.

The organization of this paper is as follows: Section 2
provides an overview of existing fingerprinting tools. In
Section 3, we describe several methods for identifying web
servers. Section 4 suggests possible approaches to remedy
the problem. Finally, the security implications of this work
will be discussed.

2. Related Work

This section reviews existing fingerprinting and web
server investigation tools. These applications work by using
HTTP and other internet protocols in non-standard ways.

2.1. Web Server Surveys

Netcraft [7] and SecuritySpace [8] are two groups that
perform periodic surveys of the web to determine the mar-
ket share of various web servers. One feature available from
their sites allows a user to determine what HTTP server and
OS a particular site is running. After requesting this service
for a workstation who’s TCP/IP traffic was being monitored
by the author the Request in figure 1 (with modified Host
line) was observed.

Since most servers’ responses have a “Server” header in-
cluding the vendor information it is a simple matter to ex-
tract this information. Presumably this same method is used
to perform their web-wide survey. As already discussed,
server information determined this way is not very reliable.
In fact, some simple changes to Apache/1.3.12 (Win32)
source code fooled their HTTP server identity checker. In-
terestingly, Netcraft is able to deduce the OS as well. This
information is most likely acquired from the TCP/IP level
using techniques similar to that of NMAP.

2.2. NMAP

NMAP [3] is a well-known network probing tool. In its
default mode it performs a simple port scan to determine
which ports are active on a target system. With the -o option

it attempts to detect the OS and its version number. It does
this by using known bugs and vagaries of different vendors’
implementations of the TCP/IP stack. Most OSes can be
uniquely characterized by comparing the target’s behavior
with known profiles.

For instance, the correct behavior on receiving an un-
expected FIN flag is to ignore it and not respond. Several
operating systems incorrectly reply with a RESET. Using
a decision tree method the specific operating systems can
be identified by correlating the responses received after a
series of similarly constructed messages. Depending on the
behavior observed (like the FIN probe just described) move-
ment through the tree continues until a leaf is reached. In
most cases this answer is unique.

The results obtained by this method are not conclusive. It
is entirely possible that a TCP/IP stack could be specifically
rewritten that spoofs the behavior of any given OS or of
none at all. Going to this extreme is fairly unlikely since
it is always risky to alter software that is working correctly
(or correctly enough).

2.3. PRO-COW

Krishnamurthy, et al use an unreleased tool [2] to mon-
itor web servers for compliance with HTTP/1.1 specifica-
tions. While this tool was not designed for security or iden-
tity probing purposes, some of its functionality is similar to
that of HMAP. For instance, the PRO-COW tool spoofs var-
ious activities of a client as part of its series of tests. These
tests check both for appropriate default behaviors as well
as appropriate responses to error conditions. As an exam-
ple, HTTP/1.1 Requests MUST [1] include a “Host” header
identifying the domain to which the URI pertains. If a client
doesn’t include this field a “400 Bad Request” error should
be returned.

As the PRO-COW project has demonstrated many
servers are at different levels of compliance. Since these
differences tend to be constant for a given vendor/version
number combination this information can be used for ob-
taining clues about server identity, though they do not report
using it in this manner.

2.4. whisker

whisker [4] uses unusual HTTP Requests to probe web
servers for known CGI based vulnerabilities. By sending
specially crafted HTTP Requests, whisker analyzes the Re-
sponses to check for signs of vulnerable software. The
Request variations employed are primarily within the Re-
quest line URL. Of specific relevance to HMAP, this tool
has been tuned to elude typical IDS monitoring procedures.
For instance, requested URIs can be URL-encoded so that
simple string matching techniques will fail. While whisker

HEAD / HTTP/1.1\r\n
Connection: close\r\n
Referer: http://www.netcraft.com/survey/\r\n\r\n
User-agent: Mozilla/4.0 (compatible; Netcraft WebServer Survey)\r\n
Host: local.host.edu\r\n\r\n

Figure 1. Netcraft Surveys Request

uses information about the specific OS and web server be-
ing probed to tailor its vulnerability probe, it relies on the
server’s self-description of its identity in the “Server” field.
Whisker might be even more effective if it had a method
of verifying the vendor and version number of the host it is
communicating with.

