
A Framework for Diversifying Windows Native APIs to
Tolerate Code Injection Attacks

Lynette Qu Nguyen Tufan Demir Jeff Rowe Francis Hsu Karl Levitt
University of California, Davis

{nguyenly,demirt,rowe,fhsu,levitt}@cs.ucdavis.edu

ABSTRACT
We present a framework to prevent code injection attacks
in MS Windows using Native APIs in the operating system.
By adopting the idea of diversity, this approach is imple-
mented in a two-tier framework. The first tier permutes
the Native API dispatch ID number so that only the Native
API calls from legitimate sources are executed. The second
tier provides an authentication process in case an attacker
guesses the first-tier permutation order. The function call
stack is back-traced to verify whether the original caller’s
return address resides within the legitimate process. The
process is terminated and an alert is generated when an at-
tack is suspected. Experiments indicate that our approach
poses no significant overhead.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—in-

vasive software, authentication, security kernels; D.2.0 [Soft-

ware Engineering]: General—Protection mechanisms

General Terms
Security, Diversity

Keywords
Diversity, Windows Native API, Code injection attacks

1. INTRODUCTION
A code injection attack is one of the most common tech-

niques used by attackers to gain complete control of a victim
machine. These attacks take advantage of software memory
errors to inject malicious instructions into the victim’s pro-
cess memory. Due to the homogeneity of computer systems,
a single vulnerability can result in a widespread compromise
of hosts. This gives attackers the ability to launch Internet
worms, maintain malicious botnet slaves, and conduct DDoS
attacks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’07, March 20-22, 2007, Singapore.
Copyright 2007 ACM 1-59593-574-6/07/0003 ...$5.00.

Simply depositing and executing malicious instructions in
process memory is, by itself, not sufficient to gain control
of a victim. Reading or writing to the disk, connecting to
the network, and many other critical operations require the
use of Native API calls. In MS Windows, native API calls
are the interface used by user processes to request services
from the operating system. In Linux/Unix, system calls are
trapped into the kernel through int 0x80h after the system
call number is pushed onto register eax. A Windows Native
API call is similar; the Native API dispatch ID number is
pushed onto register eax, the call is trapped into the kernel
through an interrupt/fastcall, and the specified service is
then provided by the kernel. The kernel serves requests it
receives both from malicious injected instructions and from
the legitimate user processes without distinctions.

We aim to diversify the MS Windows operating system
such that even if one machine can be compromised, the
same technique will not work on all others. This will prevent
an attacker with a single exploit from obtaining widespread
compromise. We choose the Windows operating system be-
cause the architecture flaws and the proprietary nature make
it more vulnerable to attack. In addition, majority of PC
users run Windows. We feel it is urgent to alleviate the
damages on windows due to the large population that are
affected. We have implemented a framework that wraps the
application or service we want to protect. Our framework in-
struments the program binary at load time to add diversity
to each software instance. The framework is an interface
between the operating system’s services and the software
access that monitors all the Native API calls a program in-
vokes. The term shellcode represents any byte code that is
inserted into an exploit to accomplish a desired task.

2. BACKGROUND
Although Windows has many main sub-system DLLs such

as user32.dll, gdi32.dll, advapi32.dll, ntdll.dll and kernel32.
dll, we focus on ntdll.dll since it serves as the fundamen-
tal user-mode interface of the windows Native APIs. The
actual implementations of the Native API calls reside in
ntoskrnl.exe which is in the kernel. Each Native API has
a stub residing inside ntdll.dll. Figure 1a shows the Native
API stub for ntClose. The first instruction loads register
eax with the Native API’s dispatch ID number. This dis-
patch ID is unique for each Native API and varies among
different builds of the operating system. The second instruc-
tion loads register edx with the address of the fast call stub
and the third instruction call into this stub.

