
1

A Diagnosis Based Intrusion Detection Approach
Conner Jackson1, Karl Levitt1, Jeff Rowe1, Srikanth Krishnamurthy2, Trent Jaeger3 and Ananthram Swami4

1Dept. of Computer Science, University of California Davis
2Dept. of Computer Science and Engineering, University of California Riverside

3Dept. of Computer Science and Engineering, Penn State University
4Army Research Laboratory, Adelphi, MD

cjackson@ucdavis.edu

Abstract—We describe preliminary work on a novel detection
approach, which we call diagnosis-enabled intrusion detection
(DEID), which takes a stream of evidence from multiple sources,
aggregates the evidence and uses it to arrive at the “best”
explanation for the observed activity. This approach requires
the solution of four key scientific challenges: (i) a theory and
algorithms for monitor placement that covers all system layers to
prevent attackers from evading detection even when launching
zero-day attacks; (ii) evidence collection for producing useful
aggregated evidence from system actions in real-time without
adversely affecting the mission; (iii) a theory of diagnosis detection
for filtering and correlating evidence to test hypotheses regarding
mission impact, producing both diagnoses and explanations of
their causes; and (iv) diagnosis presentation for conveying expla-
nations to domain experts to produce new knowledge to act on
previously-unknown attacks effectively and to respond effectively
to identified attacks that preserve mission requirements.

I. INTRODUCTION

We develop a novel intrusion detection approach, diagnosis-
enabled intrusion detection (DEID), which takes a stream
of evidence from multiple sources, aggregates the evidence
into a set of attack symptoms and uses those symptoms to
arrive at the “best” explanation for the observed activity.
We output a set of features that are understandable by a
human analyst. Our approach subsumes signature-based de-
tection; the evidence may map onto a known signature. It
also subsumes anomaly-based and specification-based IDSs;
it captures known anomalies and deviations from protocol
semantics as symptoms. More importantly, our models cap-
ture correlated behaviors across levels (human actions, OS,
applications and network) both for normal behaviors and
under attack conditions. The fundamental question we wish
to answer is how best to combine observed behaviors, that
have well-defined statistical properties, to develop a high
quality intrusion detection system, which generates alerts with
well-known semantic properties for both known and unknown
attacks?

Towards answering the above question, our diagnosis-
enabling detection system will incorporate evidence from
monitoring at multiple layers (human-centric or psychosocial,
network protocols, OS kernel, and application) to serve as at-
tack symptoms, principled statistical methods for aggregating
symptom data streams into a tunable, high-quality diagnosis
trigger, causation graphs to model how attacks and normal
behavior are mapped onto symptom sets, and a principled

method for explaining why the evidence is considered to be
an attack on the mission.

Our approach is inspired by disease diagnosis in the medical
community. Specifically, the goal in health monitoring is to
quickly and accurately identify new syndromes (illness with
no previously diagnosed cause) by distinguishing them from
known diseases. Cases of a known disease are recognized by
the presence of that disease’s known symptoms and can be
thought of as roughly equivalent to signature-based IDS. The
main questions with syndromes for public health professionals
are: (a) whether a previously unobserved set of symptoms
represents a new disease, (b) whether this new disease is
caused by variants of known diseases (e.g., mutating viruses),
and (c) whether the cause of this disease is a major threat to
the health of the population at large. To quickly identify new
disease outbreaks, the public health system uses a technique
called syndrome surveillance. Syndrome surveillance refers to
methods to detect population (and individual) health changes
that indicate the presence of previously undiagnosed illness.

The public health surveillance problem is nearly identical to
the problem of mission-oriented intrusion detection incorpo-
rating risk. We develop our approach, inspired by syndrome
surveillance, to solve problems that are not adequately ad-
dressed by the traditional IDS approaches, yet incorporates
them as components. We use monitor evidence not as the
triggers for an attack alert but only as a possible symptom of
an attack. This symptom might also indicate some other rare
but benign behavior that has not been previously observed.
The problem is we need sound and principled models for
diagnosing the root cause of the observed set of symptoms to
function as an explanation for previously unobserved activity.