3. Concepts and Methodology

Fingerprinting is a heuristic method of observing the be-
havior of a software component for the purpose of deter-
mining its identity. In general, fingerprinting involves send-
ing specific requests to the component and observing the
response.

For HTTP servers the content of Responses to a range
of specifically chosen Requests are sufficient to determine
their identity with high confidence. As a proof of concept, a
tool called HMAP was developed to automate this process.
The name HMAP was, of course, inspired by NMAP. How-
ever, whereas NMAP manipulates and analyzes the TCP/IP
layer to gather clues about an operating system, HMAP per-
forms at the HTTP level.

A typical method used to acquire a server’s identity is
illustrated in figure 2. This command simply pipes the
string “GET / HTTP/1.0nnnn” to the netcat command which
opens a TCP/IP connection on the default HTTP server port
of the target server. The reply from the server is filtered
by the grep command and only lines containing the text
“Server” are displayed. In most cases this will yield some-
thing like the following:

Server: Apache/1.3.12 (Win32)

Generally, this method yields accurate information, but
there is no guarantee. In fact, it is a simple matter to cob-
ble together another “netcat” script on the server end that
responds with an arbitrary “Server” header.

A natural first attempt at hiding server identity is to sim-
ply not send it in the first place. No server, to our knowl-
edge, has this as a configurable feature2 but with access to
source code it is easy to change, either by clearing it out
or setting it to a fictitious value. Using a variation of the

2with the partial exception of Apache which at least allows the amount
of server information to be reduced

above “netcat” technique an informal survey of the top 100
most visited web sites [12] was conducted. The results in-
dicate that about 5% of sites3 use this sort of hiding method
(i.e. not sending back server headers or leaving them blank).
This tactic will only work against an uninformed attacker,
because methodically fingerprinting a server, its true iden-
tity can be determined with a high degree of confidence.

3.1. Methodology

To generate a server’s fingerprint a set of characteristics
that discriminate a specific server’s use of HTTP from that
of other servers must be identified. These differences will
arise from variations in how closely a vendor has followed
the HTTP specifications. The specification for the differ-
ent HTTP versions (e.g. 1.0, 1.1) and features (e.g. cook-
ies, DAV, S-HTTP) are found in RFCs4. These specifica-
tions are not enforced, rather they are agreed upon conven-
tions. If a vendor does not comply with the specifications it
risks incompatibility with the software of other vendors. Of
course, if others deviate from the specification in the same
way then this deviation itself becomes a de facto specifi-
cation (e.g. cookies developed in this way with Netscape
taking the lead).

The HTTP RFCs describe the features of the HTTP pro-
tocol in terms of varying levels of compliance. The words
MUST, SHOULD and MAY (and each of these in combi-
nation with NOT) are used to indicate the importance the
RFC’s authors placed on individual features. Implementa-
tions that are deficient in the MUST category are consid-
ered to be non-compliant. A given web server may function
acceptably and still be non-compliant. It is, in part, this
variability of compliance, that allows HTTP servers to be
fingerprinted.

Employing the concept of compliance variations, a list
of characteristics to use for fingerprinting can be assembled.
For each of these characteristics a test (i.e. HTTP Request)
must be designed that will provoke a Response exhibiting
the characteristic. The list of characteristics can be derived
by examining how a server responds under various condi-

3This only includes sites that are leaving the Server header blank or just
not sending it at all. Others could be lying about who they are but HMAP
has not been used against the others for verification

4Request For Comment

echo -e "GET / HTTP/1.0\n\n" | nc www.someserver.com 80 | grep Server

Figure 2. netcat “one-liner” for identifying a server

tions. The list of possible identity discriminators discussed
below is not exhaustive of all but it is representative of the
most common varieties. Other variations may also be devel-
oped that contribute to the complete fingerprinting picture.

3.2. Fingerprint Characteristics

Using the analogy of programming language classifica-
tions, the types of characteristics that an HTTP fingerprint-
ing methodology incorporates can be divided into the fol-
lowing categories: lexical, syntactic and semantic.

