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Abstract 
 

Since it is essentially impossible to write large-scale 
software without errors, any intrusion tolerant system 
must be able to tolerate rapid, repeated unknown attacks 
without exhausting its redundancy. Our system provides 
continued application services to critical users while 
under attack with a goal of less than 25% degradation of 
productivity. Initial experimental results are promising. It 
is not yet a general open solution. Specification-based 
behavior sensors (allowable actions, objects, and QoS) 
detect attacks. The system learns unknown attacks by 
relying on two characteristics of network-accessible 
software faults: attacks that exploit them must be 
repeatable (at least in a probabilistic sense) and, if 
known, attacks can be stopped at component boundaries. 
Random rejuvenation limits the scope of undetected 
errors. The current system learns and blocks single-stage 
unknown attacks against a protected web server by 
searching and testing service history logs in a Sandbox 
after a successful attack. We also have an initial class-
based attack generalization technique that stops web-
server buffer overflow attacks. We are working to extend 
both techniques. 

1. Introduction 
Designing secure systems to survive cyber-attacks is 

both hard and complex. Initially designers built stronger 
locks (e.g., put strong security mechanisms into and 
around the systems) to keep out the attackers. However, 
protection wasn’t perfect and some attacks still got 
through. Then designers added alarms (e.g., intrusion 
detectors) to alert us to the attackers. Unfortunately, the 
detectors weren’t perfect and some attacks still got 
through undetected. More recently, designers have shifted 
their focus to building systems that continue operating 
despite the attacks by leveraging the well-developed 
techniques of dependability and fault tolerance. 

It is impossible to build an intrusion tolerant system 
that survives for any meaningful time without solving the 
problems of unknown attacks and finite failover 
resources. It is always useful to harden a system so the 
adversary’s work factor to penetrate it is increased but 

there are limits to this approach. The time and effort 
required to identify a new vulnerability in your system 
and develop an exploit for it may be quite large. To a 
determined opponent, it’s just time and money.  

The real problem is that, once an attack is developed 
and put in place, the time required to execute it is very 
small and, in many cases, the time and effort required to 
create simple variants of the attack are quite small. If the 
threat environment for an intrusion tolerant system 
includes a well-resourced adversary (e.g., a state-
sponsored cyber-terrorist group or organized crime), the 
system must be capable of dealing with many unknown 
attacks -- possibly repeated quickly (seconds or minutes). 
This attack scenario will rapidly exhaust any redundant 
components in the system and represents, in our opinion, 
the worst case design point. 

Many fault tolerant mechanisms work because most 
faults are independent, low probability events and hence 
are easily masked. Common mode failure is a well-
understood problem and one to be avoided often through 
the use of diversity. Attacks do not allow the first 
assumption of independence and the nature of the critical 
service to be protected may belie the use of diversity. 

This project is the first attempt to build a prototype 
system that combines intrusion detection, responses that 
block attacks, failover to remove compromised elements, 
learning to create rules for blocking future occurrences of 
attack and generalization to block even significant 
variants. 

1.1 Background 
Commercial organizations, the Government and even 

the military have reduced their cost and, arguably, 
improved their reliability through the increased use of 
COTS software and hardware, even for critical 
applications. Unfortunately, they have also increased their 
vulnerability to well resourced adversaries who want to 
do serious damage to critical infrastructure, steal 
information, and disrupt services. Most researchers are 
saying that it is essentially impossible to build large scale 
software without faults and it is certainly impossible to 
prove such software contains no faults [1], [2], and [3]. 
Moreover, as two damaging recent attacks (Code Red 1 
and Code Red 2, which exploited a known buffer 



overflow vulnerability in Microsoft’s web server, Internet 
Information Server) have amply demonstrated, faults are 
being exploited long after patches are available to fix the 
problems. This is not to say that software security cannot 
be improved but it is important to begin examining other 
approaches to security.  

The US Defense Advanced Research Project Agency 
(DARPA) began a program in 2000 to apply fault 
tolerance techniques to building intrusion tolerance 
systems. As part of this effort, a number of organizations, 
including Teknowledge Corporation and University of 
California (Davis), are developing intrusion tolerant 
clusters.  

The specific goal of our project (Hierarchical Adaptive 
Control of QoS for Intrusion Tolerance or HACQIT) is to 
provide continued COTS or GOTS-based application 
services in the face of multiple hours of aggressive cyber-
attacks by a well-resourced adversary. This focus on 
COTS/GOTS applications means we do not have access 
to source code so the protections must be added around or 
to the binaries. We recognize that our defense cannot be 
perfect so two implied goals include (1) significantly 
increasing the adversary work factor for successful 
attacks and (2) significantly increasing the ratio of the 
attacker’s work factor to generate successful attacks to the 
defender’s work factor for responding to successful 
attacks. We also recognize that our system is expensive in 
terms of processing and overhead so we have modularized 
the components so that the amount of protection can be 
varied according to the need and budgets available. 

1.2 Organization  
The HACQIT project, its architecture, and basic 

intrusion tolerant design approach have been described in 
other articles [4, 5, 6]. The next section will provide 
enough information on HACQIT to enable the reader to 
understand the context, uses, and limitations of the 
learning and generalization as it exists today. The 
remaining sections will summarize the problem, the 
learning and generalization approach, its current 
implementation, test results, and conclusions / next steps. 