II. RELATED WORK

Intrusion detection approaches can be predominantly clas-
sified into three classes: (a) signature-based detection, (b)
anomaly detection, and (c) specification-based detection. With
signature-based detection [17], [20], [1], [21], [13] attacks
are inferred from specific known accompanying behavior.
The obvious problem is that unknown, zero-day attacks, or
even simple variants are undetected. Anomaly detection looks
for sets of features that deviate from normally expected
behaviors [25], [10], [8], [14], [3], [23]. The assumption that
attacks are observable as statistical rarities leads to relatively
high false positive rates due to rare yet benign use of the



2

system. Furthermore, alerts generated by anomaly detectors
provide limited actionable intelligence for system administra-
tors. Specification-based IDS systems assume precise protocol
definitions [4], [11], [16], [19]) are available for identifying
good behavior; everything else is an attack. The drawback
is that specifications are not always available nor are they
strictly adhered to by developers in practice. Several efforts
employ AI or fuzzy logic to determine the likelihood of attacks
(e.g., [15], [12]). Similar to anomaly-based approaches, these
require training on both normal data and on attacks, and suffer
from high false positives. Very few of these approaches take
psychological or social level considerations into account in
their detection models. Finally, work in intrusion correlation
has primarily focused upon distributed alert correlation [5],
[24] and typically depends upon specifics of the underlying
alert mechanism [6], [7], [2], [18], [9], [22].

III. PROBLEM FORMULATION

To address this problem, the first step is to formulate the
relevant features of known attacks that have been previously
observed that will be useful in diagnosing unknown attack
activity. We begin with a set of previously known and imple-
mentable attacks, A = {a1, a2, . . .}, letting a be an arbitrary
attack. Define AC = {ac1, ac2, . . . } to be the set of attack
classes, where ac refers to an arbitrary class of attack. The
function ATC, defined as ATC : A → P(AC), associates
each attack with a set of attack classes. Given a system, S used
to accomplish a certain mission, we wish to determine if S is
operating normally with the mission requirements satisfied, is
under attack from a known attack a, or is under an unknown
attack of a particular class ac.

To formulate the behavior or the system, we define
the set of known states system S can be in as SS =
{sa1, sa2, . . . san, sn}, and ss which refers to an arbitrary
state. The state sai, where 1 ≤ i ≤ n, represents the state
where S is under attack by corresponding attack ai, and
sn represents the state where S is operating normally. Let
CS(t) be an element of SS, CS(t) ∈ SS, that represents
the current state of the system at time t. Each attack, a, is
known and implementable, so we can experimentally observe
S when CS(t) = sa. Since we define the meaning of the
“normal operations” of S we can also experimentally observe
S when CS(t) = sn. Thus, it should be noted that we can
experimentally observe S in any state of SS, CS(t) = ss.

IV. ATTACK STATE ESTIMATION USING
DEMPSTER-SHAFER THEORY OF EVIDENCE

Our goal is to estimate the effect of the current attack
state on the ongoing mission using a limited set of available
symptoms as evidence. We wish to take into account both
the presence and absence of evidence as well as lack of
knowledge about potential evidence. To accomplish this, we
apply the Dempster-Shafer Theory of Evidence to all potential
observables to arrive at a belief in a certain attack state
classification. The set of known states, SS, will play the role of
the frame of discernment in Dempster-Shafer Theory (DST).
In DST, it is assumed that the current state of S, CS(t), is

unknown to the observer, and must be one of the values from
the frame of discernment. The value of CS(t) is determined
by providing, combining, and interpreting beliefs (sometimes
called evidence) which take the form of a basic belief as-
signment (abbreviated BBA). All of these terms refer to the
same object, namely a function that maps, over a particular
frame of discernment, all possibles subsets of the frame of
discernment to a belief mass or mass (a real value between 0
and 1, inclusive), defined as BBASS : P(SS) → [0, 1]. The
total mass of a belief must add to 1,