� Lexical: specific words, phrases and punctuation that
are used in Responses.

� Syntactic: ordering and context of elements (e.g.
words, phrases, headers).

� Semantic: a server’s specific interpretation of a Re-
quest from among the possible interpretations.

Sufficient information for discrimination can be gathered
by focusing on a subset of characteristics and test variations.
Note that it could be argued that some of the characteristics
can not be uniquely classified (is “nn” a lexical element or
syntactic?). Some vagueness can be tolerated as the classi-
fication’s primary aim is simply to guide and organize the
search for identifying characteristics.

3.2.1 Lexical

The lexical characteristics category covers variations in the
actual words/phrases used, capitalizations and punctuation.
These differences tend to be conspicuous and are quite use-
ful for fingerprinting.

Response Code Message An HTTP Response includes
a numeric value describing the success or failure of the
server’s attempt to satisfy the Request. For each of these
error codes there is corresponding human readable text.
For instance, for the error code 404, Apache reports “Not
Found” whereas Microsoft IIS/5.0 reports “Object Not
Found”. While some messages are fairly uniform across
the various implementations (e.g. 200 rarely deviates from
“OK”), there is generally a fair amount of variation between
different servers, which is manifest both in the actual words
used and in the capitalization pattern (all initial capitals ver-
sus only first word capitalized is a common distinction, e.g.
“Not Found” vs. “Not found”).

Header Wording Generally header names must exactly
match those in the specification or the client will be
unable to identify them and correctly interpret the Re-
sponse. Regardless of this constraint, variation still occurs
in the form of capitalization patterns. For instance, the
header “Content-Length” is returned by some servers and
“Content-length” is returned by others.

Line Terminators Some servers use only “nn” to sepa-
rate elements of the header while the RFC [1] specified be-
havior is to use “nrnn”. This sort of deviation is less com-
mon in servers under current development but can be found
in some earlier offerings.

Server’s Name While the purpose of HMAP is to be sus-
picious of the server’s reported identity, the server’s claim
of its identity can still be used as one of the characteristics.

3.2.2 Syntactic

HTTP messages are required to have a predefined structure
so servers and clients can understand each other. Nonethe-
less, some variation in the ordering and format of Request
elements like the headers and their contents is found.

Header Ordering The HTTP specifications suggest that
HTTP Response header fields should be ordered as fol-
lowed: “general” followed by “response” followed by “en-
tity”. Different vendors follow this suggestion to various
degrees but even those that do still differ in the ordering
within these categories. For instance, Apache servers con-
sistently place the “Date” header before the “Server” header
while Netscape-FastTrack/4.1 have these headers in the re-
verse order. The ordering of the entire set of headers sent
by a server provides useful fingerprinting data.

List Ordering There are many instances where the con-
tents of a header will be a list of items. For instance, when
an OPTIONS method is sent in an HTTP Request, a list of
allowed methods for the given URI are returned in an “Al-
low” header. The order of these elements tend to vary be-
tween servers. This is also true for the “Vary” header. Not
all lists are useful for discriminating identity, however. For
instance, the Content-Language header can identify more
than one human language type. The ordering may imply
the order of percentage of each language. In this case the
ordering is descriptive of the returned content and not an
artifact of the inner-workings of the server.

Formatting Some elements of the headers have formats
that are variable or unspecified by the RFCs. For in-
stance, the “ETag” header provides a unique identifier
(such as a hash) for a given document that can be used,
among other things, to determine if the client has al-
ready seen this document. For instance Apache/1.3.11
returns an ETag header with the following format:
”0-574-38379154;3a5b7811”. The Jigsaw/2.1.2[10] server
returns ETags such as the following: “mvanct:s0jndthg”.
Since there are no official guidelines for how ETags should
be constructed and presented these tend to be a good char-
acteristic for fingerprinting.

3.2.3 Semantic

When a server receives a Request it must first decide on an
interpretation for the Request before it attempts to satisfy
it. In addition, when the server constructs the Response and
assigns the return code it has to assess if the request was sat-
isfied properly and if not, what was the cause of failure. Fur-
thermore, the server has to decide what information to send
back to the requester in the form of response line, headers
and body. There is tremendous variation on how servers
interpret both well-formed and mal-formed Requests.

