
Learning Unknown Attacks – A Start♦

James E. Just1, James C. Reynolds2, Larry A. Clough2, Melissa Danforth3, Karl N. Levitt3, Ryan Maglich2, Jeff Rowe3

♦ This work was partially funded by Defense Advanced Research Project Agency under contract #N66001-00-C-8074. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Project Agency or the U.S. Government.

1 Global InfoTek, Inc 2 Teknowledge Corporation 3 University of California
jjust@globalinfotek.com { reynolds, lclough,

rmaglich}@teknowledge.com
{danforth, levitt,

rowe}@cs.ucdavis.edu

Abstract

Since it is essentially impossible to write large-scale
software without errors, any intrusion tolerant system
must be able to tolerate rapid, repeated unknown attacks
without exhausting its redundancy. Our system provides
continued application services to critical users while
under attack with a goal of less than 25% degradation of
productivity. Initial experimental results are promising. It
is not yet a general open solution. Specification-based
behavior sensors (allowable actions, objects, and QoS)
detect attacks. The system learns unknown attacks by
relying on two characteristics of network-accessible
software faults: attacks that exploit them must be
repeatable (at least in a probabilistic sense) and, if
known, attacks can be stopped at component boundaries.
Random rejuvenation limits the scope of undetected
errors. The current system learns and blocks single-stage
unknown attacks against a protected web server by
searching and testing service history logs in a Sandbox
after a successful attack. We also have an initial class-
based attack generalization technique that stops web-
server buffer overflow attacks. We are working to extend
both techniques.

1. Introduction
Designing secure systems to survive cyber-attacks is

both hard and complex. Initially designers built stronger
locks (e.g., put strong security mechanisms into and
around the systems) to keep out the attackers. However,
protection wasn’t perfect and some attacks still got
through. Then designers added alarms (e.g., intrusion
detectors) to alert us to the attackers. Unfortunately, the
detectors weren’t perfect and some attacks still got
through undetected. More recently, designers have shifted
their focus to building systems that continue operating
despite the attacks by leveraging the well-developed
techniques of dependability and fault tolerance.

It is impossible to build an intrusion tolerant system
that survives for any meaningful time without solving the
problems of unknown attacks and finite failover
resources. It is always useful to harden a system so the
adversary’s work factor to penetrate it is increased but

there are limits to this approach. The time and effort
required to identify a new vulnerability in your system
and develop an exploit for it may be quite large. To a
determined opponent, it’s just time and money.

The real problem is that, once an attack is developed
and put in place, the time required to execute it is very
small and, in many cases, the time and effort required to
create simple variants of the attack are quite small. If the
threat environment for an intrusion tolerant system
includes a well-resourced adversary (e.g., a state-
sponsored cyber-terrorist group or organized crime), the
system must be capable of dealing with many unknown
attacks -- possibly repeated quickly (seconds or minutes).
This attack scenario will rapidly exhaust any redundant
components in the system and represents, in our opinion,
the worst case design point.

Many fault tolerant mechanisms work because most
faults are independent, low probability events and hence
are easily masked. Common mode failure is a well-
understood problem and one to be avoided often through
the use of diversity. Attacks do not allow the first
assumption of independence and the nature of the critical
service to be protected may belie the use of diversity.

This project is the first attempt to build a prototype
system that combines intrusion detection, responses that
block attacks, failover to remove compromised elements,
learning to create rules for blocking future occurrences of
attack and generalization to block even significant
variants.

1.1 Background
Commercial organizations, the Government and even

the military have reduced their cost and, arguably,
improved their reliability through the increased use of
COTS software and hardware, even for critical
applications. Unfortunately, they have also increased their
vulnerability to well resourced adversaries who want to
do serious damage to critical infrastructure, steal
information, and disrupt services. Most researchers are
saying that it is essentially impossible to build large scale
software without faults and it is certainly impossible to
prove such software contains no faults [1], [2], and [3].
Moreover, as two damaging recent attacks (Code Red 1
and Code Red 2, which exploited a known buffer

overflow vulnerability in Microsoft’s web server, Internet
Information Server) have amply demonstrated, faults are
being exploited long after patches are available to fix the
problems. This is not to say that software security cannot
be improved but it is important to begin examining other
approaches to security.

The US Defense Advanced Research Project Agency
(DARPA) began a program in 2000 to apply fault
tolerance techniques to building intrusion tolerance
systems. As part of this effort, a number of organizations,
including Teknowledge Corporation and University of
California (Davis), are developing intrusion tolerant
clusters.

The specific goal of our project (Hierarchical Adaptive
Control of QoS for Intrusion Tolerance or HACQIT) is to
provide continued COTS or GOTS-based application
services in the face of multiple hours of aggressive cyber-
attacks by a well-resourced adversary. This focus on
COTS/GOTS applications means we do not have access
to source code so the protections must be added around or
to the binaries. We recognize that our defense cannot be
perfect so two implied goals include (1) significantly
increasing the adversary work factor for successful
attacks and (2) significantly increasing the ratio of the
attacker’s work factor to generate successful attacks to the
defender’s work factor for responding to successful
attacks. We also recognize that our system is expensive in
terms of processing and overhead so we have modularized
the components so that the amount of protection can be
varied according to the need and budgets available.

1.2 Organization
The HACQIT project, its architecture, and basic

intrusion tolerant design approach have been described in
other articles [4, 5, 6]. The next section will provide
enough information on HACQIT to enable the reader to
understand the context, uses, and limitations of the
learning and generalization as it exists today. The
remaining sections will summarize the problem, the
learning and generalization approach, its current
implementation, test results, and conclusions / next steps.

2. HACQIT context
2.1 General problem and system model

Formal environment and attack assumptions have been
made to specify the research problem as developing
dependability in the face of network-based cyber attacks
rather than dealing with denial of service attacks, insiders,
Trojans and other lifecycle attacks. These assumptions
include:
• Users and attackers interact with services via their

computers and the LAN. There are no other hidden
interactions.