All the native call stubs look almost identical with the

B8 19 00 00 00 mov eax, 0x19
BA 00 03 FE 7F mov edx, 0x7FFE0300
FF 12 call dword ptr[edx]
C2 04 00 ret 0x4

8B D4 mov edx, esp
0F 34 mov sysenter
C3 ret

(a) NtClose Native API call (b) Fast call stub in Windows XP

Figure 1: Windows Native API call

one shown in Figure 1a. The fast call stub (Figure 1b)
saves the stack pointer and transitions from the user mode to
the kernel mode through sysenter instruction. When a Na-
tive API call service is requested, system service dispatcher
KiSystemService is called in the kernel. KiSystemService
use the Native API dispatch ID number stored in register
eax as an index to lookup in the System Service Dispatch
Table(SSDT) which routes the call to its final destination.
In the meantime, KiSystemService also copies all the argu-
ments contained in register edx onto the kernel stack. The
current Windows XP system has 284 Native APIs exported
by ntdll.dll with dispatch IDs ranging from 0 to 283.

3. DESIGN AND IMPLEMENTATION

3.1 Overview

Figure 2: Overview of our framework

We implement our framework as a monitor that controls
the load and execution of protected programs. Using a ker-
nel device driver, our monitor process P executes the pro-
tected program as a child process C, examines and manipu-
lates the memory space of process C, and intercepts Native
API calls from process C. The monitor instruments the
protected process C at link and load time by permuting the
Native API dispatch ID number in memory. Then the ker-
nel device driver intercepts all the Native API calls coming
from the protected process. The Native API numbers are
de-permuted for each intercepted Native API call before ker-
nel serves the request. In this way, only Native API calls
from the monitored process will function correctly. Unless
an attacker can guess the permutation, Native API calls
from injected instructions will malfunction due to an incor-
rect dispatch ID. Furthermore, in the unlikely event that
an attacker guesses the permutation correctly, our frame-
work does further authentication to ensure the API request
is from the original code and not the newly injected code.
When the authentication process sees API requests from in-
valid memory locales, the process is terminated and the user
is alerted. Native API dispatch ID number permutation is
achieved in two steps: when the application binary is loaded
into the memory and when the Native API call is intercepted
by the kernel device driver.

3.2 Permute at Load Time
Once the application binary is loaded into the memory,

we suspend the thread and do a binary static analysis of
ntdll.dll on disassembled instructions. We integrate and
modify an existing open source disassembler [1] into our
project. Once the Native API call instructions in the pro-
tected process are identified, the dispatch ID put in register
eax is replaced with the permuted ID. Since injected mali-
cious code is not present at load time, it will have different,
likely original, dispatch IDs.

3.3 Intercept Native APIs
At run-time, the permuted dispatch IDs must be mapped

back to the intended ID in the original API call for correct
operation. To accomplish this, we implement a kernel de-
vice driver that ”hooks” the SSDT . Traditionally, when a
Native API call service is requested, the dispatch ID num-
ber stored in the eax register is indexed into the SSDT to
retrieve the address of the function that handles the API
call. Our approach hooks the SSDT to point to our code
instead of the original address of the Native APIs. In this
way, whenever an application calls into the kernel, the re-
quest is processed by the system service dispatcher which
calls our function before the API call is routed through its
actual address. This is a critical component of our kernel
device driver since it performs the tasks of filtering PID
(process ID), de-permutation and authentication. One issue
with a kernel device driver is that it is system wide; all Na-
tive API calls from all processes in the system are hooked.
This can crash the system since API calls from legitimate,
unprotected processes do not get served correctly. We solve
this by filtering on the PID of the protected process. If the
Native API calls are from other legitimate processes other
than the protected process, the request will be served as is.
Otherwise, we perform de-permutation and route the API
call request to the address in the corresponding call.

3.4 Authentication
Authentication is the second tier of the framework assum-

ing the attacker has successfully guessed the permutation
scheme and can access the Native API call services. To
authenticate that the Native API calls are indeed coming
from a legitimate requester, a back-trace of the function call
stack is performed. The x86 architecture traditionally uses
the ebp register to establish a stack frame. The return ad-
dress is always located at offset [ebp + 4] on the call stack.
Thus, the return address is easily identified once ebp is lo-
cated. By following the return address while back tracing
the stack, we check whether the return address is within the
protected process. If the traced return address is not within
the application’s address space, we suspect an attack and
the process is terminated with a generated alert.

4. PROBABILISTIC EVALUATION

(a) Probability evaluation (b) Performance evaluation

Figure 3: Probability and performance evaluations

Since our framework is based on the concept of diversity,
it is crucial to determine the probability that an attacker can
succeed by performing a brute-force attack. The probability
for the attacker to successfully guess the correct Native API
call number is P (1 call) = 1/284. If the attacker succeeds
on the first Native API call, the chance of success for the
next is P (2 calls) = 1/284 ∗ 1/283. Thus, the probability
for the attacker to succeed for n native API calls is:

P (n calls) = 1/284∗1/283∗· · ·∗1/(284−n+1) = (284−n)!/284!