Existence of Response Line and Headers Some requests
will cause the server to believe the requester is an HTTP/0.9
based client. Legal responses to HTTP/0.9 clients are only
allowed to include a body (i.e. no headers or Response line).
The existence or non-existence of a header can be used to
infer how a server interpreted a client Request.

Presence of Specific Headers A server has a choice of
headers to include in a Response. While some headers are
required by the specification, most headers (e.g. ETag) are
optional. For instance, upon a “501 Method Not Imple-
mented” error Apache servers send an “Allow” header with
a list of the allowed methods for the designated URI, while
Jigsaw/2.1.2 does not.

Response Codes for Ad Hoc Requests Even when most
servers agree that a certain Request is malformed, they of-
ten assign it a different type of error. For instance send-
ing the text stream “hi” (with no headers or other HTTP
trappings) to an Apache server provokes a headerless re-
sponse whose message body warns that the method “hi” is
not implemented. Microsoft IIS/5.0 replies with “400 Bad
Request”. This implies that Apache interprets the Request
as a bad reply from a HTTP/0.9 client whereas Microsoft
takes it as a malformed Request from an HTTP/1.X client.

There are a large number of possible variations for devel-
oping ad hoc test requests. The main elements that can be
manipulated are the method line, the headers and the body

(e.g. size and whether or not it is included). For instance,
the method line normally contains a method, a URI and a
version. Each of these is separated by “whitespace” with
nothing preceding the method and a line terminator immedi-
ately following the version. Creating malformed variations
is a simple matter of employing misspellings, switching po-
sitions, omitting elements, varying the quantity and type of
“whitespace” and so on. Figure 3 shows a partial list of
some of the ways that the method line alone can be varied.

Different servers have very distinctive reactions to these
Requests. A unique fingerprint can be developed simply by
issuing these “naked” method lines one at a time against a
target server.

Error Ranges For Requests and Request objects (e.g.
headers) of unusually large length (unusual being defined
by the server) the HTTP/1.1 specification provides the er-
rors “413 Request Entity Too Large” and “414 Request-URI
Too Long” respectively. If a binary search is performed to
identify the length of the URL that initially provokes each
type of error for a given server, it becomes clear that dif-
ferent servers have unique patterns of errors that they pass
through for increasing sizes. Table 1 shows the lengths of
URLs that elicit different errors for two servers.

Note that not only do these two servers report that length
limits have been passed for different URL lengths but they
also report them as different problems. Apache indicates
that the URI itself is too large whereas Netscape reports
that the entire request (including headers and body) is too
large. There are many tests that provide a similar behavior
for monotonically increasing parameters. For instance, the
number of headers or the length of individual headers can
be varied to achieve similar identifying patterns.

3.3. Tool Usage

HMAP is a program that automatically performs a wide
variety of tests similar to those described above. It analyzes
all of its interactions with the target server and compares
each of the responses with a list of known server character-
istics. The comparison method is simple but effective. For
each test it attempts to provoke a response from the target. If
it fails to receive a response (for instance some errors aren’t
even implemented in some servers) then it notes which char-
acteristics it wasn’t able to compare. If it does get a re-
sponse then it determines whether or not the match was
exact and scores accordingly. For each server that HMAP
has a profile, it displays a final result of how many exact
matches, misses and “don’t knows” were found. For in-
stance, one line of the output might be:

Apache/1.3.11 (Win) 21:9:5

"GET" "GET / HTTP/Q.Q" "HEAD / HTTP/1.0"
"GET /" "GET / HTTP/" "HEAD /////////// HTTP/1.0"
"GET / HTTP/999.99" "GET/HTTP/1.0" "Head / HTTP/1.0"
"GET / hhtp/999.99" "HEAD /.\ HTTP/1.0"
"GET / http/999.99" "HEAD /asdfasdf/../ HTTP/1.0"
"GET / HTTP/Q.9" "HEAD /asdfasdf/.. HTTP/1.0"
"GET / HTTP/9.Q" "HEAD /./././././././././ HTTP/1.0"