• The LAN is reliable and cannot be flooded, i.e.,
denials of service (DoS) attacks against LAN

bandwidth are beyond the scope of the research. The
LAN is the only communication medium between
users and services. DoS attacks directly against
critical users or firewalls are also beyond the scope of
the research.

• Critical users and the system administrators for the
cluster are trusted. No hosts on the external LAN are
trusted.

• The protected cluster hardware and software are free
of Trojans and trapdoors at startup and have been
patched against known vulnerabilities. Attackers do
not have and have not had physical access to the
cluster hardware or software. This prevents planting
Trojan software/hardware and trapdoors through
lifecycle attacks.

• Other unknown vulnerabilities exist throughout the
system.

Figure 1 describes the “formal” system model of the
problem and design environment that is being addressed
by intrusion tolerant systems. The goal is to protect
critical application(s) so that critical users can continue to
access them while under attack.

2.2 HACQIT system architecture
HACQIT is not designed to be a general-purpose

server connected to the Internet. Anonymous users are not
allowed. All connections to the system are through
authenticated Virtual Private Networks. We assume that
the configuration of the system has been done correctly,
which includes patching of all known vulnerabilities.

An attacker can be any agent other than the trusted
users or HACQIT system administrators. Attackers do not
have physical access to HACQIT cluster. An attacker may
take over a trusted user’s machine and launch attacks
against HACQIT.

A failure occurs when observed behavior deviates
from specified behavior. For HACQIT, we are concerned
with software failures. Software failures are either
repeatable or not. The causes of repeatable failures would
include attacks (maliciously devised inputs) that exploit
the some vulnerability (bug) in one of our software
components. Non-repeatable failures may be caused by
intermittent or transient faults. We cannot divine intent, so
all inputs that cause repeated failures are treated the same.
On the other hand, we recognize that the system may fail
intermittently from certain inputs, in which case we allow
retry.

To develop a system that meets these requirements,
most designers would make the cluster very intrusion
resistant, implement some type of specification-based
monitoring of server and application behavior and use
some set of fault tolerant mechanisms (e.g., redundancy
and failover, process pairs, triple modular redundancy, n-
version programming) for the servers to enable rapid
failover and recovery. Our design employs these
approaches and a few additional ones.

Our design is summarized in Figure 2. The HACQIT
cluster consists of at least four computers: a gateway
computer running a commercial firewall and additional
infrastructure for failover and attack blocking; two or
more servers of critical applications (one primary, one

backup, and one of more on-line spares); and an Out-Of-
Band (OOB) machine running the overall monitoring and
control and fault diagnosis software. The machines in the
cluster are connected by two separate LANs.

Requirements
Imposed on Critical

User Portion of
System Environment

Protected cluster
running applications
that provide critical

services

LAN
User N

q

User
A

User K

Server r

o

Intrusion Tolerant
System

System Environment

Key

= Non-Critical
ServiceServer

= Attacker

User = Non-Critical User

= Critical ServiceServer

= Critical UserUser

Key

= Non-Critical
ServiceServer = Non-Critical
ServiceServer

= Attacker= Attacker

User = Non-Critical UserUser = Non-Critical User

= Critical ServiceServer = Critical ServiceServer

= Critical UserUser

Fig. 1. Intrusion Tolerant System Environment

Intrusion resistant architecture
with strong separation boundaries
Intrusion resistant architecture
with strong separation boundaries

Process pair (hot spare) redundancy and failover Behavior
specification
approach to

recognizing errors
and intrusions –
defend in depth

Multiple response types
– Failover
– Randomly rejuvenate
– Block attacker
– Filter out bad requests (e.g., known attacks)

Identify, learn and
block new attacks

Generalize new
attack blocking

filters

Fig. 2. Cluster design with learning components

HACQIT uses primary and backup servers running as
a process pair, but they are unlike ordinary primary and
backup servers for fault tolerance. Only the primary is
connected to users. The virtual private network (VPN),
firewall, gateway, and IP switch together ensure that users
only talk to the critical application through the specified
port on the primary server and vice versa. The primary
and backup servers are not on the same LAN; they are
isolated by the OOB computer, so no propagation of
faults, for example by a automated worm or remote
attacker, directly from the primary to the backup, is
possible.

The potential for propagation from the primary to the
Controller is limited by sharply constraining and
monitoring the services and protocols by which the
Controller communicates with the primary. When a
failure is detected on the primary or backup server
(possibly caused by an attack), it is taken off line.
Continued service to the end user is provided by the
remaining server of the process pair. A new process pair
is formed with the on-line spare (if available), and both
attack diagnosis and recovery of the failed server begins.
Depending on policy, the Controller can also block future
requests from the machine suspected of launching the
attack.

The current critical application is a web-enabled
message board that is duplicated on both the Microsoft
IIS web server and the Apache web server machines. It
contains dynamic data so HACQIT must maintain
consistent state across the hosts and resynchronize data
(checkpoint and restore) when failover and new process
pair formation occurs. The spare server does not have
current state when it is promoted into the process pair so a
restore process is necessary to synchronize it.

2.3 HACQIT software architecture
The simplified software architecture is shown in

Figure 3. The software implements a specification-based
approach [7, 8] to monitoring and control for intrusion
detection as well as defense in depth. It uses software
wrappers [9], application and host monitors, response
monitors, etc. to ensure that component behavior does not
deviate from allowed. It does this in a protect-detect-
respond cycle. Strong protections (and isolation) are
melded with host and application-based fault, error, and
failure detection mechanisms in a defense in depth design.
Deviation from specified behavior may be indicative of an
attack and thus, when such an alert is received, it triggers
failover, integrity testing and other responses.