Figure 3a reflects the above equation. As figure 3a shows
that once the number of native API calls exceeds 1, the
probability for the attacker to succeed becomes very small.
Our result is based on the assumption that the attacker has
to make at least 2 Native API calls in order to control the
machine. This probabilistic evaluation shows it is difficult
for the attacker to break our randomization through a brute-
force attack.

5. PERFORMANCE EVALUATION
We run our experiments on a 1.6 GHz Pentium M proces-

sor with 128 MB RAM. The implementation in this work is
based on Windows XP with Service Pack 0. We start the
experiment by measuring the cost of intercepting and au-
thenticating an individual Native API call. Then we evalu-
ate the performance overhead before and after applying our
framework for selected applications. All the experiments are
measured with the Pentium processor’s RDTSC (read time
stamp out) instruction. To evaluate the execution time of
the protected program and comparing the costs, we inter-
cept only a limited number of Native API calls. We chose 5
commonly used applications to be our experiment targets.
We perform 5 experiments on each of the 5 applications and
each run intercepts 8 Native API calls. Figure 3b shows the
clock cycle counts for each of the applications before and
after our framework is applied. The figure indicates that
the overhead is less than 3% for both calc and OllyDbg and
less than 9% of overhead for both notepad and iexplore.
The results vary based on the Native APIs called by each
application. Our experiment on individual Native API call
explains this variation. Thus, the overall performance is not
significantly affected by our permutation and authentication
scheme.

6. RELATED WORKS
Researches have been conducted regarding system diver-

sity since the idea of randomization was proposed by Forrest

et al. [2–5]. The ideas that authenticating system calls to
prevent code injectioin attacks are proposed in [6, 7]. Ra-
jagopalan et al. proposed a behaviour specification approach
to verify a cryptographic message authentication code against
a policy generated through augmented arguments [7]. Among
the techniques proposed by Linn et al. [6] to counter code
injection attacks, one approach is to add a new sectioin to
ELF executable in order to distinguish syscalls invoked ille-
gally from legally. This approach requires the modificaiton
of the Linux kernel in order to incorporate with the infor-
mation of the new section. Both of these two approaches
are effective against code injection attacks. However, they
are both implemented in Linux instead of Windows.

7. CONCLUSIONS
Most code-injection attacks must use Native API calls to

do damage once the malicious instructions are deposited.
We adopt the idea of diversity to permute the Native API
dispatch ID numbers, causing the injected code to malfunc-
tion whenever a Native API call is issued. An attacker with-
out knowledge of the permutation scheme can not easily
bypass our monitor by guessing. By analysing and instru-
menting the binary code of the protected process directly,
our framework does not require access to source code and
can be easily deployed without major changes to the system.
The experimental results indicate minor run-time overhead.
We believe the approach of automatically permuting and au-
thenticating Native API calls is promising toward defeating
code-injection attacks.

8. REFERENCES
[1] Bastard disassembler. http://bastard.sourceforge.net/.

[2] S. Bhatkar, D. DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a broad range of memory error
exploits. USENIX Security Symposium, 12(2):291–301, August
2003.

[3] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse
computer systems. In Workshop on Hot Topics in Operating
Systems, pages 67–72, 1997.

[4] J.Xu, Z.Kalbarczyk, and R.K.Iyer. Transparent runtime
randomization for security. Proceedings of 22nd Symposium on
Reliable and Distributed Systems (SRDS), October 2003.

[5] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
Code-Injection Attacks With Instruction-Set Randomization. In
Proceedings of the ACM Computer and Communications
Security (CCS) Conference, pages 272–280, October 2003.

[6] C. Linn, M. Rajagopalan, S. Baker, C. Collberg, H. Hartman,
and S. Debray. Protecting against unexpected system calls.
Proceedings of the USENIX Security, pages 239–254, 2005.

[7] M. Rajagopalan, M. Hiltunen, T. Jim, and R. Schlichting.
Authenticated system calls. International Conference on
Dependable Systems and Networks(DSN ’05), pages 358–367,
2005.