Figure 3. Ad Hoc Request Examples

Server URL Length Response
Apache/1.3.12 (Win) 1-216 404 Not Found

217-8176 403 Forbidden
8177-up 414 Request-URI Too Large

Netscape-FastTrack/4.1 1-4089 404 Not found
4090-8123 500 Server Error
8124-8176 413 Request Entity Too Large
8177-up 400 Bad request

Table 1. Long URL Ranges

where the score in this case indicates that 21 characteristics
were an exact match for Apache/1.3.11 (Win), 9 were def-
initely different and 5 couldn’t be determined. One score
line appears for each server that has been previously pro-
filed. Whichever server (or set of servers) matched most
closely by having the highest number of exact matches will
be noted as such. If one attempts to fingerprint a server
for which there is no pre-existing profile then a good match
shouldn’t be expected (unless the server happens to behave
like another known server). The result of this process is
that a closest matching server type for a target can be deter-
mined. This is not proof of identity but is a good indicator
of such.

It is important to note that it is not possible to discrim-
inate between two different server instances of the same
type. For instance, two Apache 1.3.12 servers that are con-
figured exactly the same will appear as identical targets to
HMAP.

3.4. Assumptions/Limitations

HMAP makes the reasonable assumption that the target
server behaves deterministically. Perhaps this seems like
an obvious assumption, but one technique for frustrating
identity probing is to randomize responses to some extent
to make it more difficult to compose a reliable fingerprint
of the server. In general, this assumption has been reliable
for all of the tested servers. HMAP also assumes that that
the features it tests for are not easily configurable to other
settings or if they are, it is rarely done. This assumption af-
fects which tests can be reliably used. In practice only tests

that produced consistent fingerprinting discriminators were
retained in the testing set.

HMAP performs all available tests even if all tests com-
pleted so far match only one server. In theory a decision
tree technique might seem more efficient. This method has
been avoided since the server’s identity is not known a pri-
ori and potential matches shouldn’t be disregarded. In addi-
tion, one change to a server could easily frustrate a decision
tree method. By testing all characteristics a more accurate
picture develops.

4. Security Implications

Web servers are vulnerable to a wide variety of attacks
many of which are targeted by vendor and version number.
A major contribution of the HMAP methodology is to un-
derscore the difficulty that should be expected in thoroughly
hiding a server’s identity in an attempt to avoid such attacks.
In this section the security implications of the availability of
HMAP-like tools will be discussed. At first glance HMAP
may seem to be of primary benefit to attackers. However,
attackers do not currently need this sort of tool because very
few sites hide their identity. In addition, it is frequently the
case that attackers have more information (and more cur-
rent information) on vulnerabilities than the defenders, so
making the information available is more likely to help than
hurt.

4.1. Attackers

It might be argued that the availability of a tool like
HMAP does not impact web server security since even if
a site is actively trying to hide it’s identity an attacker can
simply try all known attacks and observe which, if any, suc-
ceed. However, without a method similar to HMAP the at-
tacker is forced to increase both time and bandwidth used
for an attack which generates more data for an Intrusion
Detection System to use. Using an HMAP like method for
gaining information about a system allows an attacker to
narrow his attack space. While probing for system iden-
tity will generate traffic, probing behaviors are less likely
to generate alarms and have a more ambiguous legal status
than an actual attack. The actual attack can then be launched
at another time and from another location.

Running the full suite of HTTP server fingerprinting ac-
tivities can be fairly easy to detect, thus, it should be ex-
pected that an attacker concerned with stealth would at-
tempt to decrease the fingerprinting visibility. The follow-
ing are examples of techniques to accomplish this:

� running subsets of tests from several computers and
correlating data. IDSes might not detect a pattern of
behavior if it analyzes records on a host by host basis.

� running tests over a long period of time. If the IDS
notices one unusual Request then it might attribute it to
random error and the observation will be flushed after
some time.

� doing only short forms of large Request tests (e.g. first
half of long URL test list may provide enough infor-
mation for discrimination)

� making a search tree of characteristics and only doing
the necessary ones. A minimal subset of characteris-
tics could be assembled that identified a specific server
more efficiently.