∑
i∈P(SS)

BBASS(i) = 1,

and the empty set must have no mass, BBASS(∅) = 0. The
purpose of beliefs is to reason about, and provide evidence
for, the value of the CS(t). The belief mass assigned to
each subset of SS is interpreted as a subjective probability
(or “opinion”) that the given subset contains the CS(t). Say
you have a non-empty subset of the frame of discernment,
E|E ⊆ SS ∧ E 6= ∅, a belief mass, X , and a belief function
BSS such that BSS(E) = X . If X = 0, you don’t believe that
E contains the CS(t), and if X = 1 you believe absolutely
that E must contain the CS(t). Values of X in-between the
extremes, 0 < X < 1, represent the varying strengths of
opinion. Note when X = 0 you are not giving any opinion
towards E not containing the CS(t). To accomplish this effect,
evidence should be assigned to the complement of E instead,
BSS(SS − E) = X . From the above explanation, one can
see why BSS(∅) = 0, as we cannot provide evidence towards
there being no CS(t), since, by definition, there is always a
current state. One can also see that assigning mass towards
BSS(SS) = X tells us that “there exists a current state,”
which is effectively nothing when attempting to determine
CS(t). Mass assigned in this manner allows us to represent
the lack of knowledge or strength in a belief.

V. OBSERVABLES

To collect beliefs that will assist in determining the CS(t),
one will first need to gather a set of observables. Let
O = {O1, O2, . . . } be the set of observables, where o is a
particular one. Each observable is a function taking a time, t,
and returning a real value, o(t). Conceptually, an observable
represents any process that can be monitored or sampled to
produce a time series. For instance, the speed of a particular
vehicle could be an observable, as its speed is defined and
can be measured at each point in time. This definition is quite
broad, so we will restrict our set, O, to only contain relevant
observables. Relevant, in this context, means the values of o
are not the same, or very similar to one another, when the
CS varies across the values of SS. In other words, to be
relevant, the value of o must be dependent on the value of the
CS. For example, if we assume S is a networked computer,
SS = SF,N , where SF is the state where S is under attack
by a Synflood, and N is the normal state where S is idle. If
o is the speed of a particular vehicle, we can see that whether
CS = SF or CS = N the value of o will not be affected,
and thus is irrelevant. However, if o was the network traffic
coming into S, we can see that if CS = SF would likely
see larger values of o than CS = I , and is hence relevant.



3

Since all states in SS are replicable experimentally, it should
be possible to determine which o are relevant.

VI. SYMPTOMS

A symptom takes, as input, the value of an associated
observable, and emits, as output, a belief over SS that provides
an opinion of the CS. It is assumed the symptom is fed newly
sampled values from the associated observable at regular,
static, time intervals. The static time-interval requirement isn’t
necessary, but simplifies discussion. A symptom is allowed
to maintain and make decisions based on an internal state,
so the same observable value as input can yield different
results based on the values input before it. We will assume
we have a set of constructed S = {s1, s2, . . . }, where s is
a particular symptom. A symptom’s associated observable is
determined by a user-defined mapping function SO, which
takes a symptom s, and maps it to its observable from O,
o. Note that multiple symptoms can be mapped to the same
observable, and it is assumed each observable is mapped to
by at least one symptom. The value of a symptom at time t is
given by s((SO(s))(t)), assuming that s has been called for
all previous values of t (necessary since, again, s maintains an
internal state). For clarity, we will take s(t) to represent the
value of s at time t following the operation outlined above.