2. HACQIT context 
2.1 General problem and system model 

Formal environment and attack assumptions have been 
made to specify the research problem as developing 
dependability in the face of network-based cyber attacks 
rather than dealing with denial of service attacks, insiders, 
Trojans and other lifecycle attacks. These assumptions 
include: 
• Users and attackers interact with services via their 

computers and the LAN. There are no other hidden 
interactions. 

• The LAN is reliable and cannot be flooded, i.e., 
denials of service (DoS) attacks against LAN 

bandwidth are beyond the scope of the research. The 
LAN is the only communication medium between 
users and services. DoS attacks directly against 
critical users or firewalls are also beyond the scope of 
the research. 

• Critical users and the system administrators for the 
cluster are trusted. No hosts on the external LAN are 
trusted. 

• The protected cluster hardware and software are free 
of Trojans and trapdoors at startup and have been 
patched against known vulnerabilities. Attackers do 
not have and have not had physical access to the 
cluster hardware or software. This prevents planting 
Trojan software/hardware and trapdoors through 
lifecycle attacks.  

• Other unknown vulnerabilities exist throughout the 
system.  

Figure 1 describes the “formal” system model of the 
problem and design environment that is being addressed 
by intrusion tolerant systems. The goal is to protect 
critical application(s) so that critical users can continue to 
access them while under attack.  

2.2 HACQIT system architecture 
HACQIT is not designed to be a general-purpose 

server connected to the Internet. Anonymous users are not 
allowed. All connections to the system are through 
authenticated Virtual Private Networks. We assume that 
the configuration of the system has been done correctly, 
which includes patching of all known vulnerabilities.  

An attacker can be any agent other than the trusted 
users or HACQIT system administrators. Attackers do not 
have physical access to HACQIT cluster. An attacker may 
take over a trusted user’s machine and launch attacks 
against HACQIT. 

A failure occurs when observed behavior deviates 
from specified behavior. For HACQIT, we are concerned 
with software failures. Software failures are either 
repeatable or not. The causes of repeatable failures would 
include attacks (maliciously devised inputs) that exploit 
the some vulnerability (bug) in one of our software 
components. Non-repeatable failures may be caused by 
intermittent or transient faults. We cannot divine intent, so 
all inputs that cause repeated failures are treated the same. 
On the other hand, we recognize that the system may fail 
intermittently from certain inputs, in which case we allow 
retry. 

To develop a system that meets these requirements, 
most designers would make the cluster very intrusion 
resistant, implement some type of specification-based 
monitoring of server and application behavior and use 
some set of fault tolerant mechanisms (e.g., redundancy 
and failover, process pairs, triple modular redundancy, n-
version programming) for the servers to enable rapid 
failover and recovery. Our design employs these 
approaches and a few additional ones. 



Our design is summarized in Figure 2. The HACQIT 
cluster consists of at least four computers: a gateway 
computer running a commercial firewall and additional 
infrastructure for failover and attack blocking; two or 
more servers of critical applications (one primary, one 

backup, and one of more on-line spares); and an Out-Of-
Band (OOB) machine running the overall monitoring and 
control and fault diagnosis software. The machines in the 
cluster are connected by two separate LANs.  
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HACQIT uses primary and backup servers running as 
a process pair, but they are unlike ordinary primary and 
backup servers for fault tolerance. Only the primary is 
connected to users. The virtual private network (VPN), 
firewall, gateway, and IP switch together ensure that users 
only talk to the critical application through the specified 
port on the primary server and vice versa. The primary 
and backup servers are not on the same LAN; they are 
isolated by the OOB computer, so no propagation of 
faults, for example by a automated worm or remote 
attacker, directly from the primary to the backup, is 
possible.  

The potential for propagation from the primary to the 
Controller is limited by sharply constraining and 
monitoring the services and protocols by which the 
Controller communicates with the primary. When a 
failure is detected on the primary or backup server 
(possibly caused by an attack), it is taken off line. 
Continued service to the end user is provided by the 
remaining server of the process pair. A new process pair 
is formed with the on-line spare (if available), and both 
attack diagnosis and recovery of the failed server begins. 
Depending on policy, the Controller can also block future 
requests from the machine suspected of launching the 
attack. 

The current critical application is a web-enabled 
message board that is duplicated on both the Microsoft 
IIS web server and the Apache web server machines. It 
contains dynamic data so HACQIT must maintain 
consistent state across the hosts and resynchronize data 
(checkpoint and restore) when failover and new process 
pair formation occurs. The spare server does not have 
current state when it is promoted into the process pair so a 
restore process is necessary to synchronize it. 