� masking contents of Requests with URL encoding.
Some IDSes do not perform URL decoding.

� changing the contents of long URL type Requests so
they vary in more than just the length. Currently the
long requests are composed of all the same characters
and do not look like legal Requests.

A further enhancement to an HMAP-like tool would be
for it to automatically attempt exploits once the server type
has been determined.

Ascertaining a server’s identity this way is not necessar-
ily against the law or even a precursor to an attack. Even if a
system administrator were to detect that someone was run-
ning HMAP against their site it is not clear what recourse

they could take[16]. Information gathering and probing is
currently a gray area within the security community (and
legally within different countries) and likely to remain so
for some time.

4.2. Defenders

The different aspects of computer security generally fit
into one of the following categories: protection, detection
and reaction. System Administrators and HTTP server de-
velopers frequently work at the protection level, while In-
trusion Detection falls in the detection level. Reaction is
beyond the scope of this work. Techniques for improving
system security using insights gained from the HTTP fin-
gerprinting methodology are now discussed. The most suc-
cessful protection will include elements from each of these
complementary categories.

4.2.1 System Administrators

There are already many resources related to security config-
urations for web servers (e.g. [11]). Instead of a general dis-
cussion of web server security techniques, this section will
focus on the more specific case of security issues that arise
from the availability of HTTP server fingerprinting tools.

The most obvious use a system administrator could have
for the HMAP tool would be to use it against his own
servers to determine if they can be readily externally identi-
fied. Unfortunately the ability to hide a server’s identity will
depend greatly on access to the server source code and what
configuration options were made available by the vendor.

System administrators should also be aware of log re-
lated issues. While not unique to the HMAP tool, it is very
easy to fill up log files at an abnormal rate with HMAP type
Requests. If there is no mechanism in place to control the
lengths of the logs, then testing with long URLs can quickly
consume disk space which might be part of a denial of ser-
vice attack. Even if there is no danger of exhausting disk
space, forcing large amounts of data through log files can
obscure other attacks that might have occurred. If the log
files do roll over automatically then forcing large amounts
of data through could flush out signs of previous attacks.

Finally, since HMAP performs a large number of tests
using non-standard Requests, it is useful for running checks
for susceptibility to some forms of denial of service attacks.
At least one server was identified that crashes consistently
when HMAP was run against it.

4.2.2 HTTP Server Developers

HTTP server developers can assist with identity hiding by
providing options to make server fingerprinting more diffi-
cult. For instance, configuration parameters or even com-
pilation settings for source code could be made available

that allowed system administrators to control the amount
and type of identity information that was returned in a Re-
sponse. Developers can use details of the server fingerprint-
ing methodology to identify the types of characteristics and
behaviors that can be adjusted in order to hide a server’s
identity. The following are some strategies for effective
identity hiding.

Common Interface and Behavior Fingerprinting suc-
ceeds because each vendor has a slightly different interpre-
tation of how an HTTP server should appear and react. If
the server development community agreed on a common
interface, then fingerprinting would be a more difficult pro-
cess. The HTTP specification, in a sense, is a step in this
direction but to be effective different fingerprinting cases
would have to be specifically addressed to guarantee unifor-
mity. This is unlikely considering the greatly varying com-
pliance with the much less stringent HTTP/1.X standards.
As web server attacks increase in severity and frequency
this sort of strategy may become more attractive.

Configuration Options It is uncommon to find any server
configuration options that allow identity hiding. Apache ap-
proaches this capability by providing the server directive
“ServerTokens” that allows for the truncation of the Server
header’s level of detail, but not for hiding it entirely. It
would be beneficial if users could remove this line entirely.
This is not a fool-proof identity concealment method but
it is a step in the right direction. The ability to address the
various characteristics used in fingerprinting would be more
beneficial. By using configuration or build options the user
should be able to have more control over the lexical, syn-
tactic and semantic elements of Responses. These configu-
ration options could allow users to masquerade as another
server or act like no known server. In addition they could
choose to match a generic standard as mentioned above.