Enclave
LAN &
WAN

Sandbox

Primary
Duplicate

Backup
Duplicate

Sandbox

Primary
Duplicate

Backup
Duplicate

Offline Backup
(Spare/Fishbowl)

Other Controllers

Primary
Connection

Manager
Protection
Wrapper

IIS

Application
Monitor

Host
Monitor

Tripwire

SNORT

Primary
Connection

Manager
Protection
Wrapper

IIS

Connection
Manager
Protection
Wrapper

IIS

Application
Monitor

Host
Monitor

Tripwire

SNORT
Firewall

FW Controller
IP Switch
Firewall

FW Controller
IP Switch

Backup
Connection

Manager
Protection
Wrapper

Apache

Application
Monitor

Host
Monitor

Tripwire

SNORT

Backup
Connection

Manager
Protection
Wrapper

Apache

Connection
Manager

Protection
Wrapper

Apache

Application
Monitor

Host
Monitor

Tripwire

SNORT

Out-of-Band Communication Mediator
Out-of-Band Controller

MACPolicy
Editor

Policy
Server

Buffer &
Log

Operator
Display Forensics

Analyzer

Content
Filter

Circular
Buffer

Generalizer

Out-of-Band Communication Mediator
Out-of-Band Controller

MACPolicy
Editor

Policy
Server

Buffer &
Log

Operator
Display Forensics

Analyzer

Content
Filter

Circular
Buffer

Generalizer

Fig. 3. Simplified software architecture

Wrappers are used to monitor and strictly control an

application’s ability to read and write files, execute or kill
other processes, modify registry entries, change memory
protection, etc. Any violations trigger an alert and failover

response. The host monitor allows only specified
processes to run and ensures that allowed processes do
not consume more resources than allowed. It also
monitors application liveness and generates a heartbeat

for the Controller. The out-of-band communication
mediator ensures that only authorized processes use the
out-of-band communications network to attack the
mediator-adapter-controller (MAC) or any other software
on the controller machine. Integrity of control messages is
enhanced with digital signatures. The MAC monitors
responses from both servers and periodically orders a
“self test” through the Host Monitor (HM). This entails
issuing a known request to the servers and checking its
response against the known response.

The Out-of-Band Communication Mediator shown in
Figure 3 is implemented by host firewalls (specifically the
firewall by Tiny Software Inc.) on each machine. They
only allow access to the server from the OOB machine by
authorized programs like the MAC through authorized
ports and only allow access to/from the gateway machine
through port 80. Similarly, they only allow access to the
OOB machine from the server by authorized programs
like the wrappers and the HM through authorized ports.
To change this configuration, a user must enter a
password at the server’s keyboard. An attacker would
have to gain system privileges and by-pass or shutdown
the host firewall to have access to the OOB machine.
Creating an unauthorized process to remove a file would
trigger an “Unhealthy” state by the HM and cause a
failover and clean-up of the “Unhealthy” machine.

One of our innovations is that the Controller also
performs random rejuvenation of each server on an
average interval that is set by policy. During random
rejuvenation, the Controller takes the selected machine
off-line, performs the appropriate failover, starts up a new
process pair with the spare machine, shuts down and
restarts all applications on the rejuvenating machine, runs
an integrity check on its files, and sets it up as an on-line
spare when it is done. This techniques was originally
intended to preserve the performance of the hosts and
applications but it turns out to be a very powerful to avert
latent successful attacks that have not been detected. It
also limits the required size of the history buffer and
limits the ability of any attack to go undetected.

3. The Problem of Unknown Attacks
Since we cannot ensure that software has no

vulnerabilities, there will be unknown attacks that can
succeed against the cluster. Our behavior specifications
are tight but bad behavior must be observed by the
wrappers or other sensors. An unknown attack can sneak
past the defenses and compromise the protected web
server. If the attack is stealthy enough to not execute any
unauthorized processes, write any unauthorized files or
use too much cpu or memory, it can remain undetected
and active until the next random rejuvenation cycle when
the system is purged.

While the emphasis of HACQIT is on availability of
critical services, we need to say a few words about what
an attacker can do in the above circumstances and what

the countermeasures would be. First it would be easy to
corrupt the critical application data since the web enabled
application has permission to write to that file. The
solution to this is a secure storage system such as that
developed under the Perpetually Available and Secure
Information Storage (PASIS) [10, 11]. Such a storage
system captures all changes to files in a host-independent
and secure manner. This enables recovery from such
incidents.

Another possibility would be for the attacker to simply
monitor what was happening within the application (spy)
and exfiltrate data. Since the most likely avenue of attack
is by compromising a critical user machine, the attacker
would effectively have access to the critical application
and data anyway. This essentially becomes the insider
problem. Exfiltration via other routes is difficult because
of the firewall settings and isolation of the cluster.

For the purposes of critical application availability, the
central concern is that an attacker has found an unknown
attack that can be used to penetrate the cluster. Such an
attack can be used to shutdown the vulnerable web server
or the application behind it. The HACQIT goal is to
maintain at least 75% availability in the face of on-going
attacks. For the attacker to win, all that he/she must do is
to find a small set of vulnerabilities in each of the diverse
web servers or other critical applications. This essentially
guarantees that the attacker will succeed in shutting down
the cluster more than 25% of the time. As long as that
vulnerability remains and the exploit succeeds, the
attacker can just keep hitting the cluster with it and cause
another failover. It does not matter how expensive these
vulnerabilities are to find, once they are found and
exploits developed for them, the time to launch successive
attacks is minimal. The results of this will be devastating
on the defenders.

Even if the IP address of the attacker is blocked or that
user cut off in other ways, the attacker can always come
back unless the cluster is cut off from users. Such an
action amounts to a self-inflicted denial of service and is
clearly unacceptable. Since the attacker has the ability to
automate his attack, even physically capturing the attacker
would not necessarily stop the attacks. Since it takes time
to clean up a server after an attack before it can be put
back into service with any confidence, unless the cluster
has an indefinitely large number of backup servers for
failover, it seems like a losing game for the defender. If
the attacker has found a simple, inexpensive way to vary
the attack signature, the problem becomes even more
difficult for the defender

Can this problem be fixed? In principle there is no
solution. But, as the reader will see, we are using
classical machine learning methods (using observed
instances of the attack to learn the most general
description of an attack that has variants, followed by the
most general blocking rules) combined with the use of
sandbox to experiment offline with the observed instances

to create other instances. Short of analyzing source (or
object) code, that’s the best we can do, and it is likely to
be very effective. Our experiences with Code red and its
variants can attest to this.