2.3 HACQIT software architecture 
The simplified software architecture is shown in 

Figure 3. The software implements a specification-based 
approach [7, 8] to monitoring and control for intrusion 
detection as well as defense in depth. It uses software 
wrappers [9], application and host monitors, response 
monitors, etc. to ensure that component behavior does not 
deviate from allowed. It does this in a protect-detect-
respond cycle. Strong protections (and isolation) are 
melded with host and application-based fault, error, and 
failure detection mechanisms in a defense in depth design. 
Deviation from specified behavior may be indicative of an 
attack and thus, when such an alert is received, it triggers 
failover, integrity testing and other responses.  
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Fig. 3. Simplified software architecture 

 
Wrappers are used to monitor and strictly control an 

application’s ability to read and write files, execute or kill 
other processes, modify registry entries, change memory 
protection, etc. Any violations trigger an alert and failover 

response. The host monitor allows only specified 
processes to run and ensures that allowed processes do 
not consume more resources than allowed. It also 
monitors application liveness and generates a heartbeat 



for the Controller. The out-of-band communication 
mediator ensures that only authorized processes use the 
out-of-band communications network to attack the 
mediator-adapter-controller (MAC) or any other software 
on the controller machine. Integrity of control messages is 
enhanced with digital signatures. The MAC monitors 
responses from both servers and periodically orders a 
“self test” through the Host Monitor (HM). This entails 
issuing a known request to the servers and checking its 
response against the known response. 

The Out-of-Band Communication Mediator shown in 
Figure 3 is implemented by host firewalls (specifically the 
firewall by Tiny Software Inc.) on each machine. They 
only allow access to the server from the OOB machine by 
authorized programs like the MAC through authorized 
ports and only allow access to/from the gateway machine 
through port 80. Similarly, they only allow access to the 
OOB machine from the server by authorized programs 
like the wrappers and the HM through authorized ports. 
To change this configuration, a user must enter a 
password at the server’s keyboard. An attacker would 
have to gain system privileges and by-pass or shutdown 
the host firewall to have access to the OOB machine. 
Creating an unauthorized process to remove a file would 
trigger an “Unhealthy” state by the HM and cause a 
failover and clean-up of the “Unhealthy” machine. 

One of our innovations is that the Controller also 
performs random rejuvenation of each server on an 
average interval that is set by policy. During random 
rejuvenation, the Controller takes the selected machine 
off-line, performs the appropriate failover, starts up a new 
process pair with the spare machine, shuts down and 
restarts all applications on the rejuvenating machine, runs 
an integrity check on its files, and sets it up as an on-line 
spare when it is done. This techniques was originally 
intended to preserve the performance of the hosts and 
applications but it turns out to be a very powerful to avert 
latent successful attacks that have not been detected. It 
also limits the required size of the history buffer and 
limits the ability of any attack to go undetected. 

3. The Problem of Unknown Attacks 
Since we cannot ensure that software has no 

vulnerabilities, there will be unknown attacks that can 
succeed against the cluster. Our behavior specifications 
are tight but bad behavior must be observed by the 
wrappers or other sensors. An unknown attack can sneak 
past the defenses and compromise the protected web 
server. If the attack is stealthy enough to not execute any 
unauthorized processes, write any unauthorized files or 
use too much cpu or memory, it can remain undetected 
and active until the next random rejuvenation cycle when 
the system is purged. 

While the emphasis of HACQIT is on availability of 
critical services, we need to say a few words about what 
an attacker can do in the above circumstances and what 

the countermeasures would be. First it would be easy to 
corrupt the critical application data since the web enabled 
application has permission to write to that file. The 
solution to this is a secure storage system such as that 
developed under the Perpetually Available and Secure 
Information Storage (PASIS) [10, 11]. Such a storage 
system captures all changes to files in a host-independent 
and secure manner. This enables recovery from such 
incidents. 

Another possibility would be for the attacker to simply 
monitor what was happening within the application (spy) 
and exfiltrate data. Since the most likely avenue of attack 
is by compromising a critical user machine, the attacker 
would effectively have access to the critical application 
and data anyway. This essentially becomes the insider 
problem. Exfiltration via other routes is difficult because 
of the firewall settings and isolation of the cluster. 

For the purposes of critical application availability, the 
central concern is that an attacker has found an unknown 
attack that can be used to penetrate the cluster. Such an 
attack can be used to shutdown the vulnerable web server 
or the application behind it. The HACQIT goal is to 
maintain at least 75% availability in the face of on-going 
attacks. For the attacker to win, all that he/she must do is 
to find a small set of vulnerabilities in each of the diverse 
web servers or other critical applications. This essentially 
guarantees that the attacker will succeed in shutting down 
the cluster more than 25% of the time. As long as that 
vulnerability remains and the exploit succeeds, the 
attacker can just keep hitting the cluster with it and cause 
another failover. It does not matter how expensive these 
vulnerabilities are to find, once they are found and 
exploits developed for them, the time to launch successive 
attacks is minimal. The results of this will be devastating 
on the defenders. 

Even if the IP address of the attacker is blocked or that 
user cut off in other ways, the attacker can always come 
back unless the cluster is cut off from users. Such an 
action amounts to a self-inflicted denial of service and is 
clearly unacceptable. Since the attacker has the ability to 
automate his attack, even physically capturing the attacker 
would not necessarily stop the attacks. Since it takes time 
to clean up a server after an attack before it can be put 
back into service with any confidence, unless the cluster 
has an indefinitely large number of backup servers for 
failover, it seems like a losing game for the defender. If 
the attacker has found a simple, inexpensive way to vary 
the attack signature, the problem becomes even more 
difficult for the defender 

Can this problem be fixed? In principle there is no 
solution.  But, as the reader will see, we are using 
classical machine learning methods (using observed 
instances of the attack to learn the most general 
description of an attack that has variants, followed by the 
most general blocking rules) combined with the use of 
sandbox to experiment offline with the observed instances 



to create other instances. Short of analyzing source (or 
object) code, that’s the best we can do, and it is likely to 
be very effective. Our experiences with Code red and its 
variants can attest to this. 