A symptom, as given above, can be thought of like a medical
symptom. Suppose a doctor is attempting to diagnose a patient
who feels sick. The patient, in this case, is the system S.
The patient may have any number of illnesses, as well as
be healthy, forming the set of known states, SS. The doctor
does not know in advance what the patient’s medical state
is, CS. A possible observation, o, the doctor could make
is the patient’s level of nasal congestion. A symptom, s,
associated with o, would be the presence of a “stuffy nose.”
In this case, if the nasal congestion was severe enough (o(t)
was above a threshold), then the doctor might have a high
belief, BSS , the patient could have the common cold or aller-
gies, BSS({COMMON COLD,ALLERGIES}) = 0.9.
If nasal congestion was not present, the doctor may have a
low belief that the patient is healthy BSS({HEALTHY }) =
0.05, since the patient arrived under the premise of being
sick, and a higher belief that the patient could be experiencing
the stomach flu BSS({STOMACH FLU}) = 0.2. In both
cases, the remainder of the doctor’s belief mass would be
allocated to the frame of discernment, which might represent
his lack of experience in the area he is attempting to diagnose,
his eagerness to go home, or his dislike of the patient. Each
of these reduces the confidence in his results.

A class of symptom, we will refer to then as binary
symptoms, adheres to the above specification, is simple to
construct, and operates intuitively like the above example.
Binary symptom operation begins with the current observable
value, o(t), which is fed into the symptom. This value is then
fed into a decision algorithm, DA. DA takes a real input value
and outputs a boolean, DA : R → {T, F}, and may choose
to hold an internal state. If the return value of DA(o(t))
is true, then a precomputed belief, BT , is returned as the
symptom’s belief. Otherwise, a precomputed belief, BF , is

returned instead. If DA evaluates to true the symptom is said
to be present, otherwise the symptom is absent.

VII. SYMPTOM COMBINATION

We have the set of symptoms we have constructed, S,
and we now wish to combine the individual beliefs produced
by calling all s(t) at time t. In DST, belief combination is
accomplished through fusion operators. An arbitrary fusion
operator, FO, takes two beliefs as input and outputs a single,
fused belief as output. These operators can also be applied to a
set of beliefs, BS = {bs1, bs2, . . . }, by starting with an empty
belief, B|BSS(SS) = 1, and applying the fusion operator to
the last fused belief (or initial empty belief) and the next belief
from BS, r1 = FO(B, bs1), r2 = FO(r1, bs2), . . ., until all
beliefs have been combined to form the final output belief, rn.

Our situation is not as simple as selecting a single fusion
operator to combine all of the beliefs generated from S.
This is because some symptoms of S may or may not be
dependent on one another, and fusion operators are built
assuming sets of exclusively dependent or independent beliefs.
To resolve this, we introduce the set of dependent symptom
sets, DSS = {dss1, dss2, . . . }, where dss is an arbitrary de-
pendent symptom set. Each symptom s in S should appear in
exactly one dss and no other. One can imagine the symptoms
contained in each dss being the evaluations of a single doctor
or sensor. Each symptom in a dss should be combined using
a fusion operator intended for dependent beliefs. Once all dss
sets have been combined into beliefs, these resulting beliefs
can then be combined using an fusion operator intended for
independent data, and will result in a single final belief.

A tested pair of fusion operators that seem to produce
good results are the averaging and cumulative fusion operators
constructed by Audun Jøsang, Javier Diaz, and Maria Rifqi
in the paper “Cumulative and Averaging Fusion of Beliefs.”
The averaging fusion operator, AV G, is intended to combine
dependent beliefs, A and B, and is given by

AV GSS(x) =
ASS(x)BSS(SS) +BSS(x)ASS(SS)

ASS(SS) +BSS(SS)

AV GSS(SS) =
2ASS(SS)BSS(SS)

ASS(SS) +BSS(SS)

Assuming that both ASS(SS) 6= 0 and BSS(SS) 6= 0, other-
wise a separate set of rules must be applied. The cumulative
fusion operator, CUM , is intended to combine independent
beliefs, and is given by

CUMSS(x) =
ASS(x)BSS(SS) +BSS(x)ASS(SS)

ASS(SS) +BSS(SS)−ASS(SS)BSS(SS)

CUMSS(SS) =
ASS(SS)BSS(SS)

ASS(SS) +BSS(SS)−ASS(SS)BSS(SS)

and holds the same constraints as the averaging fusion op-
erator. The equations where the frame of discernment is
allocated zero belief mass are omitted, as the binary symptoms
described above will never experience this case. This was
done by design, as it always allows later beliefs to provide
evidence contrary to current beliefs. If a belief ever has zero
mass assigned to it, its assumed that all non-zero elements of