4. Solution concept
Cyber attacks (network-based intrusions into a system)

have several important differences from other natural or
man-made faults: They are repeatable, they are not
random (although certain types of attacks may depend on
timing of events), and, if known, they can be filtered out
at system or sub-system boundaries. These distinctions
enabled us to develop a set of learning techniques to help
deal with the unknown attack problem.

Given an observed failure on a cluster server, our goal
is to identify an attack in the recorded cluster traffic.
Repeatability of the attack against the critical application
server is the key criteria of an attack, particularly given
the difficulty of establishing malicious intent. We
developed a set of components that learn an attack after it
is first used, develop blocking filters against it, and
generalize those filters to disallow simple variants of the
attack that depend upon the same vulnerability. By
preventing reuse of an unknown attack, would-be
adversaries are forced to develop a large number of new
attacks to defeat the cluster for any significant period.
This raises the bar significantly on the amount of effort
that an adversary must expend to achieve more than
momentary success.

Clusters can communicate with one another so that the
protective filters developed at one site can be propagated
to clusters at other sites that have not yet experienced the
same attack. This ability to do group learning is a very
powerful feature of the design and implementation.

The information necessary for the forensics based
learning system to work is provided by several key
components including (1) logs of all network inputs to the
cluster for, at least, the last N minutes, (2) logs of all
system sensor readings and responses that indicate errors
or failures in components, and (3) a “Sandbox” for testing
attack patterns and filters. The Sandbox is an isolated
duplicate of the critical application servers, i.e., the
redundant process-pair software, sensors, and hardware.
Note that it is most effective if the number of minutes of
buffering (N) is equal to or slightly greater than the
number of minutes between random rejuvenation. Search
speed is obvious faster if N is a smaller number of
minutes rather than larger.

Our approach to identifying, learning, and blocking
unknown attacks begins when an error (i.e., a deviation
from specified behavior)) is observed in the cluster,
usually associated with the critical application. It proceeds
in parallel with and independent from the failover process
that guarantees continuity of service.

Since our goal is to prevent the success of future
versions of this newly observed unknown attack, it is not

necessary to understand the details of the attack after the
initiating event that puts control into the attacker’s code.
What we want to do is to prevent the initiating event,
which is often a buffer overflow, and we would like to do
this as quickly as possible.

While it is useful to have a general process with
guaranteed convergence to a solution, the practical
aspects of the time required to test many hypotheses of
attack sequences against a Sandboxed application are
formidable. It can take several minutes to restart some
applications after a failure and some applications cannot
be run in multiple processes on the same computer. Our
more practicable approach involves examining a variety
of heuristics and specification / model-based protocol
analyzers that can be used to shrink the search space of
suspect connection requests to a very small number of
candidates that must be verified in the Sandbox.

Table 1. Steps in Learning and Generalization of

Unknown Attacks
No. Step Description
1. Determine if observed error is repeatable

based on connection history file since last
rejuvenation. If repeatable, declare attack and
continue. If not, return.

2. Determine which connection request (or
requests) from history file caused the
observed error.

3. Develop filter rule to block this connection
request(s) pattern, test it, and send to content
filter. Also block the associated user ID and
IP address.

4. Characterize the observed attack (i.e.,
classify it according to meaningful types).

5. Shorten the blocking filter, if possible.
a. Determine if the observed attack sequence

has an initiating event
b. If the initiating event is smaller than the

observed attack sequence, shorten the
blocking filter to block just the specific
initiating event and test it.

6. Based on characterization and observed
attack specifics, generalize the blocking filter
to protect against simple variants of the
attack and test it.

7. Return.
Given the observer error in the cluster, the essential

functional steps in our learning and generalization
“algorithm” are shown in the Table above.

The first two steps rapidly produce an initial filter rule
that blocks the previously unknown attack. The remaining
steps then incrementally improve the rules by shortening
and generalizing them if possible.

A caveat is required here. Since we are dealing with
Turing complete languages and machines, Rice’s theorem

implies that we cannot prove intrusion tolerance for the
system. Nevertheless, within the assumptions imposed on
the system model, we believe we can deliver very useful
and usable results.

The fundamental metric in determining the success or
failure of the HACQIT cluster is whether an attacker can
generate an effective attack rate higher than the cluster’s
effective learning and generalization rate. Intrusion
resistance and intrusion tolerance don’t have to be perfect.
They just have to be good enough to convince the
attackers to try a different, less expensive approach.

There are also several responses that the cluster
controller can take to thwart attacker or to make learning
easier. For example, random rejuvenation can be used to
force an attacker to start over again with a stealthy attack.
It is also useful for limiting the size of the history file that
must be analyzed after a successful attack. It is also
possible to cut off the attacker or “excessive user” via
blocking his IP address at cluster or enclave level firewall.
Since all users come into the cluster over a VPN and
spoofing is not possible, this is particularly effective if the
address or user ID of the attacker can be learned from the
captured attack sequence in the history log. All inputs can
be stopped for short periods if the attacks are
overwhelming the system.

5. Analysis of Approach, Implementation,
and Results

Each step in the learning and generalization process
can be implemented differently for efficiency. For
example, the most general approach to identifying an
unknown attack once it has occurred is a search process
(essentially “generate and test”) using the Sandbox to
establish truth [12]. Thus, Step 1 (determine if the
component error was the result of an attack) could be
implemented by simply rerunning the recorded service
requests from the history log through the Sandbox.

We have found that it is faster to run a model-based
service request checker against the log entries to eliminate
“obviously correct” requests while retaining potentially
suspicious requests. The actual selection rules are
discussed later in this section. This approach speeds up
both the “Was it an attack” testing and the subsequent
“Which request(s) is the attack” testing by significantly
reducing the search space. Since it takes significant time
to restart a failed application or server, this is important.
Generally, the more requests we can “test” analytically,
rather than empirically in the Sandbox, the faster the
search process.