4. Solution concept 
Cyber attacks (network-based intrusions into a system) 

have several important differences from other natural or 
man-made faults: They are repeatable, they are not 
random (although certain types of attacks may depend on 
timing of events), and, if known, they can be filtered out 
at system or sub-system boundaries. These distinctions 
enabled us to develop a set of learning techniques to help 
deal with the unknown attack problem.  

Given an observed failure on a cluster server, our goal 
is to identify an attack in the recorded cluster traffic. 
Repeatability of the attack against the critical application 
server is the key criteria of an attack, particularly given 
the difficulty of establishing malicious intent. We 
developed a set of components that learn an attack after it 
is first used, develop blocking filters against it, and 
generalize those filters to disallow simple variants of the 
attack that depend upon the same vulnerability. By 
preventing reuse of an unknown attack, would-be 
adversaries are forced to develop a large number of new 
attacks to defeat the cluster for any significant period. 
This raises the bar significantly on the amount of effort 
that an adversary must expend to achieve more than 
momentary success.  

Clusters can communicate with one another so that the 
protective filters developed at one site can be propagated 
to clusters at other sites that have not yet experienced the 
same attack. This ability to do group learning is a very 
powerful feature of the design and implementation. 

The information necessary for the forensics based 
learning system to work is provided by several key 
components including (1) logs of all network inputs to the 
cluster for, at least, the last N minutes, (2) logs of all 
system sensor readings and responses that indicate errors 
or failures in components, and (3) a “Sandbox” for testing 
attack patterns and filters. The Sandbox is an isolated 
duplicate of the critical application servers, i.e., the 
redundant process-pair software, sensors, and hardware. 
Note that it is most effective if the number of minutes of 
buffering (N) is equal to or slightly greater than the 
number of minutes between random rejuvenation. Search 
speed is obvious faster if N is a smaller number of 
minutes rather than larger. 

Our approach to identifying, learning, and blocking 
unknown attacks begins when an error (i.e., a deviation 
from specified behavior)) is observed in the cluster, 
usually associated with the critical application. It proceeds 
in parallel with and independent from the failover process 
that guarantees continuity of service.  

Since our goal is to prevent the success of future 
versions of this newly observed unknown attack, it is not 

necessary to understand the details of the attack after the 
initiating event that puts control into the attacker’s code. 
What we want to do is to prevent the initiating event, 
which is often a buffer overflow, and we would like to do 
this as quickly as possible.  

While it is useful to have a general process with 
guaranteed convergence to a solution, the practical 
aspects of the time required to test many hypotheses of 
attack sequences against a Sandboxed application are 
formidable. It can take several minutes to restart some 
applications after a failure and some applications cannot 
be run in multiple processes on the same computer. Our 
more practicable approach involves examining a variety 
of heuristics and specification / model-based protocol 
analyzers that can be used to shrink the search space of 
suspect connection requests to a very small number of 
candidates that must be verified in the Sandbox. 

  
Table 1. Steps in Learning and Generalization of 

Unknown Attacks 
No. Step Description 
1. Determine if observed error is repeatable 

based on connection history file since last 
rejuvenation. If repeatable, declare attack and 
continue. If not, return. 

2. Determine which connection request (or 
requests) from history file caused the 
observed error. 

3. Develop filter rule to block this connection 
request(s) pattern, test it, and send to content 
filter. Also block the associated user ID and 
IP address. 

4. Characterize the observed attack (i.e., 
classify it according to meaningful types). 

5. Shorten the blocking filter, if possible. 
a. Determine if the observed attack sequence 

has an initiating event 
b. If the initiating event is smaller than the 

observed attack sequence, shorten the 
blocking filter to block just the specific 
initiating event and test it. 

6. Based on characterization and observed 
attack specifics, generalize the blocking filter 
to protect against simple variants of the 
attack and test it. 

7. Return. 
Given the observer error in the cluster, the essential 

functional steps in our learning and generalization 
“algorithm” are shown in the Table above. 

The first two steps rapidly produce an initial filter rule 
that blocks the previously unknown attack. The remaining 
steps then incrementally improve the rules by shortening 
and generalizing them if possible. 

A caveat is required here. Since we are dealing with 
Turing complete languages and machines, Rice’s theorem 



implies that we cannot prove intrusion tolerance for the 
system. Nevertheless, within the assumptions imposed on 
the system model, we believe we can deliver very useful 
and usable results. 

The fundamental metric in determining the success or 
failure of the HACQIT cluster is whether an attacker can 
generate an effective attack rate higher than the cluster’s 
effective learning and generalization rate. Intrusion 
resistance and intrusion tolerance don’t have to be perfect. 
They just have to be good enough to convince the 
attackers to try a different, less expensive approach. 

There are also several responses that the cluster 
controller can take to thwart attacker or to make learning 
easier. For example, random rejuvenation can be used to 
force an attacker to start over again with a stealthy attack. 
It is also useful for limiting the size of the history file that 
must be analyzed after a successful attack. It is also 
possible to cut off the attacker or “excessive user” via 
blocking his IP address at cluster or enclave level firewall. 
Since all users come into the cluster over a VPN and 
spoofing is not possible, this is particularly effective if the 
address or user ID of the attacker can be learned from the 
captured attack sequence in the history log. All inputs can 
be stopped for short periods if the attacks are 
overwhelming the system. 