Variable Output Another way to make fingerprinting
more difficult is to use variable responses. For instance,
“File Not Found”, “Not Found”, “Not found” could all be
used randomly in appropriate Responses. Fingerprinting
becomes more difficult if a static picture of the target can
not be developed. This should not affect the ability of a
client and server to converse since each of the variations
would be semantically equivalent.

4.2.3 Intrusion Detectors - Misuse Detection

Like server developers, IDS developers can use details of
the fingerprinting methodology to identify characteristics
and behavior that indicate identity probing is occurring. To
our knowledge there are currently no IDSes that look for
web server fingerprinting activity. IDSes that look for CGI

attack probes do exist and presumably could be extended to
include awareness of HTTP-based identity probing.

As with many probing activities (e.g. port scans) it is not
necessarily the case that HMAP type behavior is a guarantee
that illicit activity will follow, but it should raise suspicions.
Therefore an IDS would not want to automatically issue an
alert upon every detection of this behavior. It will be the re-
sponsibility of a more comprehensive system to determine
what to do with this information (e.g. decide that a probe
might be part of a larger picture indicating attack prepara-
tions).

Two information sources which an IDS’s sensors can
monitor are TCP traffic and logfiles. Evidence that fin-
gerprinting is occurring can be found in both these sources
in the traces left by Requests and Responses. The sugges-
tions below are geared towards misuse detection techniques,
but anomaly and specification detection are also possible.
Many of the techniques used by HMAP are not very subtle
and would be easy to detect, but only if system administra-
tors are aware of the goals of this type of unusual activity.

HTTP Requests

Request Element Size Many of the tests used to pro-
voke server responses use very large elements. For instance
large URIs and large numbers of headers are used to de-
termine the Request sizes at which a server starts reporting
certain errors. An IDS should look for these sorts of abber-
ations especially when the message changes in size over a
wide range and contains headers/URLs that are not typical.

Unknown and Unusual Elements Unknown methods
(e.g. “QWERTY”) or methods that normal browsers rarely
or never send (e.g. “TRACE”) should be detected. The
same observation applies to unknown or unusual header
fields.

Unusual Constructions Most Requests have a fairly
simple format (e.g. method line of METHOD URI HTTP-
VERSION followed by common headers). Unusual con-
structions, such as a Request including an inappropriate
body or the use of incorrect line terminators should be ex-
amined.

Method Line Syntax Most browsers are fairly well
behaved regarding how they issue a Request. Unusual spac-
ing or corrupted version information is highly suspect.

Browser Behavior In the same way that a client can
fingerprint a server, a server can check the structure and
content of a client’s Requests and determine if the client

is correctly specifying it’s own identity. If a client’s User-
Agent field indicates one type of browser but it behaves
like another, this should raise suspicion. On the other hand,
some privacy “sanitizing” packages [13] purposely hide the
name of the browser so this method might raise too many
false alarms. At this time few users employ this sort of ob-
fuscation so it should be a useful technique.

General IDS Eluding Techniques There are a num-
ber of standard techniques that CGI vulnerability scanners
use to thwart IDS detection. An important example of
these is URL encoding which allows for a Request URL
to be rewritten using a hexadecimal format making pattern
matching more difficult and CPU intensive. An extensive
list of these sorts of techniques can be found at the whisker
site [5]. Other IDS eluding techniques include sending Re-
quests from multiple servers and correlating the results later.
Since IDS systems do not have infinite capacity for keeping
state, allowing long time spans to pass between Requests
can also be effective.

HTTP Responses

Unusual and Repeated Errors Many of the finger-
printing tests are attempts to provoke non-“200 OK” re-
sponses. While some of these errors like “404 File Not
Found” are fairly common, others like “413 Request En-
tity Too Large” are rare enough to raise suspicion. Even
common errors like seen far out of proportion to their norm
should also raise some flags.

Headerless Responses Since HTTP/0.9 type clients
are fairly rare these days, if a server sends back a response
that doesn’t have a header it is possible that someone is mas-
querading as such a client or a request that has confused a
server was sent.