While the last steps (shorten and generalize the filter
rules) can be viewed as a search process, it is much more
efficient to implement it using a knowledge-based
matching approach. That is the reason for the
classification step just before it. Since it is impossible to
work with “unknown” attacks as a whole, we are working
on meaningful taxonomies of unknown attacks to give us

traction on the problem of reducing the search space.
These sub-classes should be more amenable to informed
search approaches and, even if we cannot identify all sub-
classes of unknown attacks, we still obtain very useful
search speed-up in the majority of practical cases. This is
discussed further in the next two sections.
1. Using the component names shown in Figure 4, fault

and intrusion tolerance are provided by the following
control flow:

2. When the primary receives a request, it is forwarded
to the MAC before it goes to the web server.

3. The MAC calls the Content Filter with the new
request as the parameter. It also assigns a serial
number and time stamp to the request.

4. The Content Filter, which contains a list of all bad
requests received to date, checks the bad request list
for a match with the new request.

5. If there is a match, the Content Filter returns false to
the MAC (meaning “reject the request”); otherwise, it
returns true (“accept request”).

6. The MAC returns the answer (reject or accept) to the
primary where the request is either forwarded to the
web server or dropped as appropriate.

7. If the MAC received a true response from the
Content Filter, it also forwards the request (with
serial number and timestamp) to the backup server so
the process pairs can be kept in sync.

8. Assuming that the request is legitimate, the MAC
also waits for each server to process the request and
then compares the return codes or times out if the
response takes too long. If there is a mismatch or
time out, the MAC response is policy driven. Under
most circumstances, it will remove the suspect server
from the process pair and begin normal failover and
recovery steps.

The unknown attack identification and blocking
functions are performed by learning components
highlighted in Figure 4. These consist of the Forensics
Analyzer, the Sandbox, the Circular Buffer and Event
Logs, and the Content Filter and Generalizer.

The Content Filter examines each service request to
determine if it matches a known bad request on its list of
bad requests before it is passed to the primary or backup
web servers. The Circular Buffer captures the last N-
minutes of complete service requests from users to the
critical servers while the event log captures sensor and
event (such as failure) data.

If MAC detects error, it initiates failover and asks the
Forensics Analyzer to start forensics. The MAC passes to
it the history buffer, the state of the sensors and servers
that caused the failover, and any likely candidates for the
bad request. The Forensics Analyzer tests if any
repeatable attacks are present in Circular Buffer by testing
suspicious requests in the Sandbox. If it determines that
an attack has occured, it then identifies specific attack
request(s), and develops a new filter rule to block it. The

Generalizer improves content filter rules to stop simple
variants of some types of attacks. More details on this are

provided below.

Out-of-Band Communication Mediator
Out-of-Band Controller

MACPolicy
Editor

Policy
Server

Forensics
Analyzer

Content
Filter

Event
Log

Operator
Display

Sandbox

Primary
Duplicate

Backup
Duplicate

Sandbox

Primary
Duplicate

Backup
DuplicateOther Controllers

Enclave
LAN &
WAN

Gateway
Firewall

FGS Controller

Offline Backup
(Spare/Fishbowl)

Primary
Protection
Wrapper

Filter / Redirect
Wrapper

IIS

Application
Monitor

Host
Monitor

Integrity
Sensors

Network
Sensors

Primary
Protection
Wrapper

Filter / Redirect
Wrapper

IIS

Protection
Wrapper

Filter / Redirect
Wrapper

IIS

Application
Monitor

Host
Monitor

Integrity
Sensors

Network
Sensors

IP Switch

Backup
Protection
Wrapper

Filter / Redirect
Wrapper

Apache

Application
Monitor

Host
Monitor

Integrity
Sensors

Network
Sensors

Backup
Protection
Wrapper

Filter / Redirect
Wrapper

Apache

Protection
Wrapper

Filter / Redirect
Wrapper

Apache

Application
Monitor

Host
Monitor

Integrity
Sensors

Network
Sensors

Circular
Buffer

Generalizer

Fig. 4. Learning Components

There are also occasions when the MAC is able to

determine relatively unequivocally that an intrusion has
occurred. Examples include detecting unauthorized file
writes or program executions. In many cases, the MAC
itself can determine with high reliability which
connection request is the likely attack. For example, if a
particular request attempts to write an unauthorized file or
start an unauthorized process, it is most likely an attack.
In this case, the suspect request is forwarded to the
Forensics Module as a prime candidate.

The Forensics Module looks in the circular buffer of
past requests to identify suspicious requests. Illustrative
rules for identifying suspicious web requests are shown in
Table 2. Rule one is the result of the fact that many buffer
overflow attacks use a repeated sequence of characters to
move past the fixed length buffer. No valid HTTP
transactions use methods other than GET or POST in our
environment, thus rule two. This would obviously need to
change when other methods are common. Attempts to
access file types other than the standard set served are

classified as suspicious by rule four. Rule five classifies
as suspicious those requests that use unusually long
commands that are typically found in remote command
execution attacks against server-side scripts. Unusual
characters found in the request string are also a good
indication of a suspect transaction, and are included in
rule six. The % character is used for various encoding
methods, such as hex encoding, and is very common in
several classes of attacks. The + character is interpreted as
a space. Many directory traversal attacks against
Microsoft IIS servers include them. The “..” characters
are also a sign of these types of attacks. The <, >, and
< characters indicate cross site scripting attacks
which attempt to inject Javascript into a webpage
dynamically created by a script. The // characters can
represent a subset of a long sequence of / characters
which is an attempt to exploit an old Apache vulnerability
or an attempt to proxy through the server.