5. Analysis of Approach, Implementation, 
and Results 

Each step in the learning and generalization process 
can be implemented differently for efficiency. For 
example, the most general approach to identifying an 
unknown attack once it has occurred is a search process 
(essentially “generate and test”) using the Sandbox to 
establish truth [12]. Thus, Step 1 (determine if the 
component error was the result of an attack) could be 
implemented by simply rerunning the recorded service 
requests from the history log through the Sandbox.  

We have found that it is faster to run a model-based 
service request checker against the log entries to eliminate 
“obviously correct” requests while retaining potentially 
suspicious requests. The actual selection rules are 
discussed later in this section. This approach speeds up 
both the “Was it an attack” testing and the subsequent 
“Which request(s) is the attack” testing by significantly 
reducing the search space. Since it takes significant time 
to restart a failed application or server, this is important. 
Generally, the more requests we can “test” analytically, 
rather than empirically in the Sandbox, the faster the 
search process. 

While the last steps (shorten and generalize the filter 
rules) can be viewed as a search process, it is much more 
efficient to implement it using a knowledge-based 
matching approach. That is the reason for the 
classification step just before it. Since it is impossible to 
work with “unknown” attacks as a whole, we are working 
on meaningful taxonomies of unknown attacks to give us 

traction on the problem of reducing the search space. 
These sub-classes should be more amenable to informed 
search approaches and, even if we cannot identify all sub-
classes of unknown attacks, we still obtain very useful 
search speed-up in the majority of practical cases. This is 
discussed further in the next two sections. 
1. Using the component names shown in Figure 4, fault 

and intrusion tolerance are provided by the following 
control flow:  

2. When the primary receives a request, it is forwarded 
to the MAC before it goes to the web server.  

3. The MAC calls the Content Filter with the new 
request as the parameter. It also assigns a serial 
number and time stamp to the request. 

4. The Content Filter, which contains a list of all bad 
requests received to date, checks the bad request list 
for a match with the new request.  

5. If there is a match, the Content Filter returns false to 
the MAC (meaning “reject the request”); otherwise, it 
returns true (“accept request”). 

6. The MAC returns the answer (reject or accept) to the 
primary where the request is either forwarded to the 
web server or dropped as appropriate. 

7. If the MAC received a true response from the 
Content Filter, it also forwards the request (with 
serial number and timestamp) to the backup server so 
the process pairs can be kept in sync. 

8. Assuming that the request is legitimate, the MAC 
also waits for each server to process the request and 
then compares the return codes or times out if the 
response takes too long. If there is a mismatch or 
time out, the MAC response is policy driven. Under 
most circumstances, it will remove the suspect server 
from the process pair and begin normal failover and 
recovery steps. 

The unknown attack identification and blocking 
functions are performed by learning components 
highlighted in Figure 4. These consist of the Forensics 
Analyzer, the Sandbox, the Circular Buffer and Event 
Logs, and the Content Filter and Generalizer.  

The Content Filter examines each service request to 
determine if it matches a known bad request on its list of 
bad requests before it is passed to the primary or backup 
web servers. The Circular Buffer captures the last N-
minutes of complete service requests from users to the 
critical servers while the event log captures sensor and 
event (such as failure) data. 

If MAC detects error, it initiates failover and asks the 
Forensics Analyzer to start forensics. The MAC passes to 
it the history buffer, the state of the sensors and servers 
that caused the failover, and any likely candidates for the 
bad request. The Forensics Analyzer tests if any 
repeatable attacks are present in Circular Buffer by testing 
suspicious requests in the Sandbox. If it determines that 
an attack has occured, it then identifies specific attack 
request(s), and develops a new filter rule to block it. The 



Generalizer improves content filter rules to stop simple 
variants of some types of attacks. More details on this are 

provided below. 
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Fig. 4. Learning Components 

 
There are also occasions when the MAC is able to 

determine relatively unequivocally that an intrusion has 
occurred. Examples include detecting unauthorized file 
writes or program executions. In many cases, the MAC 
itself can determine with high reliability which 
connection request is the likely attack. For example, if a 
particular request attempts to write an unauthorized file or 
start an unauthorized process, it is most likely an attack. 
In this case, the suspect request is forwarded to the 
Forensics Module as a prime candidate. 

The Forensics Module looks in the circular buffer of 
past requests to identify suspicious requests. Illustrative 
rules for identifying suspicious web requests are shown in 
Table 2. Rule one is the result of the fact that many buffer 
overflow attacks use a repeated sequence of characters to 
move past the fixed length buffer. No valid HTTP 
transactions use methods other than GET or POST in our 
environment, thus rule two. This would obviously need to 
change when other methods are common. Attempts to 
access file types other than the standard set served are 



classified as suspicious by rule four. Rule five classifies 
as suspicious those requests that use unusually long 
commands that are typically found in remote command 
execution attacks against server-side scripts. Unusual 
characters found in the request string are also a good 
indication of a suspect transaction, and are included in 
rule six. The % character is used for various encoding 
methods, such as hex encoding, and is very common in 
several classes of attacks. The + character is interpreted as 
a space. Many directory traversal attacks against 
Microsoft IIS servers include them. The “..” characters 
are also a sign of these types of attacks. The <, &gt;, and 
&lt; characters indicate cross site scripting attacks 
which attempt to inject Javascript into a webpage 
dynamically created by a script. The // characters can 
represent a subset of a long sequence of / characters 
which is an attempt to exploit an old Apache vulnerability 
or an attempt to proxy through the server. 