4

belief must contain the CS, and all new evidence contrary
to these elements is ignored. Enforcing a non-zero frame
of discernment follows the philosophy, as Pliny states, “the
only certainty is that nothing is certain,” a sound view when
attempting to detect the unknown. Of course, if S can provably
be constricted to the non-zero elements of a given belief, then
assigning zero to the frame of discernment is the best course
of action, but knowledge of this strength is beyond what can
be provided by the described system.

VIII. INTERPRETATION

After fusion, we are left with a single combined belief
that should reflect the views emitted by our symptom set.
This belief can be used to estimate the subjective probabilities
of any event over the associated frame of discernment. This
requires the Dempster-Shafer belief, Bel, and plausibility, Pl,
operations, which form the lower and upper bounds on the
probability of an event. The belief operation, Bel, takes a
belief, b, and an event, e, (a subset of the beliefs associated
frame of discernment) and sums together the masses of all
other events, t, that are a proper subset of e, Bel(b, e) =∑
t⊆e

b(t). The belief operation adds together the evidence

supporting that e contains the CS to form a lower bound
on its probability. The plausibility operation, Pl, also takes
a belief and event. However, it instead sums together the
beliefs masses of all events that intersect with elements of e,
Pl(b, e) =

∑
t∩e 6=∅

b(t). The plausibility operation adds together

all evidence that doesn’t contradict that e is the CS, and forms
an upper bound on its probability. From these operations, we
can see the subjective probability of e, P (e), is bounded by
0 ≤ Bel(b, e) ≤ P (e) ≤ Pl(b, e) ≤ 1.

We now have the tools necessary to determine if S is
operating normally, under attack from a known attack, or under
attack from an unknown of a particular class. Remember, an
event represents a set of states, and the subjective probability
computed from that state shows our confidence that this set
contains the CS. Thus, to estimate the probability that S is
currently operating normally, we compute for e = {sn}. To
estimate the probability that S is under attack from one of
our known attacks, sa, we compute for e = {sa}. Finally,
to estimate that S is under an unknown attack of a known
class, ac, we compute for e = {∀s | ac ∈ ATC(s)}. To deter-
mine which of the events computed is above is most likely,
the ranges produced by each, [Bel(b, e), P l(b, e)], should be
compared. A possible comparison function could take the
average of the lower and upper bounds, and take the largest
among them. Another could compare the upper bound, and
if both were equal, compare the lower bound to determine
the largest. Yet another could take into account the difference
between the upper and lower bounds, the uncertainly in our
probability estimate, to select more or less precise solutions
(this value could also be used to determine if we needed to
gather more evidence to shrink this bound). Whatever this
comparison function emits is taken to be the predicted “state”
(not equivalent to the possible states contained in SS, since
we have also included attack classes) of S at time t.

IX. EXPERIMENTAL VALIDATION

To validate our DEID approach, we perform experiments
on the DETER testbed. This testbed is specifically designed
for cyber-security experimentation and consists of hundreds
of computers made available remotely using a web-based
management interface. This allows us to investigate cross-layer
symptoms from attacks implemented at a single layer. These
dependencies are typically not available with high-fidelity in
simulation.

We design a simple network configuration composed of two
LANs: one LAN with attacking hosts and one with the victim
as well as observer nodes for monitoring. We instrument
testbed nodes with monitors at the operating system level
building on standard OS accounting tools for system perfor-
mance and fault monitoring. These tools regularly poll kernel
data structures and extract important values as observable OS-
level symptoms. We collect symptoms at the application level
using standard application logging functionality. In addition,
we employ network monitors using an observer node and
packet monitor at the LAN gateway router.