Table 2. Illustrative Rules to Identify Suspicious

Web Server Requests
Filtering rules to prioritize suspicious entries in

web server transaction log
1) Repeated characters > 50
2) HTTP method not GET or POST
3) Protocol header other than HTTP/1.0 or HTTP/1.1
4) File extension other than htm, html, txt, gif,

jpg, jpeg, png, or css
5) Command length > 20
6) Request string contains any of %, ?, +, .., //,

<, >, <, ;

The Forensics Module then determines which

suspicious request (or requests) was responsible for the
observed symptoms of the attack by testing each in the
Sandbox. If there is no repeatable error, the Forensics
Module returns. If there is a repeatable error, it has
determined what request should be blocked in the future.
The forensics module then passes the known bad request
to be blocked to the MAC, which calls the UpdateBadReq
method of ContentFilterBridge (which implements the
Content Filter) with the bad request as the parameter.
UpdateBadReq adds the bad request to a static bad
request list in memory and writes it to the bad request file.
Currently, requests are truncated to the first two
components of an HTTP request, namely, the method and
URI.

Every time a request is received on the primary, it is
forwarded to the MAC. The MAC calls the AllowRequest
method of ContentFilterBridge with the new request as
the parameter. The method checks the bad request list for
an exact match with the new request. If there is a match, it
returns false to the MAC, meaning block the request;
otherwise, it returns true.

Thus far the learning is straight-forward and quite
general. Unfortunately, the attack pattern that is being
blocked is quite specific. If simple attack variants can be
produced easily (e.g., by changing the padding characters
in a buffer overflow attack or changing the order of
commands in a cgi-script attack), then this specific
learning approach is easily circumvented by an attacker.
What is needed is a way to rapidly generalize the
observed attack pattern so as to block all simple variants
of an attack that are based on the same vulnerability
initially exploited. This is a challenging area and is the
subject of a continuing research effort.

As a proof-of-concept, we implemented generalization
for a common but prevalent class of attacks: web server
buffer overflows. Our initial approach was to enhance the
AllowRequest method so that if an exact match is not
found, it then analyzes the components of the requests
(both new and bad) to determine if the new request is
"similar" to a known bad request. If it is similar,
AllowRequest returns false; otherwise, it returns true. In
this way, learning is generalized from specific requests
that have been identified as bad.

In principal, similarity is rule based and consists of two
steps: classification and generalization. Classification
categorizes bad requests into meaningful types such as
buffer overflow or remote command execution and, as
required, further into sub-types. Generalization develops a
set of rules for determining similarity between an
observed bad request and a new request based on the
classification results. These rules can be implemented
either as an active checking process or as comparison
templates for use by another program.

For the proof-of-concept on web server buffer
overflow attacks via http requests, we implemented one
rule that acts as both a classifier and a generalizer. It is the
following:

If (1) the query length of the bad request is greater than
(256+X) [this part of the rule classifies the request as a
buffer overflow type1] and (2) the methods of the new
request and the bad request are the same and (3) the file
extensions of the new and bad requests are the same and
(4) the query length of the new request is greater than or
equal to the query length of the bad request, then return
false (i.e., block the request).

Even with X=0 in this rule, many variants of Code Red
I and II are blocked. The initial or padding characters in
the query are irrelevant to how Code Red works; the
length is critical; so whether "XXX..." or "NNN..." or
"XNXN..." are in the query of the attack, the attack is
blocked. In addition, the name of the file (minus the
extension) is also irrelevant to how Code Red works,
because it is the file extension that identifies the resource
(Index Server) that is vulnerable to a buffer overflow, and
it is the query that causes the buffer overflow, not the

1 X starts out equal to zero. Its role will be discussed later.

entire URI. (The URI contains the path identifying the
resource and, optionally, the query.)

The reason for the first condition in the rule is to
differentiate in a trivial way between bad requests that are
buffer overflow attacks and bad requests that are some
other type of attack, like remote command execution.
Unfortunately, it introduces the possibility of false
negatives, that is, a bad request that was a buffer overflow
attack, but with the overflow occurring after less than 256
characters, would be ignored as an example to be
generalized.

This rule has been constructed from extensive analysis
of buffer overflows in general, buffer overflows in IIS and
Apache web servers, and Code Red, in particular. Note
that it only generalizes "learned" behavior. That is, if the
HACQIT cluster has never been attacked by Code Red, it
will not stop the first Code Red attack. It will also not
stop the first case of a variant of Code Red that uses the
.IDQ extension2. This variant would first have to be
"experienced", learned as a bad request, and then
generalized by the above rule. Most importantly, the rule
does not prevent use of a resource like Index Server; it
prevents a wider variety of attacks that exploit an
identified vulnerability in it from reducing availability of
the web server.

Although this rule appears Microsoft-oriented, as the
concept of file extensions does not exist under Unix, it
would work against attacks exploiting vulnerabilities in
other software, such as php and perl, because these
resources also use file extensions. It might be possible to
generalize this to file types under Unix. The key
distinction to be made is, does the path in the URI identify
a document to be returned to the client or does it identify
an executing resource such as a search engine, a DBMS,
etc.?

Finding the minimum length of padding characters for
a buffer overflow attack is not difficult. We have
implemented an enhanced version of the forensics and
generalization modules that iteratively tests attack
variants in the Sandbox with different padding character
lengths. Specifically it successively tests padding
character lengths between 256 and (Y-256) where Y is the
length of the observed buffer overflow padding size.
From this testing, it determines the value of X (which
appears in the first condition of the generalization rule
above) and passes it to the ContentFilterBridge for
inclusion in the revised generalization rule. The observed

2 Index Server uses file types indicated by the extensions,

“.IDA” and “.IDQ”. These two extensions are used by IIS to
identify the Index Server resource, which is then passed either
the whole URI or the query component of the URI. The
“path” component of the URI does not affect the behavior of
the Index Server, except for the file extension identifying it as
the resource target. Any file name other than “default” in
“default.ida” works as well.

padding size is currently determined by the number of
characters before the first non-printing character (i.e., not
ACSII character coder 32 through 126) in the query.
While this is only an approximation that depends on
certain assumptions being true, it proved to be a very
useful approach for the proof-of-concept implementation.
Our investigation with Code Red II shows the padding in
the query that causes the buffer overflow is no more than
one byte over the minimum required; that is, if you
remove two characters from the query, a buffer overflow
will not occur, and IIS will respond to the request
correctly and continue to function according to
specification.