 
Table 2. Illustrative Rules to Identify Suspicious 

Web Server Requests 
Filtering rules to prioritize suspicious entries in 

web server transaction log 
1) Repeated characters > 50 
2) HTTP method not GET or POST 
3) Protocol header other than HTTP/1.0 or HTTP/1.1 
4) File extension other than htm, html, txt, gif, 

jpg, jpeg, png, or css 
5) Command length > 20 
6) Request string contains any of  %, ?, +, .., //, 

<,  &gt;, &lt;, ; 
 
The Forensics Module then determines which 

suspicious request (or requests) was responsible for the 
observed symptoms of the attack by testing each in the 
Sandbox. If there is no repeatable error, the Forensics 
Module returns. If there is a repeatable error, it has 
determined what request should be blocked in the future. 
The forensics module then passes the known bad request 
to be blocked to the MAC, which calls the UpdateBadReq 
method of ContentFilterBridge (which implements the 
Content Filter) with the bad request as the parameter. 
UpdateBadReq adds the bad request to a static bad 
request list in memory and writes it to the bad request file. 
Currently, requests are truncated to the first two 
components of an HTTP request, namely, the method and 
URI.  

Every time a request is received on the primary, it is 
forwarded to the MAC. The MAC calls the AllowRequest 
method of ContentFilterBridge with the new request as 
the parameter. The method checks the bad request list for 
an exact match with the new request. If there is a match, it 
returns false to the MAC, meaning block the request; 
otherwise, it returns true. 

Thus far the learning is straight-forward and quite 
general. Unfortunately, the attack pattern that is being 
blocked is quite specific. If simple attack variants can be 
produced easily (e.g., by changing the padding characters 
in a buffer overflow attack or changing the order of 
commands in a cgi-script attack), then this specific 
learning approach is easily circumvented by an attacker. 
What is needed is a way to rapidly generalize the 
observed attack pattern so as to block all simple variants 
of an attack that are based on the same vulnerability 
initially exploited. This is a challenging area and is the 
subject of a continuing research effort. 

As a proof-of-concept, we implemented generalization 
for a common but prevalent class of attacks: web server 
buffer overflows. Our initial approach was to enhance the 
AllowRequest method so that if an exact match is not 
found, it then analyzes the components of the requests 
(both new and bad) to determine if the new request is 
"similar" to a known bad request. If it is similar, 
AllowRequest returns false; otherwise, it returns true. In 
this way, learning is generalized from specific requests 
that have been identified as bad. 

In principal, similarity is rule based and consists of two 
steps: classification and generalization. Classification 
categorizes bad requests into meaningful types such as 
buffer overflow or remote command execution and, as 
required, further into sub-types. Generalization develops a 
set of rules for determining similarity between an 
observed bad request and a new request based on the 
classification results. These rules can be implemented 
either as an active checking process or as comparison 
templates for use by another program. 

For the proof-of-concept on web server buffer 
overflow attacks via http requests, we implemented one 
rule that acts as both a classifier and a generalizer. It is the 
following: 

If (1) the query length of the bad request is greater than 
(256+X) [this part of the rule classifies the request as a 
buffer overflow type1] and (2) the methods of the new 
request and the bad request are the same and (3) the file 
extensions of the new and bad requests are the same and 
(4) the query length of the new request is greater than or 
equal to the query length of the bad request, then return 
false (i.e., block the request). 

Even with X=0 in this rule, many variants of Code Red 
I and II are blocked. The initial or padding characters in 
the query are irrelevant to how Code Red works; the 
length is critical; so whether "XXX..." or "NNN..." or 
"XNXN..." are in the query of the attack, the attack is 
blocked. In addition, the name of the file (minus the 
extension) is also irrelevant to how Code Red works, 
because it is the file extension that identifies the resource 
(Index Server) that is vulnerable to a buffer overflow, and 
it is the query that causes the buffer overflow, not the 
                                                           
1 X starts out equal to zero. Its role will be discussed later. 



entire URI. (The URI contains the path identifying the 
resource and, optionally, the query.) 

The reason for the first condition in the rule is to 
differentiate in a trivial way between bad requests that are 
buffer overflow attacks and bad requests that are some 
other type of attack, like remote command execution. 
Unfortunately, it introduces the possibility of false 
negatives, that is, a bad request that was a buffer overflow 
attack, but with the overflow occurring after less than 256 
characters, would be ignored as an example to be 
generalized. 