For our experiment, we investigate a large number of
cross-layer symptoms produced by known attacks. For this
initial validation, we use three different TCP denial-of-service
techniques, each implemented on a single attack node. First is
the traditional Synflood which connects to the victims multiple
times without completing the three-way TCP handshake. This
causes the victim’s TCP connection table in the kernel to be
consumed with partial sessions that never terminate, prevent-
ing legitimate connections from completing due to lack of
space. The second attack is TCP SockStress which is a testing
tool for determining a systems ability to tolerate a variety of
malformed TCP conditions. Thirdly, we use the SlowLoris tool
which fills up all available HTTP connections with requests
that have very slow response times. This is a stealthy attack
with no record produced in application logs.

The hypothesis we wish to test with our experiment is
whether the previous three known DoS attacks manifest symp-
toms that are useful in detecting an unknown attack whose
observable behavior fails to match the known attack behavior.
To accomplish this, we design a new TCP DoS attack using
a combination of techniques from the known attacks that
are performed at a rate far below that which is necessary
for denial-of-service individually. Launching these stealthy
versions of known attacks simultaneously causes denial-of-
service without triggering detectors configured to detect the
known version. Our hypothesis is that this new attack will
share enough of the same symptoms with a union of the three
known attacks to provide a diagnosis even though the known
signatures fail.

X. PRELIMINARY RESULTS

We run multiple instances of the three known attacks: TCP
Synflood, SockStress, and SlowLoris, observing and recording
the presence or absence of approximately 5000 potential
symptoms we identify at four system layers. We collect OS
level accounting statistics, TCP flag statistics at the router,
connection response behavior at the network LAN observer,



5

and web application log behavior. Out of this large number
of candidate symptoms, we identify 32 that show differential
response to the known attacks; that is, only 32 symptoms
are enough to allow for disambiguation of the known attack
types. In addition, we emulate normal traffic to our web server
application using a variety of common web benchmarking and
testing tools that make patterns of requests to locations in the
document tree at various rates. Finally, we launch the unknown
attack and observe the set of symptoms that are produced
Figure 1 shows symptoms and their occurrence in the presence
of the five experimental system states. We show only the 14
most important of the 32 symptoms used in the analysis for
clarity and brevity.

Fig. 1. Table of the symptoms for 5 experimental system states. The colors
of the rows indicate the layer where the symptoms were collected: (red:
application, blue: router, green: observer node, purple: OS)

A. DST State Assignment for Known Attacks

For each symptom, we assign a belief mass for its occur-
rence in conjunction with the known attacks. We also assign
a belief mass for its presence in the case of normal traffic.
Finally, to asses whether a particular symptom might indicate
a denial-of-service class of attack against a mission critical
service, we define a belief that it is present in a generic denial-
of-service attack using its rate of occurrence in the known
attack types. Then, for each experimentally collected symptom
set, we compute the belief for each of the five system states
using the Dempster-Shafer rule of combination over time as
evidence is collected. We judge the effectiveness of our DST
algorithm in assigning belief in the correct state. In figure
?? we show the results for the DST plausibility over time as
the SlowLoris stealthy DoS attack is launched. Each graph
shows the plausibility for a different system state hypothesis
using the same set of observable symptoms as input. We
execute the SlowLoris attack on its slowest, most stealthy
setting in this example to observe the ability of DST to detect
and distinguish SlowLoris from the other known attacks and
from normal traffic. One notices that it takes more than 50
seconds before this attack method is effective. During that
time, the hypothesis of the SlowLoris state proceeds from
very low (plausibility = 0.4) to high (plausibility > 0.9 at

t = 75 seconds). While initially the Synflood hypothesis is
higher than SlowLoris (plausibility = 0.6), as the SlowLoris
attack proceeds, the plausibility of the Synflood state drops as
more defining symptoms are received. Also, the plausibility
of the normal traffic state hypothesis starts at near certainty
(plausibility > 0.98), then drops and remains low just as
the SlowLoris state hypothesis becomes most plausible. These
results show that the DST belief assignment of system state
works well in distinguishing among known attacks and normal
traffic based upon the same set of symptoms. Similar results
were obtained during the execution of the other known attacks
with a variety of rates and during times of normal traffic
behavior. Our DST approach correctly assigned belief values
in all cases.