It is worth comparing this automatic generalization
with Snort's hand-coded rules for preventing Code Red
attacks. Snort is widely used, open source, lightweight
Intrusion Detection System. Immediately after the flurry
of initial Code Red attacks, Snort aficionados began
crafting rules to block these attacks. It took at least two
days before rules were posted on the Snort site. These
were not generalized and did not work against trivial
variants. Some three months later, the rules block on
".ida" and ".idq" in the URI and "payload size" greater
than 239 [13]. The use of the file extensions shows some
generalization but the use of 239 as a limit on legitimate
requests intended for Index Server in fact cause false
positives because the payload can be much greater than
239 (at least 373) without causing the web server to fail.

Other improvements to generalization would use
analysis based on HTTP headers and body content. These
and other improvements are the central focus of the next
phase of research.

One additional aspect of the design of the
ContentFilterBridge software is worth discussing. It first
calls AllowRequest with the bad request received from
the MAC. If AllowRequest returns true, that means the
bad request is not on the bad request list, so it is added. If
AllowRequest returns false, this means it is on the bad
request list, so it is not added to the list. This prevents
duplication.

With the addition of generalization, not only will
duplicates be prevented, but also trivial variants will not
extend the bad request list to a performance-crippling
length. As there are over 21792 (or more than the number of
atoms in the universe) variants of Code Red, this is an
important and effective aspect of the design.

6. Next steps
6.1 Software Improvements

In its initial implementation, the Forensics module
truncates bad requests to the first two components of the
HTTP request, namely, the method and URI. This makes
sense in the case of the buffer overflows on web servers
but it needs to be enhanced so there is a more robust way
to identify the initiating event of an attack. In addition,

there is much work to do to enhance the Forensics
module’s process for finding initial attack sequences
efficiently, especially for multi-request attacks.

Similarly, the initial generalization rule base will be
moved into a separate Generalization module that reflects
the architecture. This module will attempt to generalize
all requests or patterns returned by the forensics module
to the content filter and insert specific new rules into the
content filter. More broadly, we want the Generalizer to
be able to task the Forensics Module to run Sandbox tests
on any proposed set of filter rules and generalization
parameters to what works, e.g., which contain the
essential initiating event. In this way, we can refine the
generalization while providing continued protection at the
Content Filter level.

There is a great deal of work to be done in developing
rules for generalizing attack patterns so that simple attack
variants won’t work. We would like to do this by focusing
on meaningful attack classes. The literature contains
many works on classifying various aspects of computer
security including fault tolerance, replay attacks in
cryptographic protocols, inference detection approaches,
COTS equipment security risks, and computer attacks.
Essentially all of these authors have emphasized that the
utility of a taxonomy depends upon how well it
accomplishes its purpose and that there is no such thing as
a universal taxonomy.

Another module that we will likely need is one that
allows us to simulate vulnerabilities in applications and
generate resulting sensor reading. It is difficult to rely on
real world attacks on our specific applications. There are
simply not enough of them in circulation to give us the
breadth of attack types that we need for the research.

6.2 Theory Improvements
As Krsul [14] states, “Making sense of apparent chaos

by finding regularities is an essential characteristic of
human beings.” He laid out the essential characteristics of
successful taxonomies: (1) They should have explanatory
and predictive value. (2) Computer vulnerability
taxonomies should classify the features or attributes of the
vulnerabilities, not the vulnerabilities themselves. (3)
Their classes should be mutually exclusive and
collectively exhaustive. (4) Each level or division should
have a fundamentum divisionis or basis for distinction so
that an entity can be unequivocally placed in one category
or the other. (5) The classification characteristics should
be objective, deterministic, repeatable, and specific. Note
that item (3) above is very difficult to achieve in practice
outside the realm of mathematics and should be probably
be replaced by extensibility as a goal.

Krsul developed a very extensive list of classes
particularly focused on erroneous environmental
assumptions. Unfortunately, his and most of the previous
efforts (see review by Lough [15]) on developing
taxonomies have focused on identifying and

characterizing vulnerabilities in source code so that
programmers could identify and eliminate them before the
software was deployed. At one level this are fine in that
they can give us insights into types of vulnerabilities. For
example, the classic study by Landwehr et al. [16] lists
the following types of inadvertent software
vulnerabilities:
1. Validation error (incomplete/inconsistent)
2. Domain error (including object re-use, residuals, and

exposed representation errors)
3. Serialization/aliasing (including TOCTTOU errors)
4. Identification/authentication errors
5. Boundary condition violation (including resource

exhaustion and violable constraint errors)
6. Other exploitable logic errors

While these are important efforts and give us insights,
we really need a taxonomy of remote access attacks,
particularly one that characterizes the initiating events
that can be exploited via network-based attacks on COTS
or GOTS software.

Since our focus is on unknown network-based attacks,
recent work by Richardson [17] is of interest. He
developed a taxonomy for DoS attacks that identifies the
following attack mechanisms:
1. Buffer overflows
2. IP fragmentation attacks
3. Other incorrect data attacks
4. Overwhelm with service requests
5. Overwhelm with data
6. Poor authentication or access control
7. Poor authentication scheme
8. IP spoofing
9. Data poisoning

Other miscellaneous protection shortcomings)
These categories will be informed by other studies of

taxonomies [e.g., 18, 19]. The results will form the initial
basis for our categorization of initiating events of
unknown attacks. Priorities will be given to those attacks
that are known not to have adequate protection measures
built into the cluster currently and for which there are not
easy fixes to the design that would prevent them. For
example, IP fragmentation attacks against the primary can
be prevented with a proxy on the firewall or gateway and
IP spoofing is prevented by the VPN.