This rule has been constructed from extensive analysis 
of buffer overflows in general, buffer overflows in IIS and 
Apache web servers, and Code Red, in particular. Note 
that it only generalizes "learned" behavior. That is, if the 
HACQIT cluster has never been attacked by Code Red, it 
will not stop the first Code Red attack. It will also not 
stop the first case of a variant of Code Red that uses the 
.IDQ extension2. This variant would first have to be 
"experienced", learned as a bad request, and then 
generalized by the above rule. Most importantly, the rule 
does not prevent use of a resource like Index Server; it 
prevents a wider variety of attacks that exploit an 
identified vulnerability in it from reducing availability of 
the web server. 

Although this rule appears Microsoft-oriented, as the 
concept of file extensions does not exist under Unix, it 
would work against attacks exploiting vulnerabilities in 
other software, such as php and perl, because these 
resources also use file extensions. It might be possible to 
generalize this to file types under Unix. The key 
distinction to be made is, does the path in the URI identify 
a document to be returned to the client or does it identify 
an executing resource such as a search engine, a DBMS, 
etc.? 

Finding the minimum length of padding characters for 
a buffer overflow attack is not difficult. We have 
implemented an enhanced version of the forensics and 
generalization modules that iteratively tests attack 
variants in the Sandbox with different padding character 
lengths. Specifically it successively tests padding 
character lengths between 256 and (Y-256) where Y is the 
length of the observed buffer overflow padding size. 
From this testing, it determines the value of X (which 
appears in the first condition of the generalization rule 
above) and passes it to the ContentFilterBridge for 
inclusion in the revised generalization rule. The observed 

                                                           
2 Index Server uses file types indicated by the extensions, 

“.IDA” and “.IDQ”. These two extensions are used by IIS to 
identify the Index Server resource, which is then passed either 
the whole URI or the query component of the URI. The 
“path” component of the URI does not affect the behavior of 
the Index Server, except for the file extension identifying it as 
the resource target. Any file name other than “default” in 
“default.ida” works as well. 

padding size is currently determined by the number of 
characters before the first non-printing character (i.e., not 
ACSII character coder 32 through 126) in the query. 
While this is only an approximation that depends on 
certain assumptions being true, it proved to be a very 
useful approach for the proof-of-concept implementation. 
Our investigation with Code Red II shows the padding in 
the query that causes the buffer overflow is no more than 
one byte over the minimum required; that is, if you 
remove two characters from the query, a buffer overflow 
will not occur, and IIS will respond to the request 
correctly and continue to function according to 
specification. 

It is worth comparing this automatic generalization 
with Snort's hand-coded rules for preventing Code Red 
attacks. Snort is widely used, open source, lightweight 
Intrusion Detection System. Immediately after the flurry 
of initial Code Red attacks, Snort aficionados began 
crafting rules to block these attacks. It took at least two 
days before rules were posted on the Snort site. These 
were not generalized and did not work against trivial 
variants. Some three months later, the rules block on 
".ida" and ".idq" in the URI and "payload size" greater 
than 239 [13]. The use of the file extensions shows some 
generalization but the use of 239 as a limit on legitimate 
requests intended for Index Server in fact cause false 
positives because the payload can be much greater than 
239 (at least 373) without causing the web server to fail.  

Other improvements to generalization would use 
analysis based on HTTP headers and body content. These 
and other improvements are the central focus of the next 
phase of research. 

One additional aspect of the design of the 
ContentFilterBridge software is worth discussing. It first 
calls AllowRequest with the bad request received from 
the MAC. If AllowRequest returns true, that means the 
bad request is not on the bad request list, so it is added. If 
AllowRequest returns false, this means it is on the bad 
request list, so it is not added to the list. This prevents 
duplication. 

With the addition of generalization, not only will 
duplicates be prevented, but also trivial variants will not 
extend the bad request list to a performance-crippling 
length. As there are over 21792 (or more than the number of 
atoms in the universe) variants of Code Red, this is an 
important and effective aspect of the design. 

6. Next steps 
6.1 Software Improvements 

In its initial implementation, the Forensics module 
truncates bad requests to the first two components of the 
HTTP request, namely, the method and URI. This makes 
sense in the case of the buffer overflows on web servers 
but it needs to be enhanced so there is a more robust way 
to identify the initiating event of an attack. In addition, 



there is much work to do to enhance the Forensics 
module’s process for finding initial attack sequences 
efficiently, especially for multi-request attacks.  

Similarly, the initial generalization rule base will be 
moved into a separate Generalization module that reflects 
the architecture. This module will attempt to generalize 
all requests or patterns returned by the forensics module 
to the content filter and insert specific new rules into the 
content filter. More broadly, we want the Generalizer to 
be able to task the Forensics Module to run Sandbox tests 
on any proposed set of filter rules and generalization 
parameters to what works, e.g., which contain the 
essential initiating event. In this way, we can refine the 
generalization while providing continued protection at the 
Content Filter level. 

There is a great deal of work to be done in developing 
rules for generalizing attack patterns so that simple attack 
variants won’t work. We would like to do this by focusing 
on meaningful attack classes. The literature contains 
many works on classifying various aspects of computer 
security including fault tolerance, replay attacks in 
cryptographic protocols, inference detection approaches, 
COTS equipment security risks, and computer attacks. 
Essentially all of these authors have emphasized that the 
utility of a taxonomy depends upon how well it 
accomplishes its purpose and that there is no such thing as 
a universal taxonomy.  