Miscellaneous Techniques Several other techniques can
be used together with traditional IDS sensors to augment
system security. An IDS could also help prevent the finger-
printing by detecting “bad” Requests (too long, malformed
etc.) and converting them before they are received by the
server so that the interrogator can not correlate Requests
with Responses correctly. This conversion could be done
by the IDS system itself or by some sort of proxy. Simi-
lar techniques for preventing TCP/IP fingerprinting are de-
scribed in [14] and [15]

Honeypots are another useful resource for tracking at-
tacker behavior. With respect to web server fingerprinting a
honeypot could detect a fingerprinting sort of behavior and
then return purposely misleading responses. Later if an at-
tack is launched against the type of server that was falsely

advertised, the deception could be continued, perhaps let-
ting the attacker believe that their attack was successful.
This method would likely only be employed in situations
where there is a strong need to learn about an attacker.

As with all intrusion detection techniques additional re-
sources (time, code complexity, memory) will be required
to monitor, translate and analyze HTTP traffic. It is impor-
tant to balance the cost of the security with the actual value
of the resources being protected.

4.3. Miscellaneous Use

As discussed earlier, Netcraft (as an example) performs
Internet wide surveys to determine statistics on the usage of
various servers [7]. With respect to server identity they use
the simple HEAD method and check the “Server” line of the
returned header. Most likely their current results are fairly
accurate. If for security reasons the “Server” field becomes
hidden more frequently then fingerprinting methods could
allow them to continue to discover or verify their results.

Another more esoteric use relates to determining a “fam-
ily tree” of sorts between servers. Some commercial servers
are descendants of other server implementations. Suppose
company XYZ based its server on a version of Apache. De-
pending on the changes, it might be possible to determine
from which version of the server it branched. This in turn
might point to existing security problems in that product if
they are also known to exist in its parent.

5. Conclusion

Hiding the identity of an HTTP server from a sophis-
ticated and knowledgeable attacker is a non-trivial en-
deavor. The content and organization of strategically pro-
voked Responses carry enough information, in most cases,
to uniquely fingerprint a web server’s vendor and version
information. Tools, such as HMAP, can be developed that
mimic the behavior of a client to elicit such Responses and
then automatically analyze them to create a fingerprint and
identify a server. This can be a strong aid to an attacker
since knowledge of the server’s identity helps determine
possible vulnerabilities to exploit. Alternatively, it is possi-
ble to strategically augment server security using the details
of how such a tool would work. In either case it is important
that security workers be aware of the possibility of this sort
of information probing.

References

[1] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1, RFC 2068

[2] Balachander Krishnamurthy, Martin Arlitt. PRO-
COW: Protocol Compliance on the Web—A Longi-
tudinal Study, 2001

[3] fyodor. Remote OS detection via TCP/IP Stack
FingerPrinting, http://www.insecure.org/nmap/nmap-
fingerprinting-article.html

[4] Rain Forest Puppy. whisker,
http://www.wiretrip.net/rfp/bins/whisker/

[5] Rain Forest Puppy. A look at whisker’s
anti-IDS tactics, http://www.wiretrip.net/rfp
/pages/whitepapers/whiskerids.html

[6] Various. http://www.securityfocus.com, web

[7] Netcraft Surveys. http://www.netcraft.com, web

[8] Security Space. http://www.securityspace.com
/s survey/data/index.html, web

[9] Apache Group http://www.apache.org, web

[10] Jigsaw W3C’s Server http://www.w3.org
/Jigsaw/, web

[11] Security Tips for Server Configura-
tion http://httpd.apache.org/docs/misc
/security tips.html, web

[12] 100hot Web Rankings http://www.100hot.com
/directory/100hot/, web

[13] Internet Junkbuster Proxy
http://www.junkbusters.com/ijb.html, web

[14] M. Smart, G. Malan, F. Jahanian. Defeating TCP/IP
Stack Fingerprinting, 9th USENIX Security Sympo-
sium

[15] D. Watson, M. Smart, G. Malan, F. Jahanian. Proto-
col Scrubbing: Network Security through Transparent
Flow Modification, DISCEX ’01. Proceedings, Vol-
ume: 2, 2001

[16] Can I take legal actions against port scanning?
http://www.sans.org/newlook/resources/IDFAQ
/port scanning legal.htm