Fig. 2. Graphs showing the DST plausibility over time during the course of
a SlowLoris attack.

B. Attack Classification of Unknown Attacks Using DST
The critical question remaining is how, using the symptoms

identified from known attacks, does our approach respond in
the presence of an unknown attack? To investigate this, we
launch our custom stealthy TCP denial-of-service attack which
uses a combination of techniques from the known attacks
but at a much lower rate, which fail to trigger any of the
available signature-based detection methods. Then we track
the belief that the system state is consistent with an unknown
TCP denial-of-service attack using the entire symptom set. The
top two graphs of figure 3 show the DST plausibility for the
system state being subject to an unknown TCP DoS attack
and the plausibility of normal traffic. Almost immediately,
enough symptoms are present to notice the unknown attack
state. In this case, however, the plausibility of normal traffic
remains high until several seconds into the attack when a
slowdown in the targeted service begins to be felt at around
30 seconds. In practice, a security administrator or automated
cyber-maneuver procedure would be able to take action based
upon the change in unknown attack belief regardless of the
belief in normal traffic if the targeted resource were mission
critical. For comparison we also show the plausibility for two
of the known attacks which remain low as desired.



6

Fig. 3. Graphs showing the DST plausibility over time during the course of
a new, unknown attack.

XI. CONCLUSION

We have developed a novel diagnosis-based intrusion de-
tection procedure that applies the Dempster-Shafer theory of
evidence to observable symptoms to detect unknown attacks
and provide a useful classification. We show a proof-of-
concept implementation and it’s performance with TCP denial-
of-service attacks. We wish to emphasize that our goal is not
to develop an new DoS attack detector but rather to use DoS
as an initial test case for validation of our approach.

Our ongoing work applies this approach to other attack
types which are less evident than DoS, such as SQL injection
and web browser hijacking. In addition, we investigate meth-
ods for automatic generation of symptom sets using high level
security specifications and static analysis of code to identify
critical data structures in the kernel, and in applications that
provide non-bypassable evidence that aids in proper attack
classification.

XII. ACKNOWLEDGMENTS

Research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-13-2-0045 (ARL Cyber Security CRA). The views
and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

REFERENCES

[1] Hyang ah Kim. Autograph: Toward automated, distributed worm
signature detection. In In Proceedings of the 13th Usenix Security
Symposium, pages 271–286, 2004.

[2] F. Anjum, D. Subhadrabandhu, and S. Sarkar. Intrusion detection for
wireless adhoc networks. In Proceedings of Vehicualar Technology
Conference, Wireless Security Symposium, 2003.

[3] Debojit Boro, Bernard Nongpoh, and Dhruba K. Bhattacharyya.
Anomaly based intrusion detection using meta ensemble classifier.
In Proceedings of the Fifth International Conference on Security of
Information and Networks, SIN ’12, pages 143–147, New York, NY,
USA, 2012. ACM.

[4] C.Y.Tseng, P.Balasubramanyam, C.Ko, R.Limprasittiporn, J.Rowe, and
K.Levitt. A specification-based intrusion detection system for AODV.
ACM Workshop on Security in Ad hoc and Sensor Networks (SASN),
2003.

[5] D.Sterne, P.Balasubramanyam, D.Carman, B.Wilson, R.Talpade, C.Ko,
R.Balupari, C.Tseng, T.Bowen, K.Levitt, and J.Rowe. A general co-
operative intrusion detection architecture for MANETs. In 3rd IEEE
International Workshop on Information Assurance, 2005.

[6] D.Subhadrabandhu, S.Sarkar, and F.Anjum. Efficacy of Misuse Detec-
tion in Ad hoc Networks. In IEEE SECON, 2004.

[7] D.Subhadrabandhu, S.Sarkar, and F.Anjum. RIDA: Robust Intrusion
Detection in Ad hoc Networks. In IFIP Networking, 2005.