7. Conclusions and recommendations,
Our design for an intrusion tolerant server cluster uses

a behavior specification-based approach to identify errors
and failover to the hot spare. It then uses fault diagnosis to
recognize the attack that caused failover (or violated QoS)
and block it so repeated attacks won't defeat us again. We
learn exact attacks by testing entries from complete log
files in a “Sandbox” until we duplicate the observed
failure. Single stage attacks can be recognized in seconds,
automatically.

We have demonstrated that it is possible to generalize
web server buffer overflow attack signatures after the
initial identified attack so that simple variants that exploit
the same vulnerability will be blocked also. We do this
using a similarity measure for the class of attack. We have
implemented rules that generalize a large subset of buffer
overflow attacks aimed at web servers and have tested it
using the Internet Information Server (IIS) by Microsoft,
and believe that it will also work for Apache and other
web servers also. For buffer overflow attacks, which have
become the most common type of attack, we can also
learn the minimum length of the request that causes the
buffer overflow. This is important to minimize the
probability of blocking legitimate transactions, i.e., the
false positive rate.

We believe this knowledge-based learning is broadly
applicable to many classes of remote access attacks and
has significant uses outside of intrusion tolerance. We
also believe that the generalization approach can be
significantly extended to other classes of attack. The key,
we believe, is generalizing an attack pattern to protect
against all variants that exploit the same vulnerability
rather than trying to generalize a specific attack to protect
against all such attacks in the class. The ease of
generalizing an attack pattern should be proportional to
the ease of creating simple attack variants that work
against the same vulnerability.

In summary, we have developed an approach to
dynamic learning of unknown attacks that shows great
promise. We have also implemented a proof of concept
for generalization that works for a significant class of
buffer overflow attacks against web servers on Microsoft
NT/2000. Our results so far indicate that the
generalization algorithms will be specific to particular
types of attacks (such as buffer overflow), to particular
protocols (such as http) and to particular application
classes. More work is needed to determine whether they
must be specific to particular applications but that is a
likely outcome if the application class is not dominated by
standard protocols.

We recommend that other researchers examine this
knowledge-based approach to identifying unknown
attacks. We hope they find it useful enough to apply it to
other areas.

8. References
1. Schneier, B: Secrets and Lies: Digital Security in a
Networked World. John Wiley & Sons, Inc., 2000 206,
210
2. Gray, J., Reuter, A.: Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers, San
Francisco, CA, 1993 107
3. Lampson, B.: “Computer Security in the Real World”.
Invited essay at 16th Annual Computer Security
Applications Conference, 11-15 December, New Orleans,

LA, available at
http://www.acsac.org/2000/papers/lampson.pdf
4. Just, J.E., et al.: “Intelligent Control for Intrusion
Tolerance of Critical Application Services”. Supplement
of the 2001 International Conference on Dependable
Systems and Networks, 1-4 July 2001, Gothenburg, SW
5. Reynolds, J., et al.: “Intrusion Tolerance for Mission-
Critical Services”. Proceedings of the 2001 IEEE
Symposium on Security and Privacy, May 13-16, 2001,
Oakland, CA
6. Reynolds, J., et al.: “The Design and Implementation of
an Intrusion Tolerant System”. Proceedings of the 2002
International Conference on Dependable Systems and
Networks, 23-26 June 2002, Washington, DC, pending
7. Ko, Calvin: “Logic Induction of Valid Behavior
Specifications for Intrusion Detection”. IEEE Symposium
on Security and Privacy 2000: 142-153
8. Ko, Calvin, Brutch, Paul, et al.: “System Health and
Intrusion Monitoring Using a Hierarchy of Constraints”.
Recent Advances in Intrusion Detection 2001: 190-204
9. Balzer, R., and Goldman, N.: “Mediating Connectors”.
Proceedings of the 19th IEEE International Conference
on Distributed Computing Systems, Austin, Texas, May
31-June 4, 1999, IEEE Computer Society Press 73-77
10. Strunk, J.D., et al.: “Self-securing storage: Protecting
data in compromised system”. Operating Systems Design
and Implementation, San Diego, CA, 23-25 October
2000, USENIX Association, 2000 165-180
11. Ganger, G.R., et al.: “Survivable Storage Systems”.
DARPA Information Survivability Conference and
Exposition (Anaheim, CA, 12-14 June 2001), pages 184-
195 vol 2. IEEE, 2001
12. Russell, S., Norvig, P,: Artificial Intelligence: A
Modern Approach. Prentice Hall, New York, 1995
13. Roesch, M.: Snort Users Manual, Snort Release:
1.8.3. November 6, 2001, available at
http://www.snort.org/docs/writing_rules/
14. Krsul, I.V.: Software Vulnerability Analysis. PhD
thesis, Purdue University, West Lafayette, IN, May, 1998,
p. 17, available at
https://www.cerias.purdue.edu/techreports-ssl/public/97-
05.pdf
15. Lough, D.L.: A Taxonomy of Computer Attacks with
Applications to Wireless Networks. PhD Thesis, Virginia
Polytechnic and State University, Blackburg, VA,
available at http://scholar.lib.vt.edu/theses/available/etd-
04252001-234145/
16. Landwehr, C. E., Bull, A. R., McDermott, J. P., Choi,
W. S.: “A Taxonomy of Computer Program Security
Flaws”. ACM Computing Surveys, Volume 26, Number 3,
September 1994
17. Richardson, T.W.: The Development of a Database
Taxonomy of Vulnerabilities to Support the Study of
Denial of Service Attacks. PhD thesis, Iowa State
University, 2001

18. Aslam, T.: A Taxonomy of Security Faults in the Unix
Operating System. Master's Thesis, Purdue University,
Department of Computer Sciences, August 1995.
http://citeseer.nj.nec.com/aslam95taxonomy.html
19. Du, W. and Mathur, A.: Categorization of Software
Error that Led to Security Breaches. Technical Report 97-
09, Purdue University, Department of Computer Science,
1997