Another module that we will likely need is one that 
allows us to simulate vulnerabilities in applications and 
generate resulting sensor reading. It is difficult to rely on 
real world attacks on our specific applications. There are 
simply not enough of them in circulation to give us the 
breadth of attack types that we need for the research. 

6.2 Theory Improvements 
As Krsul [14] states, “Making sense of apparent chaos 

by finding regularities is an essential characteristic of 
human beings.” He laid out the essential characteristics of 
successful taxonomies: (1) They should have explanatory 
and predictive value. (2) Computer vulnerability 
taxonomies should classify the features or attributes of the 
vulnerabilities, not the vulnerabilities themselves. (3) 
Their classes should be mutually exclusive and 
collectively exhaustive. (4) Each level or division should 
have a fundamentum divisionis or basis for distinction so 
that an entity can be unequivocally placed in one category 
or the other. (5) The classification characteristics should 
be objective, deterministic, repeatable, and specific. Note 
that item (3) above is very difficult to achieve in practice 
outside the realm of mathematics and should be probably 
be replaced by extensibility as a goal.  

Krsul developed a very extensive list of classes 
particularly focused on erroneous environmental 
assumptions. Unfortunately, his and most of the previous 
efforts (see review by Lough [15]) on developing 
taxonomies have focused on identifying and 

characterizing vulnerabilities in source code so that 
programmers could identify and eliminate them before the 
software was deployed. At one level this are fine in that 
they can give us insights into types of vulnerabilities. For 
example, the classic study by Landwehr et al. [16] lists 
the following types of inadvertent software 
vulnerabilities: 
1. Validation error (incomplete/inconsistent) 
2. Domain error (including object re-use, residuals, and 

exposed representation errors) 
3. Serialization/aliasing (including TOCTTOU errors) 
4. Identification/authentication errors 
5. Boundary condition violation (including resource 

exhaustion and violable constraint errors) 
6. Other exploitable logic errors 

While these are important efforts and give us insights, 
we really need a taxonomy of remote access attacks, 
particularly one that characterizes the initiating events 
that can be exploited via network-based attacks on COTS 
or GOTS software. 

Since our focus is on unknown network-based attacks, 
recent work by Richardson [17] is of interest. He 
developed a taxonomy for DoS attacks that identifies the 
following attack mechanisms: 
1. Buffer overflows 
2. IP fragmentation attacks 
3. Other incorrect data attacks 
4. Overwhelm with service requests 
5. Overwhelm with data 
6. Poor authentication or access control  
7. Poor authentication scheme 
8. IP spoofing 
9. Data poisoning 

Other miscellaneous protection shortcomings) 
These categories will be informed by other studies of 

taxonomies [e.g., 18, 19]. The results will form the initial 
basis for our categorization of initiating events of 
unknown attacks. Priorities will be given to those attacks 
that are known not to have adequate protection measures 
built into the cluster currently and for which there are not 
easy fixes to the design that would prevent them. For 
example, IP fragmentation attacks against the primary can 
be prevented with a proxy on the firewall or gateway and 
IP spoofing is prevented by the VPN. 

7. Conclusions and recommendations,  
Our design for an intrusion tolerant server cluster uses 

a behavior specification-based approach to identify errors 
and failover to the hot spare. It then uses fault diagnosis to 
recognize the attack that caused failover (or violated QoS) 
and block it so repeated attacks won't defeat us again. We 
learn exact attacks by testing entries from complete log 
files in a “Sandbox” until we duplicate the observed 
failure. Single stage attacks can be recognized in seconds, 
automatically.  



We have demonstrated that it is possible to generalize 
web server buffer overflow attack signatures after the 
initial identified attack so that simple variants that exploit 
the same vulnerability will be blocked also. We do this 
using a similarity measure for the class of attack. We have 
implemented rules that generalize a large subset of buffer 
overflow attacks aimed at web servers and have tested it 
using the Internet Information Server (IIS) by Microsoft, 
and believe that it will also work for Apache and other 
web servers also. For buffer overflow attacks, which have 
become the most common type of attack, we can also 
learn the minimum length of the request that causes the 
buffer overflow. This is important to minimize the 
probability of blocking legitimate transactions, i.e., the 
false positive rate. 

We believe this knowledge-based learning is broadly 
applicable to many classes of remote access attacks and 
has significant uses outside of intrusion tolerance. We 
also believe that the generalization approach can be 
significantly extended to other classes of attack. The key, 
we believe, is generalizing an attack pattern to protect 
against all variants that exploit the same vulnerability 
rather than trying to generalize a specific attack to protect 
against all such attacks in the class. The ease of 
generalizing an attack pattern should be proportional to 
the ease of creating simple attack variants that work 
against the same vulnerability. 

In summary, we have developed an approach to 
dynamic learning of unknown attacks that shows great 
promise. We have also implemented a proof of concept 
for generalization that works for a significant class of 
buffer overflow attacks against web servers on Microsoft 
NT/2000. Our results so far indicate that the 
generalization algorithms will be specific to particular 
types of attacks (such as buffer overflow), to particular 
protocols (such as http) and to particular application 
classes. More work is needed to determine whether they 
must be specific to particular applications but that is a 
likely outcome if the application class is not dominated by 
standard protocols.  

We recommend that other researchers examine this 
knowledge-based approach to identifying unknown 
attacks. We hope they find it useful enough to apply it to 
other areas. 
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