[8] Wenliang Du and Lei Fang. Lad: Localization anomaly detection
for wireless sensor networks. In In Proceedings of the 19th IEEE
International Parallel & Distributed Processing Symposium (IPDPS ’05,
pages 874–886, 2005.

[9] F.Anjum and R.Talpade. Packet-Drop Detection Algorithm for Ad hoc
Networks. IEEE VTC, 2004.

[10] Alexandros G. Fragkiadakis, Vasilios A. Siris, and Nikolaos Petroulakis.
Anomaly-based intrusion detection algorithms for wireless networks. In
Proceedings of the 8th international conference on Wired/Wireless In-
ternet Communications, WWIC’10, pages 192–203, Berlin, Heidelberg,
2010. Springer-Verlag.

[11] Mathew Graves and Mohammad Zulkernine. Bridging the gap: software
specification meets intrusion detector. In Proceedings of the 2006
International Conference on Privacy, Security and Trust: Bridge the
Gap Between PST Technologies and Business Services, PST ’06, pages
31:1–31:8, New York, NY, USA, 2006. ACM.

[12] A. Grediga, F. Ibarra, F. Garcia, B.Ledesma, and F. Brotons. Application
of neural networks in network control and information security. In LNCS,
2006.

[13] Fabian Hugelshofer, Paul Smith, David Hutchison, and Nicholas J. P.
Race. OpenLIDS: a lightweight intrusion detection system for wireless
mesh networks. In MOBICOM, pages 309–320, 2009.

[14] Edward Kaiser, Wu-chang Feng, and Travis Schluessler. Fides: remote
anomaly-based cheat detection using client emulation. In Proceedings
of the 16th ACM conference on Computer and communications security,
CCS ’09, pages 269–279, New York, NY, USA, 2009. ACM.

[15] C. Katar. Combining multiple techniques for intrusion detection. In
International Journal of Computer Science and Network Security, 2006.

[16] Konstantinos Kemalis and Theodores Tzouramanis. SQL-IDS: a
specification-based approach for SQL-injection detection. In Proceed-
ings of the 2008 ACM symposium on Applied computing, SAC ’08, pages
2153–2158, New York, NY, USA, 2008. ACM.

[17] Christopher Kruegel and Thomas Toth. Using decision trees to improve
signature-based intrusion detection. In Proceedings of the 6th Interna-
tional Workshop on the Recent Advances in Intrusion Detection (RAID
2003), pages 173–191. Springer Verlag, 2003.

[18] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating Routing Misbehavior
in Mobile Ad Hoc Networks. ACM MobiCom, Aug. 2000.

[19] Robert Mitchell and Ing-Ray Chen. Specification based intrusion
detection for unmanned aircraft systems. In Proceedings of the first
ACM MobiHoc workshop on Airborne Networks and Communications,
Airborne ’12, pages 31–36, New York, NY, USA, 2012. ACM.

[20] James Newsome. Polygraph: Automatically generating signatures for
polymorphic worms. In In Proceedings of the IEEE Symposium on
Security and Privacy, pages 226–241, 2005.

[21] Vern Paxson. Bro: A system for detecting network intruders in real-time.
In Computer Networks, pages 2435–2463, 1999.

[22] R.Rao and G.Kesidis. Detecting Malicious Packet Dropping Using
Statistically Regular Traffic Patterns in Multihop Wireless Networks that
are not Bandwidth Limited. IEEE Globecom, 2003.

[23] Mahbod Tavallaee, Natalia Stakhanova, and Ali Akbar Ghorbani. To-
ward credible evaluation of anomaly-based intrusion-detection methods.
Trans. Sys. Man Cyber Part C, 40(5):516–524, September 2010.

[24] Y.Huang and W.Lee. A Cooperative Intrusion Detection System for Ad
hoc Networks . In ACM Workshop on Security of Ad hoc and Sensor
Networks (SASN), 2003.

[25] Yongguang Zhang, Wenke Lee, and Yi-An Huang. Intrusion detection
techniques for mobile wireless networks. Wirel. Netw., 9(5):545–556,
September 2003.


